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Do dormancy-breaking temperature thresholds change as seeds age in the
soil seed bank?

Abstract
In fire-prone ecosystems, many species regenerate after fire from persistent soil seed banks. Species with
physically dormant (PY) seeds have dormancy broken by fire-related heat. The magnitude of post-fire
recruitment, to predict response to varying fire severity, is commonly estimated by testing dormancy-breaking
temperature thresholds of fresh PY seeds. However, seeds spend years in the soil during the inter-fire period,
and determining whether dormancy-breaking thresholds change over time is essential to accurately predict
population persistence. Germination of four south-eastern Australian PY species from the Fabaceae family
(Acacia linifolia, Aotus ericoides, Bossiaea heterophylla and Viminaria juncea) were studied. Dormancy-
breaking temperature thresholds vary inter-specifically and the species represented either high or low
dormancy-breaking threshold classes. Freshly collected seeds, and seeds that had been buried in the field or
stored in dry laboratory conditions for 6 and 18 months were subjected to a fire-related range of heat
treatments (40¿100°C). Seed ageing increased germination response to heat treatments, effectively lowering
the dormancy-breaking thresholds of three species. The fourth species, A. linifolia, initially had a relatively
large non-dormant fraction which was lost as seeds aged, with older seeds then displaying PY broadly similar
to the other study species. Patterns of threshold decay were species-specific, with the thresholds and viability
of low-threshold species declining more rapidly than high-threshold species. The non-dormant fraction did
not increase over time for any of our study species. Instead of increasing their non-dormant fraction, as is
common in other vegetation types, these fire-prone PY species displayed a change of dormancy-breaking
temperature thresholds. This is an important distinction, as maintaining dormancy during the inter-fire period
is essential for population persistence. While changes in sensitivity to dormancy-breaking treatments have
previously been reported as seeds age, our study provides the first test of changes to temperature thresholds,
which increases the range of germination response from the seed bank under varying fire severity.
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ABSTRACT 24 

In fire-prone ecosystems, many species regenerate after fire from persistent soil seed banks. 25 

Species with physically dormant (PY) seeds have dormancy broken by fire-related heat. The 26 

magnitude of post-fire recruitment, to predict response to varying fire severity, is commonly 27 

estimated by testing dormancy-breaking temperature thresholds of fresh PY seeds. However, 28 

seeds spend years in the soil during the inter-fire period, and determining whether dormancy-29 

breaking thresholds change over time is essential to accurately predict population persistence. 30 

Germination of four south-eastern Australian PY species from the Fabaceae family (Acacia 31 

linifolia, Aotus ericoides, Bossiaea heterophylla and Viminaria juncea) were studied. Dormancy-32 

breaking temperature thresholds vary inter-specifically and the species represented either high or 33 

low dormancy-breaking threshold classes. Freshly collected seeds, and seeds that had been 34 

buried in the field or stored in dry laboratory conditions for six and 18 months were subjected to 35 

a fire-related range of heat treatments (40°C-100°C). Seed ageing increased germination 36 

response to heat treatments, affectively lowering the dormancy-breaking thresholds of three 37 

species. The fourth species, A. linifolia, initially had a relatively large non-dormant fraction 38 

which was lost as seeds aged, with older seeds then displaying PY broadly similar to the other 39 

study species. Patterns of threshold decay were species-specific, with the thresholds and viability 40 

of low threshold species declining more rapidly than high threshold species. The non-dormant 41 

fraction did not increase over time for any of our study species. Instead of increasing their non-42 

dormant fraction, as is common in other vegetation types, these fire-prone PY species displayed 43 

a change of dormancy-breaking temperature thresholds. This is an important distinction, as 44 

maintaining dormancy during the inter-fire period is essential for population persistence. While 45 

changes in sensitivity to dormancy-breaking treatments have previously been reported as seeds 46 



age, our study provides the first test of changes to temperature thresholds, which increases the 47 

range of germination response from the seed bank under varying fire severity.  48 

 49 

Key words: Dormancy-breaking temperatures, Fabaceae, fire, physical dormancy, seed aging, 50 

seed storage, soil seed banks 51 

 52 

Introduction 53 

Physical dormancy (PY) is common in fire-prone ecosystems around the world, particularly 54 

prevalent in the Fabaceae, Cistaceae, Malvaceae and Rhamnaceae (Ooi, 2007, Turner et al., 55 

2013; Baskin and Baskin, 2014), all of which form persistent soil seed banks. The impermeable 56 

hard seed coat of PY seeds prevents gas and water exchange which inhibits their germination. In 57 

fire-prone ecosystems, PY is broken by fire-related soil heating, with dormancy-breaking 58 

temperatures ranging between 40°C and 120°C (Jeffrey et al., 1988; Keeley, 1991; Thanos et al., 59 

1992; Gonzále-Rabanal and Casal, 1995; Moreira et al., 2010; Ooi et al., 2014; Liyanage and 60 

Ooi, 2015). Dormancy-breaking temperature thresholds maintained by physically dormant 61 

species are often used to predict the potential level of post-fire response (e.g. Bradstock and 62 

