
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong in Dubai - Papers University of Wollongong in Dubai

1-1-2016

Learning to rank with click-through features in a reinforcement learning Learning to rank with click-through features in a reinforcement learning

framework framework

Amir Hosein Keyhanipour
University of Tehran

Behzad Moshiri
University of Tehran

Maryam Piroozmand
Amirkabir University of Technology

Farhad Oroumchian
University of Wollongong in Dubai, farhado@uow.edu.au

Ali Moeini
University of Tehran

Follow this and additional works at: https://ro.uow.edu.au/dubaipapers

Recommended Citation Recommended Citation
Keyhanipour, Amir Hosein; Moshiri, Behzad; Piroozmand, Maryam; Oroumchian, Farhad; and Moeini, Ali:
Learning to rank with click-through features in a reinforcement learning framework 2016, 448-476.
https://ro.uow.edu.au/dubaipapers/831

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/dubaipapers
https://ro.uow.edu.au/dubai
https://ro.uow.edu.au/dubaipapers?utm_source=ro.uow.edu.au%2Fdubaipapers%2F831&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Learning to Rank with Click-through Features in a Reinforcement

Learning Framework

Amir Hosein Keyhanipour1, Behzad Moshiri1, Maryam Piroozmand1, Farhad Oroumchian2, Ali

Moeini1

{keyhanip, moshiri, moeini, piroozmand}@ut.ac.ir, farhadoroumchian@uowdubai.ac.ae

& Intelligent Processing, Center of Excellence, School of ECE, University of Tehran, Tehran, Iran. Control 1

Faculty of Engineering & Information Sciences, University of Wollongong in Dubai, Dubai, UAE. 2

Structured Abstract

Purpose – Learning to rank algorithms inherently face many challenges. The most important challenges could

be listed as high-dimensionality of the training data, the dynamic nature of Web information resources and lack

of click-through data. High dimensionality of the training data affects effectiveness and efficiency of learning

algorithms. Lack of users’ click-through data, impacts the effectiveness of ranking methods because click-

through data is an indirect indicative of the users’ search intentions. To deal with these limitations, this paper

introduces a novel learning to rank algorithm by using a set of complex click-through features in a

reinforcement learning model. These features are calculated from the existing click-through information in the

dataset or even from datasets without any explicit click-through information.

Design/methodology/approach – The proposed ranking algorithm (QRC-Rank) applies reinforcement learning

techniques on a set of calculated click-through features. QRC-Rank is as a two-steps process. In the first step,

Transformation phase, a compact benchmark dataset is created which contains a set of click-through features.

These feature are calculated from the original click-through information available in the dataset and constitute a

compact representation of click-through information. In order to find most effective click-through feature, a

number of scenarios are investigated. The second phase is Model-Generation in which a reinforcement learning

model is built to rank the documents. This model is created by applying temporal difference learning methods

such as Q-Learning and SARSA.

Findings – The proposed learning to rank method, QRC-rank, is evaluated on WCL2R and LETOR4.0 datasets.

Experimental results demonstrate that QRC-Rank outperforms the state-of-the-art learning to rank methods such

as SVMRank, RankBoost, ListNet and AdaRank based on the precision and NDCG evaluation criteria. The use

of the click-through features calculated from the training dataset is a major contributor to the performance of the

system.

Originality/value – In this paper, we have demonstrated the viability of the proposed features that provide a

compact representation for the click through data in a learning to rank application. These compact click-through

features are calculated from the original features of the learning to rank benchmark dataset. In addition, a

Markov Decision Model is proposed for the learning to rank problem using reinforcement learning (RL),

including the sets of states, actions, Rewarding Strategy and the Transition Function.

Keywords: Learning to Rank; Click-through Data; Reinforcement Learning.

1 Introduction

Due to the drastic growth of the Web information, Web search engines have become an essence of the

information era. Information Retrieval (IR) is defined as a ranking process in which a set of documents are

2

ordered based on their relevance to the users’ information need. In recent years, “Learning to Rank” has

emerged as an active and growing area of research in both information retrieval and machine learning research.

Consequently, several learning to rank algorithms have been proposed, such as RankSVM (Herbrich, Graepel

and Obermayer, 2000), (Joachims, 2002), RankBoost (Freund et al., 2003), AdaRank (Xu and Li, 2007), and

ListNet (Cao et al., 2007). Although these ranking methods have shown reasonable performance based on the

evaluation criteria on benchmark datasets, but they have not taken advantage of the click-through data as a

source of users’ feedbacks (Dou et al., 2008). One reason could be scarcity of explicit click-through data in the

released and publicly available benchmark datasets.

Given lack of sufficient datasets with click-through information, one of the aims of this research is proposing a

framework for generating click-through data from the information presented in the learning to rank datasets. We

have also looked at effectiveness of various features in click-through data and experimentally proposed subsets

of features that are more useful in learning to rank. This research also utilizes reinforcement learning methods in

order to learn and adapt to the desired ranking for users.

The main contributions of this research could be summarized as:

 Proposing a novel click-through feature generation framework from benchmark datasets that lack click-

through information.

 Analyzing the performance of the proposed click-through features using various scenarios on

LETOR4.0 and WCLR benchmark datasets.

 Designing a reinforcement learning model with for temporal learning methods for ranking.

 Demonstrating the viability of using click-through features with the proposed method.

The rest of this paper is organized as follows: Section 2 provides an overview of the application of click-through

data and reinforcement learning methods in the learning to rank problem. Section 3 describes the fundamental

ideas of the proposed method. Section 4 presents the details the evaluation settings and analytical discussion of

the results. Finally Section 5 provides the conclusion and future work.

2 Related Works

Joachims for the first time introduced the application of click-through data as an alternative to the explicit

relevance judgments in the RankSVM system (Joachims, 2002). The RankSVM system still is one of the most

powerful ranking methods. Later, it was observed that considering a user’s queries as chains rather than

considering each query individually produces more reliable inferred relevance judgments from the click-through

data (Radlinski and Joachims, 2005) (Macdonald and Ounis, 2009) (Macdonald, Santos and Ounis, 2013).

The research in this area can be divided into three major categories. The first category includes those works that

investigate the effect of the implicit feedback of users on the performance of learning to rank algorithms

(Agichtein, Brill and Dumais, 2006), (Dou et al., 2008). The second category consists of research that intends to

enhance the quality of click-through data. The last category includes those investigations that utilize click-

through data to improve the performance of learning to rank algorithms.

 (Xu, 2010) is an example research in second category. Xu tries to find what kind of input is required and how to

obtain such an input using the implicit or explicit feedback for learning to rank approaches (Xu, 2010). Another

example is Radlinski (Radlinski and Joachims, 2007) who presents an active exploitation strategy for collecting

users’ interaction records from search engine click-through logs. His proposed algorithm is a Bayesian approach

for selecting rankings to present users so that interactions result into a more informative training data. In (Xu et

al., 2010), a method is proposed, which automatically detects judgment errors by using the click-through data.

The sparseness of the click-through data is a major challenge in learning to rank approaches that have been

investigated by researchers such as (Gao et al., 2009). They have proposed two techniques for expanding click-

through features in order to address the sparseness.

Most of research also has focused on using click-through data in order to improve the performance of the

learning to rank methods. (Ji et al., 2009) have chosen a minimalistic approach and by exploiting user click

sequences based on a limited number of features have proposed a global ranking framework. Interestingly,

(Dupret and Liao, 2010) have used click-through data exclusively for generating a relevance estimation model.

3

The model was utilized to predict the document relevance. Click-through data are also utilized to provide deep

structured latent semantic models for web search (Huang et al., 2013). These models project queries and

documents into a common low-dimensional space where the relevance of a document given a query is readily

computed from the distance between them. Click-through data has been successfully used in various areas of

information retrieval including user modeling (Wang et al., 2014) and (Agichtein et al., 2006), query suggestion

(Ma et al., 2008), and image retrieval (Bai et al., 2013) and (Jain and Varma, 2011). (Hofmann, 2013) also has

tried using historical data to speed up online learning. In the online learning to rank, the retrieval system learns

directly from interactions with its users. This approach integrates estimations derived from historical data with a

stochastic gradient descent algorithm for online learning to rank (Hofmann, 2013).

