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ABSTRACT: Sixteen single shear tests were carried out on eight geometric cable variations provided 

for testing from Australian suppliers – Jennmar, Megabolt and Minova. Each test was subjected to 

varying pre-tension values of zero and 15 tonnes, exploring the effect of plain, spiral, bulbed, indented 

and a combination of plain and indented wire strands. The results obtained demonstrated that the 

shear strength of plain strand cable was higher than the spiral and/or indented profiled cables with 

direct correlation to the strands ultimate tensile strength. All the plain profiled cables experienced an 

element of partial debonding suggesting that their application at embedment length less than 1.8 m 

each anchor side may not be adequate. The spiral and indented profile strands provided greater bond 

strength at the cable-grout interface due to the surface roughness of the wires imposing an 

interlocking effect, leading to reduced shear displacement. The data suggests that the spiral profile 

was superior to the indented profile due possibly to the compromised integrity of the strand from the 

impact of stress raisers when creating the indented profile. No study was carried on the button 

indented profile cable bolts. This report is the first validation that type of apparatus selected to test the 

shearing capacity of a cable strand will not affect results. 

INTRODUCTION 

 

The practice of utilising cable bolts as a means of secondary support when the bolted height does not 

provide sufficient support has become an industry standard. Since the introduction of this ancillary 

support method, studies regarding the loading mechanisms of cable bolts have increased, particularly 

in the form of axial loading. Direct shear loading is still in its infancy with the majority of the research 

undertaken at the University of Wollongong (UOW) .This paper continues and extends the work of the 

UOW Rock Bolting and Strata Control Research team byextending the scope of the studies to include 

single shear testing. 

 

The new shearing apparatus was designed and constructed by Megabolt, a strata control product 

manufacturer, in response to the deficiencies of the current industry standard for the single shear 

testing of cable bolts outlined in BS7861-2:2009. The new methodology as designed allows for active 

reinforcement of the system and full encapsulation in a brittle host material allowing for the rock-grout 

interface to be assessed, creating more realistic results. The drawback of this methodology is the 

intense sample preparation required compared to preceding studies, which will impact for further 

studies to replicate the conditions of the test.   
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Ground reinforcement can be classified in two distinct ways. Reinforcement is deemed primary if it is 

installed during the excavation sequence, whereas a support is secondary if it is installed sometime 

after the formation of the roadway. Conversely, ground support can be classified in terms of the active 

or passive support it imposes on the dynamic system. Active support applies a force to the rock mass 

modifying the mechanical behaviour to minimise displacement, particularly in jointed and loose rock 

units. Whereas, a passive ground support mechanism does not impose any initial force, rather it 

provides a resistive force as the rock deforms over time. Generally, rock bolts will be installed 

immediately post the creation of the excavation, followed, when necessary by the complementary 

ground support mechanism of cable bolts. The secondary support is utilised when the bolted height 

does not provide sufficient support, connecting the fractured zone to a more competent strata layer. 

Cable bolts consist of high strength steel wires coiled into a strand, which is installed into drilled holes 

and bonded to the rock mass by grout. The application of cable bolts, in conjunction with primary 

ground supports and a confining medium such as rock bolts and mesh, is presently a common 

industry standard for an integral excavation. The main function of cable bolts is to stabilise and 

strengthen rock mass, as well as provide resistance to bed separation and regulate post-failure 

deformation (Galvin 2016). Understanding the performance of cable bolts is becoming increasingly 

important to reduce expenditure without reducing its effectiveness in redistributing stress. 

The two primary forces that underground support systems are subject to are axial loading and shear 

loading. Over the past 40 years, research has commenced into stimulating these loads to select the 

most appropriate cable for specific overlying and surrounding rock masses (Thomas 2012). Globally, 

the majority of the published research studies surrounding the performance of cable bolts is centered 

around axial loading of the cable bolt known as ‘pull testing’. Data from pull testing is widespread as it 

can be conducted in the laboratory and the field due to its relatively simple testing method. Methods 

surrounding applying a direct shear load are still in its infancy due to its complexity and specialist 

laboratory process (Hutchinson and Diederichs 1996).  Research reported in this paper is initiated 

with ACARP funding (project C24012), which focuses on cables bolts used in Australian mines and 

conditions. 