Auld, 1995; Williams et al., 2004; Santana et al., 2010; Ooi et al., 2014; Wright et al., 2015).  63 

 64 

Fire-related dormancy-breaking temperature thresholds vary between PY species (Trabaud & 65 

Oustric, 1989; Auld and O’Connell, 1991) and within populations of single species (Liyanage 66 

and Ooi, 2015). It has been proposed that such variation has been selected for because of the 67 

inherent variability of fire (Trabaud and Oustric, 1989; Ooi et al., 2014; Liyanage et al., 2016), 68 

which results in variation in soil heating over the area burnt (Bradstock et al., 1992; Penman and 69 



Towerton, 2008). Having different dormancy-breaking temperature thresholds among species 70 

can therefore contribute to species coexistence, by distributing germination over space (Trabaud 71 

and Oustric, 1989; Ooi et al., 2014). It has also been suggested that within-species variation can 72 

operate as a bet-hedging mechanism, ensuring that at least some germination is possible across a 73 

range of fire severities, and that PY thresholds are maintained by covarying with seedling 74 

characteristics, which ensure that seedling performance matches the post-fire conditions 75 

(Liyanage and Ooi, 2015; Liyanage et al., 2016). Dormancy-breaking threshold temperatures 76 

have been used to estimate the potential magnitude of post-fire seedling establishment, 77 

depending on the fire severity and/or the amount of soil heating that occurs (Wright et al., 2015). 78 

Species with high dormancy-breaking temperature thresholds (≥ 80°C) require a relatively hot 79 

fire to produce suitable temperatures for breaking dormancy in the soil, whereas species with low 80 

thresholds may respond to lower severity fires or even soil heating generated during summer in 81 

canopy gaps (Auld and Bradstock, 1996; Santana et al., 2010; 2013; Ooi et al., 2014; Liyanage 82 

and Ooi, 2015).  83 

 84 

Predicting the germination response of species which form persistent seed banks is made 85 

complicated by the changes that potentially occur within the soil or over time. In most studies 86 

investigating fire-related dormancy-breaking thresholds of PY species, freshly collected seeds 87 

are used (e.g. Jeffrey et al., 1988; Trabaud and Oustric, 1989; Auld and O’Connell, 1991; 88 

Keeley, 1991; Moreira et al., 2010; Ooi et al., 2012; Liyanage and Ooi, 2015). However, during 89 

burial, daily and seasonal temperature fluctuations cause physiological changes to seeds and 90 

physical deterioration of seed structures, which could change their dormancy and germination 91 

characteristics compared to those of fresh seeds, thereby changing the way they respond to fire-92 



related dormancy-breaking cues (van Staden et al., 1994; Schatral 1996; Roche et al., 1997; 93 

Zeng et al., 2005).  94 

 95 

Alteration of dormancy-breaking responses in stored seeds has been identified for a number of 96 

physiologically dormant species (e.g. Roche et al., 1997; Tieu et al., 2001; Baker et al., 2005; 97 

Turner et al., 2013), with the proportion of seeds that respond to smoke cues (but also to heat for 98 

some species) generally reported to increase after storage in laboratory or field conditions, 99 

presumably due to dry after-ripening. For PY species, changes to the dormant fraction with 100 

storage and a general pattern of increased germination with longer storage have been reported 101 

(e.g. Morrison et al., 1992; Van Assche and Vandelook, 2006; Galíndez et al., 2010; Orscheg 102 

and Enright, 2011; Hudson et al., 2015). However, in fire-prone systems, variation in the non-103 

dormant fraction is usually small for PY species, and of little value for predicting post-fire 104 

response (Ooi et al., 2012, 2014). While there are other examples of studies of PY species, where 105 

the effects of storage on germination response to a single ‘heat’ treatment (representing fire) has 106 

been tested (e.g. Baker et al., 2005; Turner et al., 2013), no studies have investigated the effects 107 

of storage on dormancy-breaking temperature thresholds. These thresholds are the key seed-108 

related characteristic that contributes to determining recruitment for PY species, and 109 

understanding such changes are therefore important for robustly predicting population 110 

persistence. 111 

 112 

In this study, we investigated the effects of seed ageing on dormancy-breaking temperature 113 

thresholds of four PY species from south eastern Australia, all within the family Fabaceae. Two 114 

of the species are known to have a high temperature threshold for breaking dormancy (Acacia 115 



linifolia and Viminaria juncea) while the other two have low temperature thresholds (Aotus 116 

ericoides and Bossiaea heterophylla). Physical dormancy is represented in around 45% of 117 

dormant shrub species in this region (Ooi, 2007), and previous work suggests that some species 118 

within the physically dormant Fabaceae family display lower levels of initial dormancy after dry 119 

storage (Morrison et al., 1992). Additionally, other studies have shown that the germination 120 

response of fresh seeds of a number of species is negligible, even at the highest soil temperatures 121 

likely to occur during fire (e.g. Auld and O’Connell, 1991; Ooi et al., 2014; Liyanage and Ooi, 122 

