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Structured Abstract  

Purpose – Learning to rank algorithms inherently face many challenges. The most important challenges could 

be listed as high-dimensionality of the training data, the dynamic nature of Web information resources and lack 

of click-through data. High dimensionality of the training data affects effectiveness and efficiency of learning 

algorithms. Lack of users’ click-through data, impacts the effectiveness of ranking methods because click-

through data is an indirect indicative of the users’ search intentions. To deal with these limitations, this paper 

introduces a novel learning to rank algorithm by using a set of complex click-through features in a 

reinforcement learning model. These features are calculated from the existing click-through information in the 

dataset or even from datasets without any explicit click-through information. 

Design/methodology/approach – The proposed ranking algorithm (QRC-Rank) applies reinforcement learning 

techniques on a set of calculated click-through features. QRC-Rank is as a two-steps process. In the first step, 

Transformation phase, a compact benchmark dataset is created which contains a set of click-through features.  

These feature are calculated from the original click-through information available in the dataset and constitute a 

compact representation of click-through information. In order to find most effective click-through feature, a 

number of scenarios are investigated. The second phase is Model-Generation in which a reinforcement learning 

model is built to rank the documents. This model is created by applying temporal difference learning methods 

such as Q-Learning and SARSA. 

Findings – The proposed learning to rank method, QRC-rank, is evaluated on WCL2R and LETOR4.0 datasets. 

Experimental results demonstrate that QRC-Rank outperforms the state-of-the-art learning to rank methods such 

as SVMRank, RankBoost, ListNet and AdaRank based on the precision and NDCG evaluation criteria. The use 

of the click-through features calculated from the training dataset is a major contributor to the performance of the 

system. 

Originality/value – In this paper, we have demonstrated the viability of the proposed features that provide a 

compact representation for the click through data in a learning to rank application. These compact click-through 

features are calculated from the original features of the learning to rank benchmark dataset. In addition, a 

Markov Decision Model is proposed for the learning to rank problem using reinforcement learning (RL), 

including the sets of states, actions, Rewarding Strategy and the Transition Function. 

Keywords: Learning to Rank; Click-through Data; Reinforcement Learning. 

1 Introduction 

Due to the drastic growth of the Web information, Web search engines have become an essence of the 

information era. Information Retrieval (IR) is defined as a ranking process in which a set of documents are 
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ordered based on their relevance to the users’ information need. In recent years, “Learning to Rank” has 

emerged as an active and growing area of research in both information retrieval and machine learning research. 

Consequently, several learning to rank algorithms have been proposed, such as RankSVM (Herbrich, Graepel 

and Obermayer, 2000), (Joachims, 2002), RankBoost (Freund et al., 2003), AdaRank (Xu and Li, 2007), and 

ListNet (Cao et al., 2007). Although these ranking methods have shown reasonable performance based on the 

evaluation criteria on benchmark datasets, but they have not taken advantage of the click-through data as a 

source of users’ feedbacks (Dou et al., 2008). One reason could be scarcity of explicit click-through data in the 

released and publicly available benchmark datasets. 

Given lack of sufficient datasets with click-through information, one of the aims of this research is proposing a 

framework for generating click-through data from the information presented in the learning to rank datasets. We 

have also looked at effectiveness of various features in click-through data and experimentally proposed subsets 

of features that are more useful in learning to rank. This research also utilizes reinforcement learning methods in 

order to learn and adapt to the desired ranking for users.  

The main contributions of this research could be summarized as: 

 Proposing a novel click-through feature generation framework from benchmark datasets that lack click-

through information. 

 Analyzing the performance of the proposed click-through features using various scenarios on 

LETOR4.0 and WCLR benchmark datasets. 

 Designing a reinforcement learning model with for temporal learning methods for ranking.  

 Demonstrating the viability of using click-through features with the proposed method.  

 

The rest of this paper is organized as follows: Section 2 provides an overview of the application of click-through 

data and reinforcement learning methods in the learning to rank problem. Section 3 describes the fundamental 

ideas of the proposed method. Section 4 presents the details the evaluation settings and analytical discussion of 

the results. Finally Section 5 provides the conclusion and future work. 

2 Related Works 

Joachims for the first time introduced the application of click-through data as an alternative to the explicit 

relevance judgments in the RankSVM system (Joachims, 2002). The RankSVM system still is one of the most 

powerful ranking methods. Later, it was observed that considering a user’s queries as chains rather than 

considering each query individually produces more reliable inferred relevance judgments from the click-through 

data (Radlinski and Joachims, 2005) (Macdonald and Ounis, 2009) (Macdonald, Santos and Ounis, 2013). 

The research in this area can be divided into three major categories. The first category includes those works that 

investigate the effect of the implicit feedback of users on the performance of learning to rank algorithms 

(Agichtein, Brill and Dumais, 2006), (Dou et al., 2008). The second category consists of research that intends to 

enhance the quality of click-through data. The last category includes those investigations that utilize click-

through data to improve the performance of learning to rank algorithms.  

 (Xu, 2010) is an example research in second category. Xu tries to find what kind of input is required and how to 

obtain such an input using the implicit or explicit feedback for learning to rank approaches (Xu, 2010). Another 

example is Radlinski (Radlinski and Joachims, 2007) who presents an active exploitation strategy for collecting 

users’ interaction records from search engine click-through logs. His proposed algorithm is a Bayesian approach 

for selecting rankings to present users so that interactions result into a more informative training data. In (Xu et 

al., 2010), a method is proposed, which automatically detects judgment errors by using the click-through data. 

The sparseness of the click-through data is a major challenge in learning to rank approaches that have been 

investigated by researchers such as (Gao et al., 2009). They have proposed two techniques for expanding click-

through features in order to address the sparseness. 

Most of research also has focused on using click-through data in order to improve the performance of the 

learning to rank methods. (Ji et al., 2009) have chosen a minimalistic approach and by exploiting user click 

sequences based on a limited number of features have proposed a global ranking framework. Interestingly, 

(Dupret and Liao, 2010) have used click-through data exclusively for generating a relevance estimation model. 
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The model was utilized to predict the document relevance. Click-through data are also utilized to provide deep 

structured latent semantic models for web search (Huang et al., 2013). These models project queries and 

documents into a common low-dimensional space where the relevance of a document given a query is readily 

computed from the distance between them. Click-through data has been successfully used in various areas of 

information retrieval including user modeling (Wang et al., 2014) and (Agichtein et al., 2006), query suggestion 

(Ma et al., 2008), and image retrieval (Bai et al., 2013) and (Jain and Varma, 2011). (Hofmann, 2013) also has 

tried using historical data to speed up online learning. In the online learning to rank, the retrieval system learns 

directly from interactions with its users. This approach integrates estimations derived from historical data with a 

stochastic gradient descent algorithm for online learning to rank (Hofmann, 2013). 

