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Abstract— This paper proposes a novel approach to detecting 

multiple, simultaneous talkers in multi-party meetings using  

localisation of active speech sources recorded with an ad-hoc 

microphone array.  Cues indicating the relative distance between 

sources and microphones are derived from speech signals and 

room impulse responses recorded by each of the microphones 

distributed at unknown locations within a room. Multiple active 

sources are localised by analysing a surface formed from these 

cues and derived at different locations within the room. The 

number of localised active sources per each frame or utterance is 

then counted to estimate when multiple sources are active. The 

proposed approach does not require prior information about the 

number and locations of sources or microphones. 

Synchronisation between microphones is also not required. A 

meeting scenario with competing speakers is simulated and 

results show that simultaneously active sources can be detected 

with an average accuracy of 75% and the number of active 

sources counted accurately 65% of the time. 

 

 INTRODUCTION I.

 

Detecting multiple, simultaneously active talkers is 

essential to achieving high accuracy in source separation and 

speech diarization algorithms applied to multichannel 

(microphone array) recordings. Most multichannel speech 

separation algorithms use Direction of Arrival (DOA) for 

speaker discrimination. Conventional source separation 

methods (e.g. Principle Component Analysis (PCA) and Non-

Negative Matrix Factorisation (NMF)) require prior 

information, such as the number of sources [1] and they 

usually focus on discriminating sources through estimates of 

the DOA. Binaural localisation methods require intraural 

information such as level and time differences along with 

Head Related Transfer Function (HRTF) to estimate the DOA 

which requires mathematical modeling of the HRTF or 

statistical modeling of binaural signals [2]. This mathematical 

modelling is computationally expensive and time consuming. 

Some recent research utilises Room Impulse Responses 

(RIRs) to localise sources by a single microphone by 

extracting cues that reflect the source DOA. This method is 

shown to be accurate, however it requires training for each 

setup and speaker which is not feasible for all scenarios [3]. 

As a practical acoustic scene analysis scenario a meeting 

room with seven participants has been analyzed in [4] and 

energy cues have been applied to localise randomly 

distributed speakers and microphones where at least 3 sources 

(out of seven) and microphones are collocated. Although it is 

shown that the proposed normalised energy cues can 

overcome issues such as different microphone/laptop gains 

and qualities, unknown microphone positions and 

asynchronised signal recordings, the assumption of 

microphones and sources being collocated is not realistic for 

all meeting scenarios.  

More recently, spatial cues are derived from speech signals 

recorded by randomly distributed microphone arrays to 

discriminate sources [5]. Inter node (level difference) and 

intra node (local normalised recording vector) cues derived 

from microphone arrays are utilised within Watson and 

Dirichlet mixture models to discriminate sources based on 

their spatial locations. It is concluded that the performance of 

the proposed source separation approach is superior to the 

best node (a single recording device that may have more than 

one microphone attached forms a node) selection and 

comparable to centralized processing in terms of conventional 

blind source separation metrics where there are at least two 

microphones at each node.  

It is shown that microphones located relatively close to 

each other have similar Magnitude Square Coherence (MSC) 

values and these values can be exploited to from local 

microphone clusters [6]. In other words, MSC values contain 

location cues. As the MSC relates to the relative distance 

between the active source and a microphone, in this research 

it is utilised as a distance-indicating feature to localise the 

active sources and detect the simultaneously active sources. 

It was previously proposed by the authors that information 

derived from RIRs (time delay and gain attenuation) can 

indicate the relative distances between an active source and 

each microphone [7]. Although these derived cues are relative 

rather than being absolute, it is shown that if the room 

geometry is known, they can be utilised to localise an active 

source in a 2D plane accurately (assuming there is at least five 

randomly distributed single microphones in the room) [8]. 

The advantage of ad-hoc arrays for source location estimation 

will be investigated more in this research and simultaneous 

sources with identical DOAs that cannot be discriminated by 

relying on DOA estimation methods [9] will be detected 

through pin pointing the source location on a 2D plane. 



The problem of room geometry reconstruction by utilising 

only one RIR is solved by researchers and the theorem about 

the uniqueness of the solution is stated [10]. Although it is 

possible to estimate the room geometry from one RIR in this 

research we assume that the room geometry is already known 

(reconstructed).  