2015). These findings suggest that changes in dormancy over time are not only likely, but for 123 

some species are essential if a germination response is to occur. We therefore hypothesise that 124 

dormancy-breaking temperature thresholds of PY species change with time within the seed bank, 125 

and that both the storage conditions and duration can affect the magnitude of change. More 126 

specifically, we addressed the following questions: 127 

          128 

(i) Do dormancy-breaking temperature thresholds change as seeds age in the soil seed bank? 129 

Similarly, do initial levels of dormancy also change? 130 

(ii) Is there an interaction between the effects of aging and type of storage condition? 131 

(iii) Does the changing pattern of dormancy-breaking temperature thresholds vary among 132 

species? Particularly, do high threshold species maintain the requirement for high temperatures 133 

over time? 134 

(iv) How can the changes observed potentially affect recruitment and population persistence? 135 

  136 

Methods 137 

Study species and region 138 



The dormancy-breaking temperature thresholds of four common native shrub species from the 139 

fire-prone sclerophyll vegetation of the Sydney region (Royal 34°03́ S, 151°03́ E and Heathcote 140 

34°07́ S, 150°58 ́ E National Parks) in south eastern Australia were examined to assess their 141 

change in dormancy response with ageing. Rainfall in the study region is aseasonal, with 142 

approximately 1100 mm falling annually and peak monthly means occurring in January, March 143 

and June. Average monthly maximum/minimum temperatures are 26/18 °C and 16/8 °C in 144 

summer and winter respectively (Australian Government Bureau of Meteorology, 2016). All 145 

study species occur within the Fabaceae family and produce physically dormant seeds (PY). 146 

Seeds were collected from 15-20 randomly selected mother plants of A. linifolia, B. heterophylla, 147 

A. ericoides and V. juncea, from single populations during the summer of 2013 (November – 148 

December). Among these species, previous work by Liyanage and Ooi (2015) has shown that 149 

freshly collected dormant seeds of A. linifolia and V. juncea had high dormancy-breaking 150 

temperature thresholds, requiring at least a 100 °C treatment to reach 50% germination. Bossiaea 151 

heterophylla and A. ericoides represented low dormancy-breaking temperature threshold species, 152 

requiring a 60 °C treatment or less to reach 50% germination.  The temperature treatment ranges 153 

applied for this study were therefore relevant to each threshold group.  154 

 155 

Dormancy assessment of fresh seeds 156 

A proportion of the collected seeds were used to assess initial dormancy-breaking temperature 157 

thresholds. Dry oven 10 minute temperature treatments of 40, 60, 80 and 100 ºC were applied to 158 

three replicates of 15-20 fresh seeds (depending on seed availability) for the high threshold 159 

species V. juncea and A. linifolia. For the low threshold species B. heterophylla, and A. ericoides, 160 

40 and 60 °C treatments only were applied, as these were high enough to promote maximum 161 



germination. Treatment levels were based on the range of temperatures experienced in the soil 162 

during fire (Ooi et al., 2014). Temperature treated seeds were allowed to cool and then placed on 163 

moistened filter paper in replicate petri dishes to germinate under a 25/18 °C and 12/12 hour 164 

light/dark regime in a temperature-controlled incubator. This temperature regime was used to 165 

mimic summer mean maximum and minimum temperatures. Summer is the time that most 166 

natural fires occur (McLoughlin 1998), and seeds that have their dormancy broken during fire 167 

respond to the next rainfall event, which in this region is most likely to occur in summer due to 168 

an aseasonal rainfall pattern. Three untreated replicates were used as the control for each species. 169 

Germination was recorded for six weeks at two day intervals and scored on emergence of the 170 

radicle. To assess viability at the end of each germination trial, ungerminated seeds were 171 

scarified and placed back in the incubator for up to four week. All seeds had imbibed by this 172 

point and had either germinated or become soft and mushy. Seeds germinating after scarification 173 

represented those that had remained dormant from the treatment but were still viable. Viability of 174 

each replicate was calculated as the total number of seeds germinating before and after 175 

scarification.   176 

 177 

Seed ageing and dormancy assessment 178 

The remaining seeds from each species were divided into two sets, with one used for a field 179 

burial trial and the other for dry storage in laboratory conditions. For the burial treatment, seeds 180 

from each species were equally divided into sand-filled nylon mesh bags (10 x 20 cm) with a 181 

mesh size of 2 mm. For the smaller seeded species A. ericoides and V. juncea, bags containing 182 