Reinforcement learning methods are rarely applied to resolve the learning to rank problem. A related work is 

(Derhami et al., 2013), in which based on the PageRank’s random surfer model, a general ranking method is 

proposed in an RL structure. However, as this ranking algorithm does not deal with feature vectors of query-

document pairs, it could not be categorized as a learning to rank algorithm. Another application of 

reinforcement learning for the ranking problem is A3CRank algorithm, which aggregates the ranking results 

from a few ranking algorithms such as TF-IDF, BM25 and PageRank (Zareh Bidoki et al., 2010). In (Hofmann 

et al., 2013) an RL model is proposed to assist information retrieval systems to learn from users’ interactions. 

Specifically, it presents an interleaved comparison method for online learning to rank problem. 

This research also is concentrated on the application of RL techniques and learning to rank using the click-

through data. In (Keyhanipour et al., 2007) a method called WebFusion is introduced in which learning to rank  

from click-through data and information fusion have been successfully combined within an intelligent meta-

search engine environment.  

3 Proposed Approach 

The proposed learning to rank algorithm consists of two phases, which are Transformation and Model-

Generation that will be described in the next subsections. Briefly, within the Transformation phase, a feature 

generation mechanism will be applied to the benchmark dataset and a compact representation will be generated 

as triplets of queries, results and a subset of clicks through features. Then, in the Model-Generation stage, a 

reinforcement learning model is generated the learning to rank problem. During this step, temporal difference 

learning mechanisms such as Q-Learning and SARSA are employed to find near-optimal solutions for the 

compact representation of the first phase. Table 1 summarizes the proposed learning to rank method, which is 

called QRC-Rank. 

The proposed learning to rank method: QRC-Rank 

Input: 

a learning to rank benchmark dataset which consists of a set of query-document pairs with their feature vectors and 

relevance judgments (i.e., the training set, T) 

Output: 

an action table, A, which provides the most appropriate action (degree of relevance), for the state corresponding to a 

query-document pair 

Procedure of the QRC-Rank: 

Step 1. Transformation: 

1. Selection of the scenarios needed for the calculation of click-through features from training set T. 

2. Generation of click-through features from T based on the suggested scenarios. This process generates a 

secondary dataset T′ from T, which includes the generated click-through features corresponding to query-

document pairs. 

Step 2. Model-Generation: 

3. Generating a Markov Decision Process Model for the learning to rank problem, including the sets of States, 

Actions, Rewarding Strategy and also the Transition Function. 

4. Applying Temporal-Difference learning methods, Q-Learning and SARSA, on the proposed Markov Decision 

Process Model to realize the most relevance label for each query-document pair 

Table 1. Outline of the proposed learning to rank algorithm 
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For better clarification, the same process is graphically illustrated in Figure 1.  

 

Fig.1 Steps of the QRC-Rank algorithm 

3.1 Transformation Phase 

In the context of information retrieval, ranking a set of documents in respect to a given query is influenced by a 

variety of features, which are related to this query-document pair. Some of these features are: Term-Frequency, 

Inverse Document-Frequency and PageRank. Any given benchmark dataset prepared for the learning to rank 

problem, consists of the values of such features, which are calculated for some pairs of queries and documents, 

as well as the relevance degree of a document with respect to a specific query. There are two problems with 

these datasets in order to achieve a learning to rank algorithm. First, due to the presence of a large number of 

features, these datasets usually are high dimensional. Usage of a large number of features leads to the 

inefficiency of the derived ranking algorithms in real-world situations. Second, these datasets usually do not 

contain the click-through data. Click-through data is an important source of implicit feedback of the users of 

Web search engines (Dou et al., 2008)  (Xu et al., 2010). 

The goal of the transformation phase is to generate click-through information for the benchmark data sets even 

if they lack such information. In this phase a compact representation of original benchmark dataset is produced 

based on a triplet of query (Q), ranked list of results (R) and features related to clicks of users (C) (Joachims, 

2002). In this phase, eight features are defined in three groups: Q, R and C. These features are: 

 

 

 

 lickRateiveness, Cy, AttractSpecificitC

Lengthnk, StreamAbsoluteRaR

untResultsAmo, QScore, RepetitionQ






 

Q contains features related to the nature of the queries of users. Repetition deals with the frequency of query 

terms in different parts of a Web document; including URL, title and content. QScore refers to the score of a 

document with respect to a given query. The QScore is generated by query-dependent ranking algorithms such 

as Vector Space and Language Models. Finally, ResultAmount indicates the number of results retrieved for a 

specified query. 

In the same way, features of the category R, highlight the characteristics of the Web documents independent of 

any query. In this category, AbsoluteRank shows the absolute rank of a given Web document. Undoubtedly, in 

calculation of this feature, query-independent specifications such as PageRank play an important role. 

StreamLength is a structure containing the length of document’s URL length, its title length and the length of a 

document’s content. 

The category C, includes those features which deal with the users’ click-through data. Specificity is an indication 

of the uniqueness of a given document for a set of queries. In other words, for a given Web document, 

Specificity shows how many users have clicked on this document for a given set of queries. The Attractiveness 

feature is an indicator of the number of Web users’ attention to a given document during their search 

interactions. Attractiveness distinguishes between Web documents that are clicked first or last from those 

clicked during the rest of the search session. Surprisingly, these features could be calculated in the presence or 

even absence of click-through data.  

Original 

Benchmark 

Dataset 

Transformation 

Phase Transformed 

Benchmark 

Dataset 

Model Generation 

Phase Reinforcement Learning 

Model of Learning to 

Rank Problem 
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The computation of the above-mentioned features is completely dependent on the amount of the information 

available in a specific benchmark dataset. In the next section, a few scenarios would be presented for the 

calculation of the above features for two standard benchmarking datasets: LETOR4.0 and WCL2R. 

3.2 Model-Generation Phase 

In Model-Generation phase a model will be created for ranking web documents using reinforcement learning 

techniques. The input data for this phase comes from the Transformation phase, which is an eight-dimensional 

dataset, containing the generated click-through features in categories Q, R and C. 

In this phase, a Markov Decision Process (MDP) model is generated as a triple of {States, Actions, Rewards}. 

