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Abstract: From library screening of synthetic antimicrobial peptides, an O-allyltyrosine-based 

tripeptide was identified to possess inhibitory activity against HIV-1 integrase (IN) exhibiting an 

IC50 value of 17.5 µM in a combination 3'-processing and strand transfer microtitre plate assay. The 

tripeptide was subjected to structure-activity relationship (SAR) studies with 28 peptides, 

incorporating an array of natural and non-natural amino acids. Resulting SAR analysis revealed the 

allyltyrosine residue was a key feature for IN inhibitory activity whilst incorporation of a lysine 

residue and extended hydrophilic chains bearing a terminal methyl ester was advantageous. Addition 

of hydrophobic aromatic moieties to the scaffold N-terminal afforded compounds with improved 

inhibitory activity. Consolidation of these observations led to the development of tripeptide 96 

which specifically inhibited the IN strand-transfer reaction with an IC50 value of 2.5 µM.  

 

Introduction 

For those living in the developed world HIV infection has increasingly been considered as a chronic 

disease.
1
 This remarkable turnaround is due primarily to the advent of highly active antiretroviral 

therapy (HAART) in which a combination of drugs, typically three to four, which target different 

steps in the viral lifecycle are taken. At present clinicians have a palette of drugs to formulate 

HAART schedules with twenty-seven FDA approved drugs for HIV therapy.
2
 Clinically available 

agents include eight nucleoside and five non-nucleoside reverse transcriptase inhibitors, nine 

protease inhibitors, three integrase inhibitors, in addition to the fusion inhibitor Enfuvirtide, and the 

CCR5-blocker Maraviroc.
2
 As a result of this array of agents, a 20-year-old HIV-positive patient in 

the U.S. or Canada today who is diagnosed at an early stage of infection and prescribed HAART is 

expected to live into their early 70’s, a life expectancy approaching that of the general population.
3
 

Further, the roll-out of cheaper generic drugs across resource-poor settings has resulted in dramatic 

improvements in life expectancy. For example in Zimbabwe over the last decade the average life 

expectancy for HIV sufferers has increased 5.5 years to around 53 years.
2
 

Despite these immense gains it is important to note that HIV remains an incurable disease with 

about 35.3 million people currently living with the condition across the globe.
4
 Further, infection 

rates have not abated with about 2.1 million new infections reported in 2013 which equates to about 

6300 new infections per day.
4
 Against this backdrop HIV-1 strains displaying resistance against one 

or more of the aforementioned twenty seven currently FDA approved agents have been 

characterised.
5, 6

 Additionally the rate of resistance evolution remains extremely rapid. For example 

since the latest integrase inhibitor Dolutegravir received FDA approval on August 13, 2013, four 

point mutations conferring resistance have been characterised.
5
 Consequently until a cure is found it 

is essential that next generation anti-HIV agents are continually being progressed through the drug 

development pipeline. 



Of the current set of utilised drug targets, HIV integrase (IN) remains relatively underexploited with 

only three inhibitors currently approved by the FDA, although interest in such inhibitors is strong.
7
 

This, in addition to IN having no counterparts in mammalian cells, continues to frame the enzyme as 

an attractive drug target. The IN enzyme is indispensable to the HIV life cycle and catalyses two 

distinct reactions, these being 3′-processing and strand-transfer. During 3′-processing, which occurs 

within the cytoplasm of an infected cell, integrase catalyses the excision of a 5′-GT dinucleotide 

from each end of the viral genome thereby generating the nucleophilic 3′-hydroxyl ends required for 

strand transfer.
8-10

 This water-mediated endonucleolytic cleavage of the 5′-GT dinucleotides occurs 

immediately on the 3′ side to a highly conserved CA dinucleotide.
11-14

 Following 3′-processing, 

integrase undergoes a structural change in preparation for the binding of the acceptor (chromosomal) 

DNA.
15, 16

 Integrase, still bound to the 3′-processed viral DNA, translocates to the nucleus of the 

infected cell as part of a pre-integration complex (PIC), wherein the terminal 3′-OH of the viral 

DNA attacks the host DNA.
12, 17-19

 This integration event is a point of no return for the host cell 

which then becomes a permanent carrier of the virus.
20

 

The three IN inhibitors that have received FDA approval for HIV therapy are Raltegravir (RAL, 2), 

Elvitegravir (EVG, 3), and Dolutegravir (DTG, 4) (Figure 1). Each of these agents selectively 

inhibits stand-transfer and as outlined in figure 1, each binding to the active-site via a similar 

mechanism. Having evolved from the first generation diketoacid inhibitors such as L-731988 (1), 

these analogues possess a diketoacid bioisostere which chelates the two catalytic magnesium ions 

within the HIV integrase active-site.
20, 21

 Thus, whilst this paradigm provides a conduit to potent 

inhibition, single point mutations can endow cross resistance; for example, the clinically observed 

mutants F121Y and Q148H display cross resistance to RAL, EVG, and DTG.
5
 Consequently the 

development of competitive inhibitors which bind to the active-site through alternative interactions, 

or elicit inhibition via allosteric mechanisms, would provide significant additions to the current 

HAART arsenal. 
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Fig. 1: Structure of a 1st generation IN inhibitor L-7931988 with schematic outlining the diketoacid-Mg
2+

 interactions along with 

the chemical structures of RAL, EVG, and DTG.  

Indeed, small molecule IN allosteric inhibitors (ALLINIs) have been reported recently along with a 

number of co-crystallised structures.
22-24

 These molecules disrupt the protein-protein interaction 

between transcriptional co-activator lens epithelium derived growth factor (LEDGF) and the IN 

catalytic core.
22-26

 LEDGF has been shown to be a dominant factor to promote localisation of the 

PIC to the host chromatin as well as enhancing strand 

transfer in isolated protein assays. Full-length 

LEDGF was also shown to promote tetramerisation of 

full-length HIV-IN, which is essential for the 

integration of both viral DNA ends into the 

chromosomal DNA.
22-26

 Of these analogues the most 

recently reported GSK1264 (5) has been co-

crystallised within the LEDGF binding pocket of IN 

catalytic core (Figure 2). This compound inhibited 

HIV-1 replication with an EC50 value of ~38 nM.
22

  

Fig. 2: a) The structure of GSK1264; b) Structure of co-

crystallised, of GSK126 within the LEDGF binding pocket 

of the IN catalytic core (PDB accession code 4OJR).  