50 seeds each were used, while for the larger seeded A. linifolia and B. heterophylla each bag 183 

contained 25 seeds (Table 1). This ensured that the seed to sand proportions were similar across 184 



species. In December 2013, the bags were buried within the top 2 cm of the soil profile at the 185 

same field sites where seeds of each species were originally collected from. The bags were 186 

randomly assigned to one of three plots within each site, to account for within-site spatial 187 

variation, and their locations recorded with a GPS for later retrieval. After six and 18 months, a 188 

minimum of three bags for each species were retrieved and air dried. Intact seeds were extracted 189 

from the sand by sieving. The number of seeds damaged during burial were recorded and seeds 190 

from each plot then pooled to randomise any microclimatic effects. Heat treatments were then 191 

applied as described above, with the same range of temperatures and the same conditions for 192 

germination that were used for fresh seeds. For the laboratory-stored seeds, replicates were 193 

placed in paper bags and stored at ambient laboratory conditions (~20 to 23 °C) prior to use in 194 

germination trials after six and 18 months.   195 

 196 

Analysis 197 

The percentages for initial viability (based on the number of viable seeds in the controls), 198 

mortality (the percentage of seeds killed) at each temperature treatment, as well as germination 199 

and the non-dormant fraction were calculated for fresh, field-stored and laboratory-stored seeds 200 

for each retrieval period. The non-dormant fraction over time was estimated using the number of 201 

viable seeds germinating in the untreated controls at 0, 6 and 18 months. Before each calculation, 202 

viable seed number per replicate was corrected using the mean viability of the control replicates. 203 

Data were analysed using Generalised Linear Models (GLMs) with a binomial error structure 204 

and logit link function for each species separately. Analyses were conducted using the R 205 

statistical platform (R Core Development Team, 2014). 206 

  207 



Germination response 208 

To analyse germination data, storage time, type of storage (soil or laboratory) and temperature 209 

treatments were assigned as the predictor variables. We used model selection and determined the 210 

best fitting model from all possible subsets of three predictor variables using Akaike’s 211 

Information Criterion (AIC) (Akaike, 1973).  212 

 213 

Based on germination results from the heating experiments, the lowest mean temperatures 214 

required to produce at least 20% and 50% germination of initially dormant seeds were calculated 215 

(G20% and G50%). A minimum of 20% increased seed germination is considered to be a high 216 

enough response to produce a noticeable flush of seedling emergence in the post-fire 217 

environment (Ooi et al., 2014). ‘Obligate pyrogenic dormancy class’ species (Ooi et al., 2014) 218 

are defined as high threshold species, and require at least an 80°C heat shock to reach 20% 219 

germination. We therefore used the G20% index to identify whether dormancy-breaking 220 

temperature thresholds changed during storage in the soil. A lowering of the G20% index would 221 

indicate that thresholds for producing a post-fire germination response were being reduced as the 222 

seed bank aged.  223 

 224 

Decay pattern of high threshold seeds 225 

Both low and high threshold species have at least some proportion of seeds at the dispersal stage 226 

that have high dormancy-breaking thresholds. To identify how quickly the seed banks reduce 227 

from high to low threshold, we calculated the half-life of the high threshold fraction for each 228 

species. This was done by plotting the percentage of seeds germinating at the next treatment 229 

temperature below 80°C for each replicate tray (i.e. the 60°C response) against time (duration of 230 



burial). The decay rate was then estimated by fitting exponential curves to each plot. The half-231 

life of the initial high dormancy-breaking threshold seed fraction was then calculated from the 232 

exponential equation, 233 

y = ae
-bt

 234 

where, a is the initial high dormancy-breaking threshold seed percentage, b is the decay rate and 235 

y is the percentage of high dormancy-breaking threshold seeds remain in the soil seed bank at 236 

time t (Auld et al, 2000). Replicates of some species showed a total loss of the high threshold 237 

seed fraction after the first retrieval (6 months), and in this case a linear regression was used to 238 

estimate the decay rate. For both model types, half-life was calculated by solving the equation 239 

for half of the initial percentage of high threshold seeds. For B. heterophylla, the 60°C treatments 240 

couldn’t be conducted due to a lack of seeds in the field burial treatments. In this case, there were 241 

little differences between field and lab-stored results, and so the decay rate was based on lab-242 

stored seed data. The half-life of high threshold seeds were not calculated for A. linifolia because 243 

this species displayed no change in threshold over the time period used in our study.  244 

 245 

Change in viability and dormancy over time 246 

We assessed how viability and the non-dormant fraction changed, and whether resilience to fire-247 

related temperatures was maintained over time. Change in viability and initial dormancy after 248 

each storage time period of the laboratory-stored seeds was assessed using a one-factor GLM 249 

with time as the predictor. Due to viability of most retrieved field-buried seed lots being at or 250 

close to 100%, we investigated loss of laboratory-stored viability and the number of lost seeds 251 

from each of the retrieved bags. We plotted the mean for each over time, as well as comparing 252 

the percentage of lost seeds per replicate bag with the percentage of seeds becoming inviable 253 



during laboratory storage using regression. This allowed assessment of whether seed loss in the 254 

field could potentially be related to loss of non-dormant or inviable seeds.  255 

 256 

Results 257 

All four species showed an increase of germination in response to heat treatments over storage 258 

time (Fig. 1). In three of the study species, there was a significant interaction between 259 

temperature and storage time (V. juncea df =4, χ
2
 = 139.21, P < 0.001; A. ericoides df = 2, χ