The proposed MDP model is: 

𝑆𝑡𝑎𝑡𝑒 = {𝑄, 𝑅, 𝐶} = {
𝑅𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛, 𝑄𝑆𝑐𝑜𝑟𝑒, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠𝐴𝑚𝑜𝑢𝑛𝑡, 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑅𝑎𝑛𝑘, 𝑆𝑡𝑟𝑒𝑎𝑚𝐿𝑒𝑛𝑔𝑡ℎ,

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, 𝐴𝑡𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠, 𝐶𝑙𝑖𝑐𝑘𝑅𝑎𝑡𝑒
} 

𝐴𝑐𝑡𝑖𝑜𝑛 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝐿𝑒𝑣𝑒𝑙𝑠 

𝑅𝑒𝑤𝑎𝑟𝑑 = −𝐴𝐵𝑆(𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑐𝑙𝑎𝑠𝑠𝐿𝑎𝑏𝑒𝑙) 

Based on the above definition of the learning to rank problem, any query-document pair specifies the current 

state of the learning agent as an eight-dimensional space of click-through features. In each state in this space, the 

learning agent may select an action from the set of possible actions (Relevant, Non-Relevant …). Finally, the 

agent receives a numerical reward, which indicates the distance between the true relevance label of the 

corresponding query-document pair and the label, which was selected by the agent during its most recent action. 

For this definition, we can perceive that the Markov property, which is the independence of receiving a reward 

at a particular state from the previous states and actions, withholds (Sutton and Barto, 1998). This is due to our 

episode generation policy in which data items are selected from the training set by the uniform distribution 

probability. Each data item belonging to an episode will be visited independent of other data items. Formally, 

we have: 

   ttttttttttt ,asrr,ss ,a,s,r,,as,r,a,srr,ss   110011111 PrPr   

In the above equation, by doing action at in the state st at time-step t, the learning agent receives a reward rt+1, 

and the surrounding environment transforms into the state st+1. Because the Markov property withholds in the 

proposed RL model, the learning agent can benefit from temporal-difference learning methods such as Q-

Learning and SARSA. These methods use various updating mechanisms to bring up to date their estimations 

about the appropriateness of doing possible actions in different states (Szepesvari, 2010). Suppose 𝑄(𝑠𝑡 , 𝑎𝑡) is 

the estimation of the learning agent about the goodness of doing action at while being in state st at time-step t. 

SARSA estimates the values of the accomplished actions in visited states, based on the recently achieved reward 

as well as its estimation about the goodness of doing next action in the new state, 𝑄(𝑠𝑡+1, 𝑎𝑡+1). In this way, 

SARSA is an on-policy reinforcement learning algorithm with the below updating rule:   

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

In contrast, using the Q-learning algorithm, the RL agent learns an optimal policy independent of its current 

action selection policy, provided that does enough exploration. In fact, Q-Learning renews its estimation about 

𝑄(𝑠𝑡 , 𝑎𝑡) regarding the immediate reward as well the goodness of the most suitable action in the next visiting 

state. Thus, for the Q-Learning algorithm, the updating rule is defined as: 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] 

In the above formulae, 𝛼 is a constant step-size parameter and 𝛾 ∈ [0,1] is the discount rate. As it was 

mentioned previously, each training episode conations of a fixed number of data items (query-document pairs), 

which are selected by equal chance from the underlying benchmark dataset. This strategy will guaranty the 

Markov property in the proposed representation of the learning to rank problem. In this framework, the RL 

agent tries to find the best action, which is the most suitable relevance label for each state, in an iterative 

manner. 
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4 Evaluation Framework 

4.1 Benchmark Datasets 

The main capability of our proposed QRC-Rank system is its ability to extract required click-through features 

from any given benchmark dataset during the Transformation phase. We believe utilizing such click-through 

features are one of the contributors to higher performance of QRC-Rank in comparison to other well-known 

ranking methods. To evaluate the performance of the QRC-Rank system, we have used two benchmark datasets 

LETOR4.0 which does not include click-through features, as well as the WCL2R dataset, which contains such 

features. 

Microsoft’s LETOR 4.0 is a set of benchmark datasets published for research on the learning to rank problem in 

July 2009 (LETOR4.0 Datasets, 2009). It consists of two datasets named as MQ2007 and MQ2008, which are 

designed for four different ranking settings: supervised, semi-supervised, listwise ranking, and rank aggregation. 

There are about 1700 queries in MQ2007 and 800 queries in MQ2008 with a number of human-labeled 

documents (Qin et al., 2007). LETOR4.0 dataset provides a feature vector containing 46 features for each pair 

of query-document. These features cover a wide range of common information retrieval features and 

information such as Term Frequency, Inverse Document Frequency, BM25, Language Models for IR (LMIR), 

PageRank, and HITS. However, LETOR4.0 datasets do not contain any click-through data (Alcantara et al., 

2010). In this research, the “supervised ranking” part of LETOR4.0 is utilized, which is MQ2008. It is organized 

in five folds structure, including training, validation and testing data and contains for each pair of query-

document, a relevance label based on the human judgment in three relevance levels. The larger the relevance 

label, the more relevant the query-document pair. Each row of the LETOR4.0 dataset is related to a query-

document pair. The structure of a typical row of the LETOR4.0 is represented in Figure 2. 

rel qid:QID 1:F1 2:F2 … 46:F46 #docid:DocID comments 

Fig.2 Structure of the LETOR4.0 dataset 

In the above figure, the first column is the relevance label of the document to that query. The second column is 

query id, the following columns are ids of features plus their values which are real values normalized between 

[0,1] for each feature. At the end of the row is comment about the pair, including id of the document. 

A second set of experiments also was conduct on WCL2R dataset. WCL2R is released in Oct 2010 by a 

consortium of Federal University of Minas Gerais, Brazil and the University of Pompeu Fabra Spain (Alcantara 

et al., 2010). WCL2R is intended to focus on the click-through data alongside traditional information retrieval 

features. It contains two snapshots of the Chilean Web, which were crawled in August 2003 and January 2004 

by the TodoCL search engine (TodoCL, 2002). The data is structured in 10 folds containing training, validation 

and testing data. Human judgments are presented in four relevance levels (WCL2R, 2010). The structure of each 

row of the WCL2R is similar with those of the LETOR4.0, which is depicted in Figure 2. However, the values 

of the features are not normalized in the WCL2R dataset. 

Table 2 provides an overview of LETOR4.0 and WCL2R collections. Training a ranking model in the 

LETOR4.0 dataset is more difficult than those of the WCL2R dataset. The main reason is that WCL2R has 

explicit click-through data while such data are not available in the LETOR4.0. The second reason is the 

presence of only 6.13% of total relevant documents per any given query in the LETOR4.0 dataset, while this 

quantity is about 29.8% in the WCL2R dataset. 

