View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Online

UNIVERSITY University of Wollongong
OF WOLLONGONG .
AUSTRALIA Research Online

Faculty of Engineering and Information Sciences -

Papers: Part A Faculty of Engineering and Information Sciences

2016

Recent progress on sampling based dynamic
motion planning algorit ms

Andrew Short
University of Wollongong, ajs875@uowmail.edu.au

Zengxi Stephen Pan

University of Wollongong, zengxi@uow.edu.au

Nathan P. Larkin
University of Wollongong, nlarkin@uow.edu.au

Stephen van Duin
University of Wollongong, svanduin@uow.edu.au

Publication Details

Short, A., Pan, Z., Larkin, N. & van Duin, S. (2016). Recent progress on sampling based dynamic motion planning algorithms. 2016
IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1305-1311). USA: IEEE.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:

research-pubs@uow.edu.au

https://core.ac.uk/display/81228873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eis

Recent progress on sampling based dynamic motion planning algorithms

Abstract

This paper reviews recent developments extending sampling based motion planning algorithms to operate in
dynamic environments. Sampling based planners provide an effective approach for solving high degree of
freedom robot motion planning problems. The two most common algorithms are the Probabilistic Roadmap
Method and Rapidly Exploring Random Trees. These standard techniques are well established, however they
assume a fully known environment and generate paths ahead of time. For realistic applications a robot may be
required to update its path in real-time as information is gained or obstacles change position. Variants of these
standard algorithms designed for dynamic environments are categorically presented and common
implementation strategies are explored.

Disciplines
Engineering | Science and Technology Studies

Publication Details

Short, A., Pan, Z., Larkin, N. & van Duin, S. (2016). Recent progress on sampling based dynamic motion
planning algorithms. 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp.
1305-1311). USA: IEEE.

This conference paper is available at Research Online: http://ro.uow.edu.au/eispapers/6625

http://ro.uow.edu.au/eispapers/6625

This article was originally published as:
Short, A., Pan, Z., Larkin, N. & van Duin, S. (2016). Recent progress on sampling based dynamic motion planning
algorithms. 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1305-1311). USA: IEEE.

Review of Sampling Based Dynamic Motion Planning Algorithms

Andrew Short, Zengxi Pan, Nathan Larkin and Stephen van Duin

Abstract— This paper reviews recent developments extending
sampling based motion planning algorithms to operate in
dynamic environments. Sampling based planners provide an
effective approach for solving high degree of freedom robot
motion planning problems. The two most common algorithms
are the Probabilistic Roadmap Method and Rapidly Exploring
Random Trees. These standard techniques are well established,
however they assume a fully known environment and generate
paths ahead of time. For realistic applications a robot may
be required to update its path in real-time as information is
gained or obstacles change position. Variants of these standard
algorithms designed for dynamic environments are categorically
presented and common implementation strategies are explored.

I. INTRODUCTION

Robots commonly operate in changing and unknown en-
vironments and need to be able to modify motion plans as
information changes. This is particularly challenging for high
Degree of Freedom (DOF) systems where motion planning
is a computationally expensive operation. Sampling Based
Planning (SBP) algorithms have proven to be an effective
way to solve high-DOF planning problems [1], however
conventional algorithms assume a static, known environment.
Recent work on SBPs has expanded these algorithms to
perform real-time planning in dynamic or unknown envi-
ronments allowing new behaviours and interactions for high
DOF robotic systems.

Elbanhawi [1] defines the motion planning problem as
generating a path P from a start configuration g, to a
goal configuration ggoq; such that P lies entirely within the
free space C'fre.. Planning is performed within a robot’s
configuration space (C-space). C-space is divided into free
space C'trc. and obstacle space Cops. A configuration g is a
single point in C-space, alternatively called a node, sample,
or milestone. A path P is defined by a continuous sequence
of configurations.

In a dynamic motion planning problem Coyps and Clree
may be known or unknown and may change with sensor
data, or as a function of time. This reduces the suitability of
conventional sampling based motion planning algorithms. In
this paper we review recent work to expand the capability of
SBP for solving the motion planning problem in dynamic en-
vironments and explore implementation strategies that make
use of parallel computing, pre-processing and distributed
computing systems.

This paper begins with a background on sampling-based
planning and dynamic planning. Section II then details a

Andrew Short, Zengxi Pan, Nathan Larkin and Stephen van Duin are
with the School of Mechanical, Materials and Mechatronic Engineering at
the University of Wollongong, Wollongong 2500, AU.

number of sampling-based algorithms designed to solve the
motion planning problem in dynamic environments. Sec-
tion III discusses some common implementation techniques
and Section IV concludes this paper with key themes.