Given our ongoing interest in the development of HIV inhibitors
23, 

24, 27-29
 and the renewed vigour for the development of next 

generation IN inhibitors, we conducted a screening program 

utilising a number of ‘in-house’ compound libraries from which 

an O-allyltyrosine-based tripeptide (Compound 6, Figure 3) was 

identified to inhibit IN with an IC50 value of 17.5 µM. This 

tripeptide, which emerged from our ongoing antibacterial drug 

design program,30-32 presented as an appealing scaffold for drug 

development endeavours since: a) analogues could be rapidly 

accessed via standard peptide coupling approaches, b) the scaffold 

is amenable to diverse structural and functional group alterations 

and c) the tripeptide bears no significant structural similarity to 

any currently reported peptide-based integrase inhibitors.
24, 25, 30, 

33-37 
Consequently we embarked on an extended structure-activity-

relationship investigation of the O-allyltyrosine tripeptide scaffold 

in a bid to generate a pharmacophore for HIV-1 integrase 

inhibition.  

Results and Discussion 

To initiate structure-activity-relationship studies, the lead compound 6 was segmented into three 

regions; residue 1 (allylglycine), residue 2 (homo-arginine), and residue 3 (O-allytyrosine), 

respectively (Figure 3). It was envisaged that these libraries could be efficiency accessed through 

relatively standard peptide coupling approaches with minor alterations of the procedure utilised to 

synthesise 6. Briefly, in the initial synthesis of 6, the N-acetyl-O-allyltyrosine residue (7, Scheme 1) 

was prepared via nucleophilic O-allylation of commercially available (S)-N-acetyltyrosine ethyl 

ester (8) with allyl bromide (9). Subsequent ester hydrolysis afforded 10 which was coupled to 11 

using typical EDCI-HOBt-mediated amide formation conditions with the resulting dipeptide 

hydrolysed to furnish the acid 13. The methyl ester protected allylglycine residue 14 was obtained 

via thionyl chloride mediated esterification of commercially available allylglycine, and was coupled 

to dipeptide 13 again via EDCI-HOBt-mediated coupling. N-Boc-deprotection of the resulting 

tripeptide 16 used trifluoroacetic acid and the crude material was subsequently reacted with 

(BocNH)2C=NSO2CF3 affording the protected arginine analogue 17 with final Boc-protection giving 

6.  

Scheme 1: Synthetic procedure to access the lead allyltyrosine based tripeptide 6. Reagents and Conditions: i) 

K2CO3(aq) (2 eq.), ii) LiOH.H2O (2 eq.), THF/H2O (3:1), iii) NaHSO4 (2 M); iv) EDCI (1.1 eq.), HOBt (1.1 eq.), DIPEA 

(1 eq.), DMF, v) SOCl2, CH3OH vi) TFA/CH2Cl2 (1:1), vii) (BocNH)2C=NSO2CF3 (1 eq.), viii) 1 M HCl/diethyl ether.  
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With an effective synthetic procedure in hand, initial investigations focused on the allylglycine 

region and as outlined in Scheme 2, eight analogues (compounds 18 – 25) were synthesised. Here 

the specific aim was to probe for potential H-bond donating/accepting interactions whilst 22 was 

prepared to investigate pi-stacking interactions. Compound 18 was synthesised utilising 12
 
which 

was initially N-Boc-deprotected and subsequently treated with (BocNH)2C=NSO2CF3 to afford the 

protected arginine analogue 26 with final TFA mediated de-protection affording 18 (Scheme 2). The 

remainder of the first series compounds were also prepared using 12 which was initially hydrolysed 

and the resulting free carboxylic acid was coupled to the desired amines using typical EDCI-HOBt-

mediated conditions. The resulting N-Boc-protected analogous 29 – 35 were de-protected and 

subsequently treated with (BocNH)2C=NSO2CF3 to afford the protected arginine analogues 36 – 42 

and a final TFA mediated N-Boc-deprotection and then treatment with HCl in ether afforded the 

final desired analogues 19 – 25.  

This initial series of analogues were subjected to a previously reported combination 3'-processing 

and strand transfer microtitre plate assay
38,

 
39

 and as outlined in Table 1 the inhibitory activities 

afforded by the assay indicated that the incorporation of nitrogen rich functionalities within the 

residue-1 region of the scaffold (e.g. 19 and 20) was detrimental to IN inhibitory activity as was 

simplification to a methyl ester or glycine moiety (18 and 21, respectively) and inclusion of R-

phenylalanine was also detrimental to inhibitory activity (e.g. 22). However restoration of inhibitory 

activity was observed with inclusion of extended methyl ester moieties with the β-alanine analogue 

23 displaying an IC50 value of 33 µM whilst the γ-aminobutyric analogue 24 and β-glutamic 

analogue 25 displayed superior activity to the lead with IC50 values of 10 µM, respectively.  
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Scheme 2: Synthetic procedures to access analogues the allyltyrosine modified analogues 18 through 25. Reagents and conditions: 

i) TFA:CH2Cl2 1:1; ii) (BocNH)2C=NSO2CF3 (1 eq.); iii) 1 M HCl/diethyl ether; iv) LiOH.H2O (2 eq.), THF/H2O (3:1); v) 

NaHSO4 (2 M); vi) EDCI (1.1 eq.), HOBt (1.1 eq.), DIPEA (1 eq.), DMF. 



Table 1: HIV-IN inhibitory activity of the ally glycine modified analogues 18 – 25 

 

Compound R1 IC50 (µµµµM) 
a
 

18  > 100 

19 
 

> 100 

20 
 

> 100 

21 N
H

O

O  
> 100 

22 

 

80 

23 
 

33 

24 
 

10 

25 
 

10 

a
IC50 determinations are the mean ±95% confidence interval (CI) of one experiment performed in triplicate. 

 

Upon identifying a γ-aminobutyric methyl ester and β-glutamic dimethyl ester as superior 

alternatives to allylglycine, attention turned to the homoarginine residue with a specific aim of 

simplifying the guanidino moiety to a primary amine. Accordingly three analogues (43 – 45) were 

prepared. Compounds 43 and 44 contained a lysine moiety and were accessed through N-Boc-

deprotection of the previously prepared analogues 33 and 34 (Scheme 2). The ornithine derivative 

45 was synthesised in a four step procedure (Scheme 3) whereby the N-Boc-protected ornithine 

analogue 46 was coupled with the previously synthesised analogue 10 (e.g. Scheme 1, step 2) under 

typical EDCI-HOBt conditions and the resulting analogue 47 was hydrolysed to afford the acid 48. 

Subsequent coupling with the ester 27 furnished 49 and final TFA mediated N-Boc-deprotection 

followed by treatment with HCl in ether yielded the desired analogue 45.  

The IN inhibitory activities of the homo-arginine modified analogues (43 and 44, Table 2) were 

similar to those of the corresponding homo-arginine analogues (23 and 24, Table 1), whilst the 

ornithine analogue 45 displayed a minor decrease in potency relative to the parent 44. Thus this data 

indicated that the guanidino group was not essential for activity.  