PROCEDURE 

Equipment 

 

The single shear apparatus is a horizontally aligned integrated system, consisting of the shearing rig 

and a 120 t compression machine, as shown in Figure 1. The shearing cylinder is fabricated in two 

sections, each containing 1.8 m of concrete anchor cylinder, providing a centrally located shearing 

plane. The shearing cylinder is enclosed in steel clamps to provide confinement during shearing. The 

shear load is applied by four hydraulic rams, located at the bottom of the shear rig, with the applied 

shear load measured by a pressure transducer and analogue gauge. 
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Figure 1: Single shear test apparatus 

 

The hydraulic pressure originates from either a hand pump or power pack of suitable capacity. The 

hydraulic pressure is fed to a manifold which distributes the pressure to the compression testing 

machine legs. A pressure transducer in conjunction with an analogue pressure gauge monitors the 

pressure in the manifold. The rate of loading is  applied through manual application, with an aim to 

apply a constant load in line with F 432-04 (ASTM 2005) and BS7861-part 2 of between < 4 mm 

mm/min. Linear Variable Displacement Transducers (LVDTs) were utilised to measure shear 

displacement at the shearing plane and any debonding at the cable ends. A datataker is used to 

record the readings of the pressure transducer and the LVDTs at a constant time intervals, which are 

utilised for further data analysis. 

 

Sample preparation 

Each cable bolt was installed in 250 mm diameter 3.6 m long and concrete cylinders.  Cardboard 

cylinders were used as mould to make the test samples. Each cylinder consisted of a length and 

diameter of 900 mm and 250 mm accordingly. The axially laid central borehole within the sample was 

created through a 1000 mm steel rod with 8 mm dimeter plastic conduit wrapped around the 

circumference of the rod to simulate rifling. The 40 MPa concrete with 10mm aggregate was prepared 

by an external body, to ensure that the concrete met requirements, slump tests were conducted on 

the fresh concrete to ensure integrity in relation to moisture and consistency of the mix. Once the 

concrete set the steel rod and plastic conduit were removed from each cylinder and then the 

cardboard mould was cut off. The concrete cured for a minimum of 28 days to allow for the nominal 

strength to be achieved. Each single shear test required four concrete cylinders with two sets of 

concrete cylinders fixed together to create the 1800 mm anchor cylinders on either side of the shear 

interface.  

The frictionless shear interface was created through the use of two Teflon plates which had a 

thickness of 2 mm allowing for 4 mm opening between the concrete anchor cylidners to remove the 

fricitional effects of the concrete contact at the interface as shown in Figure 2.  Neoprene seals were 

also utilised to ensure the grout would not percolate from the annulus. The adhesion of the Neoprene 

seals and teflon plates to both of the cylinders occurred simultaneously with the second concrete 

anchor cylinder positioned in the frame after two minutes of curing time. Once the grout adaptor plate 

was glued to the other extremity of the 3600 mm span, the primary clamp was enclosed and fastened 

with bolts.  
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Figure 2: Teflon sheets with Neoprene seal for frictionless shear of the cable 

Before grouting occurred, the pre-tensioning and grouting frame was positioned at an angle of 65° to 

allow for the bottom-up grouting method. This grouting method is where grout is propelled from the 

lower extremity of the cable filling the entire annulus area. Moreover, the angle allows for gravity to 

provide a weight force to prevent any air bubbles forming. Figure 3 shows the assembled cable bolt 

being grouted in the concrete cylinders and left to cure over a minimum period of one month. 

Stratabinder HS grout was used to encapsulate the cables in the concrete cylinders of all the cables 

used in the study.  Once grouted the samples were left to cure for a minimum of 28 days prior testing.  

Methodology 

 

Once the mandatory time for curing was reached, each sample was disassembled from the frame and 

mounted to the shearing rig. When the sample was correctly positioned and fastened in the shearing 

rig, steel clamps, placed around the concrete blocks to provide a confining pressure to the sample. 

The action of applying a confining medium provided a more accurate replication of in situ conditions of 

the force applied to the cable from adjacent strata. 