Table 2: Summary of specifications of LETOR4.0 and WCL2R data collections 

Dataset #features #queries 
#query-

doc pairs 

Relevance 

levels 

Average # docs 

per query 

Average # relevant  

docs per query 

LETOR4.0

-MQ2008 
46 784 15211 3 19.40 1.19 

WCL2R 29 79 5200 4 61.94 18.01 
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4.2 Experimental Settings 

The first phase of QRC-Rank system is computing the click-through features. In this research, we have looked at 

different scenarios for calculating these features. As explained below some of these calculations are based on 

smoothing of the values. Additionally, a binary discretization based on the mean of the values has been applied 

to the features of all of these scenarios. 

Tables 3 and 4 lists the scenarios that we have test for calculating the click-through features on WCL2R and 

LETOR4.0 datasets. In these scenarios, a limited number of features of WCL2R and LETOR4.0 datasets are 

used, and their list is presented in Appendix A (Alcantara et al., 2010) and Appendix B (LETOR4.0’s Features 

List, 2009).  In Tables 3 and 4, the primitive features are denoted by ‘Fi’, where i stands for the ID of the feature 

in the corresponding appendix table. 

Three different scenarios based on the click-through features of the WCL2R benchmark dataset that have been 

experimented with, are explained in Table 3.  

Table 3: Click-through feature calculation scenarios for WCL2R benchmark dataset 

Scenario ID Computation Mechanism 

WCL2R-DF1 

and 

WCL2R-DF2 
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Each of these three scenarios provides an interpretation of the click-through features. For example, in the 

WCL2R-DF1 scenario, a document’s Repetition feature is calculated by the multiplication of TF-IDF values 

over the whole of that document, its title, and it’s URL. For this scenario, the QScore of a given document is 

computed by the product of BM25 rank, HITS Hub and HITS Authority values of that document, which all of 

these rankings are query-dependent. AbsoluteRank score is equal to the PageRank score of the corresponding 

document, which is a query-independent ranking algorithm. A given document is assumed long if both of its 

content as well as its title are lengthy. This characteristic is stored in the StreamLength feature. A document is 

assumed specific, if for a few queries it was clicked by many users in many search sessions. In addition, a 

document is supposed to have a higher degree of Attractiveness, if it was commonly clicked in the beginning of 

users’ search sessions rather than being clicked at the end of search sessions. Finally, the ClickRate feature of a 

particular document is calculated by multiplying the total amount of users’ clicks on it, number of non-single 

click sessions and number of non-single click queries. 

The main difference between WCL2R-DF1 and WCL2R-DF2 scenarios is that in the former, smoothing is 

accomplished by: 

 FAverageFF N
iiiii
:1 01.0 :    where,    
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In the above equation, εi is a fraction of average over all values of feature Fi. However, for the latter, the 

Dirichlet prior smoothing mechanism (Zhai and Lafferty, 2001) is used: 

 iiiii FSecondMinFF  01.0 :    where,   

In WCL2R-DF3 scenario, the Specificity of a document is defined as the inverse of the number of distinct 

queries for which that document was clicked. Besides, in this scenario, a given document is considered to 

achieve a higher Attractiveness value, if it is the first clicked item in many search sessions and it has received 

many single clicks in dissimilar sessions. Furthermore, the ClickRate of a given document is related to its 

attractiveness, query-dependent and query-independent ranking scores. Although WCL2R-DF3 scenario uses 

only 31%, of original features but its performance is substantially better than those of best-known ranking 

methods. 

In a similar way, three scenarios are defined for the LETOR4.0 benchmark dataset and they are listed in Table 4. 

LETOR4.0’s features is presented in the Appendix B (LETOR4.0’s Features List, 2009). 

Table 4: Click-through feature calculation scenarios proposed for LETOR4.0 benchmark dataset 

Scenario ID Computation Mechanism 

LETOR4-DF1 

and 

LETOR4-DF2 
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The main difference between the LETOR4-DF1 and LETOR4-DF2 scenarios is that in the former, smoothing is 

done based on the above-mentioned Dirichlet prior smoothing (Zhai and Lafferty, 2001), while in the latter, no 

smoothing is done. Since there is no explicit feature in LETOR4.0 dataset related to the click-through data, in 

LETOR4-DF1 and LETOR4-DF2 scenarios, it is assumed that ClickRate of a specific document is related to its 

query-dependent and query-independent ranking scores. This assumption is completed in the LETOR4-DF3 

scenario, by taking into account the effect of the Attractiveness feature. As it will be described in the next 

section, performance of these scenarios is related to the maturity of their interpretation from click-through 

features. It is worth mentioning that all of these scenarios use only a limited number of the original features of 

the dataset, while according to the experimental results, their performances are comparable or even better than 

those of the well-known ranking algorithms. 

Table 5 provides a comparison of different scenarios based on the number of features generated and or used in 

each scenario. As it can be observed, these scenarios provide a very compact representation of the dataset’s 

features because they utilize only very few features from the dataset plus eight features that they generate.  
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Table 5: Comparison of different scenarios of the proposed ranking method based on the number of consumed and generated 

features, which are first and second data items in each parenthesis 

Dataset #Features #Features per QRC-Rank Scenarios (consumed, generated) 

WCL2R 29 WCL2R-DF1 (16, 8) WCL2R-DF2 (16, 8) WCL2R-DF3 (9, 8) 

LETOR4.0 46 LETOR4-DF1 (9, 8) LETOR4-DF2 (9, 8) LETOR4-DF3 (10, 8) 

4.3 Evaluation Metrics 

Various measures have been used for the evaluation of performance of information retrieval systems such as 

Kendall-Tau (Kendall, 1948), P@n, NDCG@n and MAP (Manning, Raghavan and Schütze, 2008). The 

following evaluation criteria are used in this research: 

 Precision at position n (P@n): indicates the ratio of relevant documents in a list of the first n retrieved 

documents. The main aim of this metric is to calculate the precision of retrieval systems from users’ 

perspective. As users visit only top documents from the list of results, this evaluation criteria only consider 

the n top documents. Suppose we have binary judgments about the relevance of documents with respect to a 

given query. In this way, each document may be either relevant or irrelevant with respect to a specific 

query. Then, P@n is defined as: 

n

sp n resultdocs in to#relevant 
nP @  

 Mean Average Precision (MAP): For a single query q, Average Precision (AP) is defined as the average of 

the P@n values for all relevant documents, where n goes from 1 to the number of retrieved documents. 
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In this formulation, rj is the relevance score assigned to a document dj with respect to a given query q, 

being one, if the document is relevant and zero otherwise; Dq is the set of retrieved documents and Rq is 

the set of relevant documents for the query q. Then, MAP would be the mean of average precisions of all 

queries of the utilized benchmark dataset as: 

 

Q

qAvg
MAP

Q

q 


1  

The above mentioned ranking evaluation criterias (P@n and MAP) consider only binary degrees of 

relevance in the evaluation of query-document pairs.  