Reinforcement learning methods are rarely applied to resolve the learning to rank problem. A related work is

(Derhami et al., 2013), in which based on the PageRank’s random surfer model, a general ranking method is

proposed in an RL structure. However, as this ranking algorithm does not deal with feature vectors of query-

document pairs, it could not be categorized as a learning to rank algorithm. Another application of

reinforcement learning for the ranking problem is A3CRank algorithm, which aggregates the ranking results

from a few ranking algorithms such as TF-IDF, BM25 and PageRank (Zareh Bidoki et al., 2010). In (Hofmann

et al., 2013) an RL model is proposed to assist information retrieval systems to learn from users’ interactions.

Specifically, it presents an interleaved comparison method for online learning to rank problem.

This research also is concentrated on the application of RL techniques and learning to rank using the click-

through data. In (Keyhanipour et al., 2007) a method called WebFusion is introduced in which learning to rank

from click-through data and information fusion have been successfully combined within an intelligent meta-

search engine environment.

3 Proposed Approach

The proposed learning to rank algorithm consists of two phases, which are Transformation and Model-

Generation that will be described in the next subsections. Briefly, within the Transformation phase, a feature

generation mechanism will be applied to the benchmark dataset and a compact representation will be generated

as triplets of queries, results and a subset of clicks through features. Then, in the Model-Generation stage, a

reinforcement learning model is generated the learning to rank problem. During this step, temporal difference

learning mechanisms such as Q-Learning and SARSA are employed to find near-optimal solutions for the

compact representation of the first phase. Table 1 summarizes the proposed learning to rank method, which is

called QRC-Rank.

The proposed learning to rank method: QRC-Rank

Input:

a learning to rank benchmark dataset which consists of a set of query-document pairs with their feature vectors and

relevance judgments (i.e., the training set, T)

Output:

an action table, A, which provides the most appropriate action (degree of relevance), for the state corresponding to a

query-document pair

Procedure of the QRC-Rank:

Step 1. Transformation:

1. Selection of the scenarios needed for the calculation of click-through features from training set T.

2. Generation of click-through features from T based on the suggested scenarios. This process generates a

secondary dataset T′ from T, which includes the generated click-through features corresponding to query-

document pairs.

Step 2. Model-Generation:

3. Generating a Markov Decision Process Model for the learning to rank problem, including the sets of States,

Actions, Rewarding Strategy and also the Transition Function.

4. Applying Temporal-Difference learning methods, Q-Learning and SARSA, on the proposed Markov Decision

Process Model to realize the most relevance label for each query-document pair

Table 1. Outline of the proposed learning to rank algorithm

4

For better clarification, the same process is graphically illustrated in Figure 1.

Fig.1 Steps of the QRC-Rank algorithm

3.1 Transformation Phase

In the context of information retrieval, ranking a set of documents in respect to a given query is influenced by a

variety of features, which are related to this query-document pair. Some of these features are: Term-Frequency,

Inverse Document-Frequency and PageRank. Any given benchmark dataset prepared for the learning to rank

problem, consists of the values of such features, which are calculated for some pairs of queries and documents,

as well as the relevance degree of a document with respect to a specific query. There are two problems with

these datasets in order to achieve a learning to rank algorithm. First, due to the presence of a large number of

features, these datasets usually are high dimensional. Usage of a large number of features leads to the

inefficiency of the derived ranking algorithms in real-world situations. Second, these datasets usually do not

contain the click-through data. Click-through data is an important source of implicit feedback of the users of

Web search engines (Dou et al., 2008) (Xu et al., 2010).

The goal of the transformation phase is to generate click-through information for the benchmark data sets even

if they lack such information. In this phase a compact representation of original benchmark dataset is produced

based on a triplet of query (Q), ranked list of results (R) and features related to clicks of users (C) (Joachims,

2002). In this phase, eight features are defined in three groups: Q, R and C. These features are:

 lickRateiveness, Cy, AttractSpecificitC

Lengthnk, StreamAbsoluteRaR

untResultsAmo, QScore, RepetitionQ

Q contains features related to the nature of the queries of users. Repetition deals with the frequency of query

terms in different parts of a Web document; including URL, title and content. QScore refers to the score of a

document with respect to a given query. The QScore is generated by query-dependent ranking algorithms such

as Vector Space and Language Models. Finally, ResultAmount indicates the number of results retrieved for a

specified query.

In the same way, features of the category R, highlight the characteristics of the Web documents independent of

any query. In this category, AbsoluteRank shows the absolute rank of a given Web document. Undoubtedly, in

calculation of this feature, query-independent specifications such as PageRank play an important role.

StreamLength is a structure containing the length of document’s URL length, its title length and the length of a

document’s content.

The category C, includes those features which deal with the users’ click-through data. Specificity is an indication

of the uniqueness of a given document for a set of queries. In other words, for a given Web document,

Specificity shows how many users have clicked on this document for a given set of queries. The Attractiveness

feature is an indicator of the number of Web users’ attention to a given document during their search

interactions. Attractiveness distinguishes between Web documents that are clicked first or last from those

clicked during the rest of the search session. Surprisingly, these features could be calculated in the presence or

even absence of click-through data.

Original

Benchmark

Dataset

Transformation

Phase Transformed

Benchmark

Dataset

Model Generation

Phase Reinforcement Learning

Model of Learning to

Rank Problem

5

The computation of the above-mentioned features is completely dependent on the amount of the information

available in a specific benchmark dataset. In the next section, a few scenarios would be presented for the

calculation of the above features for two standard benchmarking datasets: LETOR4.0 and WCL2R.

3.2 Model-Generation Phase

In Model-Generation phase a model will be created for ranking web documents using reinforcement learning

techniques. The input data for this phase comes from the Transformation phase, which is an eight-dimensional

dataset, containing the generated click-through features in categories Q, R and C.

In this phase, a Markov Decision Process (MDP) model is generated as a triple of {States, Actions, Rewards}.

The proposed MDP model is:

𝑆𝑡𝑎𝑡𝑒 = {𝑄, 𝑅, 𝐶} = {
𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛, 𝑄𝑆𝑐𝑜𝑟𝑒, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐴𝑚𝑜𝑢𝑛𝑡, 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑅𝑎𝑛𝑘, 𝑆𝑡𝑟𝑒𝑎𝑚𝐿𝑒𝑛𝑔𝑡ℎ,

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, 𝐴𝑡𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠, 𝐶𝑙𝑖𝑐𝑘𝑅𝑎𝑡𝑒
}

𝐴𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙𝑠

𝑅𝑒𝑤𝑎𝑟𝑑 = −𝐴𝐵𝑆(𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑐𝑙𝑎𝑠𝑠𝐿𝑎𝑏𝑒𝑙)

Based on the above definition of the learning to rank problem, any query-document pair specifies the current

state of the learning agent as an eight-dimensional space of click-through features. In each state in this space, the

learning agent may select an action from the set of possible actions (Relevant, Non-Relevant …). Finally, the

agent receives a numerical reward, which indicates the distance between the true relevance label of the

corresponding query-document pair and the label, which was selected by the agent during its most recent action.

For this definition, we can perceive that the Markov property, which is the independence of receiving a reward

at a particular state from the previous states and actions, withholds (Sutton and Barto, 1998). This is due to our

episode generation policy in which data items are selected from the training set by the uniform distribution

probability. Each data item belonging to an episode will be visited independent of other data items. Formally,

we have:

 ttttttttttt ,asrr,ss ,a,s,r,,as,r,a,srr,ss 110011111 PrPr

In the above equation, by doing action at in the state st at time-step t, the learning agent receives a reward rt+1,

and the surrounding environment transforms into the state st+1. Because the Markov property withholds in the

proposed RL model, the learning agent can benefit from temporal-difference learning methods such as Q-

Learning and SARSA. These methods use various updating mechanisms to bring up to date their estimations

about the appropriateness of doing possible actions in different states (Szepesvari, 2010). Suppose 𝑄(𝑠𝑡 , 𝑎𝑡) is

the estimation of the learning agent about the goodness of doing action at while being in state st at time-step t.