 

Figure 3: Angled cable grouted samples in 3.6 m concrete cylinder 

Linear Variable Deferential Transducers (LVDTs) were used to monitore displacement during cable 

shearing process as well as debonding. As shown in Figure 4, two LVDTs were mounted on both 

ends of the concrete cylinder to provide a numerical value for the cable axial displacement, when 

sizeable displacements affect the functioning of the strain gauges. Also, the extremity LVDTs provide 

information about the possible debonding of the cable. The pressure transducer, LVDT at the shear 

interface and the strain gauges were all connected to the data logger to monitor and record the data 

at a specified time interval. The use of stain gauges were soon abandoned in favour of LVDTs. A 

hydraulic power pack was connected to the hydraulic rams for vertical shearing. The pressure was 

applied manually to allow a loading rate of < 4 mm/min.  
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Figure 4: An LVDT monitoring displacement at cable end with and without strain gauges 

RESULTS AND DISCUSSION 
 

Table 1 provides a summary of the data obtained from all of the sixteen single shear tests. The table 

presents the peak shear load of each cable with the corresponding shear displacement. Figure 5 

shows photos of few sheared cables strands and Figure 6 shows profiles of different cable shear 

load-shear displacement of 15 test results. All the plain MW10 samples as well as SUMO cables 

experienced some element of debonding, differentiating it from other rough surface wires of spiral and 

indented cable samples. It is clear that the plain wire configuration reduces the bond strength at the 

cable-grout interface due to lack of surface roughness of the wires. Strain gauges were used to 

monitor axial displacement in the first six cables. The strain gauge and LVDT readings for the MW10 

samples are shown in Figure 4, depicting debonding at certain displacements. Debonding occurred 

also in plain superstrand cable bolt (test 15). It is suggested that by using silastic to glue strain wires 

on the cable surface may have contributed to debonding of MW10 cables, however, both SUMO 

cables and superstrand cables were debonded with neither cables being coated with silicon glue on 

the plain wire surface. According to McKenzie (2014) some elements of partial debonding was 

observed in their past tests. This aspect of the study is being considered for further study. 

Table 1: Cable bolt properties and test results 

 
 

Test 

Cable bolt properties 

Pretension 
load (t) 

Peak Shear 
load (t) 

Displacement 
at peak (mm) 

Cable 
debonding 

 

Product 
Name 

Cable cross-
section 

Strand 
UTS (t) 

Cable 
geometry 

Peak Shear 
Load / UTS 

(%) 

1 MW10 Plain 70 No bulbs 15 68.3 93.3 Yes 97.6 

2 MW10 Plain 70 6 bulbs 0 63.8 62.6 Yes 91.1 

3 MW10 Plain 70 6 bulbs 15 60.4 56.0 Yes 86.3 

4 MW9 Spiral 62 6 bulbs 0 47.7 43.5 No 76.9 

5 MW9 Spiral 62 6 bulbs 15 43.1 47.4 No 69.9 

6 MW9 Spiral 62 No bulbs 15 49.7 41.7 No 67.3 

7 Secura HGC Combination 68 6 bulbs 0 64.7 51.8 No 95.2 

8 Secura HGC Combination 68 6 bulbs 15 55.9 45.9 No 82.2 

9 SUMO Plain 65 6 bulbs 0 54.7 71.8 Yes 86.8 

10 SUMO Plain 65 6 bulbs 15 67.1 78.2 Yes 106.5 

11 ID-SUMO Indented 63 6 bulbs 0 46.4 46.9 No 73.7 

12 ID-SUMO Indented 63 6 bulbs 15 37.4 30.9 No 59.4 

13 ID-TG Indented 60 No bulbs 0 44.0 51.3 No 69.8 

14 ID-TG Indented 60 No bulbs 15 36.3 30.9 No 57.6 

15 Superstrand Plain 60 No bulbs 15 51.4 90.2 Yes 85.7 

16 Garford Plain 2 x 27 Bulbed 0 43.7 46.8 Yes 80.9 
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                      MW10                  SUMO                 Secura HGC  
Figure 5: Three shear tests for three different cables 

Tests 7 and 8 evaluated the shear loading of the Secura Hollow Groutable Cable (HGC) with and 

without the application of pre-tension. The Secura HGC consisted of four indented wires and five plain 

wires, surrounding the hollow central tube. The UTS of the Secura is 68 t, which is the second highest 

UTS strength of all the tested samples. Test 7 with zero pre-tension applied to the cable returned a 

peak shear load of 64.7 t and a shear displacement of 51.8 mm. Test 8 with 15 t pre-tension loads 

applied to the Secura HGC cable failed at shear load of 55.9 t and a displacement of 45.9 mm. Both 

the Secura bolt tests showed that the peak shear load decreased with increased pre-tension load. It is 

important to note that the Secura HGC did not undergo any displacement sourced from debonding as 

the profiled induced greater bond strength at the cable-grout interface due to surface irregularity. The 

study suggests that the combination of the two profiles, plain and indentation, appears to influence the 

cable anchorage performance.  