The main contributions of this work are: 

 Source localisation by pin pointing the source on a 

2D plane with no constraint on the microphones and 

sources locations (limitation of [4] where it is 

assumed source and microphones are collocated) 

 Detecting simultaneously active sources that have 

identical DOAs but different distance relative to a 

recording location. 

Section II of this paper explains the data model and introduces 

the derived distance cues. Section III is dedicated to active 

source localisation by exploiting relative distance cues. 

Section IV utilises the active source location information of 

each frame for detecting multiple, simultaneously active 

sources and compares the proposed method with state of the 

art approaches. The paper is concluded in section V where 

proposed future work is described. 

 

 DISTANCE CUES AND SOURCE/MICROPHONE II.

LOCATIONS 

In this section the data model of the recorded RIRs and 

speech signal by nodes randomly distributed in a room is 

firstly described. This is followed by a description of the two 

proposed cues: the intra node Magnitude Square Coherence 

(MSC) and the 𝐶50 or clarity measurement. It is assumed that 

microphone positions can be reliably estimated with 

knowledge of the room geometry using methods such as [11]. 

A. Distributed multi-node recording of reverberant speech 

In a general meeting scenario where an unknown number 

of competing sources (N) are being recorded by a distributed 

microphone array of M nodes at unknown locations, the 𝑚𝑡ℎ 

node recording can be represented mathematically at each 

frequency f and time t in the short time Fourier transform 

domain as: 

𝑦𝑚(𝑡, 𝑓) = ∑ 𝑠𝑛(𝑡, 𝑓) ∗ ℎ𝑚𝑛(𝑡, 𝑓)𝑁
𝑛=1 + 𝑣(𝑡, 𝑓) + 𝑤𝑚(𝑡, 𝑓)(1) 

 

where 𝑦𝑚(𝑡, 𝑓) = [𝑦𝑚,1(𝑡, 𝑓), … , 𝑦𝑚,𝑁𝑚
(𝑡, 𝑓)]𝑇 contains the 

multi-channel recording of all 𝑁𝑚  microphones in the 𝑚𝑡ℎ 

node and ℎ𝑚(𝑡, 𝑓) = [ℎ𝑚1
(𝑡, 𝑓), … , ℎ𝑚𝑁𝑚

(𝑡, 𝑓)] is the Room 

Impulse Response (RIR) at each microphone’s location within 

the 𝑚𝑡ℎ  node. 𝑣(𝑡, 𝑓) and 𝑤𝑚(𝑡, 𝑓) are the diffuse noise and 

the interfering sources at the 𝑚𝑡ℎ node location, respectively. 

The goal is to extract informative relative distance cues from 

𝑦𝑚(𝑡, 𝑓)  and ℎ𝑚(𝑡, 𝑓)  that reflect the distance between the 

𝑚𝑡ℎ  
 

 

 Distance 

from the 

active 

source 

MSC 𝑹𝑻𝟔𝟎 Number of 

microphones 

Node1 10cm 0.9637 600ms 2 

Node2 0.5m 0.8988 600ms 2 

Node3 3m 0.8194 600ms 2 

Node1 10cm 0.9995 200ms 2 

Node2 0.5m 0.9083 200ms 2 

Node3 3m 0.8765 200ms 2 

Table 1: MSC values at different points of a reverberant 𝟏𝟎𝒎 × 𝟏𝟎𝒎 × 𝟑𝒎 
room. Obtained by dual microphone nodes with 10cm inter-channel distances 

node and the active sources. In this section intra Magnitude 

Square Coherence (MSC) and the clarity feature, 𝐶50 , are 

introduced and justified as relative distance cues. 

The room reverberation obtained from the RIRs can reveal 

the microphone locations in a room [11,12]. Microphones 

with similar RIRs (similar time delays and amplitudes) are 

located close and can be grouped together as a cluster [7]. In 

the time domain a room impulse response from (1) can be 

represented mathematically as a truncated train of L (e.g. 