A. Sampling Based Planning

Sampling-Based Planners (SBPs) discretely sample the
configuration space to find robot configurations within C'ty.c.
to approximate the free space. A local planner then cre-
ates continuous connections between samples. Since only
samples and connections are used, an explicit representation
of the workspace is not required. The two dominant SBP
paradigms are the Probabilistic Roadmap Method (PRM) [2]
and Rapidly exploring Random Trees (RRT) [3] frameworks.
Both algorithms are highly generic and can be customised in
many ways; for example, different sampling techniques can
be employed to improve performance and path quality [4].

The PRM approach is most often employed in multi-query
planning, where multiple motion queries are performed in the
same environment. PRM is composed of two stages: 1) the
learning phase and 2) the query phase. In the learning phase a
roadmap is created by generating samples and attempting to
connect them to one another using a local planner. During the
query phase, the start and goal configurations are added to the
roadmap and a graph search algorithm is utilised to traverse
the roadmap between the start and the goal [2]. Common
variants include the Lazy PRM, where collision checking is
delayed [5], or PRM*, where a distance metric is adjusted
to converge to the optimal path [6].

RRTs in contrast are generally used as a single query
planner. RRTs grow a search tree from a start configuration
by repeatedly sampling a configuration and attempting to
grow a connection to it from the closest tree node. A
key advantage of RRTs over PRMs is the relative ease of
integrating motion parameters such as system dynamics [3].
Common variants include RRT-Connect which also grows
a tree from the goal configuration to the start for efficiency
[7], or an optimisation to find the shortest path by discarding
cycles with a longer path [6]. Fig 1 shows a graphical
illustration of the PRM and RRT algorithms.

B. Dynamic Motion Planning

The basic approach to the motion planning problem is
to generate a path ahead of time. This assumes complete
knowledge of the environment, such as that derived from
a CAD model. Recent motion planning developments have
focused on cases where the workspace is not fully known or
those that change over time. In such cases motion paths need
to be solved (or adjusted) in real-time such that the solution is

kshen
Text Box
This article was originally published as:
Short, A., Pan, Z., Larkin, N. & van Duin, S. (2016). Recent progress on sampling based dynamic motion planning algorithms. 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1305-1311). USA: IEEE.

(1) PRM Algorithm

goal)(

X start

(a) The learning phase: a random (b) A local planner is used to
sample, denoted by X, is gener- connect the new sample to nearby
ated roadmap vertices.

(c) The query phase: the start and
goal configurations are added to
the roadmap.

(d) A graph search algorithm is
used to connect the start and goal
through the roadmap.

(2) RRT Algorithm

goal X X

:oqrand

X start

(a) A tree is grown from the start
configuration towards the goal.

(b) The planner generates a con-
figuration g4, and grows from
the nearest node towards it to
create gpew-

Fig. 1.

available while the current environment knowledge is valid.
This is considered a more realistic application for motion
planning [8]. [9] characterises the motion planning problem
into four cases based on the obstacles being static or dynamic
and the state of knowledge of the workspace (Table I). The
cases that are considered to be a dynamic motion planning
problem are shown in bold.

There are two primary approaches to adapting sampling-
based planners for dynamic environments. The first is to
modify the algorithms to re-use information to efficiently
update motion paths when the environment changes. This
can involve re-planning portions of the path, re-using com-
puted information across steps, or adjusting generated paths
rather than re-planning them completely. The second ap-
proach is to parameterise time, explicitly planning motions
in configuration-time space. This introduces an additional
dimension to the problem and makes the problem non-
holonomic, as the robot cannot move back in time. There
may also be additional constraints imposed on the path due
to velocity and acceleration limits meaning some connection
are infeasible.

A concept related to dynamic planning is real-time plan-
ning. This requires a robot to be capable of planning motions
in time to react to dynamic environments whilst on the
move. For real-time planning to be accomplished, the motion

(c) The tree rapidly explores the
free space.

(d) The planner terminates when
a node is close to the goal
node. Common implementations
will connect directly to the goal.

Tlustration of the (1) PRM and (2) RRT algorithms.

TABLE I
CASES REQUIRING DYNAMIC MOTION PLANNING FROM [9]

Static Obstacles
Case [
Case III

Moving Obstacles
Case 1I
Case IV

Known Environment

Partially Unknown

plan must be determined during an execution cycle [10]. To
be considered real-time, Kunz et al. specifies re-planning
operations to be completed within 200ms to mimic the
reaction time of a human [11].