2
 = 260 

111.51, P < 0.001; B. heterophylla df = 2, χ
2
 = 111.53, P < 0.001), showing that germination 261 

response to heat treatments increased as seeds aged (Table 2). Although there was no significant 262 

effect of type of storage for these three species, examination of the data indicated that B. 263 

heterophylla and A. ericoides displayed differences at the 40 °C treatment between the lab- and 264 

soil-stored seeds. For both of these species, a decline in germination after 18 months lab-storage 265 

appeared to be related to a large decline in viability (Table 3). Additionally for B. heterophylla, 266 

there is a much sharper lowering of threshold obvious at 40 °C for lab-stored seeds compared to 267 

field buried seeds. For A. linifolia however, there was a similar significant interaction between 268 

storage time and temperature (df =4, χ
2
 = 165.22, P < 0.001), as well as a significant difference 269 

between laboratory and field stored seeds (df = 1, χ
2
 = 250.95, P = 0.003) (Table 2). Acacia 270 

linifolia seeds increased germination to 80% at the 80 °C treatment after six months field burial, 271 

whereas maximum germination of laboratory stored seeds was less than 30%, even after 18 272 

months storage (Fig. 1). There was little decrease in initial dormancy levels (i.e. no significant 273 

increase in the non-dormant fraction) observed as a result of storage time (Fig. 1). 274 

Counterintuitively, A. linifolia displayed a significant increase in initial dormancy levels in 275 



laboratory stored seeds as they aged (df =2, χ
2
 =5.32, P < 0.001) (Table 3). There was a similar 276 

increase in initial dormancy levels for field buried seeds for all species (Table 3). 277 

  278 

Dormancy-breaking temperature thresholds measured by G20% and G50% were higher for freshly 279 

collected seeds, ranging from 80-100 °C in high threshold and 60 °C in low threshold species, 280 

than after storage (Table 3). The G20% displayed a dramatic decrease over time for three of the 281 

study species, with both low threshold species, B. heterophylla and A. ericoides, dropping their 282 

threshold to the lowest fire-related temperature treatment of 40°C after only six months. The 283 

high threshold V. juncea also moved from a high to low threshold classification (Ooi et al., 284 

2014). However, the G50% showed that a large proportion of V. juncea seeds maintained a high 285 

threshold for at least six months (Table 3).  286 

 287 

The estimated half-life of the high threshold seed fraction varied considerably between species 288 

(Table 4). The fractions of initial high threshold seeds were less than 50% for both low threshold 289 

species, which was reduced to almost 0% at the first retrieval (6 months). The estimated half-290 

lives of their high threshold fractions were therefore below six months for both Aotus ericoides 291 

and B. heterophylla (Table 3). For the high threshold V. juncea the half-life of the high threshold 292 

fraction of seeds was relatively long, taking over 21 months. The half-life for A. linifolia could 293 

not be robustly calculated dormancy-breaking thresholds did not decay over the 18 months of 294 

burial.  295 

 296 

Viability of the high threshold species A. linifolia did not decline over time. However it did 297 

decline significantly for both of the low threshold species B. heterophylla (df = 2, χ
2
 =7.196, P < 298 



0.001) and A. ericoides (df =2, χ
2
 =11.095, P = 0.029), and the high threshold species V. juncea 299 

(df = 2, χ
2
 =2.54, P =0.002) by approximately 35%, 25% and 10% respectively, after laboratory 300 

storage for 18 months (Table 3) (Fig. 2A). For buried seeds, there was a significant decline in the 301 

number of whole seeds retrieved over time for all species except A. ericoides (Fig. 2B). The 302 

relationship between the number of seeds missing from bags at retrieval and the proportion of 303 

seeds losing viability was highlighted by a strong positive correlation for B. heterophylla (R
2
 = 304 

0.506) and V. juncea (R
2
 = 0.785) (data not shown). However, no clear relationship was found 305 

for A. ericoides or A. linifolia.  306 

          307 

Discussion 308 

We observed a clear lowering of dormancy-breaking temperatures over storage time for three of 309 

our physically dormant study species. The effects of ageing differed between species however, 310 

with the low threshold species B. heterophylla and A. ericoides losing viability and dropping 311 

threshold levels more quickly than their high threshold counterparts. For the high threshold 312 

species, a proportion of V. juncea seeds were reduced to lower threshold levels over time, 313 

whereas all A. linifolia seeds maintained high thresholds over time. This provides an insight into 314 

the dynamics of dormancy-breaking temperature thresholds within persistence soil seed banks. 315 

These results have implications for allowing more sophisticated predictions for post-fire 316 

regeneration in response to fire (Keith et al., 2002; Wills and Read, 2002; Hudson et al., 2015) 317 

which would not be possible from experiments that have tested the germination of stored seeds 318 

using non-dormant fractions or single fire-related temperature treatments.  319 

 320 



Variation in dormancy-breaking temperature thresholds of fire-following species is directly 321 

related to understanding both the response to variation in fire severity (and the related levels of 322 

soil heating) and the impacts of changes to the fire regime associated with fire management and 323 

climate change. For example, species with high dormancy-breaking temperature thresholds 324 

would likely fail to recruit after less severe burns, such as those produced during cool season 325 

prescribed fires that result in low soil temperatures (Auld and O’Connell, 1991; Auld and 326 