SARSA estimates the values of the accomplished actions in visited states, based on the recently achieved reward

as well as its estimation about the goodness of doing next action in the new state, 𝑄(𝑠𝑡+1, 𝑎𝑡+1). In this way,

SARSA is an on-policy reinforcement learning algorithm with the below updating rule:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)]

In contrast, using the Q-learning algorithm, the RL agent learns an optimal policy independent of its current

action selection policy, provided that does enough exploration. In fact, Q-Learning renews its estimation about

𝑄(𝑠𝑡 , 𝑎𝑡) regarding the immediate reward as well the goodness of the most suitable action in the next visiting

state. Thus, for the Q-Learning algorithm, the updating rule is defined as:

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)]

In the above formulae, 𝛼 is a constant step-size parameter and 𝛾 ∈ [0,1] is the discount rate. As it was

mentioned previously, each training episode conations of a fixed number of data items (query-document pairs),

which are selected by equal chance from the underlying benchmark dataset. This strategy will guaranty the

Markov property in the proposed representation of the learning to rank problem. In this framework, the RL

agent tries to find the best action, which is the most suitable relevance label for each state, in an iterative

manner.

6

4 Evaluation Framework

4.1 Benchmark Datasets

The main capability of our proposed QRC-Rank system is its ability to extract required click-through features

from any given benchmark dataset during the Transformation phase. We believe utilizing such click-through

features are one of the contributors to higher performance of QRC-Rank in comparison to other well-known

ranking methods. To evaluate the performance of the QRC-Rank system, we have used two benchmark datasets

LETOR4.0 which does not include click-through features, as well as the WCL2R dataset, which contains such

features.

Microsoft’s LETOR 4.0 is a set of benchmark datasets published for research on the learning to rank problem in

July 2009 (LETOR4.0 Datasets, 2009). It consists of two datasets named as MQ2007 and MQ2008, which are

designed for four different ranking settings: supervised, semi-supervised, listwise ranking, and rank aggregation.

There are about 1700 queries in MQ2007 and 800 queries in MQ2008 with a number of human-labeled

documents (Qin et al., 2007). LETOR4.0 dataset provides a feature vector containing 46 features for each pair

of query-document. These features cover a wide range of common information retrieval features and

information such as Term Frequency, Inverse Document Frequency, BM25, Language Models for IR (LMIR),

PageRank, and HITS. However, LETOR4.0 datasets do not contain any click-through data (Alcantara et al.,

2010). In this research, the “supervised ranking” part of LETOR4.0 is utilized, which is MQ2008. It is organized

in five folds structure, including training, validation and testing data and contains for each pair of query-

document, a relevance label based on the human judgment in three relevance levels. The larger the relevance

label, the more relevant the query-document pair. Each row of the LETOR4.0 dataset is related to a query-

document pair. The structure of a typical row of the LETOR4.0 is represented in Figure 2.

rel qid:QID 1:F1 2:F2 … 46:F46 #docid:DocID comments

Fig.2 Structure of the LETOR4.0 dataset

In the above figure, the first column is the relevance label of the document to that query. The second column is

query id, the following columns are ids of features plus their values which are real values normalized between

[0,1] for each feature. At the end of the row is comment about the pair, including id of the document.

A second set of experiments also was conduct on WCL2R dataset. WCL2R is released in Oct 2010 by a

consortium of Federal University of Minas Gerais, Brazil and the University of Pompeu Fabra Spain (Alcantara

et al., 2010). WCL2R is intended to focus on the click-through data alongside traditional information retrieval

features. It contains two snapshots of the Chilean Web, which were crawled in August 2003 and January 2004

by the TodoCL search engine (TodoCL, 2002). The data is structured in 10 folds containing training, validation

and testing data. Human judgments are presented in four relevance levels (WCL2R, 2010). The structure of each

row of the WCL2R is similar with those of the LETOR4.0, which is depicted in Figure 2. However, the values

of the features are not normalized in the WCL2R dataset.

Table 2 provides an overview of LETOR4.0 and WCL2R collections. Training a ranking model in the

LETOR4.0 dataset is more difficult than those of the WCL2R dataset. The main reason is that WCL2R has

explicit click-through data while such data are not available in the LETOR4.0. The second reason is the

presence of only 6.13% of total relevant documents per any given query in the LETOR4.0 dataset, while this

quantity is about 29.8% in the WCL2R dataset.

Table 2: Summary of specifications of LETOR4.0 and WCL2R data collections

Dataset #features #queries
#query-

doc pairs

Relevance

levels

Average # docs

per query

Average # relevant

docs per query

LETOR4.0

-MQ2008
46 784 15211 3 19.40 1.19

WCL2R 29 79 5200 4 61.94 18.01

7

4.2 Experimental Settings

The first phase of QRC-Rank system is computing the click-through features. In this research, we have looked at

different scenarios for calculating these features. As explained below some of these calculations are based on

smoothing of the values. Additionally, a binary discretization based on the mean of the values has been applied

to the features of all of these scenarios.

Tables 3 and 4 lists the scenarios that we have test for calculating the click-through features on WCL2R and

LETOR4.0 datasets. In these scenarios, a limited number of features of WCL2R and LETOR4.0 datasets are

used, and their list is presented in Appendix A (Alcantara et al., 2010) and Appendix B (LETOR4.0’s Features

List, 2009). In Tables 3 and 4, the primitive features are denoted by ‘Fi’, where i stands for the ID of the feature

in the corresponding appendix table.

Three different scenarios based on the click-through features of the WCL2R benchmark dataset that have been

experimented with, are explained in Table 3.

Table 3: Click-through feature calculation scenarios for WCL2R benchmark dataset

Scenario ID Computation Mechanism

WCL2R-DF1

and

WCL2R-DF2

292820

1817

2322

1110

14

161513

963

FFFClickRate

,FFnessAttractive

,FFySpecificit

C:

FFthStreamLeng

,FnkAbsoluteRa
R:

q qidtems with:No. data iuntResultsAmo

,FFFQScore

,FFFRepetition

Q:

WCL2R-DF3

nessAttractivenkAbsoluteRaQScoreClickRate

,FFnessAttractive

,F1ySpecificit

C:

FthStreamLeng

,FnkAbsoluteRa
R:

q qidtems with:No. data iuntResultsAmo

,FFFQScore

,FRepetition

Q:

2417

23

10

14

161513

3

Each of these three scenarios provides an interpretation of the click-through features. For example, in the

WCL2R-DF1 scenario, a document’s Repetition feature is calculated by the multiplication of TF-IDF values

over the whole of that document, its title, and it’s URL. For this scenario, the QScore of a given document is

computed by the product of BM25 rank, HITS Hub and HITS Authority values of that document, which all of

these rankings are query-dependent. AbsoluteRank score is equal to the PageRank score of the corresponding

document, which is a query-independent ranking algorithm. A given document is assumed long if both of its

content as well as its title are lengthy. This characteristic is stored in the StreamLength feature. A document is

assumed specific, if for a few queries it was clicked by many users in many search sessions. In addition, a

document is supposed to have a higher degree of Attractiveness, if it was commonly clicked in the beginning of

users’ search sessions rather than being clicked at the end of search sessions. Finally, the ClickRate feature of a

particular document is calculated by multiplying the total amount of users’ clicks on it, number of non-single

click sessions and number of non-single click queries.

The main difference between WCL2R-DF1 and WCL2R-DF2 scenarios is that in the former, smoothing is

accomplished by:

 FAverageFF N
iiiii
:1 01.0 : where,

8

In the above equation, εi is a fraction of average over all values of feature Fi. However, for the latter, the

Dirichlet prior smoothing mechanism (Zhai and Lafferty, 2001) is used:

 iiiii FSecondMinFF 01.0 : where,

In WCL2R-DF3 scenario, the Specificity of a document is defined as the inverse of the number of distinct

queries for which that document was clicked. Besides, in this scenario, a given document is considered to

achieve a higher Attractiveness value, if it is the first clicked item in many search sessions and it has received

many single clicks in dissimilar sessions. Furthermore, the ClickRate of a given document is related to its

attractiveness, query-dependent and query-independent ranking scores. Although WCL2R-DF3 scenario uses

only 31%, of original features but its performance is substantially better than those of best-known ranking

methods.