SAR analysis of the initial compound series (Table 1) indicated that extension of the carbon linker 

between the terminal methyl ester and amide moiety (i.e. 23 and 24, Table 1) was advantageous for 

activity whilst incorporation of rigid or amine rich functionalities (i.e. compounds 19, 20, and 21, 

Table 1) was detrimental. Thus to further investigate flexibility and polarity, an additional series of 

eight compounds was prepared (Scheme 4), each prepared in a two-step protocol from the 

previously synthesised 13, which was coupled to the required amine under HOBt-EDCI mediated 

conditions with subsequent N-Boc-deprotection and HCl treatment affording the final analogues 50 

– 58.  



 

Scheme 3: Synthesis of the ornithine based analogue 45. Reagents and conditions: i) EDCI (1.1 eq.), HOBt (1.1 eq.), DIPEA (1 

eq.), DMF, ii) LiOH.H2O (2 eq.), THF/H2O (3:1); iii) NaHSO4 (2 M); iv) TFA:CH2Cl2 1:1; v) 1 M HCl/diethyl ether. 

 

Table 2: HIV IN inhibitory activities of the homo-arginine modified analogues 43 – 44 

 

Compound R
1 

R
2 

IC50 (µµµµM)
 a
 

43 
 

 

23 

44 
 

 

10 

45 
  

17 

a
IC50 determinations are the mean ±95% confidence interval (CI) of one experiment performed in triplicate. 

 

This third series of analogues was subjected to the combined 3'-processing and ST assay with the 

flexible primary amine analogues 50 and 51, and the amide analogue 52 displaying similar 

inhibitory activity to the lead compound whereas once again rigid amine rich moieties (e.g. 53 and 

54) displaying reduced IN inhibitory activity (Table 3). However, as demonstrated by 55 and 57, 

introduction of inflexible moieties did not automatically bestow reduced activity whilst the premise 

that extension of the carbon linker between the terminal methyl ester and amide afforded increased 

activity was further supported by compound 58.  

 



 

Scheme 4: Synthesis of the allylglycine modified analogues 50 – 58. Reagents and conditions: i) EDCI (1.1 eq.), HOBt (1.1 eq.), 

DIPEA (1 eq.), DMF, ii) TFA:CH2Cl2 1:1; iii) 1 M HCl/diethyl ether. 

 

  



Table 3: HIV-IN inhibitory activity of the ally glycine modified analogues 50 – 58. 

 

Compound R
1
 IC50 (µµµµM)

 a
 

50 

 

22 

51 
 

23 

52 
 

19 

53 
 

58 

54 
 

32 

55 
 

5 

56 
 

25 

57 
 

15 

58 
 

7 

a
IC50 determinations are the mean ±95% confidence interval (CI) of one experiment performed in triplicate. 

 

Upon establishing substantial SAR for the allylglycine region of the scaffold subsequent attention 

turned to the allyltyrosine region with three analogues prepared, 77 – 79. As outlined is Scheme 5, 

77 was prepared in a four-step procedure in which the previously prepared N-Boc-protected lysine 

derivative 11 was coupled to N-acetylphenylalanine to afford 81 which was successively hydrolysed, 

coupled with 27, and N-Boc-deprotected to give 77 after HCl treatment.  

 

Scheme 5: The four-step synthesis of the phenylalanine analogue 77. Reagents and conditions: i) EDCI (1.1 eq.), HOBt (1.1 eq.), 

DIPEA (1 eq.), DMF; ii) LiOH.H2O (2 eq.), THF/H2O (3:1); iii) TFA:CH2Cl2 1:1; iv) 1 M HCl/diethyl ether. 

Compound 78 was prepared utilising the N-Boc-protected tripeptide 34 (Scheme 2), which was 

converted to the phenol 84 by treatment with catalytic tetrakis(triphenylphosphine)palladium(0) and 



10 equivalents of morpholine in THF under nitrogen (Scheme 6). Subsequent N-Boc-deprotection of 

84 and hydrochloride formation afforded the tyrosine analogue 78.  

 

Scheme 6: The two-step synthesis of the tyrosine analogue 78. Reagents and conditions: i) Pd(PPh3)4 (10 mol %), THF, rt, 10 

min, then morpholine (10 eq.), 3 h; ii) TFA:CH2Cl2 1:1; iii) 1 M HCl/diethyl ether. 

The final analogue in this series 79 was accessed via a five step procedure, and in contrast to the 

previously employed strategies, 79 was produced by sequential coupling to the C-terminal residue 

(Scheme 7). Initially the commercially available (S)-N-acetyltyrosine ethyl ester 85 was converted to 

the acetate ester 87 and subsequently hydrolysed to give 88. Coupling of 88 with 89 furnished 90 

and piperidine mediated Fmoc-deprotection afforded 91. Unexpectedly, final Boc-deprotection of 91 

and hydrochloride formation afforded 79 which arose from acid catalysed ester interchange in 

MeOH/HCl. Nevertheless this analogue was subjected to the integrase assay.  

 

Scheme 7: The five-step synthesis of the methyl ester analogue 79 with the unexpected conversion to 79 from 91. 

Reagents and conditions: i) K2CO3 (2 eq.), DMF; ii) LiOH.H2O (2 eq.), THF/H2O (3:1); iii) EDCI (1.1 eq.), HOBt (1.1 

eq.), DIPEA (1 eq.), DMF; iv) 1% piperidine/acetonitrile; v) TFA:CH2Cl2 1:1; vi) 1 M HCl/diethyl ether MeOH. 

As outlined in Table 4, each of the allyltyrosine modified derivatives displayed reduced inhibitory 

activities and the significantly reduced activities displayed by 78 and 79 indicates that the allyl 

moiety plays a crucial binding role, potentially participating in hydrophobic/π-stacking interactions 

with the enzyme active-site.  

Having collated SAR data for the residues 1, 2 and 3 of the lead compound 6, attention turned to N-

terminal amide functionalised analogues. Each of these comprised the previously identified active 

functionalities of an extended carbon chain possessing a terminal methyl ester in the allylglycine 

region of the scaffold, a lysine at residue 2, and the allyltyrosine moiety at residue 3. As illustrated 

in reaction Schemes 8, 9, and 10, five analogues, 92 – 96 were prepared in this series. The synthesis 

of 92 was achieved with the initial coupling of Boc-Tyr(All)-OH (97) with the lysine methyl ester 

analogue 11 to afford the dipeptide 98 which was subsequently hydrolysed to give 99. EDCI-HOBt 



mediated amide coupling of 99 with 27 furnished the di-Boc-protected analogue 100 and final 

deprotection ultimately afforded the desired analogue 92 (Scheme 8).  