 Normalized Discount Cumulative Gain at position n (NDCG@n): By assuming different levels of relevance 

degrees for data items, the NDCG of a ranked list at position n (NDCG@n), would be calculated as follows: 

 
 




n

j

r

r

j
NDCG@n 

j

2 1log

12
12 1  

In this formulation, rj stands for the relevance degree of the jth document in the ranked list. 

5 Experimental Results 

In this section, the experimental results of applying the QRC-Rank algorithm on the WCL2R and LETOR4.0 

benchmark datasets, and the analytical comparison of the results with those of the well-known ranking 

algorithms, are presented. All of the reported results for the LETOR4.0 dataset, are based upon the usage of the 

LETOR’s Eval-Tool (Qin et al., 2007). For the WCL2R experiments, based on the structure of this dataset, an 

adapted copy of the Eval-Tool is utilized. It is noticeable that the results are achieved on a PC with a 2.0 GHz 

dual core processor, 2MB of cache and 3GB of RAM. 

For each dataset, the results of the QRC-Rank are compared with those reported for the baseline ranking 

algorithms. As it will be observed in the next subsections, the performance of the baseline algorithms on the 
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WCL2R and LETOR4.0 benchmark datasets are different. This is mainly due to the nature of the ranking 

algorithms as well as the structure of these datasets. As mentioned in Section 4, the utilized datasets provide 

different sets of features for the learning to rank problem. Specifically, in the WCL2R dataset, some click-

through data are available beside standard IR related features, but the LETOR4.0 dataset, does not include click-

through data. On the other hand, various ranking methods use different parts of evidence in their ranking 

functions. Consequently, successful ranking algorithms on these datasets are different. 

5.1 WCL2R Results 

Table 6 demonstrates the performance of a few well-known ranking techniques on upon the precision evaluation 

criterion on the WCL2R dataset (Alcantara et al., 2010).  

Table 6: Comparison of well-known ranking methods based on precision criterion on the WCL2R dataset 

Baseline Methods P@1 P@3 P@10 MAP 

SVMRank 0.400 0.455 0.397 0.432 

LAC 0.383 0.449 0.385 0.427 

GP 0.362 0.435 0.387 0.422 

RankBoost 0.378 0.416 0.369 0.412 

In the above table, the first baseline algorithm is SVMRank, which employs the support vector machine (SVM) 

technology for ranking documents (Joachims, 2002), (Joachims, 2006). The main idea of SVMRank is to 

formalize learning to rank as the binary classification on document pairs, where two classes are considered for 

applying SVM: correctly ranked and incorrectly ranked pairs of documents. The second baseline algorithm is 

LAC (Veloso et al., 2008), a lazy associative classifier that uses association rules to learn ranking models at the 

query-time. By generating rules on a demand-driven basis, only the required information is extracted from the 

training data, resulting in a fast and effective ranking method. The third baseline method is called GP. This 

method is based on a genetic programming ranking algorithm (Almeida et al., 2007). Finally, the last baseline 

algorithm, RankBoost, is a boosting algorithm that trains weak rankers and combines them to build the final 

rank function (Freund et al., 2003). 

Table 7 demonstrates the precision achieved by the proposed ranking algorithm using different configurations 

on the WCL2R dataset. 

Table 7: Results of the evaluation of different configurations of the proposed method based on precision criterion on the 

WCL2R dataset 

QRC-Rank 

configuration 
P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP 

QRC.W1 0.4427 0.4737 0.4636 0.4499 0.4467 0.4235 0.4106 0.3961 0.3863 0.4103 0.4303 

QRC.W2 0.3921 0.4104 0.4225 0.4246 0.4113 0.4088 0.4033 0.4024 0.3919 0.3985 0.4066 

QRC.W3 0.4706 0.488 0.4785 0.4603 0.4529 0.4424 0.4333 0.398 0.3878 0.4107 0.4422 

QRC.W4 0.4807 0.4921 0.451 0.4309 0.424 0.4151 0.3943 0.3819 0.3694 0.407 0.4246 

Table 8 provides details of the settings of different configurations of Table 7. These settings include the 

parameters of the utilized temporal difference learning algorithms, which are: q0, α, γ and ε. It must be noticed 

that the action selection policy for configuration QRC.W3 is ε-greedy, while it is Softmax for the other three 

implementations of the QRC-Rank. For the Softmax action selection mechanism (Szepesvari, 2010), in which 

the probability of choosing an action within a given state is proportional to the current estimation of its 

goodness, the computational temperature, τ, is set to be 10. 

Table 8: Configurations of the proposed method used for the evaluation on the WCL2R dataset 

QRC-Rank 

configuration 
Method Scenario 

Parameters 

0q α γ ε #iterations 
Episode 

Length 

QRC.W1 Q-Learning WCL2R-DF1 10 1/iteration 0.1 
Softmax, 

τ:10 
1000 100 
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QRC.W2 Q-Learning WCL2R-DF2 10 1/iteration 0.1 
Softmax, 

τ:10 
1000 100 

QRC.W3 Q-Learning WCL2R-DF3 100 1/iteration 0.1 0.1 1000 100 

QRC.W4 Q-Learning WCL2R-DF3 10 1/iteration 0.1 
Softmax, 

τ:10 
1000 100 

The results that are reported in Table 7, illustrate that QRC-Rank has achieved higher precision and MAP values 

in comparison to the baseline methods on the WCL2R benchmark dataset. A significant improvement of about 

20.17% is obtained for the proposed method in comparison to the best baseline algorithm, SVMRank on the 

P@1 criterion. The improvement is about 23.02% for the P@2 measure. Also, the QRC-Rank has achieved a 

rise of about 2.36% on the MAP criterion with comparison with the SVMRank. Our proposed method has 

outperformed the RankBoost algorithm by 7.33%. 

Moreover, the proposed method has achieved its best performance at the top of the ranked lists of results, which 

are usually mostly visited by the Web users rather than lower ranks that of less importance for the user. Based 

on the published results of the eye-tracking studies (Granka, Joachims and Gay, 2004), (Miller, 2012), about 

54% of clicks of the users of Google as the most widely used Web search engine (Google, 1998), were on its 

first search results and about 80% of clicks were accomplished only on the top three results. 