In a similar way, three scenarios are defined for the LETOR4.0 benchmark dataset and they are listed in Table 4.

LETOR4.0’s features is presented in the Appendix B (LETOR4.0’s Features List, 2009).

Table 4: Click-through feature calculation scenarios proposed for LETOR4.0 benchmark dataset

Scenario ID Computation Mechanism

LETOR4-DF1

and

LETOR4-DF2

nkAbsoluteRaQScoreClickRate

,FnessAttractive

,FySpecificit

C:

FthStreamLeng

,FnkAbsoluteRa
R:

q qidtems with:No. data iuntResultsAmo

,FQScore

,FRepetition

Q:

41

44

16

41

40

37i

i

15

LETOR4-DF3

nkAbsoluteRaQScorenessAttractiveClickRate

,FFnessAttractive

,FFySpecificit

C:

FthStreamLeng

,FnkAbsoluteRa
R:

q qidtems with:No. data iuntResultsAmo

,FQScore

,FRepetition

Q:

4241

4544

20

41

40

37i

i

15

The main difference between the LETOR4-DF1 and LETOR4-DF2 scenarios is that in the former, smoothing is

done based on the above-mentioned Dirichlet prior smoothing (Zhai and Lafferty, 2001), while in the latter, no

smoothing is done. Since there is no explicit feature in LETOR4.0 dataset related to the click-through data, in

LETOR4-DF1 and LETOR4-DF2 scenarios, it is assumed that ClickRate of a specific document is related to its

query-dependent and query-independent ranking scores. This assumption is completed in the LETOR4-DF3

scenario, by taking into account the effect of the Attractiveness feature. As it will be described in the next

section, performance of these scenarios is related to the maturity of their interpretation from click-through

features. It is worth mentioning that all of these scenarios use only a limited number of the original features of

the dataset, while according to the experimental results, their performances are comparable or even better than

those of the well-known ranking algorithms.

Table 5 provides a comparison of different scenarios based on the number of features generated and or used in

each scenario. As it can be observed, these scenarios provide a very compact representation of the dataset’s

features because they utilize only very few features from the dataset plus eight features that they generate.

9

Table 5: Comparison of different scenarios of the proposed ranking method based on the number of consumed and generated

features, which are first and second data items in each parenthesis

Dataset #Features #Features per QRC-Rank Scenarios (consumed, generated)

WCL2R 29 WCL2R-DF1 (16, 8) WCL2R-DF2 (16, 8) WCL2R-DF3 (9, 8)

LETOR4.0 46 LETOR4-DF1 (9, 8) LETOR4-DF2 (9, 8) LETOR4-DF3 (10, 8)

4.3 Evaluation Metrics

Various measures have been used for the evaluation of performance of information retrieval systems such as

Kendall-Tau (Kendall, 1948), P@n, NDCG@n and MAP (Manning, Raghavan and Schütze, 2008). The

following evaluation criteria are used in this research:

 Precision at position n (P@n): indicates the ratio of relevant documents in a list of the first n retrieved

documents. The main aim of this metric is to calculate the precision of retrieval systems from users’

perspective. As users visit only top documents from the list of results, this evaluation criteria only consider

the n top documents. Suppose we have binary judgments about the relevance of documents with respect to a

given query. In this way, each document may be either relevant or irrelevant with respect to a specific

query. Then, P@n is defined as:

n

sp n resultdocs in to#relevant
nP @

 Mean Average Precision (MAP): For a single query q, Average Precision (AP) is defined as the average of

the P@n values for all relevant documents, where n goes from 1 to the number of retrieved documents.

q

D

j

R

jPjr
qAVG

q

1

@

In this formulation, rj is the relevance score assigned to a document dj with respect to a given query q,

being one, if the document is relevant and zero otherwise; Dq is the set of retrieved documents and Rq is

the set of relevant documents for the query q. Then, MAP would be the mean of average precisions of all

queries of the utilized benchmark dataset as:

Q

qAvg
MAP

Q

q

1

The above mentioned ranking evaluation criterias (P@n and MAP) consider only binary degrees of

relevance in the evaluation of query-document pairs.

 Normalized Discount Cumulative Gain at position n (NDCG@n): By assuming different levels of relevance

degrees for data items, the NDCG of a ranked list at position n (NDCG@n), would be calculated as follows:

n

j

r

r

j
NDCG@n

j

2 1log

12
12 1

In this formulation, rj stands for the relevance degree of the jth document in the ranked list.

5 Experimental Results

In this section, the experimental results of applying the QRC-Rank algorithm on the WCL2R and LETOR4.0

benchmark datasets, and the analytical comparison of the results with those of the well-known ranking

algorithms, are presented. All of the reported results for the LETOR4.0 dataset, are based upon the usage of the

LETOR’s Eval-Tool (Qin et al., 2007). For the WCL2R experiments, based on the structure of this dataset, an

adapted copy of the Eval-Tool is utilized. It is noticeable that the results are achieved on a PC with a 2.0 GHz

dual core processor, 2MB of cache and 3GB of RAM.

For each dataset, the results of the QRC-Rank are compared with those reported for the baseline ranking

algorithms. As it will be observed in the next subsections, the performance of the baseline algorithms on the

10

WCL2R and LETOR4.0 benchmark datasets are different. This is mainly due to the nature of the ranking

algorithms as well as the structure of these datasets. As mentioned in Section 4, the utilized datasets provide

different sets of features for the learning to rank problem. Specifically, in the WCL2R dataset, some click-

through data are available beside standard IR related features, but the LETOR4.0 dataset, does not include click-

through data. On the other hand, various ranking methods use different parts of evidence in their ranking

functions. Consequently, successful ranking algorithms on these datasets are different.

5.1 WCL2R Results

Table 6 demonstrates the performance of a few well-known ranking techniques on upon the precision evaluation

criterion on the WCL2R dataset (Alcantara et al., 2010).

Table 6: Comparison of well-known ranking methods based on precision criterion on the WCL2R dataset

Baseline Methods P@1 P@3 P@10 MAP

SVMRank 0.400 0.455 0.397 0.432

LAC 0.383 0.449 0.385 0.427

GP 0.362 0.435 0.387 0.422

RankBoost 0.378 0.416 0.369 0.412

In the above table, the first baseline algorithm is SVMRank, which employs the support vector machine (SVM)

technology for ranking documents (Joachims, 2002), (Joachims, 2006). The main idea of SVMRank is to

formalize learning to rank as the binary classification on document pairs, where two classes are considered for

applying SVM: correctly ranked and incorrectly ranked pairs of documents. The second baseline algorithm is

LAC (Veloso et al., 2008), a lazy associative classifier that uses association rules to learn ranking models at the

query-time. By generating rules on a demand-driven basis, only the required information is extracted from the

training data, resulting in a fast and effective ranking method. The third baseline method is called GP. This

method is based on a genetic programming ranking algorithm (Almeida et al., 2007). Finally, the last baseline

algorithm, RankBoost, is a boosting algorithm that trains weak rankers and combines them to build the final

rank function (Freund et al., 2003).

Table 7 demonstrates the precision achieved by the proposed ranking algorithm using different configurations

on the WCL2R dataset.

Table 7: Results of the evaluation of different configurations of the proposed method based on precision criterion on the

WCL2R dataset

QRC-Rank

configuration
P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP

QRC.W1 0.4427 0.4737 0.4636 0.4499 0.4467 0.4235 0.4106 0.3961 0.3863 0.4103 0.4303

QRC.W2 0.3921 0.4104 0.4225 0.4246 0.4113 0.4088 0.4033 0.4024 0.3919 0.3985 0.4066

QRC.W3 0.4706 0.488 0.4785 0.4603 0.4529 0.4424 0.4333 0.398 0.3878 0.4107 0.4422

QRC.W4 0.4807 0.4921 0.451 0.4309 0.424 0.4151 0.3943 0.3819 0.3694 0.407 0.4246

Table 8 provides details of the settings of different configurations of Table 7. These settings include the

parameters of the utilized temporal difference learning algorithms, which are: q0, α, γ and ε. It must be noticed

that the action selection policy for configuration QRC.W3 is ε-greedy, while it is Softmax for the other three

implementations of the QRC-Rank. For the Softmax action selection mechanism (Szepesvari, 2010), in which

the probability of choosing an action within a given state is proportional to the current estimation of its

goodness, the computational temperature, τ, is set to be 10.

