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Compare Pilot-Scale And Industry-Scale Models Of 
Pulverized Coal Combustion In An Ironmaking Blast Furnace

Yansong Shen1, Aibing Yu1, Paul Zulli2

1: Laboratory for Simulation and Modelling of Particulate Systems, School of Materials Science and Engineering, 
The University of New South Wales, Sydney, NSW 2052, Australia

2: BlueScope Steel Research, P.O. Box 202, Port Kembla, NSW 2505, Australia

Abstract In order to understand the complex phenomena of pulverized coal injection (PCI) process in blast furnace (BF), 
mathematical models have been developed at different scales: pilot-scale model of coal combustion and industry-scale 
model (in-furnace model) of coal/coke combustion in a real BF respectively. This paper compares these PCI models in 
aspects of model developments and model capability. The model development is discussed in terms of model formulation, 
their new features and geometry/regions considered. The model capability is then discussed in terms of main findings 
followed by the model evaluation on their advantages and limitations. It is indicated that these PCI models are all able to 
describe PCI operation qualitatively. The in-furnace model is more reliable for simulating in-furnace phenomena of PCI 
operation qualitatively and quantitatively. These models are useful for understanding the flow-thermo-chemical behaviors
and then optimizing the PCI operation in practice.
Keywords: Multiphase Flow, Coal Combustion, Blast Furnace

INTRODUCTION
BF plays a dominant role in an integrated steel work in terms of energy consumption and CO2 emission [1-3]. PCI is 

one of the important recent technologies in BF ironmaking. It is widely used with various benefits, such as reducing 
coke consumption, adjusting furnace stability and reducing CO2 emission. As a result, the rate of PCI is increasingly 
high in practice [4-6]. Under the operation of high PCI rate, the injected coal cannot combust completely inside the 
raceway and therefore unburnt coal particles will affect the coke bed permeability and thereby the furnace operation 
(FIGURE. 1) [7]. Therefore, high coal burnout is desired and necessary for high PCI rate operation. In addition, proper 
gas composition and distribution are also needed for furnace stability in practice. Therefore, it is important to 
understand the in-furnace phenomena associated with PCI operation under various operational conditions for providing 
direct guidance to optimize the operating conditions, aiming to improve the coal burnout and adjust gas distribution in 
practice.

FIGURE. 1. Schematic of pulverized coal injection in the lower part of a BF.
This technology has been studied using different techniques. Industrial-scale studies of these in-furnace phenomena

are extremely difficult due to the hazardous in-furnace environment. Laboratory- and pilot- scales experimental studies 
are difficult to replicate the comprehensive in-furnace conditions of the raceway-coke bed region, and also very 
expensive in terms of time and investment. Mathematical modelling provides a cost-effective way of understanding PCI 
operation. In the past, several PCI models were reported in the literature. In the 1990s, several PCI models in two-
dimension were developed. They can simulate some phenomena related to PCI process. For example, Takeda and 
Lockwood [8] reported a model of coal combustion using two computational domains of raceway and coke bed. Three-
dimensional (3D) modelling is needed for more practical problems. Recently, several 3D PCI models were developed. 
For example, Goto et al. [9] reported a 3D simulation for blowpipe region and on this basis some lance arrangements 
were examined for co-injections of coal/plastic and coal/gas. The region of tuyere and raceway was not included in the 
simulations. Nogami et al. [10] reported a 3D transient-state model for a laboratory-scale test rig. The so-called discrete 
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element method was used for coke movement so that the raceway structure could be directly predicted. But this 
approach is generally difficult to apply to a practical system where the number of coke particles is huge, and thus the 
computation will be extremely expensive. To solve these deficiencies, several 3D CFD models have been developed 
and conducted for PCI operation at different scales: coal combustion in a pilot-scale test rig of raceway region and an 
in-furnace phenomena model considering coal/coke combustion in the region of tuyere-raceway-coke bed in a real BF 
[11-18].

In this paper, these PCI models are compared in terms of model development and their applicability. The model 
development is compared in terms of model formulations, new features and geometry applied. The model applicability 
is compared about the main findings, such as flow, temperature, gas composition, and coal burning characteristics. 
Based on these comparisons, the functionalities and limits of these models are evaluated. 