 

Table 4: The HIV IN inhibitory activities of the allyltyrosine modified analogues 77 – 79. 

 

Compound R
4
 IC50 (µµµµM) 

a
 

77 
 

19 

78 
 

50 

79 

 

60 

a
IC50 determinations are the mean ±95% confidence interval (CI) of one experiment performed in triplicate. 

 

 

Scheme 8: Synthesis of the lysine-based analogue 92. Reagents and conditions: i) EDCI (1.1 eq.), HOBt (1.1 eq.), DIPEA (1 

eq.), DMF, ii) LiOH.H2O (2 eq.), THF/H2O (3:1); iii) NaHSO4 (2 M); iv) TFA:CH2Cl2 1:1; v) 1 M HCl/diethyl ether. 

Compounds 93 to 95 were synthesised using a semi-convergent protocol from 101 (Scheme 9). 

Compound 101 was prepared in a four step procedure with the initial amide coupling of 102 to 27 

furnishing 103. Sequential Boc-deprotection and coupling of 89 with N-Boc-Tyr(All)-OH (104) 

provided 105 and final TFA mediated deprotection afforded the key Fmoc-protected intermediate 

101. Utilising 101, the desired analogue 93 was prepared in two steps by the amide coupling with 2-

pyridinecarboxylic acid followed by piperidine mediated Fmoc-deprotection. The synthesis of both 

94 and 95 required the initial preparation of 107 which was obtained in a two-step procedure 

whereby methyl salicylate was converted to the benzyl ether derivative 109 using typical ether 

formation conditions and benzyl bromide. Prior to coupling, the ester was hydrolysed to the desired 

acid 107 under basic conditions. Standard EDCI-HOBt mediated amide formation utilising 107 and 

the key intermediate 101 afforded 110 and a final Fmoc-deprotection furnished the desired analogue 

94. Analogue 95 was prepared through the debenzylation of 110 and final Fmoc-deprotection 

afforded the desired analogue.  
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Scheme 9: The semi-convergent synthesis of the N-terminal modified analogues 93 – 95. Reagents and conditions: i) EDCI (1.1 

eq.), HOBt (1.1 eq.), DIPEA (1 eq.), DMF, ii) TFA:CH2Cl2 1:1; iii) 1 M HCl/diethyl ether; iv) 2-pyridinecarboxylic acid (1 eq.), 

EDCI (1.1 eq.), HOBt (1.1 eq.), DIPEA (1 eq.), DMF; v) 1% piperidine/acetonitrile; vi) PhCH2Br (2 eq.), K2CO3 (2 eq.), DMF; 

vii) KOH (4 eq.), MeOH:H2O (3:1); viii) thioanisole (50 eq), TFA (2 mL). 

 

Scheme 10: The four-step synthesis of the cbz-based analogue 96. Reagents and conditions: i) K2CO3 (3 eq.), DMF; ii) 

LiOH.H2O (2 eq.); iii) 89 (1.0 eq) EDCI (1.1 eq.), HOBt (1.1 eq.), DIPEA (1 eq.), DMF; iv) 1% piperidine/acetonitrile; v) 1 M 

HCl/diethyl ether. 



The final compound 96 in this N-terminal series was furnished through a five step procedure 

whereby the phenolic moiety Cbz-Tyr-OMe (111) was initially O-allylated with allyl bromide to 

afford 112 and subsequent ester hydroylysis provided 113. This was then coupled with the 

previously prepared 89 using EDCI-HOBt mediated amide formation conditions and final piperidine 

Fmoc-deprotection afforded 96 (Scheme 10).  

As outlined in Table 4, modifications within this region had mixed effects on the HIV-IN inhibition, 

e.g. removal of the acetyl group or addition of a benzyl ester (e.g. 92 and 96 respectively), imparted 

minimal effects on inhibitory activity, while introduction of pyridine (93) or phenol (95) moieties 

resulted in significant activity reductions. However, the benzyl protected phenol derivative 94 

displayed higher potency (IC50 4 µM) than the previous most active analogue 55.  

Table 5: HIV-IN inhibitory activities of the N-terminal modified analogues 92 – 96.  

 

Compound R
3
 IC50 (µµµµM)

 a
 

92  14 

93 
 

31 

94 

 

4 

95 
 

60 

96 
 

10 

a
IC50 determinations are the mean ±95% confidence interval (CI) of one experiment performed in triplicate. 

Thus, whilst the development of the five targeted compound libraries provided significant SAR data 

and culminated in the development of the most potent derivative 94, little information relating to 

precise inhibitory activity was established as the IC50 values for each of the analogues were 

determined using a combination 3'-processing and strand transfer assay.
38, 39

 Whilst the assay 

provides an expedient means of identifying general IN inhibitors, it affords limited insights to 

potential mechanisms of action. Consequently subsequent investigations focused on subjecting a 

number of the most active analogues to individual 3′-processing and strand-transfer inhibition 

assays. Initially 3′-processing inhibitory activity was examined in the presence of magnesium, as it 

is generally accepted that Mg
2+

 is the co-factor for integration in cells.
40

 However, the assay was 

also performed using manganese as a co-factor as Mn
2+ 

appears to be required in vitro for the DKAs 

to produce potent inhibition.
40-43

 

As summarised in Table 6, the O-allyltyrosine analogues are specific inhibitors of the strand-transfer 

reaction as no inhibitory activity was observed in the 3′-processing assay up to compound 

concentrations of 30 µM with the most potent analogue 96 inhibiting the ST reaction with an IC50 

value of 2.5 µM. These results suggest that the O-allyltyrosine analogues function via an alternative 

mechanism to previously reported peptide based inhibitors and the LEDGF/p75 allosteric inhibitors. 

For example the previously reported Vpr- and Env-derived peptides inhibit both 3'-processing and 

ST,
36

 similarly both series of cell-permeable stapled Vpr-derived
35

, IN-derived
34

 peptides and 

combinatorial-derived hexapeptides
45

 are also inhibitors of both 3'-processing and ST. To date, the 

only other reported peptide analogue to specifically inhibit ST was a heptapeptide which also 

displays cationic character.
46

  

Moreover the previously reported series of small molecule inhibitors of the LEDGF/p75 interaction 

were equipotent against 3'-processing and ST
26

 whilst the most recently reported LEDGF/p75 

inhibitor GSK1264 is a potent inhibitor of 3'-processing.
22

 Together this information suggests that 

the O-allyltyrosine analogues may function via a competitive mechanism similar to diketoacid-based 

analogues which are also specific inhibitors of the stand-transfer reaction.
41

 

 



Table 6: The 3'-processing (3'-P) inhibitory activities of the most potent analogues in the presence of Mg
2+

, of Mn
2+

, along with 

the strand-transfer inhibitory activities of the most potent analogues (IC50 values in µM). 