2000) samples: 

 

  ℎ(𝑡) = 𝑎1𝛿(𝑡) + 𝑎2𝛿(𝑡 − 𝜏1) + ⋯ + 𝑎𝐿𝛿(𝑡 − 𝜏𝐿)       (2) 

The RIR representation of (2) can also be modelled in the 

form of: 

ℎ(𝑡) = ℎ𝑑𝑖𝑟𝑒𝑐𝑡(𝑡) + ℎ𝑒𝑎𝑟𝑙𝑦(𝑡) + ℎ𝑙𝑎𝑡𝑒(𝑡)               (3) 

where ℎ𝑑𝑖𝑟𝑒𝑐𝑡   is the direct path component (clean anechoic 

signal), ℎ𝑒𝑎𝑟𝑙𝑦  represents the early echoes arriving within 

50ms (or 80 ms) and ℎ𝑙𝑎𝑡𝑒  represents the late echoes arriving 

after 50ms. These three components relatively change with 

the node-active source distance and this fact can be exploited 

for extracting distance cues from echoic RIRs. 

It is clear that the recorded signals by the 𝑚𝑡ℎ node at the 

source position are highly correlated as the direct path 

component of (3) will be higher in magnitude than the early 

or late reflections. In contrast, as the node to source distance 

increases, the direct component reduces in magnitude 

compared to the early and late reflection components. This 

change in the active source-node distance will affect both 

MSC and the ratio of the direct path signal to the reverberant 

components (3). There are various measures of the direct to 

reverberant ratio and here the 𝐶50 or clarity measures is used, 

which has been shown to be a reliable estimate of speech 

quality, where it is proposed that this also correlates to 

source-to-microphone distances. The main advantages of 

using these teo features are that they are both independent 

from microphone’s gains and delays and do not require time 

alignment or synchronisation. MSC is applicable to speech 

signals recorded within each dual microphone node and 𝐶50 is 

applicable to RIRs recorded by single microphones. 

B. Intra node Magnitude Square Coherence (MSC) 

Reverberation and interference recorded by each 

microphone are functions of its location in the room [11,12] 



and as the microphones of each node are not exactly 

collocated they record slightly different echoes and 

interferences. When microphone’s signals are distorted by 

reverberation and interference they become statistically more 

independent and they will have lower intra MSC values 

calculated by:  

𝐶𝑖𝑗(𝑓) =
|𝜑𝑚1𝑚2(𝑓)|2

𝜑𝑚1𝑚1(𝑓) 𝜑𝑚2𝑚2(𝑓)
                           (4) 

 Where 𝜑𝑚1𝑚1(𝑓) and 𝜑𝑚1𝑚2(𝑓) are auto and cross power 

spectral densities between microphone 𝑚1 and 𝑚2  

respectively from (1). If nodes in the ad-hoc array contain 

dual-channel microphone systems, it is possible to 

discriminate highly distorted nodes (located far from the 

active sources) and the node’s signals predominated by the 

speech signals (located closer to one of the sources) [13]. This 

fact about MSC is utilised here as a distance cue to estimate 

the distances between the active sources and the nodes. “The 

idea is that when the magnitude [square coherence] is close 

to one, the speech signal is present and dominant and when it 

is close to zero, the interfering signal is dominant.” [14]. 

By applying the general equation of (1) to two microphones 

in the 𝑚𝑡ℎ node the signals can be modelled as: 

 ym,1(𝑡, 𝑓) = ∑ sn(𝑡, 𝑓) ∗ hm,1,n(𝑡, 𝑓)N
n=1 + v(𝑡, 𝑓) + wm1(𝑡, 𝑓)   (5) 

 

ym,2(𝑡, 𝑓) = ∑ sn(𝑡, 𝑓) ∗ hm,2,n(𝑡, 𝑓)N
n=1 + v(𝑡, 𝑓) + wm2(𝑡, 𝑓)   (6) 

 

And the MSC between these two microphones can be 

calculated by applying (4) to (5,6): 

𝐶𝑦,𝑚1𝑦𝑚2
(𝑓) =

|𝜑𝑦,𝑚1𝑦𝑚2(𝑓)|
2

𝜑𝑦,𝑚1𝑦𝑚1
(𝑓) 𝜑𝑦,𝑚2𝑦𝑚2(𝑓)

                     (7)  

                         

By moving away from an active source the microphones in 

the node will have lower 𝜑𝑦,𝑚1𝑦𝑚2
(𝑓)  values as the direct 

path signals attenuate and  𝑣(𝑡, 𝑓), 𝑤𝑚(𝑡, 𝑓)  from (1) will 

become stronger (in terms of signal power) whereas 

𝜑𝑦,𝑚1𝑦𝑚1
(𝑓) 𝜑𝑦,𝑚2𝑦𝑚2

(𝑓)  do not change with distance 

significantly. 