Figure 3 depicts a comparison of the best configuration of the proposed algorithm, QRC.W3, with the baseline 

methods on the P@n criterion in WCL2R dataset. 

 
Fig.3 Comparison of the best configuration of the proposed algorithm against baseline methods on P@n criterion in 

the WCL2R dataset 

To have a more precise insight about the performance of the proposed ranking method, Tables 9 and 10 present 

the comparison of its results with those of the well-known ranking algorithms based on the NDCG measure on 

WCL2R benchmark dataset. 

Table 9: Evaluation results of baseline ranking methods based on NDCG criterion on the WCL2R dataset 

Baseline 

Methods 
NDCG@1 NDCG@3 NDCG@10 

SVMRank 0.314 0.353 0.395 

LAC 0.296 0.360 0.403 

GP 0.288 0.344 0.396 

RankBoost 0.295 0.328 0.375 

 

Table 10: Comparison of the performance of different configurations of the proposed method based on NDCG measure on 

the WCL2R dataset 

QRC-Rank 

configuration 

NDCG 

@1 

NDCG 

@2 

NDCG 

@3 

NDCG 

@4 

NDCG 

@5 

NDCG 

@6 

NDCG 

@7 

NDCG 

@8 

NDCG 

@9 

NDCG 

@10 

Mean 

NDCG 

QRC.W1 0.3613 0.3845 0.3648 0.3715 0.3758 0.3727 0.3727 0.3749 0.3758 0.3766 0.4764 

QRC.W2 0.3324 0.3518 0.3568 0.3527 0.353 0.3597 0.3641 0.3703 0.3701 0.3705 0.4732 
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QRC.W3 0.3414 0.3792 0.3862 0.3855 0.3802 0.3889 0.3878 0.3881 0.3903 0.4114 0.4859 

QRC.W4 0.3625 0.3792 0.3698 0.3741 0.369 0.3777 0.3736 0.3728 0.3741 0.4203 0.4758 

The above statistics show a reasonable improvement over the baseline methods based on the NDCG measure. 

This improvement is especially noticeable on the top positions of the ranked list. In this regard, in its best 

setting, the QRC-Rank algorithm has achieved an improvement of about 15.44% compared with SVMRank on 

the NDCG@1 measure. The improvement for the NDCG@3 criterion is about 7.28% and for the NDCG@10 

criterion is about 6.4% . Figure 4 illustrates a graphical representation of these statistics. 

 
Fig.4 Comparison of the best configuration of the proposed algorithm against baseline methods on NDCG@n 

criterion in the WCL2R dataset 

Figures 5 and 6 respectively present the “Optimal Action Selection Rate” and “Average Received Rewards” per 

iteration for the SARSA and Q-Learning implementations of the QRC-Rank method on WCL2R dataset. 

According to these diagrams, both of the utilized reinforcement learning methods have an almost identical 

performance. 

 
Fig.5 Comparison of the performance of SARSA and Q-Learning methods based on the “Optimal Action Selection 

Rate” in the WCL2R dataset 
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Fig.6 Comparison of the performance of SARSA and Q-Learning versions of QRC-Rank based on the “Average 

Received Rewards” in the WCL2R dataset 

In these experimentations, the elapsed times for SARSA and Q-Learning methods are 29.766983 and 31.080834 

seconds, respectively. 

5.2 LETOR4.0 Results 

For the MQ2008 part of the LETOR4.0 dataset, performance of some of some well-known ranking algorithms 

are reported based on the precision and NDCG criteria. Tables 11 and 14 present the performance of the 

baseline ranking methods based on the precision and NDCG criteria, respectively. It is noticeable that the 

reported performance of baseline methods and those of the proposed algorithm are based on the average of 

performance of five folds of the testing data. 

Table 11: Performance of baseline methods based on the precision criterion on the LETOR4.0 dataset 

Baseline Method P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP 

AdaRank-MAP 0.443 0.417 0.390 0.368 0.345 0.322 0.299 0.280 0.262 0.245 0.476 

AdaRank-NDCG 0.452 0.422 0.395 0.370 0.345 0.323 0.299 0.280 0.262 0.245 0.482 

ListNet 0.445 0.412 0.384 0.365 0.343 0.320 0.301 0.279 0.263 0.248 0.478 

RankBoost 0.458 0.411 0.392 0.364 0.340 0.321 0.302 0.285 0.265 0.249 0.478 

RankSVM-Struct 0.427 0.407 0.390 0.370 0.347 0.327 0.302 0.282 0.265 0.249 0.470 

Table 12 shows the detail settings of different implementations of the QRC-Rank used during its evaluation on 

the LETOR4.0 dataset. For the QRC.L3 setting, the Optimistic Initial Values technique is used, which lets the 

reinforcement learning method to do an exhaustive exploration on possible actions in each state (Sutton and 

Barto, 1998). 

Table 12: Configurations of the proposed method used during evaluation on the LETOR4.0 dataset 

QRC-Rank 

configuration 
Method Scenario 

Parameters 

0q α γ ε #iterations 
Episode 

Length 

QRC.L1 Q-Learning LETOR4-DF1 100 1/iteration 0.1 
Softmax, 

τ:10 
1000 100 

QRC.L2 Q-Learning LETOR4-DF2 100 1/iteration 0.01 0.1 1000 100 

QRC.L3 Q-Learning LETOR4-DF3 1E+10 1/iteration 0.1 0.1 1000 100 

In Table 13, precision of different configurations of the QRC-Rank is reported. It could be observed that the 

proposed algorithm outperforms baseline methods based on the precision measure. In comparison with the best 

baseline method, AdaRank-NDCG, the proposed algorithm has achieved an improvement of about 8.56% based 

on the MAP criterion. This improvement is about 11.39% compared with the RankSVM-Struct method. 
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However, on the P@n measure, sometimes baseline methods have shown better performance than those of the 

proposed algorithm. 

Table 13: Performance of different variants of the proposed method based on the precision evaluation criterion on the 

LETOR4.0 dataset 

QRC-Rank 

configuration 
P@1 P@2 P@3 P@4 P@5 P@6 P@7 P@8 P@9 P@10 MAP 

QRC.L1 0.4233 0.3997 0.3761 0.3623 0.3506 0.3418 0.3329 0.323 0.3073 0.2953 0.49423 

QRC.L2 0.4322 0.406 0.3807 0.3652 0.3564 0.3471 0.3383 0.3279 0.313 0.2999 0.49767 

QRC.L3 0.4437 0.4188 0.4058 0.3885 0.3794 0.3659 0.3529 0.3424 0.3256 0.3122 0.52352 

Figure 7 depicts the statistics presented in Table 13. As it can be observed, the proposed method was the fourth-

best method in the P@1 measure, but it reached the second the best at P@2 by a negligible difference with top 

performer. However, after P@2 QRC-Rank has outperformed the other ranking methods. Moreover, the slope of 

degrading precision is smaller for QRC-Rank which means even in lower ranks it is much better than the others. 