Table 8: Configurations of the proposed method used for the evaluation on the WCL2R dataset

QRC-Rank

configuration
Method Scenario

Parameters

0q α γ ε #iterations
Episode

Length

QRC.W1 Q-Learning WCL2R-DF1 10 1/iteration 0.1
Softmax,

τ:10
1000 100

11

QRC.W2 Q-Learning WCL2R-DF2 10 1/iteration 0.1
Softmax,

τ:10
1000 100

QRC.W3 Q-Learning WCL2R-DF3 100 1/iteration 0.1 0.1 1000 100

QRC.W4 Q-Learning WCL2R-DF3 10 1/iteration 0.1
Softmax,

τ:10
1000 100

The results that are reported in Table 7, illustrate that QRC-Rank has achieved higher precision and MAP values

in comparison to the baseline methods on the WCL2R benchmark dataset. A significant improvement of about

20.17% is obtained for the proposed method in comparison to the best baseline algorithm, SVMRank on the

P@1 criterion. The improvement is about 23.02% for the P@2 measure. Also, the QRC-Rank has achieved a

rise of about 2.36% on the MAP criterion with comparison with the SVMRank. Our proposed method has

outperformed the RankBoost algorithm by 7.33%.

Moreover, the proposed method has achieved its best performance at the top of the ranked lists of results, which

are usually mostly visited by the Web users rather than lower ranks that of less importance for the user. Based

on the published results of the eye-tracking studies (Granka, Joachims and Gay, 2004), (Miller, 2012), about

54% of clicks of the users of Google as the most widely used Web search engine (Google, 1998), were on its

first search results and about 80% of clicks were accomplished only on the top three results.

Figure 3 depicts a comparison of the best configuration of the proposed algorithm, QRC.W3, with the baseline

methods on the P@n criterion in WCL2R dataset.

Fig.3 Comparison of the best configuration of the proposed algorithm against baseline methods on P@n criterion in

the WCL2R dataset

To have a more precise insight about the performance of the proposed ranking method, Tables 9 and 10 present

the comparison of its results with those of the well-known ranking algorithms based on the NDCG measure on

WCL2R benchmark dataset.

Table 9: Evaluation results of baseline ranking methods based on NDCG criterion on the WCL2R dataset

Baseline

Methods
NDCG@1 NDCG@3 NDCG@10

SVMRank 0.314 0.353 0.395

LAC 0.296 0.360 0.403

GP 0.288 0.344 0.396

RankBoost 0.295 0.328 0.375

Table 10: Comparison of the performance of different configurations of the proposed method based on NDCG measure on

the WCL2R dataset

QRC-Rank

configuration

NDCG

@1

NDCG

@2

NDCG

@3

NDCG

@4

NDCG

@5

NDCG

@6

NDCG

@7

NDCG

@8

NDCG

@9

NDCG

@10

Mean

NDCG

QRC.W1 0.3613 0.3845 0.3648 0.3715 0.3758 0.3727 0.3727 0.3749 0.3758 0.3766 0.4764

QRC.W2 0.3324 0.3518 0.3568 0.3527 0.353 0.3597 0.3641 0.3703 0.3701 0.3705 0.4732

0.36

0.38

0.4

0.42

0.44

0.46

0.48

1 3 10

P
@

n

n

SVMRank

LAC

GP

RankBoost

QRC.W3

12

QRC.W3 0.3414 0.3792 0.3862 0.3855 0.3802 0.3889 0.3878 0.3881 0.3903 0.4114 0.4859

QRC.W4 0.3625 0.3792 0.3698 0.3741 0.369 0.3777 0.3736 0.3728 0.3741 0.4203 0.4758

The above statistics show a reasonable improvement over the baseline methods based on the NDCG measure.

This improvement is especially noticeable on the top positions of the ranked list. In this regard, in its best

setting, the QRC-Rank algorithm has achieved an improvement of about 15.44% compared with SVMRank on

the NDCG@1 measure. The improvement for the NDCG@3 criterion is about 7.28% and for the NDCG@10

criterion is about 6.4% . Figure 4 illustrates a graphical representation of these statistics.

Fig.4 Comparison of the best configuration of the proposed algorithm against baseline methods on NDCG@n

criterion in the WCL2R dataset

Figures 5 and 6 respectively present the “Optimal Action Selection Rate” and “Average Received Rewards” per

iteration for the SARSA and Q-Learning implementations of the QRC-Rank method on WCL2R dataset.

According to these diagrams, both of the utilized reinforcement learning methods have an almost identical

performance.

Fig.5 Comparison of the performance of SARSA and Q-Learning methods based on the “Optimal Action Selection

Rate” in the WCL2R dataset

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

1 3 10

N
D

C
G

@
n

n

SVMRank

LAC

GP

RankBoost

QRC.W3

QRC.W4

13

Fig.6 Comparison of the performance of SARSA and Q-Learning versions of QRC-Rank based on the “Average

Received Rewards” in the WCL2R dataset

In these experimentations, the elapsed times for SARSA and Q-Learning methods are 29.766983 and 31.080834

seconds, respectively.

5.2 LETOR4.0 Results

For the MQ2008 part of the LETOR4.0 dataset, performance of some of some well-known ranking algorithms

are reported based on the precision and NDCG criteria. Tables 11 and 14 present the performance of the

baseline ranking methods based on the precision and NDCG criteria, respectively. It is noticeable that the

reported performance of baseline methods and those of the proposed algorithm are based on the average of

performance of five folds of the testing data.

Table 11: Performance of baseline methods based on the precision criterion on the LETOR4.0 dataset

Baseline Method P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP

AdaRank-MAP 0.443 0.417 0.390 0.368 0.345 0.322 0.299 0.280 0.262 0.245 0.476

AdaRank-NDCG 0.452 0.422 0.395 0.370 0.345 0.323 0.299 0.280 0.262 0.245 0.482

ListNet 0.445 0.412 0.384 0.365 0.343 0.320 0.301 0.279 0.263 0.248 0.478

RankBoost 0.458 0.411 0.392 0.364 0.340 0.321 0.302 0.285 0.265 0.249 0.478

RankSVM-Struct 0.427 0.407 0.390 0.370 0.347 0.327 0.302 0.282 0.265 0.249 0.470

Table 12 shows the detail settings of different implementations of the QRC-Rank used during its evaluation on

the LETOR4.0 dataset. For the QRC.L3 setting, the Optimistic Initial Values technique is used, which lets the

reinforcement learning method to do an exhaustive exploration on possible actions in each state (Sutton and

Barto, 1998).

Table 12: Configurations of the proposed method used during evaluation on the LETOR4.0 dataset

QRC-Rank

configuration
Method Scenario

Parameters

0q α γ ε #iterations
Episode

Length

QRC.L1 Q-Learning LETOR4-DF1 100 1/iteration 0.1
Softmax,

τ:10
1000 100

QRC.L2 Q-Learning LETOR4-DF2 100 1/iteration 0.01 0.1 1000 100

QRC.L3 Q-Learning LETOR4-DF3 1E+10 1/iteration 0.1 0.1 1000 100

In Table 13, precision of different configurations of the QRC-Rank is reported. It could be observed that the

proposed algorithm outperforms baseline methods based on the precision measure. In comparison with the best

baseline method, AdaRank-NDCG, the proposed algorithm has achieved an improvement of about 8.56% based

on the MAP criterion. This improvement is about 11.39% compared with the RankSVM-Struct method.

14

However, on the P@n measure, sometimes baseline methods have shown better performance than those of the

proposed algorithm.