The effect of increased pre-tension across nearly all the cables results in significant drops in shear 

load, except for the SUMO. Test 9 applied no pre-tension to the sample which recorded a peak shear 

load of 54.7 t with a shear displacement at peak load of 71.8 mm. Test 10 applied a 15 t pre-tension 

load resulting in the peak shear load of 67.1 t and a displacement at this load of 78.2 mm. The shear 

load of 67.1 t was above the expected Ultimate Tensile strength (UTS) of the plain sumo cable and 

the reason is unclear. In general, the pre-tensioned samples achieved a lower peak shear load, which 

does reflect on the hypothesis of stiffness reducing shear loads resisted.   

It is worth mentioning that the general understanding of the shear strength of the steel being around 

70 % of the ultimate tensile strength may not be applicable to cable strands when subjected to 

shearing. The cable strand is invariably consists of several wires as well as a grout tube filled with 

grout, which behave differently when sheared. 

The effect of spiral versus smooth wire on shear load was indicated by comparing the MW9 and 

MW10, even though the MW10 has an additional wire in the cable bolt. The spiral wire MW9 achieved 

average shear loads of 75% x UTS, whereas the smooth wire MW10 achieved average shear loads of              

92% x UTS. Naturally the effect of MW10 debonding has an influence on results, with excessive 

shear displacement. 

The effect of indented versus smooth wire on shear load was indicated by comparing the SUMO and 

ID-SUMO. The indented wire ID-SUMO achieved average shear loads of 66% x UTS, whereas the 

smooth wire SUMO achieved an average of 96.7% x UTS. 

The effect on shear strength from the presence of bulbs in the Megabolt cable bolts was assessed by 

comparing tests 1 and 3 on the MW10, and tests 5 and 6 on the MW9. An increase in shear load of 

13 – 15% was found in the Megabolt cables by removing bulbs. When assessing the effect of bulbs in 

the indented ID-SUMO and ID-TG, it was found that removing the bulbs decreased shear strength by 

3 – 5%. Note that both TG and SUMO cables are made from the same hollow strand, and that the ID-
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SUMO indented hollow cable used in the study was only a trial batch that were made for test work 

and is not marketed in Australia. 

The plain Superstrand cable bolt with 15 t pre-tension load achieved 52.40 t peak shear load at 90 

mm shear displacement. The result from test 16 indicated that the twin wire, Garford, cable bolt with 0 

t pore-tension load reached 44.55 t at 46.8 mm of shear displacement.  

There was no difference in the failure loads between the plain and spiral wires of Megabolt cables 

MW9 and MW10. Two 500 mm long wires of plain and spiral weighed 150.232 gm for spiral and 

150.302 gm for plain wires. The failure loads were 6.6 t for MW 9 spiral wire and 6.8 for MW10 plain 

wire, demonstrating no loss in weight and strength in two wire versions. This is in confirmation with in-

house results of failure load and elongation graphs observed from Megabolt internal test results, and 

are also evident from cross sectional photos of cut strands of MW9 and MW10 respectively as shown 

in McKenzie (2014). Secura HGC bolt indented wire lost around 10% of its strength and diameter as 

compared with plain wires. Similar weight and strength losses were observed in superstrand cable. 

Figure 7 shows the loss of strength in both Secura and Superstrand cables. 

  
 

 
 

 

 

 

 

Figure 6: Shear force values Vs shear Displacement values for different tested cables 
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Figure 7: Tensile loads of both Secura HGC and Superstrand cable wires  

(Aziz, et al, 2010 and 2014) 

CONCLUSION 

The new shearing apparatus addresses the deficiencies of the current British Standard (BS7861-

2:2009) for the single shear testing of cable bolts. Twelve tests on diferent cable bolts confimed that; 

 The inverse relationship between increasing pre-tension load and the decrease in peak shear 

load and displacement. 

 Cable bolts with rough wires result in a reduced shear load in comparison with cable bolts all 

smooth profiled wires.  

 The effect of bulbing in some cables is inconclusive with both reduction and increases found in 

the comparison testing, however, bulbing may have influence on the integrity of the cable grout 

bonding. 

 A cable bolt comprising a combination of smooth and spiral wires performed well in shear without 

debonding.  

 Plain cables more readily debond at the cable-grout interface due to the smooth wire surfaces,  

 The failure load difference between plain and profiled strands is proportional to the weight loss 

due to wire indentation. MW9 and MW10 strand wires were equal in weight 
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