II. PLANNING ALGORITHMS

This section presents SBP algorithms tailored for dynamic
environments. These are grouped into three categories. Sec-
tion II-A presents PRM based planners which use a roadmap
internally. Section II-B shows RRT based planners which
grow a tree either from ggiar¢ OF @goar- Section II-C details
planners which combine aspects of multiple planning algo-
rithms. Table II lists the approaches included and provides a
brief description of their key features.

A. PRM Based Algorithms

The PRM approach has been extended in several ways
to efficiently solve dynamic environment problems. If the

TABLE I

SUMMARY OF DYNAMIC PLANNING ALGORITHMS

Algorithm Based On | Summary

Cell-based PRM (CPRM) [12] PRM Discretises configuration space into cells, and attempts to sample in cells which are likely to
contain a solution. Cells close to a direct path and with disconnected components are prioritised.
This heuristic allows for faster re-planning as it biases searching around the solution.

Dynamic Roadmap (DRM) [13] PRM Pre-computes a roadmap assuming a free environment, then discretises the workspace and maps
workspace cells to roadmap edges. During online planning, edges which pass through obstructed
workspace cells are invalidated.

Elastic Roadmap [14] PRM Combines aspects of planning and control - feedback controllers are used to connect roadmap
vertices, and these controllers respond to environment changes. Vertices are maintained by
associating them with workspace features which are then tracked.

Flexible Anytime Dynamic PRM PRM The workspace is segmented into zones of relative desirability. An A* search is done propagating

(FADPRM) [15] from the goal state, and samples are generated near frontier nodes based on a priority heuristic.
The path can then be continually improved and updated during execution.

g-Planner [16] PRM Highly parallel PRM variants which runs on the GPU. Uses parallelised Bounding Volume
Hierarchy and sample generation. Local planning is done lazily, and the roadmap is searched
in parallel to satisfy queries.

Hsu et al. [17] PRM Generates a tree-like PRM online in state X time space by sampling control inputs. The planner
is given a time window to plan within. If the observed obstacles motion changes during execution,
the planner then generates a new path.

Jaillet et al. [18] PRM Uses a pre-computed roadmap to attempt to answer question. If planning fails, a single-query
planner (such as RRT) is invoked to update the roadmap.

Pomarlan et al. [19] PRM Pre-computes a roadmap assuming free space, and then uses Lazy PRM [5] to generate a path.
When a vertex is invalidated, nearby vertices have their cost increased to push planning away from
them. This process can also be run in parallel to execution for increased performance.

Reactive Deformation Roadmap PRM Builds a roadmap based on dynamic milestones and reactive links modeled as particles. Uses a
(RDR) [20] physically inspired model in which milestones attract and obstacles repulse. Also adds and removes
milestones and links to maintain connectivity.

Anytime Dynamic RRT (AD-RRT) RRT Builds on DRRT, combining it with the behaviour of Anytime RRT which generates a possible
[21] suboptimal solution and then improves it. The algorithm alternates between the behaviour of the

two component algorithms in a loop.

Closed Loop RRT (CL-RRT) [22] RRT Grows a tree an input space from the robot’s current state, and then chooses the best trajectory at
each time step. Executes this trajectory, and then re-roots the tree at the end of the trajectory for
further exploration. Edges are re-validated when they are chosen as part of the trajectory.

Dynamic RRT (DRRT) [23] RRT Edges which intersect with an observed obstacle are invalidated. The tree is then trimmed by
iteratively discarding children of invalid vertices. The plan is then repaired by growing the tree
from the goal towards the current robot configuration.

Execution Extended RRT (ERRT) RRT When a path is planned, states are added to a fixed size waypoint cache. If the path is invalidated,

[24] the path is re-planned and samples are probabilistically taken from the waypoint cache in addition
to being randomly sampled.

Frazzoli et al. [25] RRT Similar to RRT, but attempts to connect new states to every existing node rather than just the
closest. Additionally, a cost function assuming an obstacle-free environment is used as a distance
metric. Nodes are checked for T safety, ensuring at least T time is available to re-plan during path
execution.

Greedy, Incremental, Path-directed RRT Grows a tree ahead of execution, and trims it as the robot moves and edges are invalidated.

(GRIP) [26] Deterministically propagates samples from existing edges. Also discards states which inevitably
lead to collision.

Lazy Reconfiguration Forest (LRF) RRT Combines the approaches of LRF and DRRT. A forest of trees is maintained during task execution,

[27] similar to LRF. However, only edges along the currently executing path are validated, similar to
DRRT.

Multipartite RRT (MP-RRT) [28] RRT Combines concepts from other approaches: sampling is biased towards previously valid states as
in ERRT and discards invalidated tree sections as in DRRT. However, discarded branches are
maintained in a cache which is then sampled from.