 

Compound R
1
 3′-P (Mg

2+
)

a
 3′-P (Mn

2+
) 

a
 ST 

a
 

6 

 

> 30 NT 5.2 

24 
 

> 30 > 30 5.5 

25 
 

> 30 NT 35 

 

 R
1
 3′-P (Mg

2+
)

 a
 3′-P (Mn

2+
)

 a
 ST

 a
 

55 
 

> 30 NT 9 

58 
 

> 30 > 30 9 

H
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 R
3
 3′-P (Mg

2+
)

 a
  3′-P (Mn

2+
)

 a
  ST

 a
  

94 

 

> 30 NT 5 

96 
 

> 30 > 30 2.5 

a
IC50 determinations are the mean ±95% confidence interval (CI) of one experiment performed in triplicate. NT = not tested 
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Fig 4: Summary of the key requirements within the allyl-tyrosine scaffold required to elicit HIV IN ST inhibitory 

activity.  

 

Conclusions 

From an in-house screening program an O-allyltyrosine-based tripeptide (6) was identified as an 

inhibitor with an IC50 value of 17.5 µM. As outlined in figure 4 subsequent SAR analysis identified 

a number of crucial features required for IN inhibitory activity. Specifically in relation to residue-1, 

extension of the carbon linker was advantageous for activity whilst the incorporation of amine rich 



functionalities were detrimental. Functionalisation of the C-terminal amide moiety with relatively 

large hydrophobic moieties is tolerated whilst inclusion of polar pyridyl or phenolic within this 

region was detrimental. The homo-arginine residue could be simplified to lysine though it appears 

that the length of the carbon chain is important as inclusion of ornithine imparted a minimal 

reduction of inhibitory activity. Finally the role of the O-allyltyrosine residue is indeed significant as 

removal of the allyl moiety reduced inhibitory activity whilst the introduction of heteroatoms 

significantly reduced activity. 

Consolidation of these optimum binding requirements afforded 96 which specifically inhibited ST 

with an IC50 value of 2.5 µM. Additionally it is proposed that this compound functions via an 

alternative mechanism to previously reported peptide based inhibitors and LEDGF/p75 allosteric 

inhibitors. Thus 96 provides a unique scaffold for further elaboration and current investigations 

include resolving a co-crystallised structure of 96 with the IN catalytic core in addition to molecular 

docking studies. The resulting advances in this class of HIV IN inhibitors and studies into the 

molecular mechanisms of activity will be reported in due course. 

 

Experimental section 

General Chemistry Procedures 

Reagents and solvents were purchased reagent grade and used without further purification unless 

stated. CH2Cl2 was distilled from CaCO3. Melting points (mp) were determined using a Gallenkamp 

(Griffin) melting point apparatus. Temperatures are uncorrected and expressed in degrees Celsius 

(°C). Optical rotations were measured using a Jasco polarimeter with a 10 mm path length.  

Nuclear magnetic resonance (NMR) spectra were measured using a Varian Unity 300 MHz 

spectrometer. 
1
H NMR spectra were acquired at 300.0 MHz whereas 

13
C NMR spectra were 

acquired at 75.4 MHz. Spectra were recorded in deuterated chloroform (CDCl3) containing 0.5% 

trimethylsilane TMS (δ 0.00 ppm), used as the internal standard, unless otherwise stated. Chemical 

shifts (δ) are expressed in ppm and coupling constants (J) are expressed in Hertz (Hz), both relative 

to the internal standard. Multiplicities are denoted generically as singlet (s), broad singlet (bs), 

doublet (d), doublet of doublets (dd), broad doublet (bd), doubleted triplet (dt), triplet (t), triplet of 

doublet of doublets (tdd), triplet of doublets (td), quartet (q) and multiplet (m). Each peak is listed 

according to the following convention: chemical shift, multiplicity, coupling constant, integration, 

assignment. Interchangeable peaks are denoted by letters in superscript. 

Chemical ionization (CI) mass spectra (MS) were obtained on a Shimadzu QP-5000 MAT-44 

quadrupole spectrometer. Electrospray (ESI) mass spectra were obtained on a VG Quattro-triple 

quadrupole. CI and ES were both performed via direct insertion with an electron beam of 70 eV at 

source temperatures < 200°C. The principal ion peaks m/z values are reported with their relative 

intensities in parentheses. ESI high resolution mass spectra (HRMS) were obtained using a Q-Tof 

mass spectrometer. 

Thin layer chromatography (TLC) was performed using Merck Silica Gel F254 aluminium sheets. 

Column chromatography was performed using Merck silica gel 60 (70-230 mesh), under gravity, 

unless otherwise stated. All chromatographic solvent proportions are volume to volume. Solvents 

were evaporated by rotary evaporation in vacuo. 

Procedure A: Allyl Ether Formation 

The phenol derivative (1 eq.) and anhydrous potassium carbonate (K2CO3) (2 eq.) were combined 

and dried under vacuum for 1 hr. The vessel was then sealed and flushed with N2, before anhydrous 

DMF (5 mL) was added. The mixture was allowed to stir at rt for 30 min before allyl bromide (2 

eq.) was added, and the reaction stirred for 12 h. at rt. The reaction was then quenched with water 

(30 mL) and the solution was extracted with EtOAc (3 x 30 mL). The combined organic fractions 

were washed with water (5 x 50 mL), dried (MgSO4) and the solvent evaporated to dryness under 

reduced pressure to yield the allyl ether product.  

Procedure B: Methyl Ester Formation 



To a stirred solution of the appropriate amino acid (1 eq.) in MeOH (10 mL) at 0 °C SOCl2 (3 eq.) 

was slowly added. The solution was then removed from the ice bath and stirred at rt for 3 h. The 

reaction was then concentrated to dryness leaving the methyl ester amino acid as the hydrochloride 

salt.  

Procedure C: Methyl /Ethyl Ester Hydrolysis  

To a solution of the ester (1 eq.) in THF/H2O (3:1, 60 mL) was added LiOH.H2O (2 eq.) and the 

resulting suspension was allowed to stir for 12 h at rt, before being quenched with water (30 mL), 

and evaporated in vacuo to remove the THF. The resulting aqueous solution was extracted with 

CH2Cl2 (20 mL) to remove any unreacted materials. The aqueous phase was then acidified to pH 1 

with a 2 M NaHSO4 solution. The mixture was extracted with CH2Cl2 (3 x 50 mL) and the 

combined CH2Cl2 extracts were dried (MgSO4) and the solvent removed under reduced pressure to 

yield the desired acid. 