Bradstock, 1996; Penman and Towerton, 2008; Ooi et al., 2014; Liyanage and Ooi, 2015). The 327 

results from our study suggest that some high threshold species, such as V. juncea, have a 328 

mechanism that provides some level of seed germination response under low severity conditions. 329 

This could be interpreted as a bet-hedging mechanism in response to variation in fire severity, 330 

which is only developed as seeds age within the seed bank.  331 

 332 

Both the extent to which thresholds drop and the amount of time taken to decrease would be 333 

important in determining the ability of a species’ seed bank to respond to lower temperatures 334 

during fire. While there is an obvious decline in threshold temperatures, particularly when 335 

determined by the G20% index, both high threshold species differ. Acacia linifolia maintained its 336 

high threshold throughout the duration of the experiment, indicating that the seed bank would 337 

retain a high threshold requirement over a typical fire return interval for the region of 7 - 17 338 

years (Bradstock and Kenny, 2003). Viminaria juncea was more plastic, indicating that a greater 339 

proportion of seeds would be able to respond to lower temperatures. However, a relatively long 340 

half-life of the high threshold fraction meant that a large proportion of the seed bank would still 341 

require an 80°C treatment to produce a germination flush during the next fire event, due to fresh 342 

seed input and the slow rate of decline. Identifying both rapid and slow threshold changing 343 



species could help to further develop dormancy-breaking threshold groups and understand the 344 

population dynamics of fire-prone species associated with seed age and variation in the fire 345 

regime. 346 

 347 

The results from our study lead to the question of whether a decline in temperature thresholds is 348 

simply a sign of seed decay or a trait which provides some benefit to species persistence. In other 349 

regions, where fire is not a driver of population dynamics, a decline in dormancy over time is 350 

essential for many PY species. For example, winter annuals lose dormancy over the hot summer 351 

months to promote germination during cooler months (Van Assche and Vandelook, 2006), while 352 

arid species experience a gradual decline in the dormant fraction to take advantage of sporadic 353 

rainfall events (Ooi et al., 2009). In fire-prone regions, it is beneficial that seed banks maintain a 354 

high proportion of dormant seeds between fires, an assumption supported by our findings of little 355 

increase in the non-dormant fraction. However, this differs to a reduction in temperature 356 

thresholds. Our study species also displayed a relative increase in the number of dormant seeds, 357 

particularly after field burial, a result likely to be related to germination of the non-dormant 358 

fraction in the treatment bags (Zalamea et al., 2015), and the disintegration of inviable seeds. 359 

This hypothesis was supported for at least two of our species, B. heterophylla and V. juncea, 360 

where we found a strong correlation between viability decline during laboratory storage and seed 361 

loss from bags during field burial. 362 

 363 

One hypothesis for the role of threshold reduction is related to the dynamics of seed bank 364 

formation. Upon reaching the soil surface, seeds can move vertically down the soil profile over 365 

time via both biotic and abiotic agents. Rainfall is the key abiotic cause, with the greatest rates of 366 



burial occurring in sandy soils (Benvenuti, 2007; Marthews et al., 2008). The main biotic vector 367 

in our study region is ants, with one study reporting up to 38% of Acacia suaveolens seeds 368 

moved to nests (Auld, 1986), resulting in a large proportion buried at depths over 5 cm (> 20% 369 

of seeds). While some cycling of seeds within the depth profile is possible (Chambers and 370 

MacMahon, 1994), it is likely that on average older seeds are buried at greater depth than 371 

younger seeds. Soil is an effective insulator and temperatures experienced by the seed bank 372 

during fire decrease with increasing soil depth (Auld, 1986; Auld and Bradstock, 1996). The 373 

lowering of thresholds over time may therefore be a mechanism for maintaining a post-fire 374 

germination response, with older seeds responding to the lower temperatures experienced at 375 

depth and younger seeds germinating in response to hotter temperatures closer to the soil surface. 376 

This ability would be mediated by seed size (Bond et al., 1999, Hanley et al., 2003), meaning 377 

that larger-seeded species may have less selective pressure to maintain higher thresholds. Future 378 

studies looking at dormancy-breaking temperature thresholds as seeds age, across a number of 379 

species with a range of seed sizes, would contribute to understanding the basis of this 380 

mechanism. 381 

 382 

A striking finding from our experiments provides an answer for conflicting results reported in a 383 

number of previous studies. These have shown that dormancy of some PY species is not broken 384 

by fire-related temperatures in the laboratory, even though mass seedling emergence has been 385 

observed in the post-fire environment. Temperature treatments of up to 110°C produce no or 386 

little germination response, yet mortality occurs at 120°C. Examples come mainly from the 387 

Fabaceae, and include Acacia longifolia, Mirbelia platylobium and one of our study species, A. 388 

linifolia (Auld and O’Connell, 1991; Ooi et al., 2014) but are also found in the Malvaceae, 389 



including Alyogyne hakeifolia and A. huegelii (Baker et al., 2005). This has led to some 390 

confusion over the drivers of germination response for these species. All of these studies have 391 

been conducted using fresh seeds. The increased levels of seed germination that we observed for 392 

aged A. linifolia seeds therefore provides an explanation for such observations.  393 