Partial Motion Planner (PMP) [10] RRT Assigns fixed time windows for planning and execution. Grows a tree from the current robot state
for a time ¢, and uses the best candidate path when planning is done, invalidating nodes that will
inevitably lead to collision.

Reconfigurable Random Forests RRT Invalidated tree edges are removed, splitting trees and forming a set of disconnected trees (a forest).

(RRF) [29] Trees are then connected together, and pruned if they grow too dense.

RRTX [30] RRT An asymptotically optimal re-planning algorithm, generates paths which are continually valid and

optimal in the current static environment. A tree rooted at the goal is rewired when obstacles are
detected.

motion of obstacles is known or predicted ahead of time,
planning can be done in configuration-time space [17]. For
some applications re-planning can be done quickly enough if
obstacles change unexpectedly. [31] creates robust roadmaps
which, given a possible set of obstacle locations, are prob-
abilistically complete. The strength of this approach is that
processing is performed in the learning phase, rather than
the query phase. The rest of the approaches in this section
do not assume knowledge of obstacle locations.

Dynamic Roadmaps (DRM), introduced by Leven and
Hutchinson [13], [32], is a method that has been com-
monly used. The pre-computed roadmap is mapped to a
discretisation of the robot’s workspace. Kallman and Mataric
[33] showed that a simplified DRM which used reference
counting rather than full collision checking can outperform
single-query planners.

Heuristic optimisations to DRM were developed by Kunz
et al. [11] which allowed them to demonstrate planning in
under 100ms. Computationally efficient data structures and
distance metrics were used when adding starts and goals to
the roadmap and lazy collision checking was integrated with
the graph search to avoid backtracking. They also developed
a heuristic which allowed them to use A* graph search with
DRM in contrast to [13] where depth and breadth-first search
are used.

An approach combining DRM with Lazy PRM [5] style
collision checking was developed by Liu et al. [34]. The
process of mapping the workspace from configuration space
was shortened by only mapping roadmap vertices to the
workspace, rather than also including edges. In this case, the
mapping process took only seconds or minutes, rather than
the hours or days in the original DRM approach. Edges are
only fully validated when they are part of a candidate path.
Results showed that online planning times were comparable
to the original DRM, and that the algorithm could also handle
deforming robots.

DRM has also been combined with the Dynamic Bridge
Builder algorithm by Liu et. al [35] to enhance narrow
passage capability. Computational speed is also improved by
only considering moving obstacles within the reachable area
of the robot. Parallel DRM (PDRM) was shown in [36],
where the roadmap was built using motion primitives and
planning queries were performed in approximately 50ms.

Another approach based on pre-computing an obstacle
free roadmap is proposed by Pomarlan and Sucan [19]. No
workspace mapping is created, instead the standard Lazy
PRM [5] planner is used. When a vertex is invalidated during
planning, nearby vertices have their cost increased. This
pushes the planner away from failed vertices, sacrificing path
length for a higher probability of success. This is a simple
and efficient technique and can be applied to many planners
as well as being coupled with a roadmap repair process. One
issue is that edges are not considered, so edges that pass near
failed vertices will not have their costs increased.

Other PRM-based approaches bias sampling rather than
pre-computing a roadmap. Flexible Anytime Dynamic PRM
(FADPRM) [15] is analogous to the anytime AD* extension

to the A* graph search algorithm [37] in that motion plans
can be continually improved during execution. A search
is done from the goal state. A priority queue of frontier
nodes to sample near is maintained based on the relative
density of nearby nodes, the distance to goal and workspace
desirability. Experiments showed that initial plans were slow
to generate, but subsequent changes effectively exploited
existing roadmap information.

Similarly, Cell-based PRM [12] uses heuristics to guide
sampling in order to speed up re-planning queries. The
configuration space is decomposed into cells and sampling
is biased towards cells along the ideal path and those with
many disconnected components. This sampling heuristic was
initially slower than a standard PRM, but subsequent queries
were more rapidly computed.

A third approach is to use control strategies to deform
the roadmap in response to workspace changes. Elastic
Roadmaps [14] use workspace information and control tech-
niques to allow planning at interactive rates. Roadmaps are
generated in the workspace with feedback controllers used
as local planners. Reactive Deformation Roadmaps (RDR)
[20] model vertices as particles and edges as a series of
particles. These particles are then controlled using a Newto-
nian physics model where vertices attract and obstacles repel.
These approaches exploit control techniques so the roadmap
is adjusted to changes, rather than requiring re-planning.