MODEL DEVELOPMENTS
Aiming to simulate the complicated phenomena of PCI operation in the lower part of BF, various models are 

developed in different scales for different purposes. Specifically, they are: pilot model of pulverized coal combustion in 
a test rig and in-furnace model of coal/coke combustion in a real BF). In this session, the model framework about 
general model formulation is described firstly. Then the model developments of the PCI models are compared in terms 
of geometry, new model features, region considered and main purposes.

The general model framework shared by the two models is briefly outlined below. The gas-solid flow is assumed to 
be steady state. The gas phase is treated with an Eulerian frame of reference and described by a set of 3D, steady-state 
Navier-Stokes equations, closed by the standard k-� turbulence model equations. They are solved for pressure (p), 
velocity (u, v, w), turbulence kinetic energy (k), turbulence dissipation rate (�), enthalpy (H), and several gas species 
mass fractions (Yi). The particle phase is modeled in a Lagrangian frame of reference, where the trajectories of the 
discrete particles are determined by integrating Newton’s second law of motion. The drag force and turbulence 
dispersion are included. The change of particle temperature is governed by three physical processes: convective heat 
transfer, latent heat transfer associated with mass transfer, and radiative heat transfer. Coal combustion is regarded as a 
multi-stage process: 1) preheating; 2) devolatilization of raw coal, modeled using the two-competing model [19]; 3) 
gaseous combustion, modeled using the eddy dissipation model [20]; 4) the oxidation and gasification of residual char, 
modeled using the Gibb model [21]. The governing equations for the gas and particle phases and the reactions of coal 
and their reaction rate expressions are reported elsewhere [17]. The models are developed based on the framework of 
software package ANSYS-CFX [21].

Although the above general model formulation, these PCI models also include different features, in terms of 
geometry applied and fuels considered etc.

Pilot-scale model (tuyere-raceway region in a test rig)

Aiming to overcome the deficiencies of previous coal combustion models of PCI operation in one-, two-, and three-
dimension, this 3D model has been developed for simulating pulverized coal combustion [11, 12]. As a start-up of 
comprehensive modelling of PCI process, this model is developed to simulate the flow and combustion behaviors of 
pulverized coal in a pilot-scale test rig, as shown in FIGURE 2-3. This modelling region includes the tuyere and 
raceway centreline (i.e. along main coal plume), according to the test rig configuration (dashed zone). The main purpose 
of this model is for model validation and fundamental analysis of combustion behaviors of pulverized coal. The model 
is validated against the experimental data collected from two different test rigs obtained by Mathieson et al [7] and 
Rogers [22], in terms of both coal burnout and gas composition: 1) The model is found acceptable for burnout 
predictions, not only at one specific position (i.e. port 5 at 925mm in FIGURE 2) but also for the whole evolution along 
the main coal plume, i.e., not only near the end of raceway but also near the tuyere [11]. Moreover, 2) it is acceptable 
for not only single coal [11] but also coal blends [13]. 2) The model can also produce the evolutions for major gas 
species, compared to the previous 3D models [23].

FIGURE 2. Schematic of the pulverised coal combustion test rig in BHP Newcastle Laboratories [7].
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FIGURE 3. Geometry details of the pilot model (in mm).

In-furnace model (blowpipe-lance-tuyere-raceway-coke bed in a BF)