 394 

For A. linifolia we also observed relatively high germination in untreated fresh seeds, compared 395 

to other PY species in the study region, suggesting that dormancy may not have been fully 396 

developed at dispersal. In our system, there is little adaptive benefit for having a non-dormant 397 

seed bank fraction, such as the hypothesised reward for dispersal to safe sites suggested by others 398 

(e.g. Paulsen et al., 2013; Zalamea et al., 2015), because successful recruitment is restricted to 399 

the post-fire environment and inter-fire germination is highly likely to fail, irrespective of the site 400 

reached (Whelan, 1995; Ooi et al., 2012). Additionally, dispersal by mammals is extremely rare 401 

for this species, and instead is primarily carried out by ants which are rewarded by the elaiosome 402 

(Auld, 1986). We suggest that the lack of dormancy observed in A. linifolia is an artefact of 403 

using freshly collected seeds, and the development into hard seeds, while relatively slow, is 404 

within a time frame which ensures minimal loss to germination. Other studies have reported 405 

several PY species that have non-dormant seeds at dispersal, with PY developing on exposure to 406 

low humidity levels (Pukittayacamee and Hellum, 1988; Tozer and Ooi, 2014). Tozer and Ooi 407 

(2014) found that this occurred rapidly for Acacia saligna once humidity dropped below 20%, 408 

meaning that initially non-dormant seeds of this PY species were likely to ‘harden’ within a few 409 

days of dispersal in their native habitat, and still be incorporated into the seed bank. In our study, 410 

it is difficult to identify the mechanism by which fresh A. linifolia seeds become dormant, 411 

however, germination response after the lower heat treatments (40°C and 60°C) was significantly 412 



lower than the controls, without any increase in seed mortality. This suggests that such 413 

temperatures, which can be reached during hot summer days in the soil (Ooi et al., 2012), may 414 

have a role in the development of PY in the non-dormant fraction, potentially in addition to low 415 

humidity. This again highlights the need for further studies assessing both fresh and aged seeds 416 

to understand PY variation and response.    417 

 418 

For both low threshold species B. heterophylla and A. ericoides, the vast majority of seeds 419 

required only a 40°C treatment to overcome dormancy after relatively short burial periods. This 420 

increases the likelihood of a large germination response of such species to cooler lower severity 421 

burns, and also potentially to have dormancy broken by the temperatures produced during the 422 

inter-fire period. Ooi et al. (2014) found that such temperatures had the potential to promote 423 

germination, a response that could significantly increase under predicted future summer soil 424 

temperatures. Seedling recruitment during the inter-fire period is rarely successful in these fire-425 

prone systems, meaning that increased levels of dormancy loss could cause significant soil seed 426 

bank decay (Ooi et al., 2012, 2014). Our study therefore highlights that the risks to population 427 

persistence from seed bank decay is higher than previously estimated, due to dormancy-breaking 428 

thresholds changing over time, with up to 90% of seeds from the facultative pyrogenic species B. 429 

heterophylla and A. ericoides requiring only the lowest temperature treatment of 40°C. 430 

Incorporating such data could improve predictions of population dynamics under predicted soil 431 

temperatures, particularly in the important but understudied area of seed persistence and climate 432 

change (Ooi et al., 2014; Hudson et al., 2015; Ooi, 2015; Parmesan and Hanley, 2015).      433 

 434 



Most studies of persistent seed banks describe composition, density or germination response at a 435 

particular point in time, but far less often describe how these characteristics change over time 436 

(Fenner and Thompson, 2005). Instead of losing dormancy, it is clear that our study species show 437 

a changing pattern of dormancy-breaking temperature thresholds. While several studies have 438 

described a change in sensitivity to dormancy-breaking cues after ageing (Galíndez et al., 2010; 439 

Turner et al., 2013), our study highlights this important distinction in fire-prone regions, where 440 

maintaining dormancy is essential for the population, and therefore species, to persist in the long 441 

term. A change in thresholds provides a different outcome, and the mechanism underlying these 442 

changes appears to differ between species. The gradual decrease in dormancy-breaking 443 

temperature thresholds with increasing storage time provides a mechanism for increasing the 444 

range of thresholds present within the seed bank at any particular point in time, contributing to 445 

the maintenance of a bet-hedging capability or germination from depth. Understanding how 446 

widespread, and to what extent, such changes to PY occur could help to improve predictions of 447 

seed bank and recruitment dynamics in the post-fire environment, and help to robustly model 448 

population persistence. Studies need to be conducted across a larger range of species to draw 449 

more general conclusions. 450 
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Figure Legends 612 

Figure 1: Mean seed germination (± s.e.) of laboratory stored and field buried seeds, expressed 613 

as a percentage of the total initial viable seeds, after heat shock treatments of 40, 60, 80 and 100 614 

°C. Different coloured bars represent seeds stored for 0 (■), six (■) or 18 (□) months. Graphs in 615 

the left column represent lab-stored seeds and those on the right represent field-buried seeds of 616 