In summary, the three main PRM-based techniques are
pre-computation, sampling biasing and roadmap deforma-
tion. Pre-computed roadmaps can either include cycles
to be robust to obstacles, or exploit features such as a
workspace mapping to allow for quick re-planning. Alterna-
tive, sampling can be biased to repair the roadmap when the
workspace changes, or the roadmap itself can be deformed.

B. RRT Based Algorithms

RRTs are traditionally used as single-query planners —
they rapidly grow a tree from the start configuration, and
as such are problem-specific. This makes them inherently
useful for dynamic planning where the start configuration
and workspace can rapidly change.

Execution Extended RRT (ERRT) [24] inserts all states
along a planned path into a waypoint cache, which is a
fixed size array. When generating samples, states are taken
from the waypoint cache with some probability rather than
using random generation. The algorithm exploits temporal
coherence, and works best in situations where workspace
changes are small and states can be re-used. An adaptive
distance cost metric is also introduced that favours generation
of smaller paths for repeated successful planning queries,
balancing path quality with exploration. The waypoint cache
concept is re-used in a number of other algorithms presented.

Dynamic RRT (DRRT) [23] also takes advantage of tem-
poral coherence. Rather than reconstructing the tree as in
[24], edges that are dynamically obstructed are invalidated.
A trimming process then iteratively discards any states which
have invalid parents, thus discarding invalid branches. If
the tree no longer reaches the goal, the tree is regrown.

An additional enhancement is to bias sampling towards
configuration space areas affected by changes. [23] found
DRRT outperformed ERRT by a factor of 5 in terms of time.

Multipartite RRT (MP-RRT) [28] combines aspects of
both ERRT and DRRT. When edges are invalidated, discon-
nected subtrees are inserted into a cache. When sampling, the
root node of disconnected subtrees are selected probabilis-
tically. MP-RRT has been shown to outperform both ERRT
and DRRT [28].

Anytime Dynamic RRT (AD-RRT) [21] also builds upon
DRRT, combining techniques from Anytime RRTs [38].
Anytime RRTs can incorporate cost into their planning pro-
cess, and generate a series of RRTs where each is guaranteed
to improve on the cost of the previous one. DRRT is used
when workspace changes are observed, and Anytime RRTs
optimise the path at other times. This combination allows
trimming and optimisation costs to be minimised.

Similarly to DRRT, Reconfigurable Random Forests
(RRF) [29] identifies invalidated edges and discards them.
However, instead of trimming tree branches a forest is
created consisting of any disconnected trees, similar to MP-
RRT. The forest is then maintained by reconnecting branches
and pruning when it grows large. Lazy Reconfiguration
Forest [27] extends RRF by only validating edges along the
currently executing path, rather than maintaining the entire
forest.

Another approach is to more explicitly take into account
the plan-execute cycle. This works well with RRTs, as the
tree can be re-rooted as the robot moves. The Partial Mo-
tion Planning formulation [10], nominally based on RRTs,
allocates fixed time windows for planning to be completed
before a candidate path is executed. Frazolli. et al [25] ensure
that a generated path allocates at least a certain time for an
alternative plan to be generated if required.

Closed Looped RRT (CL-RRT) [22] uses the PMP ap-
proach, re-rooting a tree at each time step and generating the
best path possible in the allocated time. Greedy, Incremental,
Path-directed (GRIP) [26] also grows a tree ahead of the
robot’s current state. The tree is grown by splitting and
propagating existing edges, and states which will inevitably
lead to collision are discarded.

As can be seen, the RRT method adapts well to repeated
queries by retaining information across planning requests.
Different algorithms work more efficiently depending on the
amount of workspace change expected. RRTs also allow for
tracking the robot execution, as the tree can be re-rooted to
constantly move with the robot.

C. Hybrid Methods

Hybrid methods combining multiple planning techniques
have also been applied to dynamic motion planning. One
technique is to combine a multiple-query planner for initial
motion plans along with a single-query planner for rapid
roadmap repairs. This approach was demonstrated by Jaillet
et al. [18], which initially used a static roadmap to plan
motions. If a valid motion cannot be generated, blocked
sections are identified and an RRT-based planner is invoked

to repair the roadmap. If this too fails, the roadmap is
reinforced with the addition of new vertices. [39] combined
a PRM with the Anytime D* [37] algorithm to achieve a
similar result.

Other hybrid planners use global sampling-based planning
for high-level motion plans combined with local planners
that react to environmental changes. This allows the global
property of the sampling-based planner to be maintained,
while gaining the rapid reactionary planning of the local
planner. Sanchez et al. [40] implemented a reactive lazy
PRM planner that models a Deformable Virtual Zone (DVZ)
around the robot. When dynamic obstacles impeach on the
virtual zone, control commands are generated to move away
from them. The planner then uses re-connection or re-
planning to move back to the roadmap.