Procedure D: Amide Coupling 

The acid (1 eq.), HOBt (1.1 eq), EDCI (1.1 eq.) and the amine hydrochloride (1.2 eq.) were placed 

in a flask, and then placed under high vacuum to dry. The vessel was then sealed and flushed with 

N2. Anhydrous DMF (2 mL) and DIPEA (1 eq.) were added at rt and the solution was allowed to stir 

at rt for 12 h (in cases where the amine was present as the free base, DIPEA was not necessary and 

therefore excluded). The reaction was quenched with water until precipitation occurred (30 mL). 

The aqueous mixture was extracted with CH2Cl2 (3 x 50 mL) and the combined CH2Cl2 extracts 

were thoroughly washed with water (3 x 30 mL) dried (MgSO4) and evaporated to dryness under 

reduced pressure to yield the desired amide. 

Procedure E: N-Boc Deprotection  

A solution of the N-Boc protected amine in CH2Cl2/TFA (1:1, 2 mL) was stirred at rt for 3 h. The 

solvent was removed under reduced pressure to yield the crude amine as the trifluoroacetate salt, 

which was either used as is or converted to the hydrochloride salt. 

Procedure F: N-Fmoc Deprotection 

A solution of the N-Fmoc protected amine in 1% piperidine/acetonitrile was stirred at rt for 3 h. The 

solvent was then removed under reduced pressure. The resulting crude product was purified by silica 

gel column chromatography using 15:1 CH2Cl2/MeOH as the eluting solvent. A 1% 

ninhydrin/ethanol detection solution was used to monitor the progress of elution of the desired 

amine by TLC analysis. The resulting product was either used as the free base or converted to the 

hydrochloride salt. 

Procedure G: Guanidino Group Formation 

The amine (1 eq.), as either the free base or the trifluoroacetate salt, was placed in a flask with 

(BocNH)2C=NSO2CF3 (1 eq.) and dried under high vacuum. The flask was then sealed and flushed 

with N2. Dry CH2Cl2 (2 mL) and triethylamine (NEt3) (1.1 eq.) were added to the flask and the 

solution was allowed to stir at rt for 3 h. The solvent was then evaporated in vacuo and the resulting 

crude product was purified by silica gel column chromatography using 15:1 CH2Cl2/MeOH as the 

eluting solvent. The fractions were monitored by TLC analysis using uv light absorption (254 nm) 

for the detection of components, and those containing the desired compound were pooled and 

evaporated in vacuo to give the product which was used without further purification 

Procedure H: Hydrochloride Salt Formation 

The amine, as either the free base or trifluoroacetate salt was suspended in a minimum volume of 

MeOH. The solution was then treated with excess 1 M HCl/diethyl ether solution and concentrated 

in vacuo. The product was purified by precipitation from a MeOH solution by the addition of 

anhydrous diethyl ether. 

General Assay Procedures 

Assays were performed at Avexa Ltd. Initial Anti-HIV integrase inhibitory activity was determined 

using a combination 3’-processing and strand transfer via a microtitre plate assay, based on a 



reported procedure
38

 with some modifications. The oligonucleotide labelled with DIG had an 

additional GT on the 3’ end (which is processed off in the 3’-processing portion of the assay) and 

the reaction buffer differed using 25 mM Tris-Cl at pH 7.5, 5 mM MgCl2, 5 mM MnCl2, 25 mM 

NaCl, 50 µg/mL BSA, 5 mM β-mercaptoethanol, 30 nM substrate, and 10% DMSO. Assays were 

performed for 2 h at 37 °C. Reaction products bound to plates were detected using anti-DIG alkaline 

phosphatase Fab fragments (Roche) and 4-nitrophenol substrate. Colour was measured at 405 nm 

after 2 h. Positive control reactions typically absorbed at 405 nm of 1.2 to 1.8 with negatives values 

of 0.05 to 0.1. 

Individual 3’ processing assays used a gel based method as described in Ovenden et al.
39

 using 

individually either Mg
2+

 or Mn
2+

. 3’-Processing assays utilised the Chow et al.
44

 procedure without 

modification. 

Compound Characterisation 

Nomenclature - New compounds were named according to the following order of precedence acid 

> ester > amide; due to the frequent use of several carbamate protecting groups in the synthesis, for 

simplicity, this functionality was excluded from the naming hierarchy. The aza/oxo substitution 

method was then used, where the longest chain of the highest priority was found and the remaining 

functional groups named as substituents of that chain.  

Methyl (2S,5S,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-(4-guanidinobutyl)-4,7,10-

trioxoundecanoate hydrochloride (6) 

Compound 17 (50 mg, 0.07 mmol) was converted to the uncharacterised N-Boc deprotected 

trifluoroacetate salt via procedure E and the resulting solid was then converted immediately, via 

procedure H to the hydrochloride salt 6 (35 mg, 0.06 mmol, 86%) as a hygroscopic light brown 

amorphous solid. MS (ESI
+
), m/z 545 (100%) [MH

+
], 446 (30), 273 (20). HRMS (ESI

+
) calcd for 

C27H40N6O6 + H: 545.3088; found 545.3085. [α]D
25

 +62.9 (c. 0.12, EtOH). 
1
H NMR (300 MHz, 

CD3OD): δ 8.25 (d, J = 7.8 Hz, 1H, NH); 8.14 (d, J = 6.9 Hz, 1H, NH); 7.15 (d, J = 8.7 Hz, 2H, 2′-

CH and 6′-CH); 7.08 (d, J = 7.8 Hz, 1H, NH); 6.96 (d, J = 7.7 Hz, 1H, NH); 6.83 (d, J = 8.7 Hz, 2H, 

3′-CH and 5′-CH); 6.04 (tdd, J = 17.3, 10.4, 5.2 Hz, 1H, OCH2CH=CH2); 5.78 (tdd, J = 17.1, 10.1, 

6.9 Hz, 1H, C-2CH2CH=CH2); 5.38 (dd, J = 17.3, 1.7 Hz, 1H, OCH2CH=CHH trans); 5.23 (dd, J = 

10.6, 1.6 Hz, 1H, OCH2CH=CHH cis); 5.14 (dd, J = 17.3, 1.5 Hz, 1H, CHCH2CH=CHH trans); 

5.09 (dd, J = 10.5, 1.5 Hz, 1H, CHCH2CH=CHH cis); 4.55-4.45 (m, 3H, OCH2CH=CH2 and 8-CH); 

4.42-4.38 (m, 2H, 2-CH and 5-CH); 3.70 (s, 3H, OCH3); 3.16 (t, J = 6.9 Hz, 2H, 4′′-CH2); 3.03 (dd, 

J = 13.9, 5.8 Hz, 1H, 8-CHCHaHb); 2.82 (dd, J = 13.9, 9.1 Hz, 1H, 8-CHCHaHb); 2.55-2.47 (m, 2H, 

