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Non-Gaussian bivariate modelling with application to atmospheric
trace-gas inversion

Andrew Zammit-Mangiona,∗, Noel Cressiea, Anita L. Ganesanb

aNational Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied
Statistics (SMAS), University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia

bSchool of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK

Abstract

Atmospheric trace-gas inversion is the procedure by which the sources and sinks of a trace gas

are identified from observations of its mole fraction at isolated locations in space and time. This

is inherently a spatio-temporal bivariate inversion problem, since the mole-fraction field evolves

in space and time and the flux is also spatio-temporally distributed. Further, the bivariate model

is likely to be non-Gaussian since the flux field is rarely Gaussian. Here, we use conditioning to

construct a non-Gaussian bivariate model, and we describe some of its properties through auto-

and cross-cumulant functions. A bivariate non-Gaussian, specifically trans-Gaussian, model is

then achieved through the use of Box–Cox transformations, and we facilitate Bayesian inference

by approximating the likelihood in a hierarchical framework. Trace-gas inversion, especially at

high spatial resolution, is frequently highly sensitive to prior specification. Therefore, unlike

conventional approaches, we assimilate trace-gas inventory information with the observational

data at the parameter layer, thus shifting prior sensitivity from the inventory itself to its spatial

characteristics (e.g., its spatial length scale). We demonstrate the approach in controlled-

experiment studies of methane inversion, using fluxes extracted from inventories of the UK and

Ireland and of Northern Australia.

Keywords: Bivariate spatial model, Conditional multivariate model, Methane emissions,

Multivariate geostatistics, Trans-Gaussian model, Box–Cox transformation

1. Introduction

Atmospheric trace-gas inversion is the procedure by which flux fields (gas sinks and sources)

are identified from gas mole-fraction observations. Unlike conventional problems in spatial
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statistics, the spatial field of principal interest, the flux field, is rarely directly observed. In-

stead, satellite and surface gas-concentration instruments are sensitive to gas particles after they

have been transported over potentially large distances over time. Spatio-temporal statistical

methodology is well placed to obtain global space-time maps of mole fractions of an atmospheric

constituent from irregular observations (see, for example, Cressie et al., 2010; Cameletti et al.,

2013; Lindgren et al., 2011); however, the inversion of these maps in order to pinpoint the

sources and sinks of the gas is a much more difficult problem. Its solution is key to effective

policy implementation with regard to greenhouse gas emissions and climate change (Edenhofer

et al., 2014).

Current approaches to trace-gas inversion build on the data-assimilation framework de-

scribed, for instance, in Tarantola (2005), where prior beliefs on a flux field are updated with

observations, to produce posterior beliefs (see, for example, Rigby et al., 2011; Stohl et al.,

2009). The prior distribution is usually formulated to have prior expectation equal to values in

an inventory, a flux database constructed from auxiliary activity data (e.g., vehicles per unit

area) and emission factors associated with the emission sector (e.g., carbon dioxide emissions

per vehicle), while the prior covariance is usually constructed using values calculated from the

inventory. Reasonable prior marginal variances are typically assumed; for example, a prior den-

sity function at each location may be chosen such that the area under the curve between 0.5

and 1.5 times the value of the inventory at that location is around 68% (Ganesan et al., 2014).

Frequently, a diagonal structure is imposed on the prior covariance for all locations. It is also

usually assumed that the prior expectation and prior covariance completely specify the prior

distribution.

These current approaches can be critiqued due to their use of inappropriate or inflexible

models. First, atmospheric trace-gas inversion is inherently a bivariate spatio-temporal problem,

where observations are not readings of fluxes, but rather readings of a second, mole-fraction,

field. The mole-fraction field is generated by the underlying flux field and by meteorology,

which determines transport of the trace gas. Making this distinction allows one to attribute

uncertainties appropriately, either to instrumentation error or to imprecise mole-fraction field

modelling (e.g., due to linearisation of the flux-mole-fraction mapping or imprecise specification

of transport modelling/boundary conditions). Second, a Gaussian model is often inappropriate

for the flux field (Ganesan et al., 2014; Miller et al., 2014), which can be inherently non-

negative and which, as seen from inventories, may exhibit skewness and higher-order features.
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Third, spatial correlations in prior error covariances, even when using regressors, should be

assumed since errors in the inventories are likely to be spatially correlated. Fourth, several

works claim that inventories are highly inaccurate in certain regions (e.g., Lunt et al., 2015).

Consequently, there is a drive to divert from use of the inventories in the model, and to take

a data-driven approach to flux inversion, even when sub-national resolution is required and so

prior information is especially important.

These reservations were first discussed in Zammit-Mangion et al. (2015), where the au-

thors constructed a hierarchical, lognormal bivariate spatio-temporal model for flux inversion of

methane in the UK and Ireland. In that article, an empirical hierarchical modelling approach

(Cressie and Wikle, 2011, Section 2.1) was adopted, where numerous parameters were estimated

offline prior to drawing samples from the empirical posterior distribution of the flux field. In

this article, we extend the modelling and inferential approach in Zammit-Mangion et al. (2015)

in two ways. First, we relax the assumption of lognormality by defining a more general non-

Gaussian model, and subsequently we model the flux field as a trans-Gaussian (here a Box–Cox)

spatial process (De Oliveira et al., 1997). The class of Box–Cox spatial processes includes the

lognormal spatial process as a special case. Second, following a likelihood approximation, we

adopt a fully Bayesian approach to flux-field inversion that naturally propagates variability in

the parameters (parameters that were estimated offline in Zammit-Mangion et al., 2015) to our

inferences on the flux field. In order to reduce reliance on the flux inventory, which is based on

emission factors that are not precisely known, we do not assume it to be the prior mean of the

flux field. Instead, we take a new approach by assuming that it is an independent realisation

of the flux field that we wish to infer. Hence, we assume that the inventory is informative of

the spatial (prior) properties of the flux field, but not of the flux field itself, so that posterior

inferences on fluxes are still predominantly data-driven. We demonstrate the value of this ap-

proach in a controlled experiment where we infer flux fields in the UK using the true flux as

our inventory, an inventory with similar spatial properties (extracted from mainland Europe),

and one with highly dissimilar spatial properties (from Northern Australia). In the experiment,

inferred flux fields are compared to the known, true flux field.

