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A study of the tribological behaviour of TiO2 nano-additive water-based
lubricants

Abstract
A ball-on-disk tribometer was employed to evaluate the lubrication performance and mechanisms of
innovative TiO2 nano-additive water-based lubricants. Two experimental methods were applied to determine
the optimal mass fraction of TiO2. In the method I, lubricants were added onto the worn disk tracks at a
predetermined time interval. In the method II, the disks were immersed in the lubricants continuously during
the whole process of tribological tests. The results both indicate that the water-based lubricants can
significantly reduce the coefficient of friction (COF). The 0.8 wt% TiO2 lubricant demonstrates excellent
tribological properties including the lowest COF and the strongest wear resistance under all lubrication
conditions. The lubrication mechanisms are attributed to the rolling and mending effects of the TiO2
nanoparticles.
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Abstract: A ball-on-disk tribometer was employed to evaluate the lubrication performance of novel TiO2 
nano-additive water-based lubricants and examine the role of TiO2 nanoparticles dispersed in water. 
Two experimental methods in this study were conducted to determine the optimal mass fraction of TiO2. 
In method I, various lubricants were added into the worn disk track at a predetermined time interval of 
each test. While in method II, the disk was immersed in the lubricants during the whole process of 
tribological test. The results both indicate that the novel water-based lubricants can significantly reduce 
the coefficient of friction (COF). Especially, the 0.8 wt.% TiO2 presents comprehensive tribological 
properties including the lowest COF and the strongest wear resistance in all lubrication conditions. The 
lubrication mechanisms were dominated by rolling and mending effects of the TiO2 nano-additive.  

Keywords: TiO2 nano-additive; Water-based lubricant; Tribology; Ball-on-disk; Coefficient of friction  

1. Introduction  

    Friction, wear and lubrication between materials in contact are of fundamental importance in many 
pure and applied sciences [1]. Reduction in friction and wear is one of the most important objectives of 
tribological research [2]. Due to the special physical and chemical properties of nanomaterials, 
considerable studies have been conducted in recent years using nanoparticles as additives in lubricating 
oil to improve the tribological properties of lubricants [3-22]. Li et al. [8, 9] prepared well-dispersed oil-
based lubricants with nano-SiO2 as an additive to increase the anti-wear ability and reduce the COF 
under four-ball and ring-on-block test. A film formed by nano-SiO2 protected the metal-on-metal 
surfaces and filled the wear scars. Some researchers [10, 12, 13, 16, 19] added Cu nanoparticles into the 
base oil to improve the anti-wear, load-carrying, and friction-reduction performances. The formation of 
Cu-containing boundary film benefits the separation of friction pairs from rubbing each other. 
Furthermore, some researchers investigated the tribological properties of fullerene nano-additive 
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mineral oil, and found that fullerene nanoparticles between the friction surfaces improved the 
lubricating performance by increasing the viscosity of lubricating oil and simultaneously preventing 
direct metal surface contacts [5-7, 15, 17]. Composite nanoparticles have also been proposed to act as 
additives in lubricating oil to obtain improvement in anti-wear, extreme pressure, and friction-reducing 
properties because the individual component cannot perform effectively due to the restrained 
physicochemical properties [20-23].  

    Although the nano-additive oil-based lubricants exhibit excellent lubrication performance for 
tribological applications, it inevitably leads to environmental pollution and is also difficult to be recycled. 
In addition, the nozzles which supply flow of the fluid are prone to being blocked and regular 
maintenance is required frequently. Therefore, development of an environment-friendly water-based 
lubricant with superior lubrication performance becomes a trend in the field of lubrication.  

    Nowadays, few researchers have applied nanoparticle as an additive in water-based lubricants and 
the corresponding results have been rarely reported. TiO2 is widely used as a nano-additive in oil-based 
lubricants [3, 4, 11], and it is increasing attention in water-based lubricants [24-26]. However, the role of 
nano-additive dispersed in water and the corresponding lubrication mechanism have not been clearly 
understood until now.  

    In the present work, the water-based lubricants with varying TiO2 nano-additive additions were 
synthesised, and the lubrication performance was evaluated under a ball-on-disk tribometer. The 
objective of this study is to understand the lubrication mechanism of as-synthesised lubricants through 
experimental analysis and further lubrication models.  

2. Experimental  
2.1 Materials  

    A low-carbon microalloyed steel was adopted as disk material in this study. Its chemical compositions 
are listed in Table 1.  