CHCH2CH=CH2); 1.92 (s, 3H, 11-CH3); 1.84-1.77 (m, 1H, 1′′-CHaHb); 1.70-1.64 (m, 1H, 1′′-

CHaHb); 1.62-1.54 (m, 2H, 3′′-CH2); 1.45-1.42 (m, 2H, 2′′-CH2). 
13

C NMR (75 MHz, CD3OD): δ 

172.7 (C-7); 172.6 (C-1); 172.3 (C-4); 172.2 (C-10); 157.8 (C-4′); 157.4 (C=N); 133.8 

(CHCH2CH=CH2); 133.0 (OCH2CH=CH2); 130.0 (C-1′); 129.2 (C-2′ and C-6′); 117.7 

(OCH2CH=CH2); 116.2 (CHCH2CH=CH2); 114.6 (C-3′ and C-5′); 68.6 (OCH2CH=CH2); 55.5 (C-

8); 52.7 (C-5); 52.5 (C-2); 51.5 (OCH3); 41.1 (C-4′′); 36.6 (8-CHCH2); 35.5 (CHCH2CH=CH2); 31.5 

(C-1′′); 28.0 (C-3′′); 22.4 (C-11); 21.2 (C-2′′). 

Methyl (7S,10S)-10-(4-allyloxybenzyl)-5,8,11-triaza-7-(4-guanidinobutyl)-6,9,12-trioxotridecanoate 

hydrochloride (24) 

Compound 41 (99 mg, 0.14 mmol) was converted to the N-Boc deprotected trifluoroacetate salt via 

procedure E, the resulting solid was then converted, via procedure H to give hydrochloride salt 24 

(64 mg, 0.11 mmol, 83%) as a hygroscopic light brown amorphous solid. MS (ESI
+
), m/z 533 

(100%) [MH
+
], 534 (35). HRMS (ESI

+
) calcd for C26H40N6O6 + H: 533.3088; found 533.3072. 

[α]D
25

 +89.7 (c. 0.13, EtOH). 
1
H NMR (300 MHz, CD3OD): δ 7.70 (bs, 1H, NH); 7.62 (bs, 1H, NH); 

7.17 (d, J = 8.4 Hz, 2H, 2′-CH and 6′-CH); 7.09 (d, J = 7.8, 1H, NH); 7.07 (bs, 1H, NH); 6.85 (d, J 

= 8.5 Hz, 2H, 3′-CH and 5′-CH); 6.12-5.94 (m, 1H, OCH2CH=CH2); 5.38 (dd, J = 17.3, 1.6 Hz, 1H, 

OCH2CH=CHH trans); 5.22 (dd, J = 10.6, 1.5 Hz, 1H, OCH2CH=CHH cis); 4.55-4.45 (m, 3H, 

OCH2CH=CH2 and 10-CH); 4.24 (dd, J = 9.4, 4.6 Hz, 1H, 7-CH); 3.64 (s, 3H, OCH3); 3.20-3.11 

(m, 4H, 4′′-CH2 and 4-CH2); 3.03 (dd, J = 13.9, 6.4 Hz, 1H, 10-CHCHaHb); 2.86 (dd, J = 13.7, 8.5 

Hz, 1H, 10-CHCHaHb); 2.33 (t, J = 7.4 Hz, 2H, 2-CH2); 1.93 (s, 3H, 13-CH3); 1.86-1.69 (m, 3H, 1′′-



CHaHb and C-3H2); 1.66-1.51 (m, 3H, 1′′-CHaHb and 3′′-CH2); 1.47-1.25 (m, 2H, 2′′-CH2). 
13

C 

NMR (75 MHz, CD3OD): δ 174.1 (C-1); 172.9 (C-6); 172.8 (C-9 and C-12); 157.8 (C-4′); 157.4 

(C=NH); 133.8 (OCH2CH=CH2); 130.2 (C-2′ and C-6′); 129.2 (C-1′); 116.3 (OCH2CH=CH2); 114.6 

(C-3′ and C-5′); 68.7 (OCH2CH=CH2), 55.8 (C-10); 53.5 (C-7); 51.1 (OCH3); 41.2 (C-4′′); 38.6 (C-

4); 36.5 (10-CHCH2); 31.3 (C-1′′); 30.9 (C-13); 28.1 (C-3′′); 24.5 (C-3); 22.8 (C-13); 21.5 (C-2′′). 

N-{(1S,4S)-1-(4-Allyloxybenzyl)-8-amino-3-aza-4-[3-(methoxycarbonylmethyl)phenylcarbamoyl]-2-

oxooctyl}acetamide hydrochloride (55) 

Using procedure E, 73 (79 mg, 0.12 mmol) was deprotected to the N-Boc deprotected 

trifluoroacetate salt, and the resulting solid reacted via procedure H giving the hydrochloride salt 55 

(46 mg, 0.08 mmol, 64%) as a hygroscopic brown amorphous solid. MS (ESI
+
), m/z 539 (100%) 

[MH
+
], 540 (33), 406 (70). HRMS (ESI

+
) calcd for C29H38N4O6 + H: 539.2870; found 539.2876. 

[α]D
25

 -25.8 (c. 0.14, EtOH). 
1
H NMR (300 MHz, CD3OD): δ 7.59-7.50 (m, 2H, 2′′-CH and 6′′-CH); 

7.30-7.15 (m, 2H, 2′-CH and 6′-CH); 7.07-7.01 (m, 1H, 5′′-CH); 6.92-6.82 (m, 2H, 3′-CH and 5′-

CH); 6.80-6.71 (m, 1H, 4′′-CH); 6.19-5.86 (m, 1H, OCH2CH=CH2); 5.39 (bd, J = 17.5 Hz, 1H, 

OCH2CH=CHH trans); 5.20 (bd, J = 10.0 Hz, 1H, OCH2CH=CHH cis); 4.61-4.46 (m, 3H, 

OCH2CH=CH2 and 1-CH); 4.38-4.27 (m, 1H, 4-CH); 3.67 (s, 3H, OCH3); 3.37 (s, 2H, 3′′-CCH2); 

3.12-2.81 (m, 4H, 8-CH2 and 1-CHCH2); 2.03-1.89 (m, 4H, 5-CHaHb and COCH3); 1.79-1.61 (m, 

3H, 5-CHaHb and 7-CH2); 1.56-1.40 (m, 2H, 6-CH2). 
13

C NMR (75 MHz, CD3OD): δ 173.6 (4-

CHC=O); 173.3 (C-5); 172.9 (3′′-CCH2C=O); 171.7 (COCH3); 158.8 (C-4′); 139.4 (C-1′′); 136.2 (C-

3′′); 134.9 (OCH2CH=CH2); 131.4 (C-1′); 131.2 (C-2′ and C-6′); 129.9 (C-5′′); 126.3 (C-4′′); 122.1 

(C-2′′); 120.0 (C-6′′); 117.3 (OCH2CH=CH2); 115.6 (C-3′ and C-5′); 69.6 (OCH2CH=CH2); 56.9 (C-

1); 55.0 (C-4); 52.6 (OCH3); 41.7 (3′′-CCH2); 40.6 (C-8); 37.7 (1-CHCH2); 32.4 (C-5); 28.0 (C-7); 

23.7 (COCH3); 22.7 (C-6). 