The effect of the node-active source distance on MSC 

values in a reverberant room with two different 𝑅𝑇60 values 

(200ms and 600ms) is presented in table 1. It is clear as there 

is only one active source (no interference from other sources) 

in the room MSC values are very close to 1 and they only 

change by distance from the active source. 

The disadvantage of applying the MSC is that all nodes 

should have the same structure as the MSC is a function of 

intra node microphone distances and there should be at least 

two microphones at each node. On the other hand, MSC can 

be applied to any recorded signals and the RIRs are not 

required. 

Figure 1 illustrates the MSC values calculated for dual 

microphone nodes (with 10 cm distance) across a meeting 

room with two simultaneous active sources on a 2D grid with  

 
Figure 1 Source regions are detected as the regions with maximum MSC 

values, two simultaneous actives sources at (1m,1m,1m) and (9m,9m,1m) 

 

 

one meter step sizes. This figure shows the challenge of 

picking the right threshold that indicates simultaneous sources 

are active. Three orange zones are highlighted as source areas 

in figure 1. All the sources and the nodes have the same 

height (1m). By analysing this figure Multi-talk can be 

detected correctly by the number of sources are counted 

incorrectly (3 instead of two). 

C. C50 or clarity measurement 

The 𝐶50 or Clarity measurement is the ratio of early to late 

reverberation expressed in dB. This measure is higher when 

the microphone-sources distance is relatively small and the 

recorded signal by the microphone is dominated by the direct 

path signal. In contrast it is lower when microphone-source 

distance is relatively large and the second and third order 

reverberations are no longer negligible. It is shown that the 

𝐶50   has an inverse relationship to the microphone-source 

distances and for calculating 𝐶50   the clean signal is not 

required (in contrast to the Direct to Reverberation ratio 

(DRR)) [15,16]. The 𝐶50 is defined in (8). 

𝐶50  = 10 × log (
𝐸𝑑𝑖𝑟𝑒𝑐𝑡+𝐸𝑒𝑎𝑟𝑙𝑦

𝐸𝑙𝑎𝑡𝑒
)                 (8) 

with 𝐸𝐷𝑖𝑟𝑒𝑐𝑡 = 𝑎1𝛿(𝑛), 𝐸𝑒𝑎𝑟𝑙𝑦 = ∑ ℎ(𝑛)𝑡=50𝑚𝑠
0 ,  and 𝐸𝑙𝑎𝑡𝑒 =

∑ ℎ(𝑛)∞
50𝑚𝑠  from (3) and n is the frame index. Using (2), 𝐶50  

can be calculated for each   RIR without synchronisation by: 

𝐶50  = 10 × log (
∑ ℎ(𝑡)𝑡=50𝑚𝑠

0

∑ ℎ(𝑡)∞
50𝑚𝑠

)                 (9) 

 In this research the hypothesis is that estimated 𝐶50  values 

across the room obtain local maxima at source locations and 

they fade as the microphones move away from source 

locations. 

The advantage of using 𝐶50  is that nodes can be of any 

structure and there is no constraint on the number of 

microphones in each node however full knowledge of RIRs is 

required. Figure 2 shows a meeting room with two 

simultaneous active sources successfully detected by 𝐶50 

values calculated across the room. 



 

Figure 2: Clarity features calculated for 100 RIRs across a 10m,10m,3m room. 

Sources at (1m,1m,1m) and (9m,9m,1m)  

 2D SOURCE LOCALISATION THROUGH III.

SURFACE FITTING  

The features explained in section II can be applied within a 

surface fitting method for source localisation [8] and if more 

than one active source (peaks of the surface) is detected and 

localised, multiple, simultaneous sources are assumed to be 

active. Source counting can be performed based on their 

Direction of Arrivals (DOAs) [17] however sources with 

identical DOAs cannot be discriminated by the proposed 

method of [17] and in some applications DOA estimation 

leads to detection of one virtual source instead of two sources 

at different angles [18]. In order to discriminate and count 

sources with identical DOAs herein active sources and their 

2D locations (x and y coordinates) are determined. For the 

MSC feature speech frames of length 200 samples and for the 

𝐶50  measurement RIRs of length 2000 samples (16K 

sampling frequency) are simulated. It is assumed in all the 

experiments that all the nodes and sources have the same 

height.  