Table 1 Chemical compositions of the low carbon microalloyed steel (wt.%) 

 C Si Mn P Cr S N Nb+V+Ti  
 0.05 0.02 0.25 0.014 0.01 0.002 0.003 <0.01  

 

All the disks for ball-on-disk tests were machined to 40 mm in diameter and 8 mm in thickness with 
grinding on the surfaces to ensure the surface roughness (Ra) was about 0.03 µm, which can eliminate 
the influence of the original surface condition on the experimental results. The Vickers hardness of the 
disk material is 90 HV.  

E52100 Cr steel balls with a diameter of 9.5 mm were used for ball-on-disks. The Vickers hardness of 
the ball material is 780 HV.  

2.2 Synthesis  



The TiO2 nano-additive water-based lubricants were synthesised following the flow chart shown in Fig. 
1. Firstly, TiO2 nanoparticles (P25 sourced from Sigma- AldrichTM with approx.20 nm in diameter) were 
mixed into the deionised water by mechanical stirring. Secondly, Polyethyleneimine (PEI) was added into 
the solution dropwise followed by a high speed centrifuge at 20,000 rpm for 30 min to prepare a 
dispersive solution. PEI is a cationic polymer, which acts as a surfactant of TiO2 to improve the dispersing 
property of the nanoparticles. Afterwards, glycerol was added dropwise. Glycerol is a colourless, 
odourless, and viscous liquid, which is mainly used to improve the viscosity of solutions. The solution 
was then processed by ultrasonication with stirring for 10 min to break down any remaining 
agglomeration. The synthesised TiO2 nano-additive water-based lubricant showed good colloid stability, 
and no sedimentation could be observed in 7 days of aging.  

The chemical compositions of as-synthesised lubricants are outlined in Table 2. Different lubrication 
conditions numbered from 1 to 9 were used for tribological tests. The dry condition and water 
lubrication condition were used as benchmarks in comparison to the lubrication effects of as-
synthesised water-based nano-additive lubricants. The water-based lubricants were composed of 
different mass fractions of TiO2 nanoparticles (from 0.2 to 8.0 wt.%), and corresponding volume 
fractions of PEI. The concentration of glycerol was fixed to 10.0 vol. % for each type of lubricant.   

 

Fig. 1 Flow chart of synthesis of TiO2 nano-additive water-based lubricants 

Table 2 Chemical compositions of lubricants 

Lubrication numbers Description 

1 Dry condition 
2 Water 
3 0.2 wt.% TiO2+0.002 wt.% PEI + 10.0 vol.% glycerol + balance water 
4 0.4 wt.% TiO2+0.004 wt.% PEI + 10.0 vol.% glycerol + balance water 
5 0.8 wt.% TiO2+0.008 wt.% PEI + 10.0 vol.% glycerol + balance water 
6 1.0 wt.% TiO2+0.01 wt.% PEI + 10.0 vol.% glycerol + balance water 
7 2.0 wt.% TiO2+0.02 wt.% PEI + 10.0 vol.% glycerol + balance water 
8 4.0 wt.% TiO2+0.04 wt.% PEI + 10.0 vol.% glycerol + balance water 
9 8.0 wt.% TiO2+0.08 wt.% PEI + 10.0 vol.% glycerol + balance water 

 

2.3 Tribological tests 

    COF is an important factor in evaluating the characteristics of lubricants. A Rtec MFT-5000 Multi-
functional Tribometer was employed to measure the COF values by ball-on-disk tribological tests. The 
basic configuration of the ball-on-disk tribometer is schematically shown in Fig. 2. The ball holder with Cr 



steel ball and the disk were cleaned with ethanol and then assembled prior to the tests. The disk was 
fastened to the disk holder by a screw and a small pin was inserted to ensure the disk can be rotated 
together with the holder smoothly. The arm adjusted by a bubble level should be accurately horizontal 
to reduce experimental error. The normal force applied on the ball holder was measured by a Fz load cell 
installed above a spring. While the friction force was induced by the combination of the rotating motion 
and the normal load and it was measured by a Fx load cell attached to the right point of the arm. The 
disk holder and disk which were controlled by a servo motor for rotating were located in a liquid 
container. Two types of lubrication methods (defined as M-I and M-II) were used in this study, and the 
detailed experimental conditions have been elaborated in Tables 2 and 3, respectively.  

 

Fig. 2 Schematic of ball-on-disk tribometer used for lubrication tests 

    Table 2 specifies the experimental conditions of M-I. The tests were conducted at room temperature. 
Prior to the tests, the ball was located on the disk at a position of 14 mm in radius. Then the disk was 
applied a normal force of 50 N and started to rotate with a linear speed of 20 mm/s, which was 
restricted to reduce the hydrodynamic effect of liquid. By calculation, the rotating speed of 13.65 rpm 
was obtained and was input into the software in computer. The tribological tests were implemented 
under dry condition during the first five-minute rotation followed by continuous drops of lubricants onto 
the wear track in the rest five minutes. Based on this experimental process, the M-I can be defined as 
“dry condition plus lubricants addition”.  