Table 13: Performance of different variants of the proposed method based on the precision evaluation criterion on the

LETOR4.0 dataset

QRC-Rank

configuration
P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP

QRC.L1 0.4233 0.3997 0.3761 0.3623 0.3506 0.3418 0.3329 0.323 0.3073 0.2953 0.49423

QRC.L2 0.4322 0.406 0.3807 0.3652 0.3564 0.3471 0.3383 0.3279 0.313 0.2999 0.49767

QRC.L3 0.4437 0.4188 0.4058 0.3885 0.3794 0.3659 0.3529 0.3424 0.3256 0.3122 0.52352

Figure 7 depicts the statistics presented in Table 13. As it can be observed, the proposed method was the fourth-

best method in the P@1 measure, but it reached the second the best at P@2 by a negligible difference with top

performer. However, after P@2 QRC-Rank has outperformed the other ranking methods. Moreover, the slope of

degrading precision is smaller for QRC-Rank which means even in lower ranks it is much better than the others.

Fig.7 Comparison of the best configuration of the proposed algorithm against baseline methods on P@n criterion on

the LETOR dataset

Table 14: Performance of baseline methods based on the NDCG criterion on the LETOR4.0 dataset

Baseline

Methods

NDCG

@1

NDCG

@2

NDCG

@3

NDCG

@4

NDCG

@5

NDCG

@6

NDCG

@7

NDCG

@8

NDCG

@9

NDCG

@10

Mean

NDCG

AdaRank-MAP 0.375 0.414 0.437 0.461 0.479 0.492 0.497 0.461 0.225 0.229 0.492

AdaRank-NDCG 0.383 0.421 0.442 0.465 0.482 0.495 0.499 0.464 0.227 0.231 0.495

ListNet 0.375 0.411 0.432 0.457 0.475 0.489 0.498 0.463 0.227 0.230 0.491

RankBoost 0.386 0.399 0.429 0.448 0.467 0.482 0.490 0.457 0.221 0.226 0.485

RankSVM-Struct 0.363 0.398 0.429 0.451 0.470 0.485 0.491 0.456 0.224 0.228 0.483

Table 15 provides the comparison of the QRC-Rank method in different settings based on the NCDG measure.

As it can be seen in the table, the QRC-Rank’s performance is slightly lower but comparable to those of

baseline methods. This situation is mainly due to the absence of explicit click-through features in the LETOR4.0

dataset. However, the drop in the performance is not alarming.

0.24

0.29

0.34

0.39

0.44

1 2 3 4 5 6 7 8 9 10

P
@

n

n

AdaRank-MAP

AdaRank-NDCG

ListNet

RankBoost

RankSVM-Struct

QRC.L3

15

Table 15: Performance of different variants of the proposed method based on the NDCG evaluation criterion on the

LETOR4.0 dataset

QRC-Rank

configuration

NDCG

@1

NDCG

@2

NDCG

@3

NDCG

@4

NDCG

@5

NDCG

@6

NDCG

@7

NDCG

@8

NDCG

@9

NDCG

@10

Mean

NDCG

QRC.L1 0.3637 0.3888 0.4057 0.4256 0.4464 0.4641 0.4773 0.4497 0.2423 0.2464 0.4675

QRC.L2 0.3795 0.4027 0.4152 0.4337 0.4564 0.4741 0.4886 0.4601 0.2463 0.2507 0.4785

QRC.L3 0.3816 0.4038 0.4311 0.4503 0.4742 0.4893 0.501 0.473 0.2628 0.2679 0.4917

Figures 8 and 9 respectively depict the “Optimal Action Selection Rate” and “Average Received Rewards” per

different iterations on using SARSA and Q-Learning methods in the implementation of the QRC-Rank on the

LETOR4.0 dataset. Based on these diagrams, both reinforcement learning methods have shown similar

performance in the rate of selecting best the action per iteration as well as those of the average received rewards.

Fig.8 Comparison of the performance of SARSA and Q-Learning methods based on the “Optimal Action Selection

Rate” on the LETOR4.0 dataset

Fig.9 Comparison of the performance of SARSA and Q-Learning methods based on the “Average Received

Rewards” on the LETOR4.0 dataset

In this investigation, the elapsed time for SARSA was 30.50 seconds, but the same value is 31.91 seconds for

the Q-Learning method.

16

5.3 Analytical Discussion

As it was observed in the previous subsections, according to the MAP and NDCG criteria, the proposed method

either outperforms baseline ranking methods or shows a very close performance in comparison with the well-

known ranking methods. A closer look shows that the usage of the proposed click-through features, have had a

decisive role in the performance of the proposed ranking algorithm. In this regard, the informativeness of the

proposed click through feature that make up the scenarios and act as a compact representation of the click-

through features are compared with the original features in both WCL2R and LETOR4.0 datasets. Figures 10

and 11 show these comparisons on the WCL2R dataset based on MAP and MeanNDCG criteria, respectively. In

these figures, proposed click-through features used in the QRC.W3 configuration are compared with the best

feature of the WCL2R dataset, F22 “Number of Sessions Clicked” (see Appendix A). F22 has the highest

contribution to the ranking based on the MAP criteria among all original features in WCL2R dataset.

Fig.10 Comparison primitive and click-through features based on the MAP measure on WCL2R dataset

Fig.11 Comparison primitive and click-through features based on the MeanNDCG measure on WCL2R dataset

The same analysis is repeated on the LETRO4.0 dataset and its results are depicted in Figures 12 and 13. In

these figures, features of the QRC.L3 configuration are compared with F39 “LMIR.DIR of whole document” (see

0.3064

0.2811

0.3060

0.2661
0.2607

0.3533

0.3853

0.3393

0.3859

0.240

0.260

0.280

0.300

0.320

0.340

0.360

0.380

0.400

0.4188

0.3176

0.3353

0.3024

0.2688

0.3821

0.4612

0.3881

0.4615

0.250

0.280

0.310

0.340

0.370

0.400

0.430

0.460

17

Appendix B) which is the best original contributing feature on the LETOR4.0 dataset to ranking based on MAP

criteria.

Fig.12 Comparison primitive and click-through features based on the MAP measure on LETOR4.0 dataset

Fig.13 Comparison primitive and click-through features based on the MeanNDCG measure on LETOR4.0 dataset

Based on the above statistics, some of the proposed click-through features are more informative than the original

features. As seen in the figures, proposed click-through features related to the click-related category are more

informative because they have higher MAP and MeanNDCG values. This phenomenon confirms that click-

through data are useful in the learning to rank process (Macdonald and Ounis, 2009). To sum up, the results of

this analysis clearly show that proposed click-through features together when combined in scenarios are more

informative than the original features. These proposed click-through features are working well with the

explorative and exploitative capabilities of the reinforcement learning methods in finding the suitable rankings.

This combination has resulted in the higher performance of the proposed QRC-Rank method in comparison to

those of the baseline ranking methods.

Analysis of the proposed method on WCL2R and LETOR4.0 datasets indicates that suitable configurations of

the proposed ranking method on these datasets are almost the same. Specifically, on the LETOR4.0 dataset, by

0.3712
0.3756

0.4673

0.3006

0.2753

0.3332

0.3130

0.2753

0.4214

0.260

0.290

0.320

0.350

0.380

0.410

0.440

0.470

0.3831
0.3762

0.4775

0.2938

0.2499

0.3205
0.3081

0.2499

0.4218

0.230

0.270

0.310

0.350

0.390

0.430

0.470

18

using optimistic initial mechanism for the initialization of the state-action values, (Q(s,a)), better results are

achieved. This is mainly due to the availability of fewer relevant documents per any given query in the

LETOR4.0 dataset compared with the WCL2R dataset. In this situation, by using the optimistic initial values

mechanism on the LETOR4.0 dataset, the reinforcement learning agent has the chance to explore all of the

possible actions in each state in order to identify the most appropriate one. It is also observed that for the

WCL2R dataset, usage of the Softmax technique as the action-selection policy is effective. In comparison, on

the LETOR4.0 dataset, exploration with the ε-greedy mechanism is more useful. This observation could also be

interpreted using the nature of the investigated datasets. In the Softmax policy, the probability of selecting

different possible actions is related to their estimated goodness, which is embedded in their Q(s,a) values. On

the other hand, ε-greedy provides no discrimination between non-optimal possible actions. In fact, while dealing

with the LETOR4.0 dataset, the reinforcement learning agent examines all of the so far identified as actions, for

finding better ones during the learning process.