Standing as a comprehensive model of PCI process, this in-furnace model is developed based on the pilot model, i.e.
from one fuel (pulverized coal only in cavity) to two fuels (both pulverized coal and coke in cavity/packed bed). That is, 
this model is developed to describe the flow and combustion behaviors of both pulverized coal and coke under practical 
conditions (FIGURE 4). This modelling region includes the blowpipe, lance, tuyere, raceway centreline/recirculation, 
and coke bed, using one single computational domain. It is noted that the raceway is treated as a 3D balloon-shape 
cavity (FIGURE 4(a)), so that more reliable information can be obtained, i.e. not only along the main coal plume but 
also additional information over the raceway surface. The main purpose of this model is to describe the in-furnace 
phenomena of PCI operation in a real BF. Moreover, it is also used to investigate the role of raceway recirculation 
region in PCI simulations. In addition to model formulation described in the pilot model, the in-furnace model also 
includes the raceway recirculation, and coke bed and its reactions. One computational area covers the lance, blowpipe, 
tuyere, raceway, and coke bed, so that the in-furnace phenomena of PCI operation can be studied under various 
conditions. The blowpipe-tuyere-raceway region is treated as a cavity. The coke bed is treated as a porous media, where 
the momentum source through the coke packed bed is obtained by Ergun equation. The Field model [24] is used for 
coke reactions in the coke bed, including coke solution loss and coke combustion. In addition to the validation in terms 
of coal burnout mentioned above, the model is also validated against measurements in different scales, from laboratory 
scale to industry scale, such as several basic variables (gas velocity, temperature and concentration) from a laboratory 
scale experiment [25]; and more importantly in terms of gas composition from a real BF (No. 4 blast furnace of 
Newcastle in Australia) [26], respectively.

(a) (b)
FIGURE 4. Geometry details of industry-scale model: (a), the whole model; and (b), lance tip details (in mm). 

MODEL APPLICATIONS
In the following session, the typical results of PCI operation in aspects of flow and associated thermal-chemical 

behaviors simulated by the two models will be compared in terms of the applicability and functionality, so as to
establish a clear picture of in-furnace phenomena about PCI operation in BF step by step and then identify some 
important issues, e.g. which model is preferred for fundamental study; which model is preferred for practice analysis; 
and the role of inclusion of raceway recirculation region in PCI simulations.

Pilot model (tuyere-raceway region in a test rig)

Using this model, the typical transport phenomena of flow and combustion in a pilot-scale PCI test rig are simulated 
and analyzed under test rig conditions, such as temperature field, oxygen distribution and coal burnout (FIGURE 5). 
The main results indicate that: 1) the main coal plume shows higher velocity, higher temperature, and lower burnout, 
compared with the peripheral region, where fine coal particles recirculate; 2) the burnout level of coal along the central 
plume is determined by combined contributions from both devolatilization upstream and char oxidation/gasification 
downstream. In terms of increasing coal burnout, the contribution of volatile release/combustion is more significant 
than the reactions of char. In addition, the role of two additional gasification reactions in determining coal burnout and 
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gas composition is examined. Compared to a previous 3D model [23], it is indicated the inclusion of two additional 
gasification reactions (i.e., solution loss and water gas of char) makes a significant difference to burnout evolution and 
thus should not be neglected in future PCI modelling [11].

(a) (b)

(c) (d)
FIGURE 5. Main simulation results using the pilot model: (a), gas flow; (b), temperature; (c), oxygen distribution; and (d), 

coal burnout along particle trajectories.
Then a parametric study of operational conditions is conducted to examine effects of coal properties and blast 

conditions on coal burnout evolution along tuyere axis. The results confirm that notable improvements in final burnout 
can be achieved for coals with more fine particles and high volatile matter, and by higher oxygen enrichment. Some 
quantitative relationships between burnout and these variables have been formulated based on the numerical results. In 
addition, the insights of some experimental observations with little explanations can be explored, for example, blast 
temperature. The use of high blast temperature can increase coal burnout, but the further increase in blast temperature 
over 1200�C has little effect on final burnout. This is different from the noted impact of blast temperature reported in 
the previous simulations considering tuyere only. It is explained that as the blast temperature increases over 1200°C, the 
devolatilization processes may not complete in the tuyere but have already been completed within a very short distance 
in the raceway. 

In-furnace model (blowpipe-lance-tuyere-raceway-coke bed in a BF)

In the in-furnace model, both pulverized coal and coke are considered in the regions of not only blowpipe, tuyere, 
raceway centreline, but also raceway recirculation and the surrounding coke bed. Based on this model, the 
comprehensive in-furnace phenomena are investigated in the raceway and coke bed, in terms of flow, temperature, gas 
composition, and coal burning characteristics (FIGURE 6). It is indicated that: (1) Inside the raceway: main coal plume 
and recirculation region show different patterns. Compared to the recirculation region, the main coal plume shows 
considerably higher gas velocity, shorter particle residence time, higher gas temperature and significantly higher CO2
and VM concentrations. The coal is heated and does not start burning until exiting the tuyere; subsequently the burnout 
increases rapidly at the upstream of the raceway due to strong devolatilization and then plateaus at the downstream of 
the raceway due to slow char reactions. (2) In the coke bed: compared with the dripping zone, the deadman shows 
slightly lower gas velocity and longer residence time with large particle size, significantly higher CO, lower O2
concentrations, and a lower burnout. (3) Local coal burnout mainly depends on particle size, residence time and oxygen 
availability in both the raceway and coke bed. 