    Table 3 lists the experimental conditions of M-II. The tests were also conducted at room temperature. 
Prior to the tests, the disks were immersed into the liquid bath with a normal force of 50 N applied on 
the ball. The rotating linear speed was also restricted to 20 mm/s to reduce the hydrodynamic effect. 
The tests under the same lubrication condition were carried out with three tracks at radii of 14, 15, and 
16mm, respectively, to obtain mean COF value. Each track was generated following the same linear 
speed of 20 mm/s with corresponding rotating speeds of 13.65, 12.74, and 11.94 rpm, and each process 
lasted for 10 min. Similarly, the M-II can be defined as “continuous lubrication condition”.  

Table 2 Experimental conditions of M-I 

Normal force Testing temperature Rotating speed Testing duration 
50 N room temperature 13.65 rpm 5 min plus 5 min 

 

Table 3 Experimental conditions of M-II 

Normal force Testing temperature Rotating speed Testing duration 
50 N room temperature 13.65, 12.74, 11.94 rpm 10 min 

 

2.4 Characterisation of nanoparticles  

Powder X-ray diffraction (XRD) was implemented on a Philips PW1730 conventional diffraction meter 
with Cu-Kα radiation. The XRD pattern of the nanoparticles is shown in Fig. 3, from which the phase of 
particles can be determined as typical P25 TiO2 containing 75% of anatase and 25% of rutile by referring 
to the XRD standard atlas. 
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Fig. 3 XRD pattern of TiO2 nanoparticles 

Micrographs of the TiO2 nanoparticles inside the water-based lubricants were obtained using a Hitachi 
model H-800 Transmission Electron Microscope (TEM) coupled with an energy-dispersive spectrometry 
(EDS). Fig. 4 exhibits the TEM image of TiO2 nanoparticles dispersed in the as-prepared water-based 
lubricants. It is clearly seen that most nanoparticles are round in shape with an average diameter of 20 
nm, and the nanoparticles are uniform and well-dispersed without apparent agglomeration. 



 

Fig. 4 TEM image of TiO2 nanoparticles dried from water-based lubricant  

    The wear tracks of balls and disks after tribological tests were cleaned in an ultrasonic acetone bath 
and observed under KEYENCE VK-X100K 3D Laser Scanning Microscope, from which the 3D profile of the 
wear areas of both ball and disk were obtained. The wear scars of balls were then observed using a JEOL 
model JSM-6490 Scanning Electron Microscope (SEM) equipped with an EDS to evaluate the lubrication 
mechanism. 

3. Results and discussion 
3.1 Tribological properties 
3.1.1 Dry condition plus lubricants addition 

    Fig. 5 presents variation of COF values before and after lubricants additions on disks. In the first half of 
the whole tribological process, dry condition leads to fluctuation at the beginning due to the severe 
friction between the ball and disk. Then the curves decrease to a stable stage as the friction process 
behaves gently on a uniform worn track. With the addition of lubricants onto the worn disk track, all the 
COF values reduces significantly followed by smooth curves to the end of the tests. It is clear that water-
based lubricants with different TiO2 additions show much lower COF values than that of water. However, 
the reduced COF curves of water-based lubricants cannot be distinguished obviously in this figure as 
they are quite close to each other. The detailed difference of these COF values is shown in Fig. 6(a). 

Fig. 6(a) and (b) show the COF values after additions of lubricants and wear areas of balls under 
different lubrication conditions, respectively. Compared to the COF of dry condition, water and water-
based lubricants all exhibit remarkable lubrication effects especially for the water-based lubricants, the 



COF values of which decrease continuously with an increase of TiO2 nano-additive and reach the lowest 
point when 0.8 wt.% TiO2 is added, as shown in Fig. 6(a). A rising COF value is observed when TiO2 
fraction is further increased to 2.0 wt.%, and it begins to keep a constant even though the TiO2 fraction 
increases to 8.0 wt.%.  