The article is organised as follows. In Section 2 we motivate atmospheric trace-gas inversion

as a problem in bivariate modelling (Cressie and Zammit-Mangion, 2015; Royle and Berliner,

1999) and outline a few of the proposed bivariate model’s theoretical properties. In Section 3

we focus on the bivariate trans-Gaussian model and place it within a hierarchical framework
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appropriate for describing the problem of trace-gas inversion. The transformation that we

feature here is the well known Box–Cox transformation. The hierarchical model we employ is

summarised in Section 3.3; the succinct summary presented there can help to put the model

descriptions of the preceding sections into perspective. In Section 4 we outline the Markov

chain Monte Carlo (MCMC) scheme adopted and the approximations we use to facilitate its

implementation. In Section 5 we apply the framework to a realistic simulation study of methane

emissions in the UK and Ireland, where fluxes and synthetic mole-fraction observations are

simulated using meteorology from a numerical model and UK/Ireland flux inventories. To show

the flexibility of the model, we also apply it to the case when mole fractions are simulated

from a Northern Australian inventory. The methane emissions in this region are considerably

smoother (spatially) than those in the UK and Ireland. Conclusions are drawn in Section 6,

and the article finishes with three technical appendices.

2. Application and modelling overview

In this section we motivate the problem of atmospheric trace-gas inversion as a problem in

non-Gaussian bivariate modelling (Section 2.1), and discuss some properties of the non-Gaussian

bivariate model (Section 2.2).

2.1. Atmospheric trace-gas inversion

Monitoring of greenhouse gases and air pollutants is a key priority for environmental agencies

and institutions worldwide. One of its primary aims is to be able to determine where the gas is

being produced (sources) and where it is being removed (sinks). This is not a straightforward

task, since the net flux of the production and removal processes is related to the observed

mole fraction at a particular time and location after transport by meteorology and alteration

by chemical reactions. These processes can only be obtained from computationally intensive

numerical models.

The numerical models employed are either Eulerian (e.g., the Comprehensive Air quality

Model with eXtensions (CAMx); see Emery et al., 2012) or Lagrangian (e.g., the Numerical

Atmospheric-dispersion Modelling Environment (NAME) or the FLEXible PARTicle dispersion

model (FLEXPART); see Jones et al., 2007; Thompson and Stohl, 2014) in nature. Although

these two classes of models are fundamentally different, they serve the same purpose in inversion,

namely to establish the sensitivity of the mole fractions to the flux. In the application we
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consider in Section 5, we shall use a Lagrangian model for regional inversion (specifically the

model NAME), however the inversion framework we construct is applicable to both classes of

models.

Now, consider a spatially referenced flux field, Y1(·), and a spatially referenced mole-fraction

field (at some given time instant), Y2(·). Then meteorology and loss (chemical) processes imply

that

Y2(·) = H(Y1(·)), (1)

where H(·) is some nonlinear operator that Eulerian or Lagrangian models attempt to recon-

struct. Following Cressie and Wikle (2011, Section 7.3), a stochastic version of this model can

be written, conditional on Y1(·), as

Y2(·) = H(Y1(·); ξ(·)), (2)

where ξ(·) represents a process that expresses uncertainty in the physical relationship (1) that

defines a model for Y2(·) in terms of Y1(·).

Consequently, (2) defines a bivariate stochastic process that incorporates not only knowledge

about inventories and transport, but also uncertainty around how that knowledge results in the

mole-fraction field Y2(·). With a few exceptions (e.g., Peters et al., 2005), a linear mapping that

maintains the physical relationship to leading order, HL, is substituted for H, and a statistical

model

Y2(·) = HL(Y1(·)) + ζ(·), (3)

is assumed, conditional on Y1(·). In (3), ζ(·) collects discrepancies and uncertainties from (i)

using leading-order, linear physical relationships and (ii) inaccuracies inherent to the chemical

transport model. When analysing short-lived gases, such as carbon monoxide, the sink due

to chemical reaction (a component of H) can be nonlinearly dependent on the flux. However,

for long-lived gases such as methane, considered in Section 5, this sink is approximately flux-

independent. We therefore expect uncertainties arising from (i) to be dominated by (ii). When

using HL instead of H, model interpretation and inference is greatly facilitated. In all that

follows, we base our work on (3).

Using this conditional approach to building a bivariate process that respects the physical

system expressed (to leading order) by (3), is very powerful, since it now only remains to define
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a univariate spatial process for Y1(·). That process need not be Gaussian, and indeed for the

methane flux fields considered in Section 5, it will generally not be. Consequently, from (2) and

(3) the joint process (Y1(·), Y2(·)) is tied to both the physics expressed in HL and the stochastic

(possibly non-Gaussian) properties of Y1(·).

The joint statistical properties of Y1(·) and ζ(·) fully determine the statistical properties of

Y2(·). We briefly discuss these properties for general Y1(·) and when HL is an integral transform

in Section 2.2. Unlike Y2(·), observations of Y1(·), when available, only capture the process’ very

fine scales. Hence one cannot enjoy the use of typical exploratory-data-analysis techniques to

guide the choice of model for Y1(·). The presence of flux inventories can help, although over-

reliance on these inventories, which are hard to validate, is an ongoing concern (e.g., Berchet

et al., 2015); we return to this point in Section 3.2.

This article is concerned with an appropriate model choice for Y1(·) and ζ(·). Both for

analytical and computational convenience, Y1(·) and ζ(·) are frequently assumed to be Gaussian

(e.g., Stohl et al., 2009) in which case Y2(·) is Gaussian and (Y1(·), Y2(·)) is jointly Gaussian. In

recent years, there has been a shift away from Gaussianity assumptions; for example, Rigby et al.

(2011) considered exponential distributions for Y1(·) evaluated at the grid-cell level, Ganesan

et al. (2014) considered lognormal distributions, and Miller et al. (2014) considered a truncated

spatial Gaussian process for Y1(·). Zammit-Mangion et al. (2015) showed that both lognormality

and spatial correlation in Y1(·) are important for prediction in the UK and Ireland. However,

it is also the case that lognormality may not be a suitable assumption everywhere and at all

grid resolutions. A flexible class of models that can accommodate different degrees of non-

Gaussianity and spatial correlation is the class of trans-Gaussian spatial processes (Cressie,

1993, p. 137); we use them within a trace-gas inversion framework in Section 3 and illustrate

the importance of the added flexibility in Section 5.

2.2. Properties of the bivariate non-Gaussian model

If Y1(·) and ζ(·) are Gaussian processes then the properties of the joint process (Y1(·), Y2(·))

are straightforward to derive (Cressie and Zammit-Mangion, 2015). When Y1(·) is a lognormal

process, then the first-order and second-order moments of the finite-dimensional distributions

of (Y1(·), Y2(·)) can be expressed in closed form (Zammit-Mangion et al., 2015). In this section

we discuss the properties of the joint process (Y1(·), Y2(·)) when Y1(·) is any (in general, non-

Gaussian) process.
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Consider a real-valued random field {Y1(s) : s ∈ D ⊂ Rd}, where typically d = 2 and D is a

continuously indexed domain. Construct the real-valued field {Y2(s) : s ∈ D ⊂ Rd} through

Y2(s) =

∫
D
b(s,u)Y1(u)du + ζ(s); s ∈ D, (4)

where we term the integral kernel b(·, ·) an interaction function and ζ(·) is a discrepancy term

independent of Y1(·). The integral in (4) exists for all s ∈ D as a quadratic mean limit of

Riemann sums provided that

CY2Y2(s1, s2) ≡
∫
D

∫
D
b(s1,u1)b(s2,u2)CY1Y1(u1,u2)du1du2 <∞; s1, s2 ∈ D, (5)

and CY1Y1(·, ·) ≡ cov(Y1(·), Y1(·)) is continuous on D×D (see Yaglom (1987), p. 68, and Lindgren

(2012), Theorem 2.16). Thus, provided that ζ(·) is well defined and (5) holds, Y2(·) exists by

construction. Further, from (5), if ∂
∂sb(s, ·) exists for all s ∈ D, and if ζ(·) is differentiable in

quadratic mean, then Y2(·) is differentiable in quadratic mean as well (Åström, 2006, p.37).