6 Concluding Remarks and Further Works

Machine learning has been applied successfully to the field of information retrieval. These learning to rank

algorithms are exhaustively dependent of the benchmark datasets. However, there are some limitations with the

available benchmark datasets. The main restriction is originated from the lack of click-through data, which is the

implicit feedback of users about the retrieval performance of Web search engines. Besides, the high

dimensionality of data items in the benchmark datasets adds to the complexity and probably the inefficiency. In

this paper, a novel ranking algorithm named QRC-Rank is introduced. QRC-Rank works both data sets that

contain click-through information and those that lack such information. QRC-Rank is a two phase retrieval

system. In the first phase it processes the data set and generates a new dataset that contains additional more

complex click-through information. The new click-through features reduce the high dimensionality of search

space because there are only 8 such features are calculated. Second, under scenarios these features are combined

with each other to create a compact representation. In this way, the proposed method can build click-through

features even when those information are not explicitly present in the dataset. The compactness of the new

secondary dataset reduces the complexity of developing ranking functions. Thereafter, the QRC-Rank algorithm

builds a reinforcement learning model based on these compact representations of features. In this model, the

reinforcement learning agent tries to find the best appropriate label for a given state, which corresponds to a

visited query-document pair. Evaluation of the proposed method based on the P@n, MAP and NDCG criteria on

WCL2R and LETOR4.0 datasets demonstrate that QRC-Rank is able to significantly outperform well-known

ranking algorithms if click-through data is available in the dataset. The performance of the proposed algorithm

is comparable with the baseline ranking methods even in absence of click-through data (i.e. LETOR4.0 dataset).

This research could be extended by applying information fusion techniques such as ordered-weighted averaging

(OWA) in the calculation of scenarios based on the click-through features. It would also be helpful if it would

be possible to find ways to deal with the inherit uncertainty and ambiguous of the relevance judgments provided

by humans. Perhaps methods of handling the uncertainty such as Dempster-Shafer theory (Shafer, 1976) and

fuzzy integral operators (Grabisch, 1995) may be useful. In the meantime, one can also look at generating other

types of features or scenarios for the dataset.

7 Acknowledgment

This research is financially supported by the University of Tehran; grant number: 8101004/1/02.

References

Agichtein, E., Brill, E. and Dumais, S. (2006), “Improving web search ranking by incorporating user behavior

information”, in International ACM SIGIR Conference on Research & Development of Information Retrieval,

2006, pp. 19-26.

19

Agichtein, E., Brill, E., Dumais, S. and Ragno, R. (2006), “Learning User Interaction Models for Predicting

Web Search Result Preferences”, in 29th annual international ACM SIGIR conference on Research and

development in information retrieval, 2006, pp. 3-10.

Alcantara, O.D.A., Pereira Jr., A.R., de Almeida, H.M., Goncalves, M.A., Middleton, C. and Baeza-Yates, R.

(2010), “WCL2R: A Benchmark Collection for Learning to Rank Research with Clickthrough Data”, Journal of

Information and Data Management, Vol. 1, No. 3, pp. 551-566.

Almeida, H.M., Gonçalves, M.A., Cristo, M. and Calado, P. (2007), “A combined component approach for

finding collection-adapted ranking functions based on genetic programming”, in 30th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, 2007, pp. 399-406.

Almeida, H.M.d., Gonçalves, M.A., Cristo, M. and Calado, P. (2007), “A combined component approach for

finding collectionadapted ranking functions based on genetic programming”, in 30th annual international ACM

SIGIR conference on Research and development in information retrieval, 2007, pp. 399-406.

Bai, Y., Yang, K., Yu, W., Ma, W.-Y. and Zhao, T. (2013), “Learning High-level Image Representation for

Image Retrieval via Multi-Task DNN using Click-through Data”, arXiv:1312.4740.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F. and Li, H. (2007), “Learning to rank: from pairwise approach to listwise

approach”, in 24th International Conference on Machine Learning, 2007, pp. 129-136.

Derhami, V., Khodadadian, E., Ghasemzadeh, M. and Zareh Bidoki, A.M. (2013), “Applying reinforcement

learning for web pages ranking algorithms”, Applied Soft Computing, Vol. 13, No. 4, pp. 1686-1692.

Dou, Z., Song, R., Yuan, X. and Wen, J.-R. (2008), “Are click-through data adequate for learning web search

rankings?”, in 17th ACM conference on Information and knowledge management, 2008, pp. 73-82.

Dupret, G. and Liao, C. (2010), “A model to estimate intrinsic document relevance from the click-through logs

of a web search engine”, in Third ACM International Conference on Web Search and Data Mining, 2010, pp.

181-190.

Freund, Y., Iyer, R., Schapire, R.E. and Singer, Y. (2003), “An efficient boosting algorithm for combining

preferences”, Journal of Machine Learning Research, Vol. 4, pp. 933-969.

Gao, J., Nie, J.-Y., Yuan, W., Li, X. and Deng, K. (2009), “Smoothing clickthrough data for web search

ranking”, in 32nd international ACM SIGIR conference on Research and development in information retrieval,

2009, pp. 355-362.

Google (1998), “Google Search Engine”, available at: www.google.com (accessed 20 December 2015).

Grabisch, M. (1995), “Fuzzy integral in multicriteria decision making”, Fuzzy Sets and Systems, Vol. 69, No. 3,

pp. 279-298.

Granka, L.A., Joachims, T. and Gay, G. (2004), “Eye-Tracking Analysis of User Behavior in WWW Search”, in

27th annual international ACM SIGIR conference on Research and development in information retrieval, 2004,

pp. 478-479.

Herbrich, R., Graepel, T. and Obermayer, K. (2000), “Large margin rank boundaries for ordinal regression”, in

Smola, A.J., Bartlett, P., Schölkopf, B. and Schuurmans, D. (Eds.) Advances in Large Margin Classifiers, MIT

Press.

Hofmann, K., Schuth, A., Whiteson, S. and Rijke, M.d. (2013), “Reusing historical interaction data for faster

online learning to rank for IR”, in Sixth ACM international conference on Web search and data mining, 2013,

pp. 183-192.

http://www.google.com/

20

Hofmann, K., Schuth, A., Whiteson, S., Rijke, M.D. (2013), “Reusing historical interaction data for faster online

learning to rank for IR”, in Sixth ACM international conference on Web search and data mining, 2013, pp. 183-

192.

Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A. and Heck, L. (2013), “Learning Deep Structured Semantic

Models for Web Search using Click-through Data”, in 22nd ACM international conference on Information and

Knowledge Management, 2013, pp. 2333-2338.

Jain, V. and Varma, M. (2011), “Learning to Re-Rank: Query-Dependent Image Re-Ranking Using Click Data”,

in 20th international conference on World Wide Web, 2011, pp. 277-286.

Ji, S., Xue, G.-r., Zhou, K., Chapelle, O., Sun, G., Liao, C., Zheng, Z. and Zha, H. (2009), “Global ranking by

exploiting user clicks”, in 32nd international ACM SIGIR conference on Research and development in

information retrieval, 2009, pp. 35-42.

Joachims, T. (2002), “Optimizing search engines using clickthrough data”, in 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 2002, pp. 133-142.

Joachims, T. (2006), “Training linear SVMs in linear time”, in 12th international conference on knowledge

discovery and data mining, 2006, pp. 217-226.

Kendall, M.G. (1948), Rank Correlation Methods, Oxford University Press, London.

Keyhanipour, A.H., Moshiri, B., Piroozmand, M. and Lucas, C. (2007), “Aggregation of Multiple Search

Engines Based on Users’ Preferences in WebFusion”, Knowledge-Based Systems, Vol. 20, No. 4, pp. 321-328.

LETOR4.0 Datasets (2009), “LETOR4.0 Datasets”, available at: http://research.microsoft.com/en-

us/um/beijing/projects/letor/letor4dataset.aspx (accessed 20 December 2015).