(a) (b)
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(c) (d)
FIGURE 6. Main simulation results using the in-furnace model: (a), gas flow; (b), coal burnout in the raceway; (c), gas 

composition along the tuyere axis; and (d), temperature field in the raceway and surrounding coke bed.
The in-furnace model includes more complex settings, such as recirculation region of raceway, surrounding coke 

bed and its reactions etc, and thus is regarded as a more robust and reliable model for describing in-furnace phenomena 
of PCI process. When comparing the simulations using in-furnace model with those using pilot model under the same 
conditions, (a), in this study along the main coal plume, the dispersion of the coal plume is limited within the tuyere but 
more significant in the raceway. Then a large-scale recirculation of fine coal particles forms in the upper part of 
raceway, thus having a longer residence time; (b), the in-furnace model predicts a lower temperature in the raceway; (c), 
the previous models were found to greatly under-predict the CO concentration in the raceway; and (d), the in-furnace 
model predicts a lower final burnout along the tuyere axis by ~9% (absolute) due to the fact that fine particles of higher 
burnout have left the main coal plume before reaching the end of raceway. The inclusion of recirculation region of 
raceway and the surrounding coke bed plays an important role in determining burnout. These comparisons also indicate 
that it is important to include recirculation region in the future numerical studies of PCI operation for better 
understanding in-furnace phenomena. More importantly, compared with final burnout at one point predicted in previous 
models, this model could give a more reliable burnout prediction over the raceway surface, which could better represent 
the amount of unburnt char entering the coke bed. The average burnout over the raceway surface is usually much higher 
than the burnout in the end of raceway, but much more sensitive to the change of variables [16, 18]. This is not 
achievable by the previous PCI models. 

To sum up, in order to describe the PCI operation comprehensively, the two models in different scales have been 
developed for different purposes. They are summarized as detailed in TABLE 1 in terms of model developments and 
capability, such as purpose, fuel considered, simulation scales, regions considered, burnout calculations etc. 

TABLE 1. Model comparisons in terms of model developments and capability.
Pilot model In-furnace model

Purpose Model validation & fundamental analysis In-furnace phenomena understanding
Fuel considered Coal Coal & coke
Simulation scale Pilot-scale experiments Full-scale BF
Region covered Tuyere-raceway axis Lance-blowpipe-tuyere-raceway- coke bed
Raceway recirculation Not considered Yes considered
Burnout calculations Along tuyere axis only Along tuyere axis & over raceway surface
Burnout at raceway end point 72%* 57%
Burnout over the raceway surface / 90%
Major gas products CO2 CO
Residence time of coal† 0.05 s 0.6 s
* Note that this burnout is obtained under the test rig conditions and thus not eligible for comparing with those under BF 
conditions.
† Residence time of coal for pilot model represents coal travelling time along the tuyere axis; residence time of coal for in-furnace 
model represents coal travelling time along the tuyere axis and then along the recirculation in the raceway.

On the other hand, based on the comparisons in terms of model developments and capability, the two models are 
evaluated in terms of advantages and limitations, as below:

Pilot model: Such simulations under test rig conditions can help analyze the fundamental combustion behaviors
associated with PCI operation to a certain degree but mainly for validation purposes. It is also useful to examine basic 
combustion variables in aspects of qualitative analysis. On the other hand, a too confined set-up for physical or 
numerical experimentation may not be able to generate a full picture regarding this process. It is suggested that it is 
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necessary to consider the real BF conditions, in terms of boundary conditions and geometry e.g. raceway recirculation 
region, when investigating the effects of variables on coal burnout. These two aspects are solved by the in-furnace 
model.