Without loss of generality, we consider the (joint) spatial cumulants of the processes eval-

uated at n ≥ 1, possibly repeated, locations. Let ϕY1(t1) be the characteristic function of the

vector (Y1(u1), . . . , Y1(un))′, where it is understood that ϕY1(t1) is a function of the locations

u1, . . . ,un. We define the n-th order spatial cumulant function of u1, . . . ,un to be

κnY1...Y1(u1, . . . ,un) ≡ 1

ιn
∂n

∂t11 . . . ∂t1n
lnϕY1(t1)

∣∣∣∣
t1=0

, (6)

where the superscript of κ(·) denotes the spatial cumulant order, the subscript denotes the pro-

cesses associated with the spatial locations, and ι is the imaginary unit. Since (6) is dependent

only on Y1, it is an auto-cumulant function. Cross-cumulant functions can be constructed by

assuming that a possibly different process is evaluated at each location, in which case

κnYj1 ...Yjn
(s1, . . . , sn) ≡ 1

ιn
∂n

∂tj11 . . . ∂tjnn
lnϕY(t)

∣∣∣∣
t=0

, (7)

where jk ∈ {1, 2}, for k = 1, . . . , n; Y = (Yjk(sk) : k = 1, . . . , n)′; and t = (tjkk : k = 1, . . . , n)′.

We are interested in characterising the joint process (Y1(·), Y2(·)) when the auto-cumulant

functions associated with Y1(·) are known. We start by considering the auto-cumulant functions

of Y2(·). Since the cumulant of a sum of independent random variables is the sum of the
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individual cumulants, the auto-cumulant functions associated with Y2(·) are a sum of those

associated with the processes,
∫
D b(·,u)Y1(u)du and ζ(·). Hence, it can be shown through use

of the characteristic function (Kuznetsov et al., 1965, Appendix III) that, provided all auto-

cumulant functions associated with Y1(·) are integrable,

κ1Y2(s1) =

∫
D
b(s1,u1)κ

1
Y1(u1)du1 + κ1ζ(s1); s1 ∈ D, (8)

κ2Y2Y2(s1, s2) =

∫
D

∫
D
b(s1,u1)b(s2,u2)κ

2
Y1Y1(u1,u2)du1du2 + κ2ζζ(s1, s2); s1, s2 ∈ D, (9)

and the n-th order auto-cumulant function associated with Y2(·) is, for n ≥ 1,

κnY2...Y2(s1, . . . , sn) =

∫
D
· · ·
∫
D
b(s1,u1) . . . b(sn,un)κnY1...Y1(u1, . . . ,un)du1 . . . dun

+ κnζ...ζ(s1, . . . , sn); s1, . . . , sn ∈ D. (10)

When ζ(·) = 0 in (4), and hence κnζ...ζ(s1, . . . , sn) ≡ 0, we have

κnY2...Y2(s1, . . . , sn) =

∫
D
· · ·
∫
D
b(s1,u1) . . . b(sn,un)κnY1...Y1(u1, . . . ,un)du1 . . . dun,

which is a generalisation to cumulants of the bilinear property of covariances, namely

cov

(
N1∑
k=1

akU1k,

N2∑
l=1

blU2l

)
=

N1∑
k=1

N2∑
l=1

akblcov(U1k, U2l),

where U1 and U2 are random vectors of length N1 and N2, respectively; ak ∈ R, for k =

1, . . . , N1; and bl ∈ R, for l = 1, . . . , N2.

In order to fully characterise the joint process (Y1(·), Y2(·)), we also need the cross-cumulant

functions that involve both Y1(·) and Y2(·). This entails a lengthy but straightforward extension

to the arguments of Kuznetsov et al. (1965), which we defer to Appendix A. We show that the

cross-cumulant functions are rather simple in form; for example,

κ3Y1Y1Y2(u1,u2, s3) =

∫
κ3Y1Y1Y1(u1,u2,u3)b(s3,u3)du3. (11)

All cross-cumulant functions of (Y1(·), Y2(·)) do not involve the process ζ(·) since Y1(·) and ζ(·)

are independent. Of all the auto-cumulant and cross-cumulant functions, the second-order ones

are arguably the most important since they are also the marginal and cross-covariance functions
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of the joint process. It can be shown (Cressie and Zammit-Mangion, 2015, Section 3) that the

2× 2 covariance matrix (κ2YiYj (s1, s2) : i, j ∈ {1, 2}) given by (9) is non-negative definite for all

s1, s2 ∈ D.

In the special case where b(s,u); s,u ∈ D, is solely a function of s − u, the spectra of the

auto-cumulants of Y2(·) (known as polyspectra) can be found through a Fourier transform of

(10). However, in our application, b(·, ·) describes a sensitivity of mole fraction to flux at a

given spatial location at a single time instance. It is meteorology-driven, and hence it is highly

spatially dependent and asymmetric. Wind induces directional sensitivity and, consequently,

the function b(s, ·) frequently exhibits behaviour that is close to a step change at s. As we show

through a simple example in Appendix B, this can result in interesting correlation structures and

higher-order properties that are not possible to obtain using Gaussian, symmetric, multivariate

spatial models (e.g., as found in Gneiting et al., 2010).

3. Hierarchical trans-Gaussian bivariate models for atmospheric trace-gas inversion

In this section we discuss the construction of our framework for atmospheric trace-gas in-

version. First, in Section 3.1 we develop the hierarchical model that uses the special class of

non-Gaussian bivariate models, obtained by modelling Y1(·) as a trans-Gaussian process with

the Box–Cox spatial process as a leading case. In Section 3.2 we outline how to assimilate

available flux inventories within the framework. In Section 3.3, we provide a succinct summary

of the hierarchical model.

3.1. The hierarchical model

In Section 2.2 we considered the relationship of mole fraction to the flux field at a notional

time instance. In practice, very little information on the flux field can be extracted from the

mole-fraction field at a single time instance and, hence, considering its temporal evolution

is important. In the following subsections we consider a spatio-temporal variant of the non-

Gaussian model and place it within a Bayesian hierarchical framework appropriate for describing

the problem of atmospheric trace-gas inversion.