D. Multiple source localisation 

Most source localisation and speech separation algorithms 

assume that sources are W-disjoint orthogonal [17] which 

means at each time-frequency component at most one source 

is active. The multiple source localisation algorithm proposed 

in this paper relates the extracted features (Section II) to 

spatial distances between active sources and all the nodes in a 

room with known geometry. Extracting features at each 

node’s locations and the fitted surface across the room 

facilitate finding local maximums of MSC and 𝐶50 . These 

extremum points correspond to active sources locations 

estimated by utilising known node locations [11]. If the fitted 

surface obtains more than one local maxima, simultaneously 

active speech is predicted to have occurred. The local maxima 

zones approximately localise the active sources which can 

then be used within algorithms for separating spatially 

distributed sources. 

 

 

 

Figure 3: A conference table with 7 randomly distributed microphone nodes  

 EVALUATION AND RESULTS IV.

The meeting scenario of figure 3 is simulated with 3 to 7 

nodes (one microphone per node for the clarity feature and 

nodes of two microphones with identical distances for MSC 

calculation are required) and 2 to 4 competing sources in a 10 

m-by-10 m-by-3 m room with an 𝑅𝑇60 of  600𝑚𝑠. For each 

active source one utterance form IEEE NOIZEUS (clean data) 

is convolved with the RIR at its location to generate the 

reverberated mixture signal as (1). All the experiments are 

performed with the same speech database but different 

sources-nodes numbers and distances. Five different setups 

for each participants and sources numbers are simulated and 

average results are presented. Two types of measurements are 

defined to evaluate the proposed features (Section II).  The 

first objective is to detect the frames with more than one 

active source (multi-talk detection) and the second objective 

is to count the simultaneously active sources for those frames. 

The largest number of competing participants (i.e. 4) with the 

largest number of nodes (i.e. 7) has the highest multi-talk 

detection rate as 7 nodes are spatially distributed in the room 

and collect more distance cues from sources and the extracted 

cues surface is fitted with a higher resolution. In addition, 4 

simultaneous active sources generate more peaks (figure 1 

and 2) compared with other scenarios so it is easier to detect 

the multi talk.  

On the other hand, a higher number of simultaneous active 

sources yields a fitted surface with more random peaks which 

cannot be verified by a predefined threshold as active sources 

so the source counting success rate will drop with the number 

of simultaneous active sources (figure 5 and 7). 

For R frames from S experimental setups with different 

number of simultaneous active sources and nodes, X 

represents the number of frames with more than one active 

speaker correctly detected as multi talk and Y represents the 

number of frames with correctly predicted number of active 

sources (for each setup). Therefore, multi-talk detection 

success rate (𝑀𝑇𝑠𝑟) and source counting success rate (𝑆𝐶𝑠𝑟) 

are calculated by (10,11) respectively. 

𝑀𝑇𝑠𝑟 =
1

𝑆
∑

𝑋(𝑖)

𝑅(𝑖)

𝑆
𝑖=1                               (10) 

𝑆𝐶𝑠𝑟 =
1

𝑆
∑

𝑌(𝑠)

𝑅(𝑠)𝑆                               (11) 

Figure 4 shows the success rate of multi talk detection 

using MSC values extracted from dual microphone nodes 

with 10 cm  



 

Figure 4: Multi-talk detection rate in a 𝟏𝟎𝐦 × 𝟏𝟎𝐦 × 𝟑𝐦 room, 𝑹𝑻𝟔𝟎 =
𝟔𝟎𝟎𝒎𝒔 based on the MSC features 

 

Figure 5: Source counting success rate in a 𝟏𝟎𝐦 × 𝟏𝟎𝐦 × 𝟑𝐦 room, 

𝑹𝑻𝟔𝟎 = 𝟔𝟎𝟎𝒎𝒔  based on the MSC features 

 

distance between microphones within each node and it is 

observed that multi-talk detection is more successful when 

there are more simultaneously active sources. On the other 

hand, as the number of simultaneously active sources 

increases, 

the source counting accuracy decreases (Figure 5). It is 

noteworthy that multi-talk detection does not count the 

number of simultaneously active sources and determines that 

more than one source, two to four sources, are simultaneously 

active 

Figure 6 and figure 7 show the same experiments with the 

𝐶50(clarity) feature. It is concluded that in most setups the 

clarity feature outperforms the MSC value except for the 

source counting with 4 competing sources. 