Hybrid methods allow aspects of appropriate algorithms
to be combined to enable dynamic planning. Similarly to as
demonstrated in Section II-B, it is often combining existing
techniques that leads to dramatic improvements rather than
developing new algorithms.

III. IMPLEMENTATION STRATEGIES

This sections briefly presents common implementation
techniques that can be applied to several of the presented
algorithms. The techniques are roadmap pre-computation and
workspace mapping, parallelisation, and cloud computing.

A. Roadmap Pre-Computation and Workspace Mapping

Increasing processing capability and memory space means
that extensive pre-computation is an increasingly attractive
option for motion planning. Several of the PRM-based meth-
ods presented in Section II-A use a dense pre-computed
roadmap, optionally mapped to a discretised workspace.

Choosing the density of a pre-computed roadmap is
critical. A sparse roadmap will allow for quick planning
operations, but may lead to low quality paths or planning
failures due to inadequate coverage [19]. Planning roadmaps
generally do not include cycles, but in dynamic environments
they may be useful to allow alternative plans if edges are
invalidated. [18] uses reinforcement which can introduce
cycles and [41] found that introducing cycles did not sig-
nificantly affect processing time.

Although motion planning operations are generally per-
formed in a robots configuration space, obstacles are ob-
served in the robot’s workspace. The pre-computed roadmap
can be mapped to the robot’s workspace for rapid change
identification [32], [33]. The workspace is most commonly
decomposed through a straightforward uniform decompo-
sition. Leven et al. [13] proposed an approach similar to
run-length encoding to compress the mapping by exploiting
spatial coherency. Computation time is minimised by using
reference points on workspace bodies rather than complex
meshes, and by using a binary search-like method for per-
forming collision and mapping them to workspace cells [11].

B. Parallelisation and Cloud Computing

The move towards multi-core, distributed, and Graphics
Processing Unit (GPU) based computing means that parallel
algorithm variants are capable of running significantly more
quickly than serial variants. One of the earliest parallelisation
techniques proposed was [42], in which the C-space of the
first three joints of a six-axis serial link robot are discretised
and the remaining three joints are planned in parallel. More
recently, GPU-optimised variants of existing planners have
been developed.

For example, the g-Planner family of planners showed
that a GPU-optimised version of the PRM and Lazy-PRM
algorithms can run orders of magnitude faster than CPU-
based planners [16]. The GPU has also been used to perform
collision checking operations, which is generally the most
time consuming part of the SBP workflow, allowing for
dramatic performance improvement [43].

Distributed and cloud computing also provides another av-
enue to parallelise computation and allow for expensive pre-
computed knowledge to be shared. A synergistic roadmap
pre-computation scheme proposed by Bekris et al. [44]
uses cloud hardware for pre-computation of a high quality
roadmap, which is then shared with a local computer for
time-sensitive planning operations.

IV. CONCLUSION

Sampling-based planning is an effective method to solve
high-dimensional motion planning problems in known envi-
ronments. The basic PRM and RRT algorithms are simple
in concept yet can be extended to solve complex scenarios,
such as a dynamic environment. This paper has reviewed
and contrasted a number of extensions which have been used
to make these approaches usable in dynamic and changing
environments, which is a key requirement for real-world
robotics.

Both PRM and RRT-based algorithms have been demon-
strated. PRM-based dynamic algorithms tend to focus around
pre-computation of a robust roadmap, and then either de-
forming this roadmap or rapidly invalidating it through a
workspace mapping. RRT-based algorithms maintain state
between planning queries for efficiency, and also maintain
and attempt to repair tree branches when they are partially
invalidated. Combining PRMs and RRTs, as well as sampling
based planners and local planners, has also been shown to
be a useful technique.

A key implementation technique that is being exploited
is the continual growth in computing power, both in single-
processor terms and the availability of distributed computing.
Dynamic planning algorithms specifically designed to exploit
parallel architectures or GPUs are more performant than
traditional serial algorithms. The ability to perform expensive
pre-computation such as explicit discretisation and mapping
is now straightforward due to cloud computing resources.

V. ACKNOWLEDGEMENTS

Andrew Short is supported by the Australian Postgraduate
Award (APA), the University of Wollongong Global Chal-

lenges program and the ARC Research Training Centre for
Naval Design and Manufacture.

REFERENCES

[1] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” Access, IEEE, vol. 2, pp. 5677, 2014.