3.1.1. The mole-fraction observations

Although the flux field Y1 varies spatio-temporally, we treat it as a time-averaged spatial

process. There are two reasons for this: First, the data available is not informative enough

to infer flux evolution at such fine time scales and, second, we are primarily interested in the
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average flux over a larger time window. In contrast, the mole-fraction field, which is directly

observed with relatively low measurement error, is only informative of the flux field once the

meteorology (that varies rapidly in space and time) and any chemistry is catered for. To account

for time dependence, from now on we add the subscript t to both the mole-fraction field and

the interaction function; these become Y2,t(·) and bt(·, ·), respectively.

The flux field is not directly observed; rather, the mole-fraction field is observed at different

time points, t ∈ T ≡ {1, 2, . . . , T}. Denote the observations at time point t as Z2,t ≡ (Z2,t(s) :

s ∈ DO
2 )′, where the finite set DO

2 ⊂ D. For clarity of exposition we omit the subscript t on

DO
2 , however our model can readily accommodate time-dependent observation locations. It is

reasonable to assume that the observations are conditionally independent and Gaussian, given

the true mole-fraction field at the corresponding locations at time t. Denote these true mole

fractions as YZ
2,t ≡ (Y2,t(s) : s ∈ DO

2 )′; then the observation model is:

(Z2,t | Y2,t(·)) ∼ N (YZ
2,t,Vt); t ∈ T , (12)

where the covariance matrices {Vt : t ∈ T } are diagonal and, in our case, assumed known.

3.1.2. The mole-fraction field

The mole-fraction field at time t, Y2,t(·), is, to leading order, a linearly transformed version

of the flux field Y1(·), where the linear operator depends on the interaction function. In general,

a model for the mole-fraction field follows through conditioning on the flux field:

({Y2,t(·) : t ∈ T } | Y1(·)) ∼ Dist

({∫
D
bt(·,u)Y1(u)du : t ∈ T

}
; Θ

)
,

where Dist({µt(·) : t ∈ T }; Θ) is a possibly non-Gaussian, spatio-temporal (discrete-time)

process with mean function {µt(·) : t ∈ T } and higher-order cumulant functions (Section 2.2)

parameterised by Θ. This conditional distribution is, in reality, extremely complicated, but to

date there has been very little effort to adequately characterise it. A natural way forward is to

assume (4), adapted for the presence of the temporal index t:

Y2,t(s) =

∫
D
bt(s,u)Y1(u)du + ζt(s); s ∈ D, t ∈ T , (13)

where ζt(·), for t ∈ T , has zero expectation. The term ζt(·) in (13) is required to capture

the spatio-temporal variability in Y2,t(·) that is not explained through the integral operator.
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Such discrepancy could be due to, for example, incorrect specification of bt(·, ·) in (13) or its

approximate numerical implementation.

Since {Y2,t(·) : t ∈ T }, is a non-Gaussian spatio-temporal field, modelling and computation

are critical considerations. Now, without compromising the non-Gaussian nature of the flux field

Y1(·) (and hence of Y2,t(·), for t ∈ T ), we make the assumption that the additive discrepancy

ζt(·), for t ∈ T , is Gaussian. For this model, the n-th order spatial cumulant functions associated

with Y2,t(·), for t ∈ T and n ≥ 3 are

κnY2,t...Y2,t(s1, . . . , sn) =

∫
D
· · ·
∫
D
bt(s1,u1) . . . bt(sn,un)κnY1...Y1(u1, . . . ,un)du1 . . . dun;

s1, . . . , sn ∈ D,

since all cumulants associated with a Gaussian process are zero for orders 3 and higher.

In practice, each bt(·, ·) is evaluated at a finite set of pairwise discrete locations to yield

the matrix B̃t ≡ (bt(s,u) : s ∈ DL
2 ,u ∈ DL

1 ), where DL
1 and DL

2 are finite, possibly different,

subsets of D on which we wish to model (and predict) Y1(·) and Y2,t(·), respectively. Define

Y1 ≡ (Y1(s) : s ∈ DL
1 )′,Y2,t ≡ (Y2,t(s) : s ∈ DL

2 )′, and ζt ≡ (ζt(s) : s ∈ DL
2 )′. Then (13)

can be approximated by, Y2,t ≈ BtY1 + ζt, where Bt ≡ B̃t∆ and ∆ is a diagonal matrix

containing integration weights. Provided DO
2 ⊂ DL

2 , we can obtain YZ
2,t from Y2,t through a

known incidence matrix Ct, so that YZ
2,t = CtY2,t for each t ∈ T . Henceforth, we assume that

DO
2 ⊂ DL

2 .

In the absence of prior insight on the structure of ζt(·), we further assume that its space-

time covariance function is separable. Specifically, we assume equally spaced time points, and

we let Σζ;τ2,a,d ≡ (cov(ζt(s1), ζt′(s2) | a, d) : t, t′ ∈ T , s1, s2 ∈ DL
2 ) = 1

τ2
(Qt

ζ;a)
−1 ⊗ Rs

ζ;d,

where τ2 is a precision parameter; Qt
ζ;a is the precision matrix corresponding to a first-order

auto-regressive discrete-time process (Rue and Held, 2005, Chapter 1) with auto-regressive

parameter a; and Rs
ζ;d ≡ (ρζ(‖s1 − s2‖ | d) : s1, s2 ∈ DL

2 ), where ρζ(u | d) ≡ exp(−u/d),

for u ≥ 0, is the exponential correlation function. The motivation for this choice is primarily

computational: In atmospheric trace-gas inversion with ground station data, |T | is large (several

hundreds) while |DL
2 | is typically small and frequently equal to |DO

2 |, which is generally less than

10. Hence, Σ−1ζ;τ2,a,d will be sparse, although Rs
ζ;d (and (Rs

ζ;d)
−1) is dense. Other approaches,

such as covariance tapering (Kaufman et al., 2008) or dimensionality reduction (Cressie and

Johannesson, 2008), might instead be employed to facilitate the computation.
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Note that ζt(·) induces an auto-regressive structure on Y2,t(·). To see this, one can use the

alternative representation (Storvik et al., 2002), ζt(·) = aζt−1(·) + et(·), to re-write (13) as

Y2,t(s) =

∫
D

(bt(s,u)− abt−1(s,u))Y1(u)du + aY2,t−1(s) + et(s); s ∈ D, t ∈ T , (14)

where et(·) is temporally uncorrelated and has spatial correlation function ρζ(u | d). In what

follows, we collect the spatial and temporal correlation parameters into the parameter vector

θ2 ≡ (a, d)′.