The comparison between the MSC feature and the 

𝐶50feature show that the 𝐶50 feature is a more reliable feature 

for multi-talk detection and source location estimation feature 

for ad-hoc arrays when only 2 or 3 sources are simultaneously 

active. Although it is shown that the 𝐶50   feature can be 

estimated from speech signals [16] in this research RIRs are 

available at each microphone location. For calculating the 𝐶50 

features at each microphone position (8), the RIRs can be 

recorded or extracted from the reverberant speech signals [19]. 

The length of the applied RIRs (2000 samples in this 

research) is determined by the 𝑅𝑇60 time. 

 

Figure 6: Multi-talk detection rate in a 𝟏𝟎𝐦 × 𝟏𝟎𝐦 × 𝟑𝐦 room, 𝑹𝑻𝟔𝟎 =
𝟔𝟎𝟎𝒎𝒔 based on the clarity features 

 

Figure 7: Source counting success rate in a 𝟏𝟎𝐦 × 𝟏𝟎𝐦 × 𝟑𝐦 room, 

𝑹𝑻𝟔𝟎 = 𝟔𝟎𝟎𝒎𝒔  based on the clarity features 

 CONCLUSION V.

 

This paper proposed a novel multi-talk detection method 

through localisation of simultaneously active sources for 

multi-party meeting scenarios. The method is based on 

deriving distance cues from microphones spatially distributed 

across a room of known geometry and joint analysis of the 

derived features. The experiments of this research show the 

correlation between the extracted features and microphone-

source distances. It is shown that 𝐶50 cues and speech 

Magnitude Square Coherence (MSC) can detect frames with 

more than one active speaker and localise active sources (up 

to four simultaneously active sources). It is concluded that 

𝐶50 yields more accurate multi-talker detection and source 

counting rates but it cannot be applied to real time scenarios, 

on the other hand it is possible to apply MSC features to short 

frames and localise and count the simultaneously active 

sources during each frame. The analysis of a simulated 

meeting room by the proposed method achieved an average of 

75% successful multi-talker detections however the success 

rate is a function of the chosen threshold. Exploiting the 

number of active sources and their location information along 
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with the state of the art source separation and speech 

diarization algorithms will be covered in future work. 

 

REFERENCES 

 
[1] T. J. Han, K. J. Kim and H. Park, "Location Estimation of 

Predominant Sound Source with Embedded Source Separation 

in Amplitude-Panned Stereo Signal," in IEEE Signal Processing 

Letters, vol. 22, no. 10, pp. 1685-1688, Oct. 2015. 

[2] Y. Murota, D. Kitamura, S. Koyama, H. Saruwatari and S. 

Nakamura, "Statistical modeling of binaural signal and its 

application to binaural source separation," 2015 IEEE 

International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), South Brisbane, QLD, 2015, pp. 494-498. 

[3] R. Takashima, T. Takiguchi and Y. Ariki, "Prediction of 

unlearned position based on local regression for single-channel 

talker localization using acoustic transfer function," 2013 IEEE 

International Conference on Acoustics, Speech and Signal 

Processing, Vancouver, BC, 2013, pp. 4295-4299. 

[4] Z. Liu, Z. Zhang, L. W. He and P. Chou, "Energy-Based Sound 

Source Localization and Gain Normalization for Ad Hoc 

Microphone Arrays," 2007 IEEE International Conference on 

Acoustics, Speech and Signal Processing - ICASSP '07, 

Honolulu, HI, 2007, pp. II-761-II-764. 

[5] M. Souden, K. Kinoshita and T. Nakatani, "An integration of 

source location cues for speech clustering in distributed 

microphone arrays," 2013 IEEE International Conference on 

Acoustics, Speech and Signal Processing, Vancouver, BC, 2013, 

pp. 111-115. 