 
Fig.7 Comparison of the best configuration of the proposed algorithm against baseline methods on P@n criterion on 

the LETOR dataset 
 

Table 14: Performance of baseline methods based on the NDCG criterion on the LETOR4.0 dataset 

Baseline 

Methods 

NDCG 

@1 

NDCG 

@2 

NDCG 

@3 

NDCG 

@4 

NDCG 

@5 

NDCG 

@6 

NDCG 

@7 

NDCG 

@8 

NDCG 

@9 

NDCG 

@10 

Mean 

NDCG 

AdaRank-MAP 0.375 0.414 0.437 0.461 0.479 0.492 0.497 0.461 0.225 0.229 0.492 

AdaRank-NDCG 0.383 0.421 0.442 0.465 0.482 0.495 0.499 0.464 0.227 0.231 0.495 

ListNet 0.375 0.411 0.432 0.457 0.475 0.489 0.498 0.463 0.227 0.230 0.491 

RankBoost 0.386 0.399 0.429 0.448 0.467 0.482 0.490 0.457 0.221 0.226 0.485 

RankSVM-Struct 0.363 0.398 0.429 0.451 0.470 0.485 0.491 0.456 0.224 0.228 0.483 

Table 15 provides the comparison of the QRC-Rank method in different settings based on the NCDG measure. 

As it can be seen in the table, the QRC-Rank’s performance is slightly lower but comparable to those of  

baseline methods. This situation is mainly due to the absence of explicit click-through features in the LETOR4.0 

dataset. However, the drop in the performance is not alarming. 
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Table 15: Performance of different variants of the proposed method based on the NDCG evaluation criterion on the 

LETOR4.0 dataset 

QRC-Rank 

configuration 

NDCG 

@1 

NDCG 

@2 

NDCG 

@3 

NDCG 

@4 

NDCG 

@5 

NDCG 

@6 

NDCG 

@7 

NDCG 

@8 

NDCG 

@9 

NDCG 

@10 

Mean 

NDCG 

QRC.L1 0.3637 0.3888 0.4057 0.4256 0.4464 0.4641 0.4773 0.4497 0.2423 0.2464 0.4675 

QRC.L2 0.3795 0.4027 0.4152 0.4337 0.4564 0.4741 0.4886 0.4601 0.2463 0.2507 0.4785 

QRC.L3 0.3816 0.4038 0.4311 0.4503 0.4742 0.4893 0.501 0.473 0.2628 0.2679 0.4917 

Figures 8 and 9 respectively depict the “Optimal Action Selection Rate” and “Average Received Rewards” per 

different iterations on using SARSA and Q-Learning methods in the implementation of the QRC-Rank on the 

LETOR4.0 dataset. Based on these diagrams, both reinforcement learning methods have shown similar 

performance in the rate of selecting best the action per iteration as well as those of the average received rewards. 

 
Fig.8 Comparison of the performance of SARSA and Q-Learning methods based on the “Optimal Action Selection 

Rate” on the LETOR4.0 dataset 

 

 
Fig.9 Comparison of the performance of SARSA and Q-Learning methods based on the “Average Received 

Rewards” on the LETOR4.0 dataset 

In this investigation, the elapsed time for SARSA was 30.50 seconds, but the same value is 31.91 seconds for 

the Q-Learning method. 
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5.3 Analytical Discussion 

As it was observed in the previous subsections, according to the MAP and NDCG criteria, the proposed method 

either outperforms baseline ranking methods or shows a very close performance in comparison with the well-

known ranking methods. A closer look shows that the usage of the proposed click-through features, have had a 

decisive role in the performance of the proposed ranking algorithm. In this regard, the informativeness of the 

proposed click through feature that make up the scenarios and act as a compact representation of the click-

through features are compared with the original features in both WCL2R and LETOR4.0 datasets. Figures 10 

and 11 show these comparisons on the WCL2R dataset based on MAP and MeanNDCG criteria, respectively. In 

these figures, proposed click-through features used in the QRC.W3 configuration are compared with the best 

feature of the WCL2R dataset, F22 “Number of Sessions Clicked” (see Appendix A). F22 has the highest 

contribution to the ranking based on the MAP criteria among all original features in WCL2R dataset. 

 
Fig.10 Comparison primitive and click-through features based on the MAP measure on WCL2R dataset 

 

 
Fig.11 Comparison primitive and click-through features based on the MeanNDCG measure on WCL2R dataset 

The same analysis is repeated on the LETRO4.0 dataset and its results are depicted in Figures 12 and 13. In 

these figures, features of the QRC.L3 configuration are compared with F39 “LMIR.DIR of whole document”  (see 
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Appendix B) which is the best original contributing feature on the LETOR4.0 dataset to ranking based on MAP 

criteria.  

 
Fig.12 Comparison primitive and click-through features based on the MAP measure on LETOR4.0 dataset 

 

 

 

 
Fig.13 Comparison primitive and click-through features based on the MeanNDCG measure on LETOR4.0 dataset 

Based on the above statistics, some of the proposed click-through features are more informative than the original 

features.  As seen in the figures, proposed click-through features related to the click-related category are more 

informative because they have higher MAP and MeanNDCG values. This phenomenon confirms that click-

through data are useful in the learning to rank process (Macdonald and Ounis, 2009). To sum up, the results of 

this analysis clearly show that proposed click-through features together when combined in scenarios are more 

informative than the original features. These proposed click-through features are working well with the 

explorative and exploitative capabilities of the reinforcement learning methods in finding the suitable rankings. 

This combination has resulted in the higher performance of the proposed QRC-Rank method in comparison to 

those of the baseline ranking methods. 