3.1.3. The flux-field model

The focus now turns to flexible non-Gaussian modelling of Y1(·), for which we employ a trans-

Gaussian-process approach. For several trace gases, such as methane (considered in Section 5),

it is reasonable to assume that the flux is only positive. To this end, we apply a monotonic

function that has as domain the positive real line, such that Ỹ1(·) ≡ gλ(Y1(·)) is approximately

a Gaussian process with mean µ̃1(·) ≡ x(·)′β, and covariance function C̃Y1Y1(·, · | θ1), where

x(·) is a vector of covariate functions, β ∈ Rp, and λ is a parameter of the transformation gλ(·).

A leading case of a trans-Gaussian process is the Box–Cox spatial process. Specifically, in

line with De Oliveira et al. (1997), we consider the power-normal family of spatial processes for

the flux field, obtained through application of the Box–Cox transformation

gλ(y) =


yλ−1
λ ; λ 6= 0

ln y; λ = 0
.

Define the correlation function R̃Y1Y1(·, · | θ1) ≡ τ1C̃Y1Y1(·, · | θ1), where τ1 is a precision

parameter. Further, define R̃Y1Y1;θ1 ≡ (R̃Y1Y1(u1,u2 | θ1) : u1,u2 ∈ DL
1 ), X ≡ (x(u1) : u1 ∈

DL
1 )′, and Y1 ≡ (Y1(u1) : u1 ∈ DL

1 )′. In the case of the Box–Cox family of transformations, the

positive-only domain of gλ(·) also restricts the domain of g−1λ (·). In particular, since g−1λ (ỹ) =

(λỹ + 1)1/λ, then ỹ > −1/λ if λ > 0 and ỹ < −1/λ if λ < 0. Therefore, the process Ỹ1(·) that

we specify in this case is a truncated Gaussian process. Then the probability density function

of Ỹ1 ≡ gλ(Y1) is

p(Ỹ1 | β, τ1,θ1, λ) =

(
τ1
2π

) |DL1 |
2 |R̃Y1Y1;θ1 |−

1
2

K1;β,τ1,θ1,λ
exp

(
−τ1

2
(Ỹ1 −Xβ)′R̃−1Y1Y1;θ1(Ỹ1 −Xβ)

)
Tλ(Ỹ1),
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where the normalising factor K1;β,τ1,θ1,λ ≤ 1 is a function of all unknown parameters; it is

understood that gλ(Y1) denotes a vector obtained by element-wise application of the Box–Cox

transformation; and

Tλ(Ỹ1) ≡

 1(Ỹ1 > −1/λ); λ > 0

1(Ỹ1 < −1/λ); λ < 0
. (15)

In (15), 1(·) is the indicator function as applied to vectors, that is, it returns a one if all the

elements of the vector satisfy the condition and a zero otherwise.

From p(Ỹ1 | β, τ1,θ1, λ), we obtain p(Y1 | β, τ1,θ1, λ) through the transformation gλ(·) to

yield the flux-process layer in our hierarchical model,

p(Y1 | β, τ1,θ1, λ) =

(
τ1
2π

) |DL1 |
2 |R̃Y1Y1;θ1 |−

1
2

K1;β,τ1,θ1,λ
exp

(
−τ1

2
(gλ(Y1)−Xβ)′R̃−1Y1Y1;θ1(gλ(Y1)−Xβ)

)
× Jλ1(Y1 > 0), (16)

where the Jacobian Jλ ≡
∏|DL1 |
i=1 |Y

λ−1
1,i |. Note that the support of p(Y1 | β, τ1,θ1, λ) is positive,

as required. We term (16) a Box–Cox spatial model and Y1(·) a Box–Cox spatial process.

3.1.4. The parameter model

Finally, we need to specify prior distributions over the parameters. This should be done with

care since, first, the range of the transformed observations changes with the transformation

parameter and, second, posterior-distribution impropriety can easily follow from inadequate

specification of non-informative prior distributions (Berger et al., 2001). In their original paper,

Box and Cox (1964) tackled the first issue by considering the conditional prior distribution,

p(β, τ1,θ1 | λ) ∝ h(λ)p(θ1)/τ1, and deducing what h(λ) should be for the prior probability

measure to be approximately independent of λ. Their choice, h(λ) = J
p/|DL1 |
λ , is not appropriate

in our context where Y1 is not observed. We therefore adopt the alternative of Pericchi (1981),

who noted that if the conditional prior distribution, p(β, τ1,θ1 | λ) ∝ h(λ)p(θ1)τ
p
2
−1

1 , then h(λ)

must be constant.

The prior distribution we choose for the flux-process layer is therefore,

p(β, τ1,θ1, λ) ∝ p(θ1)p(λ)τ
p
2
−1

1 ,

where p(θ1) and p(λ) are marginal prior distributions and, in order to ensure propriety of
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the posterior distribution, the parameter spaces of θ1 and λ are bounded (De Oliveira et al.,

1997). For the remaining parameters appearing in the mole-fraction-process layer (τ2, a and d),

we use independent, proper, prior distributions, p(τ2), p(a), and p(d), respectively.

For convenience, we specify bounded uniform distributions for θ1, λ, ln τ
−1
2 , a, and ln d; see

Section 3.3 for details.

3.2. Incorporation of the inventory

In atmospheric trace-gas inversion, one is usually supplied with a flux ‘inventory,’ which can

be used to reduce uncertainty on inferences on the flux field, Y1(·). We denote this inventory,

available for spatial locations in DL
1 , as W1. Incorporation of W1 in the model is akin to the

problem of data assimilation, where observational data is fused with computer-model output

in order to obtain an estimate that is optimal in some sense (e.g., Wikle and Berliner, 2007).

Standard data assimilation typically assumes that E(Y1) = W1. However, there are two con-

cerns with data assimilation in this context. First, no guarantees are provided on the quality

of W1, which has often been shown to be inaccurate (Lunt et al., 2015; Miller et al., 2013,

amongst others). Second, it is unclear how to construct the covariance matrix var(Y1); typi-

cally a diagonal structure is assumed with elements based on expert judgement (e.g., Ganesan

et al., 2014), however this is likely to be overly simplistic. Another approach to assimilation is

that of Fuentes and Raftery (2005), in which W1 is treated as a (possibly both additively and

multiplicatively biased) observation of Y1. However, in their approach one also has a Z1 that

provides a direct (unbiased) observation of Y1. In our context, where direct observations of Y1

are not available, data-driven inferences on the bias terms would be ill-constrained.