[2] L.E. Kavraki, P. §vestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” Robotics and Automation, IEEE Transactions on, vol. 12,
no. 4, pp. 566580, 1996.

[3] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for
Path Planning,” Tech. Rep., 1998.

[4] J. Polden, Z. Pan, and N. Larkin, “Path planning for industrial
robots; lazy significant edge algorithm (Isea),” in Advanced Intelligent
Mechatronics (AIM), 2013 IEEE/ASME International Conference on.
IEEE, 2013, pp. 979-984.

[5] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Inter-
national Conference on, vol. 1. 1EEE, 2000, pp. 521-528.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846-894, 2011.

[71 1. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in Robotics and Automation, 2000.
Proceedings. ICRA’00. IEEE International Conference on, vol. 2.
IEEE, 2000, pp. 995-1001.

[8] K. I. Tsianos, I. A. Sucan, and L. E. Kavraki, “Sampling-based robot
motion planning: Towards realistic applications,” Computer Science
Review, vol. 1, no. 1, pp. 2-11, 2007.

[9]1 K. Fujimura, Motion planning in dynamic environments.
Science & Business Media, 2012.

[10] R. Benenson, S. Petti, T. Fraichard, and M. Parent, “Integrating
perception and planning for autonomous navigation of urban vehi-
cles,” in Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on. 1EEE, 2006, pp. 98-104.

[11] T. Kunz, U. Reiser, M. Stilman, and A. Verl, “Real-time path planning
for a robot arm in changing environments,” in Intelligent Robots and
Systems, 2010 IEEE/RSJ International Conference on. 1EEE, 2010,
pp. 5906-5911.

[12] K. Klasing, D. Wollherr, and M. Buss, “Cell-based probabilistic
roadmaps (cprm) for efficient path planning in large environments,” in
Proc. of the 2007 Int. Conf. on Advanced Robotics, 2007.

[13] P.Leven and S. Hutchinson, “Toward real-time path planning in chang-
ing environments,” Algorithmic and Computational Robotics: New
Directions: The Fourth International Workshop on the Algorithmic
Foundations of Robotics, pp. 363-376, 2000.

[14] Y. Yang and O. Brock, “Elastic roadmapsmotion generation for au-
tonomous mobile manipulation,” Autonomous Robots, vol. 28, no. 1,
pp. 113-130, 2010.

[15] K. Belghith, F. Kabanza, L. Hartman, and R. Nkambou, “Any-
time dynamic path-planning with flexible probabilistic roadmaps,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on. 1EEE, 2006, pp. 2372-2377.

[16] J. Pan, C. Lauterbach, and D. Manocha, “g-planner: Real-time motion
planning and global navigation using gpus.” in AAAZ 2010.

[17] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kino-
dynamic motion planning with moving obstacles,” The International
Journal of Robotics Research, vol. 21, no. 3, pp. 233-255, 2002.

[18] L. Jaillet and T. Siméon, “A prm-based motion planner for dynamically
changing environments,” in [Intelligent Robots and Systems, 2004
IEEE/RSJ International Conference on, vol. 2. 1EEE, 2004, pp. 1606—
1611.

[19] M. Pomarlan and I. A. Sucan, “Motion planning for manipulators in
dynamically changing environments using real-time mapping of free
workspace,” in Computational Intelligence and Informatics (CINTI),
2013 IEEE 14th International Symposium on. 1EEE, 2013, pp. 483—
487.

[20] R. Gayle, A. Sud, M. C. Lin, and D. Manocha, “Reactive deformation
roadmaps: motion planning of multiple robots in dynamic environ-
ments,” in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on. 1EEE, 2007, pp. 3777-3783.

[21] D. Ferguson and A. Stentz, “Anytime, dynamic planning in high-
dimensional search spaces,” in Robotics and Automation, 2007 IEEE
International Conference on. IEEE, 2007, pp. 1310-1315.

Springer

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban
driving,” Control Systems Technology, IEEE Transactions on, vol. 17,
no. 5, pp. 1105-1118, 2009.

D. Ferguson, N. Kalra, and A. Stentz, “Replanning with rrts,” in
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE
International Conference on. 1EEE, 2006, pp. 1243-1248.

J. Bruce and M. Veloso, “Real-time randomized path planning for
robot navigation,” in Intelligent Robots and Systems, 2002. IEEE/RSJ
International Conference on, vol. 3. IEEE, 2002, pp. 2383-2388.
E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” Journal of Guidance, Control, and
Dynamics, vol. 25, no. 1, pp. 116-129, 2002.