Methyl (8S,11S)-11-(4-allyloxybenzyl)-8-(4-aminobutyl)-6,9,12-triaza-7,10,13-trioxotetradecanoate 

hydrochloride (58) 

Compound 76 (70 mg, 0.12 mmol) was converted to the N-Boc deprotected trifluoroacetate salt via 

procedure E, and the resulting solid was then converted, via procedure H, to give the hydrochloride 

salt 58 (53 mg, 0.10 mmol, 84%) as a hygroscopic brown amorphous solid. MS (ESI
+
), m/z 505 

(100%) [MH
+
], 508 (80), 509 (23). HRMS (ESI

+
) calcd for C26H40N4O6 + H: 505.3026; found 

505.3035. [α]D
25

 +53.5 (c. 0.22, EtOH). 
1
H NMR (300 MHz, CD3OD): δ 8.22 (bs, 1H, NH); 8.10 

(bs, 1H, NH); 7.50 (bs, 1H, NH); 7.16 (d, J = 8.0 Hz, 2H, 2′-CH and 6′-CH); 6.86 (d, J = 7.9 Hz, 

2H, 3′-CH and 5′-CH); 6.11-5.97 (m, 1H, OCH2CH=CH2); 5.38 (bd, J = 17.3 Hz, 1H, 

OCH2CH=CHH trans); 5.23 (bd, J = 10.5 Hz, 1H, OCH2CH=CHH cis); 4.56-4.41 (m, 3H, 

OCH2CH=CH2 and 11-CH); 4.30-4.21 (m, 1H, 8-CH); 3.63 (s, 3H, OCH3); 3.15-3.06 (m, 2H, 5-

CH2); 3.04-2.81 (m, 4H, 4′′-CH2 and 11-CHCH2); 2.33 (t, J = 7.1 Hz, 2H, 2-CH2); 1.93 (s, 3H, 14-

CH3); 1.78-1.25 (m, 10H, 1′′-CHaHb, 1′′-CHaHb, 3-CH2, 4-CH2, 2′′-CH2 and 3′′-CH2). 
13

C NMR (126 

MHz, CD3OD): δ 175.2 (C-1); 173.7 (C-10); 173.4 (C-7); 173.3 (C-13); 158.5 (C-4′); 134.7 

(OCH2CH=CH2); 131.1 (C-2′ and C-6′); 129.9 (C-1′); 117.3 (OCH2CH=CH2); 115.5 (C-3′ and C-

5′); 69.8 (OCH2CH=CH2); 56.6 (C-11); 54.2 (C-8); 52.3 (OCH3); 40.9 (C-4′′); 39.8 (C-5); 37.4 (11-

CHCH2); 34.2 (C-2); 32.3 (C-2′′); 29.5 (C-3′′); 27.8 (C-4); 23.6 (C-14); 23.0 (C-2′′); 22.8 (C-3). 

Methyl (7S,10S)-10-(4-allyloxybenzyl)-7-(4-aminobutyl)-5,8,11-triaza-12-benzyloxy-6,9,12-

trioxododecanoate hydrochloride (96) 

Compound 114 (264 mg, 0.33 mmol) was converted to the uncharacterised N-Fmoc deprotected 

amine via procedure F, using 1% piperidine in 9:1 acetonitrile/DMF (10 mL). This was then 

converted, via procedure H to the hydrochloride salt 96 (142 mg, 0.23 mmol, 70%) as a hygroscopic 

brown amorphous solid. MS (ESI
+
), m/z 583 (100%) [MH

+
], 584 (35) [MD

+
]. HRMS (ESI

+
) calcd 

for C31H42N4O7 + H: 583.3132; found 583.3135. [α]D
25

 +176.9 (c. 0.1, EtOH). 
1
H NMR (300 MHz, 

CD3OD): δ 8.08 (bs, 1H, NH); 7.56 (bs, 1H, NH); 7.34-7.25 (m, 5H, 2′′′-CH, 3′′′-CH, 4′′′-CH, 5′′′-

CH, 6′′′-CH,); 7.15 (d, J = 7.0 Hz, 2H, 2′-CH and 6′-CH); 6.84 (d, J = 7.0 Hz, 2H, 3′-CH and 5′-

CH); 6.14-5.96 (m, 1H, OCH2CH=CH2); 5.38 (bd, J = 17.2 Hz, 1H, OCH2CH=CHH trans); 5.23 

(bd, J = 10.2 Hz, 1H, OCH2CH=CHH cis); 5.09-4.97 (m, 2H, 12-COOCH2); 4.50 (d, J = 4.0 Hz, 

2H, OCH2CH=CH2); 4.34-4.24 (m, 2H, 7-CH, 10-CH); 3.64 (s, 3H, OCH3); 3.23-3.11 (m, 2H, 4-

CH2); 3.04-2.95 (m, 2H, 4′′-CH2); 2.91-2.82 (m, 2H, 10-CHCH2); 2.36-2.29 (m, 2H, 2-CH2); 1.84-



1.60 (m, 6H, 1′′-CH2, 3-CH2 and 3′′-CH2); 1.44-1.30 (m, 2H, 2′′-CH2). 
13

C NMR (75 MHz, 

CD3OD): δ 174.2 (C-1); 173.5 (C-9); 173.0 (C-6); 157.9 (C-4′); 157.3 (C-12); 137.1 (C-1′′′); 134.3 

(OCH2CH=CH2); 130.8 (C-2′ and C-6′); 129.4 (C-1′); 129.0 (C-3′′′ and C-5′′′); 128.4 (C-4′′′); 128.0 

(C-2′′′ and C-6′′′); 117.3 (OCH2CH=CH2); 115.2 (C-3′ and C-5′); 69.7 (OCH2CH=CH); 67.4 (12-

COOCH2); 57.4 (C-10); 53.8 (C-7); 52.9 (OCH3); 41.5 (C-4′′); 39.5 (C-4); 37.4 (10-CHCH2); 32.1 

(C-1′′); 31.9 (C-2); 27.8 (C-3′′); 25.3 (C-3); 23.6 (C-2′′). 
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