We adopt a different approach to the two outlined above, by assuming that W1 is only

informative on the spatial properties of the process. This choice is motivated by the fact that

inventories are typically constructed bottom-up from spatially referenced datasets on (say) agri-

cultural productivity and transport infrastructure. The emission factors used in this construc-

tion are typically not well constrained, however the main spatial features are still adequately

represented. We implement the approach by assuming that W1 is a noiseless observation of an

independent realisation of (Y1 | β, τ1,θ1, λ). Under this modelling assumption,

p(Y1 |W1,Z2,β, τ1,θ1, λ) ≡ p(Y1 | Z2,β, τ1,θ1, λ),

due to the conditional independence of Y1 and W1 when conditioned on (β, τ1,θ1, λ). Hence,
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this modelling assumption allows us to use Bayesian learning to glean information on (β, τ1,θ1, λ)

from W1. At the same time, inferences on Y1, when conditioned on β, τ1,θ1, and λ, are purely

a function of Z2 and are hence data-driven. We propose that the term data-feature assimilation

be used to describe this methodology, to distinguish it from standard data assimilation.

In this application, we envision that the transformation parameter λ, and consequently all

third-order and higher-order joint cumulants of Y1, will be highly sensitive to W1. Hence, this

procedure is analogous to the use of a training image to estimate third-order and higher-order

cumulants prior to carrying out spatial prediction (Dimitrakopoulos et al., 2010).

As a result of the modelled conditional independence between Y1 and W1, we augment the

conditional distribution (16) as follows:

p(Y1,W1 | β, τ1,θ1, λ) = p(Y1 | β, τ1,θ1, λ)p(W1 | β, τ1,θ1, λ)

=

(
τ1
2π

)|DL1 ||R̃Y1Y1;θ1 |−1

K2;β,τ1,θ1,λ
exp

−τ1
2

2∑
j=1

(Gλ,j −Xβ)′R̃−1Y1Y1;θ1(Gλ,j −Xβ)


×

 2∏
j=1

Jλ,j

1(Y1 > 0)1(W1 > 0), (17)

where K2;β,τ1,θ1,λ is a normalising factor, Gλ,1 ≡ gλ(Y1),Gλ,2 ≡ gλ(W1), Jλ,1 ≡ Jλ in (16),

and Jλ,2 ≡
∏|DL1 |
i=1 |W

λ−1
1,i |. For notational convenience, we frequently consider the joint vector

Y1 ≡ (Y′1,W
′
1)
′; then the conditional distribution (17) becomes

p(Y1 | β, τ1,θ1, λ) =

(
τ1
2π

)|DL1 ||R̃Y1Y1;θ1 |
−1/2

K2;β,τ1,θ1,λ
exp

(
−τ1

2
(Gλ −Xβ)′R̃

−1
Y1Y1;θ1(Gλ −Xβ)

)
× Jλ1(Y1 > 0). (18)

In (18), Gλ ≡ (G′λ,1,G
′
λ,2)
′, X ≡ (X′,X′)′, Jλ ≡

∏2|DL|
i=1 |Y

λ−1
1,i |, and R̃Y1Y1;θ1 ≡ bdiag(R̃Y1Y1;θ1 , R̃Y1Y1;θ1),

where bdiag(·) creates a block-diagonal matrix from its arguments.

3.3. Summary of the hierarchical model

The graphical model that we construct is given in Fig. 1, where for simplicity we omit the

discrepancies {ζt : t ∈ T } and instead show the auto-regressive structure on {Y2,t : t ∈ T }

that can be obtained from (14). In this graphical model we illustrate the time evolution of the

mole-fraction field, however it is convenient, both for notational purposes and for inference in

Section 4, to construct vectors and matrices that are blocked with time.
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Z2,1 Z2,2 Z2,T. . . . . .

Y2,1 Y2,2 Y2,T. . . . . .

Y1

θ2 τ2

W1

τ1 β θ1 λ

Fig. 1: Graphical representation of the hierarchical model, where {Z2,t : t ∈ T } are the mole-fraction observations,
{Y2,t : t ∈ T } are the mole fractions, Y1 is the flux field, W1 is the flux-field inventory, θ2 are mole-fraction-
discrepancy spatio-temporal correlation parameters, τ2 is the mole-fraction-discrepancy precision parameter, τ1 is
the flux precision parameter, β are the flux-field regression coefficients, θ1 are the flux-field correlation parameters,
and λ is the Box–Cox transformation parameter.

Define Z2 ≡ (Z′2,t : t ∈ T )′, C ≡ bdiag({Ct : t ∈ T }), V ≡ bdiag({Vt : t ∈ T }),

Y2 ≡ (Y′2,t : t ∈ T )′, and B ≡ (B′t : t ∈ T )′. Then the hierarchical model is:

Observation model (mole fraction): (Z2 | Y2) ∼ N (CY2,V),

Process model 2 (mole fraction): (Y2 | Y1,θ2, τ2) ∼ N (BY1,Σζ;τ2,a,d),

Process model 1 (flux): (Y1 | β, τ1,θ1, λ) ∼ BC
(

Xβ,
1

τ1
R̃Y1Y1;θ1 , λ

)
,

Inventory model (flux): (W1 | β, τ1,θ1, λ) ∼ BC
(

Xβ,
1

τ1
R̃Y1Y1;θ1 , λ

)
,

independent of Process model 1,

Parameter model 2 (mole-fraction): ln(τ−12 ) ∼ U(γl
τ−1
2
, γu
τ−1
2

), a ∼ U(γla, γ
u
a ),

ln d ∼ U(γld, γ
u
d ),

Parameter model 1 (flux): p(τ1) ∝ τ
p
2
−1

1 , p(β) ∝ 1, λ ∼ U(γlλ, γ
u
λ),

θ1i ∼ U(γlθ1i , γ
u
θ1i

); i = 1, 2, . . . , nθ1 ,

where BC is an abbreviation for ‘Box–Cox’: If D ∼ BC(µ,Σ, λ), then the probability density

function of gλ(D) is proportional to the multivariate normal density function with mean µ and

covariance matrix Σ, multiplied by Tλ(D) given by (15). The distribution U(γlη, γ
u
η ) is the

bounded uniform distribution over η with limits γlη and γuη , and nθ1 is the number of elements

in the vector θ1. For trace-gas inversion of methane, all hyper-parameters appearing in the

parameter models can be elicited from physical considerations (e.g., Ganesan et al., 2015).
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4. Inference

Since the normalising constant of the truncated multivariate normal density function is

intractable, inference using the model in Section 3.3 is problematic. Such models, where the

normalising constants of both the likelihood and the posterior distribution are intractable, have

been called doubly intractable (Murray et al., 2006). The approach of De Oliveira et al. (1997)

is to implicitly assume that the truncated volume is approximately 0. Then, in (16) and (18),

the factor Ki;β,τ1,θ1,λ ≈ 1, for i = 1, 2, independently of {β, τ1,θ1, λ}. From here on we assume

that Ki;β,τ1,θ1,λ = 1, for i = 1, 2.

The Box–Cox transformation can only induce normality in Ỹ1 if λ = 0 (Poirier, 1978).