In-furnace model: The deficiencies of the previous models, including the pilot model, can be overcome by the in-
furnace model. This model is the first 3D model to simulate the in-furnace phenomena of PCI operation in the literature. 
This model provides a cost-effective tool for comprehensively understanding the in-furnace flow-thermo-chemical 
behaviors of the PCI operation, and then optimizing operating conditions in full-scale BFs in the future.

CONCLUSIONS
This paper briefly reviews and compares two PCI models at different scales. They are pilot model of pulverized coal 

combustion in a pilot-scale test rig and in-furnace model of coal/coke combustion in a real BF. These models are 
compared in aspects of model developments, such as geometry and the regions considered, and then model applicability, 
such as flow, temperature, gas composition, and coal burning characteristics. It is indicated that both two PCI models 
are able to describe PCI operation qualitatively. The in-furnace model is more reliable for simulating in-furnace 
phenomena of PCI operation qualitatively and quantitatively. Such model gives a more reliable burnout prediction over 
the raceway surface, which could better represent the amount of unburnt char entering the coke bed and is found more 
sensitive to the change of operational conditions. Then based on these comparisons, they are evaluated on advantages 
and limitations. It is indicated that pilot model is suitable for fundamental studies; in-furnace model includes more 
complex conditions/settings such as recirculation region of raceway, surrounding coke bed and its reactions etc, and 
thus is regarded as a more robust and reliable model for describing in-furnace phenomena of PCI process. These models 
are useful for understanding the flow-thermo-chemical behaviors and then optimizing the PCI operation in BFs.

NOMENCLATURE
A1, A2 pre-exponential factors of devolatilization reactions, s-1

Ac pre-exponential factors in Gibb model, m s-1 K-1

Ap particle area, m2

As constant in Gibb model, 0.0004
a exponent in Gibb model, 0.75
C0 mass of raw coal, kg
C1, C2 turbulent model constants
CD drag coefficient 
Cp particle heat capacity, J kg-1 K-1

D external diffusion coefficient of oxygen in Gibb model, m2 s-1

Dref reference dynamic diffusivity in Gibb model, 1.8e-5 kg m-1 s-1

daf. dry and ash free
de particle mean diameter, �m 
e void fraction of char particles
E1, E2 activation energy of devolatilization reactions, K
fD drag force from a particle, N
H enthalpy, J kg-1

Hreac reaction heat, J kg-1

I radiation intensity on particle surface, W m-2

[i] molar concentration of component i
k turbulent kinetic energy, m2 s-2

k1, k2 devolatilization rate constant, s-1

k1 rate of external diffusion in Gibb model, s-1

k2 rate of surface reaction rate in Gibb model, s-1

k3 rate of internal diffusion and surface reaction in Gibb model, s-1

kc carbon oxidation rate in Gibb model, m s-1

m� mass transfer rate from a particle, kg s-1

mc mass of char, kg 
Mc molecular weight of carbon
MO2 molecular weight of oxygen molecule
np particle number per unit volume, m-3

Nu Nusselt number
p pressure, Pa
q heat transfer from a particle, W 
rp particle radius, m 
ri reaction rate of gas species i, mol m-3 s-1

Re Reynolds number 
T temperature, K
Tblast blast temperature, K
Tc activation energy in Gibb model, K
Tref reference temperature in Gibb model, 293 K
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Ts constant in Gibb model, 6240 K
U mean velocity of gas, m s-1

u, v, w gas velocity components, m s-1

VM volatile matter of coal
vi stoichiometric coefficient of species i.
Wi reaction rate of species i (per unit volume), kg m-3 s-1

ma ash mass fraction
ma,0 original ash mass fraction
Greek letters 
� volume/internal surface area ratio in Gibb model
�1, �2 volatile yield 
� turbulent dissipation rate, m2 s-3

�p particle emissivity
� thermal conductivity, W m-1 K-1

�k, �� turbulence model constant
�B Stefan-Boltzmann constant, 5.67×10-8 W m-2 K-4

� mechanism factor in Gibb model
� density, kg m-3

� dynamic viscosity, Pa s
�t turbulent viscosity, Pa s
�i molecular diffusivity of species i, kg m-1 s-1

Subscripts
c char
g gas 
p particle 
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