Acacia linifolia (A, B); Viminaria juncea (C, D); Bossiaea heterophylla (E, F) and Aotus 617 

ericoides (G, H).  618 

Figure 2: Comparison of seed viability decline and seed loss during laboratory storage and field 619 

burial respectively. Bars represent mean values  (± s.e.) for each of the study species for (A) the 620 

proportion of inviable seeds after laboratory storage and (B) the number of whole seeds lost 621 

during field burial, for six (■) and 18 months (□). (* denotes significant differences between 622 

storage time).  623 

 624 

Table Legends 625 

Table 1: Dormancy-breaking threshold group (see Ooi et al., 2014), mean seed mass (± s.e.), 626 

number of mesh bags buried in the field and number of seeds stored in each mesh bag for fresh 627 

seeds of all four studied species.  628 

Table 2: Results from the binomial GLM for germination of four species in response to 629 

temperature treatment (temperature), type of storage (type) and storage time (time) (* represents 630 

significant differences at P < 0.05).  631 



Table 3: Initial viability (± s.e.), dormancy (± s.e.), temperature required to break 20% (G20%) 632 

and 50% (G50%) of dormant seeds, and dormancy-breaking temperature threshold group based on 633 

the G20% for different time periods. The dash (-) indicates insufficient germination reached to 634 

determine dormancy-breaking threshold group, even in response to the highest temperature 635 

treatments.   636 

Table 4: Some fraction of the seed lot for each species has a high threshold. The estimated mean 637 

decay rate (± s.e.) and half-life (± s.e.) of the high threshold fraction is shown for each study 638 

species. NB No decay was recorded for Acacia linifolia and so a half-life was not calculated. 639 

640 



 Table 1 641 

Species Dormancy-breaking 

threshold group 

Seed mass 

(mg) 

Number of 

buried bags 

Number of 

seeds per bag 

Acacia linifolia High 33.23 ± 0.85 24 25 

Viminaria juncea High 6.21 ± 0.13 12 50 

Bossiaea heterophylla Low 15.43 ± 1.84 12 25 

Aotus ericoides Low 4.40 ± 0.84 6 50 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 

 652 



Table 2 653 

Species  Predictor  Df Deviance (χ
2
) P-value 

Acacia linifolia Temperature 4 280.19 <0.001 * 

Time 1 279.68 0.687 

Type 1 250.95 0.003 * 

Time x Type 1 242.63 0.104 

Temperature x Time 4 165.22 <0.001 * 

Viminaria juncea Temperature 4 310.73 <0.001 * 

Time 1 247.92 <0.001 * 

Type 1 246.76 0.605 

Time x Type 1 245.87 0.651 

Temperature x Time 4 139.21 <0.001 * 

Aotus ericoides Temperature 2 276.65 < 0.001 * 

Time 1 184.11 <0.001 * 

Type 1 181.89 0.367 

Time x Type 1 176.51 0.160 

Temperature x Time 2 111.51 <0.001 * 

Bossiaea heterophylla Temperature 2 225.36 <0.001 * 

Time 1 171.59 <0.001 * 

Type 1 166.76 0.259 

Time x Type 1 165.89 0.634 

Temperature x Time 2 111.53 <0.001 * 



Table 3 654 

Species Storage time 

(months) 

Viability Dormancy G20% 

(°C) 

G50% 

(°C) 

Dormancy-breaking 

threshold group 
Laboratory Field Laboratory Field 

Acacia linifolia 0 93.33 ± 1.67 76.80 ± 1.59 - - High 

6 95 ± 5 92.73 ± 1.38 98.33 ± 1.67 98.03 ± 1.96 80 80 High 

18 95 ± 5 97.92 ± 2.08 95 ± 2.88 94.77 ± 2.62 80 80 High 

Viminaria juncea  0 98.33 ± 1.67 91.49 ± 4.44 100 100 High 

6 100 ± 0 100 ± 0 91.67 ± 4.40 98.14 ± 1.85 60 80 Low 

18 88.33 ± 1.67 100 ± 1.67 90.30 ± 7.10 100 ± 0 60 60 Low 

Bossiaea heterophylla 0 93.33 ± 1.67 85.57 ± 7.22 60 - Low 

6 82.61 ± 3.15 97.77 ± 2.22 80.55 ± 7.82 100 ± 0 40 60 Low 

18 56.67 ± 10.29 87.08 ± 6.46 85.53 ± 7.05 100 ± 0 40 40 Low 

 Aotus ericoides  0 80.69 ± 5.97 92.31 ± 4.44 60 - Low 

6 83.33 ± 4.41 100 ± 0 96.08 ± 3.92 100 ± 0 40 40 Low 

18 57.67 ± 11.02 100 ± 0 87.61 ± 6.57 100 ± 0 40 40 Low 

 655 



Table 4 656 

Species Mean decay rate Mean half-life (months) 

Aotus ericoides -9.373 ± 1.59 2.97 ± 0.03 

Bossiaea heterophylla -4.363 ± 3.14 4.69 ± 0.85 

Viminaria juncea -0.032 ± 0.00  21.13 ± 2.88 

 657 
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