In the univariate case, truncation is kept to a minimum when the mean of Ỹ1 is large and

the coefficient of variation of Ỹ1 is small (Freeman and Modarres, 2006). Draper and Cox

(1969) conclude that even though the Box–Cox transformation does not achieve exact Gaussian

multivariate normality, it has a beneficial effect on third-order cumulants (i.e., skewness); we

believe that this is the main motivation for its continued use in applications, such as in this

article.

Once we assert that the truncation effect in (18) is small, then the inferential approach can

be based on the standard Gibbs sampler. We can then also analytically marginalise out the

variables τ1, β, and Y2. There are several reasons why marginalisation is useful, especially

when using improper prior distributions (see Berger et al., 1999, for a discussion), however our

prime motivation here is to improve the convergence properties of the sampler (Van Dyk and

Park, 2008).

The required full conditional distributions are

p(τ2,θ2 | Z2,Y1),

p(Y1 | Z2,W1,θ2, τ2,θ1, λ),

p(θ1, λ | Y1),

where in the Gibbs sampler we block sample {τ2,θ2} and {θ1, λ}. Here we outline some features

of these full conditional distributions; further details are given in Appendix C.

The first full conditional distribution, p(τ2,θ2 | Z2,Y1) ∝ p(Z2 | τ2,θ2,Y1)p(τ2)p(θ2), which
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requires the marginalisation,

p(Z2 | τ2,θ2,Y1) =

∫
p(Z2 | Y2)p(Y2 | τ2,θ2,Y1)dY2. (19)

This is straightforward since both p(Z2 | Y2) and p(Y2 | τ2,θ2,Y1) are multivariate Gaussian

distributions. The resulting conditional distribution of (τ2,θ2) requires the Cholesky decompo-

sition of Σ−1ζ;τ2,a,d or other sparse variants of it that can easily be computed due to the imposed

auto-regressive structure on ζt(·), t ∈ T . The full conditional density function is given in (C.1)

and we sampled from it using a slice sampler (Neal, 2003).

The second full conditional distribution,

p(Y1 | Z2,W1,θ2, τ2,θ1, λ) ∝ p(Z2 | τ2,θ2,Y1)p(Y1 | θ1, λ), (20)

also requires marginalisation:

p(Y1 | θ1, λ) =

∫
p(Y1 | β, τ1,θ1, λ)p(β, τ1)dβdτ1,

where the distribution of (Y1 | β, τ1,θ1, λ) is given by (18). This is the integrated likelihood

function of {λ,θ1} (Berger et al., 2001), which partially depends on Y1 through the sum of

squared residuals,

S2
θ1,λ ≡ (Gλ −Xβ̂θ1,λ)′R̃

−1
Y1Y1;θ1(Gλ −Xβ̂θ1,λ). (21)

In (21), β̂θ1,λ is the generalised least squares estimate of β conditioned on θ1 and λ; that is,

β̂θ1,λ = (X′R̃
−1
Y1Y1;θ1X)−1X′R̃

−1
Y1Y1;θ1Gλ. (22)

The sum of squared residuals, S2
θ1,λ

, needs to be non-zero everywhere for (20) to be proper (see

(C.6) in Appendix C). A sufficient condition for this is that there does not exist a β such that

W1 −Xβ = 0. This condition is difficult to violate in practice (unless the inventory is used as

a covariate) and, thus, propriety of the conditional distribution is practically guaranteed.

Since the gradient of this full conditional distribution can be easily found (see Appendix C),

we implemented a Hamiltonian Monte Carlo (HMC) sampler for sampling from this conditional

distribution (Neal, 2011). Previous work on this application (Zammit-Mangion et al., 2015)

indicated an important benefit of HMC sampling. The gradient information of the conditional
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density function of Y1 improved the mixing properties of the MCMC chains when compared to

other samplers, such as slice samplers or Metropolis samplers. Since we analyse several models

in this work, we auto-adapt the HMC sampler’s step size in the burn-in period, in order to

achieve suitable acceptance ratios.

The third full conditional distribution we require is p(θ1, λ | Y1), which recall is guaranteed

to be proper under the chosen prior distribution. This conditional distribution can be obtained

by following the approach in De Oliveira et al. (1997), after modifying it slightly to include W1

in addition to Y1. In summary, the distribution of (β, τ1 | Y1,θ1, λ) is multivariate Normal-

Gamma and thus has a known normalising constant in terms of all the other parameters.

Hence, the required conditional distribution can be found, up to a constant of proportionality,

by writing it out as

p(θ1, λ | Y1) =
p(β, τ1,θ1, λ | Y1)

p(β, τ1|Y1,θ1, λ)
.

We sampled from this conditional distribution using a slice sampler (Neal, 2003).

5. Trace-gas inversion in the UK and Ireland

In this section we consider the problem of methane flux inversion in the UK and Ireland

using the model of Section 3.3 and the Gibbs sampler of Section 4. In Sections 5.1 and 5.2

we describe the overall simulation setup and experimental conditions, while the results are

discussed in Section 5.3.

5.1. Observation system simulation experiment (OSSE) setup

The main methane emissions inventory we use is based on the UK National Atmospheric

and Emissions Inventory (NAEI, UK Department for Environment Food and Rural Affairs

(DEFRA), 2014) and the Emissions Database for Global Atmospheric Research 4.2 (EDGAR,

Joint Research Centre of the European Commission (JRC) and the Netherlands Environmental

Assessment Agency (PBL), 2011); see Ganesan et al. (2015) for details.

Since methane is a long-lived gas, we expect that the relationship between the flux and the

mole-fraction is linear (Section 2.1). The matrices used for the linear mapping, {Bt : t ∈ T },

were constructed from bt(s,u) for t ∈ T , s ∈ DO
2 , and u ∈ DL

1 , using the UK Met Office’s

Lagrangian Particle Dispersion Model (LPDM), NAME. The domain DL
1 was defined as a lon-

lat grid, with each grid cell of size 0.7◦ × 0.5◦; here, |DL
1 | = 122. The domain DL

2 was chosen to

be DO
2 , the set of four locations of ground stations recording methane mole fraction in the UK
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and Ireland; hence |DL
2 | = 4. These four stations are located in Mace Head (Ireland), Ridge Hill

(England), Tacolneston (England), and Angus (Scotland). The temporal domain T contains

every 2 h interval between January 01 2014 at 00:00 and April 01 2014 at 00:00; a total of 1080

time intervals. Since the Scottish Highlands experience much lower methane emissions than

the rest of the UK, we constructed X with two columns; the first column contains ones in rows

corresponding to grid cells above 56.4◦ latitude (corresponding to the latitudes of the Scottish

Highlands) and zeros otherwise, and the second column contains ones in rows corresponding to

grid cells below 56.4◦ and zeros otherwise. The domain of interest D, station locations DO
2 , and

the sum over rows of each column of B1, are shown in Fig. 2, left panel.