The ball wear under different lubrication conditions is shown in Fig. 6(b). It can be seen that the 
addition of 0.8 wt.% TiO2 induces the lowest ball wear, which is consistence with the COF values 
indicated in Fig. 6(a). Fig. 7 shows the 3D profile images of the ball wear areas. It can be seen that water 
induces wear area of 2239 µm2 along z axis (depth) after calculation according to the profile curves. 
While, the water-based lubricants with additions of 0.4, 0.8 and 4.0 wt.% TiO2 present much smaller 
wear areas than that caused by water. Among the water-based lubricants, the worn surface becomes 
smoother when the mass fraction of TiO2 reaches 0.8 wt.%, indicating that 0.8 wt.% TiO2-containing 
lubricant has better wear resistance as compared to other lubrication conditions. Based on the 3D 
profile images, abrasive ploughing should be the main wear manner for all the friction processes in this 
study, which will be explained later with the elaboration of lubrication mechanisms.  
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Fig. 5 Variation of COF values with addition of lubricants after 5-min dry condition friction 
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Fig. 6(a) COF values after additions of lubricants and (b) wear areas of balls under different lubrication conditions 

     

     

Fig. 7 3D profile images and curves of ball wear areas by (a) water, (b) 0.4 wt.% TiO2, (c) 0.8 wt.% TiO2, and (d) 4.0 wt.% TiO2 

3.1.2 Continuous lubrication condition 

    Fig. 8 shows the comprehensive tribological properties under continuous lubrication conditions with 
water and water-based lubricants. It is coincident to the results shown in Fig. 6 that 0.8 wt.% TiO2 
exhibits the best lubrication effects of all. Furthermore, both wear areas of the disk and ball along Z axis 

(a) (b) 

(a) Wear area 2239 µm2 Wear area 1821 µm2 

Wear area 1451 µm2 Wear area 1958 µm2 

(b) 

(c) (d) 



(b) 

confirm that 0.8 wt.% is the optimum mass faction for TiO2 nano-additive water based lubricants at 
room temperature. The 3D profile images of the disk wear areas are shown in Fig. 9. It can be seen that 
the water lubrication generates abrasive friction and the wear area along z axis (depth) is obtained to be 
1371 µm2. While with additions of TiO2 nano-additive at lower fractions of 0.2 and 0.8 wt.%, the wear 
areas are decreased to around 1000 µm2. However, the wear area goes up to 1977 µm2 when lubricated 
by 4.0 wt.% TiO2, which is even higher than those under other lubrication conditions. Furthermore, 
furrows exist only inside the wear tracks lubricated by 0.2 and 0.8 wt.% TiO2. The probable reason is that 
the lower fraction of TiO2 nano-additive makes particles much easier to enter the rubbing zone and take 
better lubrication effect in comparison to the lubricants with higher fraction such as 4.0 wt.% [27].  
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 Fig. 8 (a) COF values with continuous additions of lubricants and (b) wear areas of balls and disks under different lubrication 
conditions 
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Fig. 9 3D profile images and curves of disk wear areas by (a) water, (b) 0.2 wt.% TiO2, (c) 0.8 wt.% TiO2, and (d) 4.0 wt.% TiO2 

3.2 Lubrication mechanism  

    In the past years, a number of lubrication mechanisms have been proposed to explain the 
improvement of lubrication effect by using various nanoparticles as additives in lubricating oil, including 
rolling effect [3, 17, 21, 27-30], mending effect [16], polishing effect [3, 27, 31], and protective film [4, 8, 
10, 11, 13, 14, 19, 32-36], as schematically shown in Fig. 10 in terms of ball-on-disk friction. The rolling 
effect and protective film are mainly used to separate the friction pairs rubbing each other on COF 
reduction, while mending and polishing effects act on the enhancement of surface quality. In this study, 
the lubrication mechanisms of the TiO2 nano-additive water-based lubricants will be addressed based on 
the four lubrication mechanisms.  

 

     

     

Fig. 10 The schematic of lubrication mechanisms under TiO2 nano-additive water-based lubricants  

Wear area 1001 µm2 Wear area 1977 µm2 (c) (d) 

(a) (b) 

(c) (d) 



(a) rolling effect, (b) mending effect, (c) polishing effect, and (d) protective film 

Fig. 11 shows the SEM images and EDS mappings of the disk sample lubricated by 0.8 wt.% TiO2. It can 
be seen that a large number of TiO2 nanoparticles have filled in the defects of disk surfaces. In 
comparison to the SEM images in Fig. 11(a) and (c), the bright zones in Fig. 11(b) and (d) give a direct 
evidence to support this phenomenon, which is defined as “mending effect”.  