K. E. Bekris and L. E. Kavraki, “Greedy but safe replanning under
kinodynamic constraints,” in Robotics and Automation, 2007 IEEE
International Conference on. 1EEE, 2007, pp. 704-710.

R. Gayle, K. R. Klingler, and P. G. Xavier, “Lazy reconfiguration forest
(Irf)-an approach for motion planning with multiple tasks in dynamic
environments,” in Robotics and Automation, 2007 IEEE International
Conference on. 1EEE, 2007, pp. 1316-1323.

M. Zucker, J. Kuffner, and M. Branicky, “Multipartite rrts for rapid
replanning in dynamic environments,” in Robotics and Automation,
2007 IEEE International Conference on. IEEE, 2007, pp. 1603—
1609.

T.-Y. Li and Y.-C. Shie, “An incremental learning approach to motion
planning with roadmap management,” in Robotics and Automation,
2002. Proceedings. ICRA’02. IEEE International Conference on,
vol. 4. IEEE, 2002, pp. 3411-3416.

M. Otte and E. Frazzoli, “RRTX: Real-time motion plan-
ning/replanning for environments with unpredictable obstacles,” in
Algorithmic Foundations of Robotics XI. Springer, 2015, pp. 461-478.
J. P. Van den Berg, D. Nieuwenhuisen, L. Jaillet, and M. H. Over-
mars, “Creating robust roadmaps for motion planning in changing
environments,” in Intelligent Robots and Systems, 2005 IEEE/RSJ
International Conference on. 1EEE, 2005, pp. 1053-1059.

P. Leven and S. Hutchinson, “A framework for real-time path planning
in changing environments,” The International Journal of Robotics
Research, vol. 21, no. 12, pp. 999-1030, 2002.

M. Kallman and M. Matari¢, “Motion planning using dynamic
roadmaps,” in Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 IEEE International Conference on, vol. 5. IEEE, 2004, pp.
4399-4404.

H. Liu, X. Deng, H. Zha, and D. Ding, “A path planner in changing
environments by using wc nodes mapping coupled with lazy edges
evaluation,” in Intelligent Robots and Systems, 2006 IEEE/RSJ Inter-
national Conference on. IEEE, 2006, pp. 4078—4083.

H. Liu, Y. Li, H. Wen, J. Xia, and T. Chu, “Hierarchical roadmap based
rapid path planning for high-dof mobile manipulators in complex
environments,” in Robotics and Biomimetics (ROBIO), 2009 IEEE
International Conference on. 1EEE, 2009, pp. 189-195.

H. Schumann-Olsen, M. Bakken, @. H. Holhjem, and P. Risholm,
“Parallel dynamic roadmaps for real-time motion planning in complex
dynamic scenes,” in 3rd Workshop on Robots in Clutter, 2014.

M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm.” in /CAPS,
2005, pp. 262-271.

D. Ferguson and A. Stentz, “Anytime RRTS,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on. 1EEE, 2006,
pp. 5369-5375.

J. Van Den Berg, D. Ferguson, and J. Kuffner, “Anytime path
planning and replanning in dynamic environments,” in Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on. 1EEE, 2006, pp. 2366-2371.

A. Sanchez, R. Cuautle, R. Zapata, and M. Osorio, “A reactive lazy
prm approach for nonholonomic motion planning,” in Advances in
Artificial Intelligence-IBERAMIA-SBIA 2006. Springer, 2006, pp.
542-551.

D. Nieuwenhuisen and M. H. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in Robotics and Automation, 2004. Proceedings.
ICRA’04. 2004 IEEE International Conference on, vol. 1. IEEE,
2004, pp. 446-452.

T. Lozano-Pérez and P. A. Donnell, “Parallel robot motion planning,”
in Robotics and Automation, 1991. Proceedings., 1991 IEEE Interna-
tional Conference on. IEEE, 1991, pp. 1000-1007.

[43] J.Pan and D. Manocha, “Gpu-based parallel collision detection for fast

motion planning,” The International Journal of Robotics Research, p.
0278364911429335, 2011.

[44] K. Bekris, R. Shome, A. Krontiris, and A. Dobson, “Cloud automa-

tion: Precomputing roadmaps for flexible manipulation,” Robotics &
Automation Magazine, IEEE, vol. 22, no. 2, pp. 41-50, 2015.

	University of Wollongong
	Research Online
	2016

	Recent progress on sampling based dynamic motion planning algorithms
	Andrew Short
	Zengxi Stephen Pan
	Nathan P. Larkin
	Stephen van Duin
	Publication Details

	Recent progress on sampling based dynamic motion planning algorithms
	Abstract
	Disciplines
	Publication Details

	tmp.1490822800.pdf.rWugq