LETOR4.0’s Features List (2009), “LETOR4.0’s Features List”, available at: http://research.microsoft.com/en-

us/um/beijing/projects/letor/LETOR4.0/Data/Features_in_LETOR4.pdf (accessed 20 December 2015).

Ma, H., Yang, H., King, I. and Lyu, M.R. (2008), “Learning Latent Semantic Relations from Click-through Data

for Query Suggestion”, in 17th ACM conference on Information and knowledge management, 2008, pp. 709-

718.

Macdonald, C. and Ounis, I. (2009), “Usefulness of Quality Click-through Data for Training”, in 2009 workshop

on Web Search Click Data, 2009, pp. 75-79.

Macdonald, C., Santos, R.L.T. and Ounis, I. (2013), “The whens and hows of learning to rank for web search”,

Information Retrieval, Vol. 16, No. 5, pp. 584-628.

Manning, C.D., Raghavan, P. and Schütze, H. (2008), An Introduction to Information Retrieval, Cambridge,

Cambridge University Press, England.

Miller, M. (2012), “53% of Organic Search Clicks Go to First Link”, available at:

http://searchenginewatch.com/article/2215868/53-of-Organic-Search-Clicks-Go-to-First-Link-Study (accessed

20 December 2015).

Qin, T., Liu, T.-Y., Xu, J. and Li, H. (2007), “LETOR: Benchmark dataset for research on learning to rank for

information retrieval”, in SIGIR 2007 Workshop on Learning to Rank for Information Retrieval, 2007, pp. 3-10.

Radlinski, F. and Joachims, T. (2005), “Query chains: learning to rank from implicit feedback”, in ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, pp. 239-248.

http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx
http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/Features_in_LETOR4.pdf
http://research.microsoft.com/en-us/um/beijing/projects/letor/LETOR4.0/Data/Features_in_LETOR4.pdf
http://searchenginewatch.com/article/2215868/53-of-Organic-Search-Clicks-Go-to-First-Link-Study

21

Radlinski, F. and Joachims, T. (2007), “Active exploration for learning rankings from click-through data”, in

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2007, pp. 570-579.

Shafer, G. (1976), A Mathematical Theory of Evidence, Princeton University Press.

Sutton, R.S. and Barto, A.G. (1998), Reinforcement Learning: An Introduction, MIT Press, Cambridge.

Szepesvari, C. (2010), Algorithms for Reinforcement Learning, Morgan & Claypool.

TodoCL (2002), “TodoCL search engine Website”, available at: http://www.todocl.cl (accessed 20 December

2015).

Veloso, A.A., Almeida, H.M., Goçalves, M.A. and Meira, M.J. (2008), “Learning to rank at query-time using

association rules”, in 31st Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, 2008, pp. 267-274.

Veloso, A.A., Almeida, H.M., Gonçalves, M.A. and Meira, W.J. (2008), “Learning to rank at query-time using

association rules”, in 31st annual international ACM SIGIR conference on Research and development in

information retrieval, 2008, pp. 267-274.

Wang, H., Zhai, C., Liang, F., Dong, A. and Chang, Y. (2014), “User Modeling in Search Logs via a

Nonparametric Bayesian Approach”, in 7th ACM international conference on Web search and data mining,

2014, pp. 203-212.

WCL2R (2010), “WCL2R Website”, available at: http://www.latin.dcc.ufmg.br/collections/wcl2r (accessed 20

December 2015).

Xu, J. and Li, H. (2007), “Adarank: a boosting algorithm for information retrieval”, in 30th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007, pp. 391-

398.

Xu, J., Chen, C., Xu, G., Li, H. and Torres Abib, E.R. (2010), “Improving quality of training data for learning to

rank using click-through data”, in Third ACM international conference on Web Search and Data Mining, 2010,

pp. 171-180.

Xu, Q. (2010), “Learning to Rank from Clickthrough Data”, available at: http://isabel-

drost.de/projects/tuberlin/imsem2010/learningtorank_paper_2010.pdf (accessed 20 December 2015).

Zareh Bidoki, A.M., Ghodsnia, P., Yazdani, N. and Oroumchian, F. (2010), “A3CRank: An adaptive ranking

method based on connectivity, content and click-through data”, Information Processing and Management, Vol.

46, No. 2, pp. 159-169.

Zhai, C. and Lafferty, J. (2001), “A study of smoothing methods for language models applied to Ad Hoc

information retrieval”, in 24th annual international ACM SIGIR conference on Research and development in

information retrieval, 2001, pp. 334-342.

http://www.todocl.cl/
http://www.latin.dcc.ufmg.br/collections/wcl2r
http://isabel-drost.de/projects/tuberlin/imsem2010/learningtorank_paper_2010.pdf
http://isabel-drost.de/projects/tuberlin/imsem2010/learningtorank_paper_2010.pdf

22

Appendix A: List of features in the WCL2R benchmark dataset

Feature

ID
Feature Name Feature Type

F1 TF

Standard Features

F2 IDF

F3 TF-IDF (Term_frequency × Inverse_ document_frequency)

F4 TF(Term frequency) of Title

F5 IDF(Inverse document frequency) of Title

F6 TF-IDF (Term_frequency × Inverse_ document_frequency) of Title

F7 TF(Term frequency) of URL

F8 IDF(Inverse document frequency) of URL

F9 TF-IDF (Term_frequency × Inverse_ document_frequency) of URL

F10 DL (Document Length)

F11 DL (Document Length) of Title

F12 DL (Document Length) of URL

F13 BM25

F14 PageRank

F15 HITS Hub

F16 HITS Authority

F17 First of Session

Click-through Features

F18 Last of Session

F19 Number of clicks in a document for a query

F20 Number of sessions a document was clicked for a query

F21 Number of clicks

F22 Number of sessions clicked

F23 Number of queries clicked

F24 Number of single clicks in distinct sessions

F25 Number of single clicks in distinct queries

F26 Absolute number of single clicks in queries

F27 Number of single clicks in queries grouped by session

F28 Number of non-single click sessions

F29 Number of non-single click queries

23

Appendix B: List of features in the LETOR4.0 benchmark dataset

Feature ID Feature Name

F1 TF(Term frequency) of body

F2 TF(Term frequency) of anchor

F3 TF(Term frequency) of title

F4 TF(Term frequency) of URL

F5 TF(Term frequency) of whole document

F6 IDF(Inverse document frequency) of body

F7 IDF(Inverse document frequency) of anchor

F8 IDF(Inverse document frequency) of title

F9 IDF(Inverse document frequency) of URL

F10 IDF(Inverse document frequency) of whole document

F11 TF(Term frequency)×IDF(Inverse document frequency) of body

F12 TF(Term frequency)×IDF(Inverse document frequency) of anchor

F13 TF(Term frequency)×IDF(Inverse document frequency) of title

F14 TF(Term frequency)×IDF(Inverse document frequency) of URL

F15 TF(Term frequency)×IDF(Inverse document frequency) of whole document

F16 DL(Document length) of body

F17 DL (Document Length) of anchor

F18 DL (Document Length) of title

F19 DL (Document Length) of URL

F20 DL (Document Length) of whole document

F21 BM25 of body

F22 LMIR.ABS of body

F23 LMIR.DIR of body

F24 LMIR.JM of body

F25 BM25 of anchor

F26 LMIR.ABS of anchor

F27 LMIR.DIR of anchor

F28 LMIR.JM of anchor

F29 BM25 of title

F30 LMIR.ABS of title

F31 LMIR.DIR of title

F32 LMIR.JM of title

F33 BM25 of URL

F34 LMIR.ABS of URL

F35 LMIR.DIR of URL

F36 LMIR.JM of URL

F37 BM25 of whole document

F38 LMIR.ABS of whole document

F39 LMIR.DIR of whole document

F40 LMIR.JM of whole document

F41 PageRank

24

F42 In-link number

F43 Out-link number

F44 Number of slash in URL

F45 Length of URL

F46 Number of child page

	Learning to rank with click-through features in a reinforcement learning framework
	Recommended Citation

	37000