[6] I. Himawan, I. McCowan and S. Sridharan, "Clustering of ad-

hoc microphone arrays for robust blind beamforming," 2010 

IEEE International Conference on Acoustics, Speech and Signal 

Processing, Dallas, TX, 2010, pp. 2814-2817. 

[7] S. Pasha, Y. X. Zou and C. Ritz, "Forming ad-hoc microphone 

arrays through clustering of acoustic room impulse responses," 

International Conference on Signal and Information Processing 

(ChinaSIP), 2015 IEEE China Summit, Chengdu, 2015, pp. 84-

88. 

[8] S. Pasha and C. Ritz, "Informed source location and DOA 

estimation using acoustic room impulse response parameters," 

2015 IEEE International Symposium on Signal Processing and 

Information Technology (ISSPIT), Abu Dhabi, 2015, pp. 139-

144. 

[9] X. Xiao, S. Zhao, X. Zhong, D. L. Jones, E. S. Chng and H. Li, 

"A learning-based approach to direction of arrival estimation in 

noisy and reverberant environments," 2015 IEEE International 

Conference on Acoustics, Speech and Signal Processing 

(ICASSP), South Brisbane, QLD, 2015, pp. 2814-2818. 

[10] I. Dokmanić, Y. M. Lu and M. Vetterli, "Can one hear the shape 

of a room: The 2-D polygonal case," 2011 IEEE International 

Conference on Acoustics, Speech and Signal Processing 

(ICASSP), Prague, 2011, pp. 321-324. 

[11] I. Dokmanić, L. Daudet and M. Vetterli, "How to localize ten 

microphones in one finger snap," 2014 22nd European Signal 

Processing Conference (EUSIPCO), Lisbon, 2014, pp. 2275-

2279. 

[12] R. Parhizkar, I. Dokmanić and M. Vetterli, "Single-channel 

indoor microphone localization," 2014 IEEE International 

Conference on Acoustics, Speech and Signal Processing 

(ICASSP), Florence, 2014, pp. 1434-1438. 

[13] Y. Ji, Y. Baek and Y. c. Park, "A priori SAP estimator based on 

the magnitude square coherence for dual-channel microphone 

system," 2015 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), South Brisbane, QLD, 

2015, pp. 4415-4419. 

[14] N. Yousefian and P. C. Loizou, "A Dual-Microphone Speech 

Enhancement Algorithm Based on the Coherence Function," 

in IEEE Transactions on Audio, Speech, and Language 

Processing, vol. 20, no. 2, pp. 599-609, Feb. 2012. 

[15] Reuven Berkun, Israel Cohen, “ Microphone array power ratio 

for quality assessment of reverberated speech” EURASIP 

journal on advances in signal processing. December 2015 

[16] P. P. Parada, D. Sharma and P. A. Naylor, "Non-intrusive 

estimation of the level of reverberation in speech," 2014 IEEE 

International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), Florence, 2014, pp. 4718-4722. 

[17] D. Pavlidi, A. Griffin, M. Puigt and A. Mouchtaris, "Real-Time 

Multiple Sound Source Localization and Counting Using a 

Circular Microphone Array," in IEEE Transactions on Audio, 

Speech, and Language Processing, vol. 21, no. 10, pp. 2193-

2206, Oct. 2013. 

[18] X. Zheng, C. Ritz and J. Xi, "Collaborative Blind Source 

Separation Using Location Informed Spatial Microphones," 

in IEEE Signal Processing Letters, vol. 20, no. 1, pp. 83-86, Jan. 

2013. 

[19] R. Takashima, T. Takiguchi and Y. Ariki, "Prediction of 

unlearned position based on local regression for single-channel 

talker localization using acoustic transfer function," 2013 IEEE 

International Conference on Acoustics, Speech and Signal 

Processing- ICASSP 13, Vancouver, BC, 2013, pp. 4295-4299. 
 

http://link.springer.com/article/10.1186/s13634-015-0233-y#author-details-1
http://link.springer.com/article/10.1186/s13634-015-0233-y#author-details-2

	Detecting multiple, simultaneous talkers through localising speech recorded by ad-hoc microphone arrays
	Recommended Citation

	Detecting multiple, simultaneous talkers through localising speech recorded by ad-hoc microphone arrays
	Abstract
	Disciplines
	Publication Details

	APSIPA Conference Template