Analysis of the proposed method on WCL2R and LETOR4.0 datasets indicates that suitable configurations of 
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0.3712
0.3756

0.4673

0.3006

0.2753

0.3332

0.3130

0.2753

0.4214

0.260

0.290

0.320

0.350

0.380

0.410

0.440

0.470

0.3831
0.3762

0.4775

0.2938

0.2499

0.3205
0.3081

0.2499

0.4218

0.230

0.270

0.310

0.350

0.390

0.430

0.470



18 

 

using optimistic initial mechanism for the initialization of the state-action values, (Q(s,a)), better results are 

achieved. This is mainly due to the availability of fewer relevant documents per any given query in the 

LETOR4.0 dataset compared with the WCL2R dataset. In this situation, by using the optimistic initial values 

mechanism on the LETOR4.0 dataset, the reinforcement learning agent has the chance to explore all of the 

possible actions in each state in order to identify the most appropriate one. It is also observed that for the 

WCL2R dataset, usage of the Softmax technique as the action-selection policy is effective. In comparison, on 

the LETOR4.0 dataset, exploration with the ε-greedy mechanism is more useful. This observation could also be 

interpreted using the nature of the investigated datasets. In the Softmax policy, the probability of selecting 

different possible actions is related to their estimated goodness, which is embedded in their Q(s,a) values. On 

the other hand, ε-greedy provides no discrimination between non-optimal possible actions. In fact, while dealing 

with the LETOR4.0 dataset, the reinforcement learning agent examines all of the so far identified as actions, for 

finding better ones during the learning process. 

6 Concluding Remarks and Further Works 

Machine learning has been applied successfully to the field of information retrieval. These learning to rank 

algorithms are exhaustively dependent of the benchmark datasets. However, there are some limitations with the 

available benchmark datasets. The main restriction is originated from the lack of click-through data, which is the 

implicit feedback of users about the retrieval performance of Web search engines. Besides, the high 

dimensionality of data items in the benchmark datasets adds to the complexity and probably the inefficiency. In 

this paper, a novel ranking algorithm named QRC-Rank is introduced. QRC-Rank works both data sets that 

contain click-through information and those that lack such information. QRC-Rank is a two phase retrieval 

system. In the first phase it processes the data set and generates a new dataset that contains additional more 

complex click-through information. The new click-through features reduce the high dimensionality of search 

space because there are only 8 such features are calculated. Second, under scenarios these features are combined 

with each other to create a compact representation. In this way, the proposed method can build click-through 

features even when those information are not explicitly present in the dataset. The compactness of the new  

secondary dataset reduces the complexity of developing ranking functions. Thereafter, the QRC-Rank algorithm 

builds a reinforcement learning model based on these compact representations of features. In this model, the 

reinforcement learning agent tries to find the best appropriate label for a given state, which corresponds to a 

visited query-document pair. Evaluation of the proposed method based on the P@n, MAP and NDCG criteria on 

WCL2R and LETOR4.0 datasets demonstrate that QRC-Rank is able to significantly outperform well-known 

ranking algorithms if click-through data is available in the dataset. The performance of the proposed algorithm 

is comparable with the baseline ranking methods even in absence of click-through data (i.e. LETOR4.0 dataset). 

This research could be extended by applying information fusion techniques such as ordered-weighted averaging 

(OWA) in the calculation of scenarios based on the click-through features. It would also be helpful if it would 

be possible to find ways to deal with the inherit uncertainty and ambiguous of the relevance judgments provided 

by humans. Perhaps methods of handling the uncertainty such as Dempster-Shafer theory (Shafer, 1976) and 

fuzzy integral operators (Grabisch, 1995) may be useful. In the meantime, one can also look at generating other 

types of features or scenarios for the dataset.  
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Appendix A: List of features in the WCL2R benchmark dataset 

Feature 

ID 
Feature Name Feature Type 

F1 TF 

Standard Features 

F2 IDF 

F3 TF-IDF (Term_frequency × Inverse_ document_frequency) 

F4 TF(Term frequency) of Title 

F5 IDF(Inverse document frequency) of Title 

F6 TF-IDF (Term_frequency × Inverse_ document_frequency) of Title 

F7 TF(Term frequency) of URL 

F8 IDF(Inverse document frequency) of URL 

F9 TF-IDF (Term_frequency × Inverse_ document_frequency) of URL 

F10 DL (Document Length) 

F11 DL (Document Length) of Title 

F12 DL (Document Length) of URL 

F13 BM25 

F14 PageRank 

F15 HITS Hub 

F16 HITS Authority 

F17 First of Session 

Click-through Features 

F18 Last of Session 

F19 Number of clicks in a document for a query 

F20 Number of sessions a document was clicked for a query 

F21 Number of clicks 

F22 Number of sessions clicked 

F23 Number of queries clicked 

F24 Number of single clicks in distinct sessions 

F25 Number of single clicks in distinct queries 

F26 Absolute number of single clicks in queries 

F27 Number of single clicks in queries grouped by session 

F28 Number of non-single click sessions 

F29 Number of non-single click queries 
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Appendix B: List of features in the LETOR4.0 benchmark dataset 

Feature ID Feature Name 

F1 TF(Term frequency) of body 

F2 TF(Term frequency) of anchor 

F3 TF(Term frequency) of title 

F4 TF(Term frequency) of URL 

F5 TF(Term frequency) of whole document 

F6 IDF(Inverse document frequency) of body 

F7 IDF(Inverse document frequency) of anchor 

F8 IDF(Inverse document frequency) of title 

F9 IDF(Inverse document frequency) of URL 

F10 IDF(Inverse document frequency) of whole document 

F11 TF(Term frequency)×IDF(Inverse document frequency) of body 

F12 TF(Term frequency)×IDF(Inverse document frequency) of anchor 

F13 TF(Term frequency)×IDF(Inverse document frequency) of title 

F14 TF(Term frequency)×IDF(Inverse document frequency) of URL 

F15 TF(Term frequency)×IDF(Inverse document frequency) of whole document 

F16 DL(Document length) of body 

F17 DL (Document Length) of anchor 

F18 DL (Document Length) of title 

F19 DL (Document Length) of URL 

F20 DL (Document Length) of whole document 

F21 BM25 of body 

F22 LMIR.ABS of body 

F23 LMIR.DIR of body 

F24 LMIR.JM of body 

F25 BM25 of anchor 

F26 LMIR.ABS of anchor 

F27 LMIR.DIR of anchor 

F28 LMIR.JM of anchor 

F29 BM25 of title 

F30 LMIR.ABS of title 

F31 LMIR.DIR of title 

F32 LMIR.JM of title 

F33 BM25 of URL 

F34 LMIR.ABS of URL 

F35 LMIR.DIR of URL 

F36 LMIR.JM of URL 

F37 BM25 of whole document 

F38 LMIR.ABS of whole document 

F39 LMIR.DIR of whole document 

F40 LMIR.JM of whole document 

F41 PageRank 
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F42 In-link number 

F43 Out-link number 

F44 Number of slash in URL 

F45 Length of URL 

F46 Number of child page 
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