Fig. 12(a)-(d) give the SEM images of disk samples lubricated by 0.2, 0.8, 2.0, and 4.0 wt.% TiO2, 
respectively. Fig.12(e) and (f) give the EDS spectra to show the element titanium. It can be seen that TiO2 
nanoparticles are distributed dispersedly in the worn disk tracks, which indicates that the spherical TiO2 
nanoparticles can roll between the rubbing surfaces in the process of friction. This “rolling effect” of TiO2 
nanoparticles in water-based lubricants contributes to a significant COF reduction in comparison to that 
caused by water. When the mass fraction of TiO2 is below 0.8 wt.% (such as 0.2 wt.%), as shown in Fig. 
12(a), particle-depleted zones appear in the worn disk track, which implies few nanoparticles taking 
effect between the rubbing surfaces, and hence the COF and wear area are not reduced significantly. 
While, with the mass fraction of TiO2 nanoparticles increases above 0.8 wt.%, as shown in Fig. 12(c)-(d), 
some nanoparticles would be agglomerated, and then the secondary particle size becomes coarse 
(around 50 nm for 2.0 wt.% TiO2 and 100 nm for 4.0 wt.% TiO2). This would aggravate the friction and 
wear, and therefore leads to increase of COF and wear area [21]. Differently, as shown in Fig. 12(b), the 
disk surface lubricated by 0.8 wt.% TiO2 owns numerous nanoparticles distributed evenly with small size 
in diameter, which induces even lower COF and smaller wear area as compared to other lubricants with 
different TiO2-additions. Therefore, 0.8 wt.% is considered to be the optimal mass fraction of TiO2 as 
nano-additive in the as-synthesised water-based lubricant. The role of TiO2 nanoparticles and the 
lubrication mechanism can be further elaborated in Fig. 13. 

    Fig. 13 demonstrates the lubrication mechanisms with varying TiO2 mass fractions of 0.2, 0.8, and 4.0 
wt.%. At a low TiO2 fraction of 0.2 wt.% (Fig. 13(a)), few nanoparticles can enter the rubbing surfaces, as 
a result the lubrication effect is appeared to be insignificant. When the TiO2 fraction increases to 4.0 
wt.%, as shown in Fig. 13(c), a large amount of nanoparticles accumulate around the rubbing zone to be 
agglomerated as a barrier which decreases the continuous supply of nanoparticles to the zone for 
lubrication [27]. Furthermore, the large-sized particles which can still roll between the ball and disk are 
supposed to deteriorate the wear during friction process [21]. Differently, the 0.8 wt.% TiO2-containing 
lubricant is able to feed abundant nanoparticles continuously to the rubbing zone during friction process 
owing to the fine size without agglomeration, as shown in Fig. 13(b). Therefore, 0.8 wt.% is thought to 
be the optimum mass fraction of TiO2 to present the best tribological properties of all the as-synthesised 
water-based lubricants.  



          

     

Fig. 11 SEM images and EDS mappings of the disk sample lubricated by 0.8 wt.% TiO2: (a) SEM image, (b) EDS mapping of (a), (c) 
SEM image, and (d) EDS mapping of (c) 
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Fig. 12 SEM images of the samples lubricated by (a) 0.2 wt.% TiO2, (b) 0.8 wt.% TiO2, (c) 2.0 wt.% TiO2, and (d) 4.0 wt.% TiO2, 
and EDS spectra of (e) 0.8 wt.% TiO2, and (f) 4.0 wt.% TiO2 

     

(c) (d) 

(b) 

Agglomeration 
Agglomeration 

(e) (f) 

(a) 



 

Fig. 13 The models of lubrication mechanisms by (a) 0.2 wt.% TiO2, (b) 0.8 wt.% TiO2, and (c) 4.0 wt.% TiO2 

4. Conclusions  

The lubrication properties of TiO2 nano-additive water-based lubricants were evaluated by ball-on-
disk tests at room temperature based on two different testing methods. The following conclusions have 
been drawn from this study. 

(1) The addition of TiO2 nanoparticles into water can significantly reduce the COF and improve the 
wear resistance. The COF and ball wear can be decreased by 49.5% and 97.8%, respectively, 
compared to those of dry condition.  

(2) Low fraction of TiO2 below 0.8 wt.% leads to few nanoparticles taking effect for COF reduction; 
while high fraction of TiO2 above 0.8 wt. % results in agglomeration of nanoparticles and increases 
COF. 

(3) 0.8 wt.% TiO2 water-based lubricant leads to the lowest COF of all the lubrication conditions 
conducted by dry friction, water and water-based lubricants at room temperature.  

(4) 0.8 wt.% TiO2 water-based lubricant induces the smallest ball and disk wear areas on all the 
lubricated friction pairs at room temperature.  

(5) Rolling effect and mending effect are thought to be the lubrication mechanism of TiO2 nano-
additive water-based lubricants.  
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