In order to mimic a typical regional inversion study, we carried out what is known as an

observing system simulation experiment (OSSE), where observations (including measurement

error) are forward-simulated using the bivariate model together with a known flux field. Initially,

we assumed that the true flux Y1 was equal to the UK and Ireland inventory W1 (which

therefore was not simulated from a Box–Cox spatial model). We further let τ2 = 0.01 ppb−2,

a = 0.9, and d = 2.5◦, in line with what is expected in practice (Zammit-Mangion et al.,

2015). We next simulated the mole-fraction field using a discrete approximation to (13) with

the matrices {Bt : t ∈ T } supplied from NAME. Finally, the observations were simulated from

(12). We assumed that all the matrices in {Vt : t ∈ T } were equal to the identity matrix

and that data was missing in the OSSE at the same times and locations that data was indeed

missing from the stations whose locations we use. The missingness was used to construct the

incidence matrices {Ct : t ∈ T }.

In reality, the detected methane mole fraction is the sum of the contributions from regional

emissions, and a background level (around 1800 ppb) that is not accounted for by the LPDM

since it is run for a temporal horizon of only 30 days. This background level varies both in

space (e.g., with latitude) and time (e.g., seasonally) and can be included in our model through

E(ζt(·)). In this OSSE, we are implicitly assuming that the background is known and that the

discrepancy has been adequately corrected for. Therefore, E(ζt(·)) = 0, and henceforth we refer

to Y2,t(s) as a background-enhanced value of methane mole fraction. Estimation of background

mole-fractions is discussed in Ganesan et al. (2015). The simulated observations from the four

stations are depicted in Fig. 2, right panel. Negative measurements are present in these time

series, primarily due to the Gaussian discrepancy {ζt(·) : t ∈ T }. In practice, negative residual

mole fractions can arise from incorrect characterisation of the background process. Note that
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Fig. 2: Left panel: The region of interest (UK and Ireland) and the station locations considered (black dots),
that is, Mace Head (MHD), Ridge Hill (RGL), Tacolneston (TAC), and Angus (TTA). The quantity depicted is
the vector B1 = 1′B1 mapped out geographically; this plot superimposes the sensitivity of mole fraction to the
flux at the first time point at the four stations to give a visual summary of B1. Right panel: The four simulated
measurement time series at the four station locations of background-enhanced methane mole fraction. The first
time point corresponds to January 01 2014 at 00:00.

the 30-day temporal horizon used in NAME to obtain the required interaction functions is

unrelated to the window we use for flux inference (namely, 3 months).

We considered six models for the flux field, namely a Box–Cox spatial process (Model 1),

a lognormal spatial process (Box–Cox parameter λ fixed to 0; Model 2), a truncated Gaussian

process (λ fixed to 1 but with positivity imposed; Model 3), and the same three sequences of

models but with no spatial correlation assumed (Models 4–6). Specifically, for Models 1–3, we

let the transformed flux-field covariance function, C̃Y1Y1(u1,u2|θ1), be given by

C̃Y1Y1(u1,u2 | θ1) =
1

τ1
exp
(
−θ11‖u1 − u2‖θ12

)
,

where θ1 ≡ (θ11, θ12)
′, and θ11 > 0, 0 < θ12 < 2; for Models 4–6, we let C̃Y1Y1(u1,u2|θ1) =

1
τ1
1(u1 = u2). Using prediction performance measures, these models will allow us to weigh the

importance of modelling non-Gaussianity against that of spatial modelling. Note that Models

1–6 are all stationary models; while this may be a reasonable assumption when modelling

the flux at this resolution on a domain of this size, more complex models will be needed for

continental (and upwards) domains. In the general case, one might ensure that the employed

model is representative of the flux by fitting the flux model to the inventory and looking at

simple diagnostics (e.g., through leave-one-out cross-validation).
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Fig. 3: Inventories used in the study both for OSSE-data generation and data-feature assimilation experiments:
The correct inventory of the UK and Ireland (left panel), an incorrect inventory taken from mainland Europe
but with similar spatial properties to the UK (centre panel), and an incorrect inventory taken from Northern
Australia with highly dissimilar spatial properties (right panel).

In order to assess the role the inventory plays in the inference, we re-ran the algorithm

with Model 1 using the same observations Z2, but we replaced W1 with one of two ‘incorrect’

inventories extracted from EDGAR in different world regions; see Fig. 3. The first inventory,

W∗
1, was taken from mainland Europe and has second-order properties that are qualitatively

similar to those of the UK and Ireland. The second inventory was taken from Northern Australia.

Since methane emissions are much lower in this latter region, we shifted and scaled the emissions

in this inventory so that they have the same mean and variance as W1; we denote this inventory

as W∗∗
1 . We denote the models utilising these two inventories by Model 1∗ and Model 1∗∗,

respectively.

Finally, since it is known that the lognormal spatial process is an adequate model for emis-

sions in the UK and Ireland (Zammit-Mangion et al., 2015), we re-ran the OSSE with Models

1–6 assuming that the true emissions field is given by the inventory from Northern Australia

(Fig. 3, right panel), while for simplicity keeping the measurement locations and meteorology

unchanged. Upon comparing the panels of Fig. 3, it is readily apparent how different the right-

hand panel is, and that a lognormal process will not be suitable for modelling the flux field. In

this case, the added flexibility of the trans-Gaussian (here, Box–Cox) process is important.

5.2. MCMC details and diagnostics

We used bounded uniform prior distributions that encompass physically plausible values on

parameter transformations. For the mole-fraction parameters, we used ‘Parameter model 2’ in

Section 3.3, and we set γl
τ−1
2

= −2, γu
τ−1
2

= 20, γla = −1, γua = 1, γld = ln(0.1), and γud = ln(5).

For the flux-field parameters, we used ‘Parameter model 1’, and we set γlθ11 = 0, γuθ11 = 2, γlθ12 =
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0, γuθ12 = 2, γlλ = −3, and γuλ = 3 as in De Oliveira et al. (1997).

For each model, we ran 10 parallel MCMC chains with 12000 samples each. We used the

first 1000 samples for HMC adaptation, during which the step size used for discretisation of

the Hamiltonian dynamics was updated at a decreasing rate of adaptation in order to achieve

an acceptance ratio between 30% and 80%. These samples, together with a further 7000, were

discarded to ensure adequate burn-in. We then took every 10-th sample from the resulting

chains, to give a total of 4000 posterior samples for each model. Acceptance ratios were checked

and found to be reasonable for all the traces while mixing was verified by visual inspection of

the concatenated/thinned groups of chains and the auto-correlation plots. For the flux field,

we considered 10 of the spatial locations, chosen at random, out of the possible 122 locations.

Since λ was well constrained by the inventory, there was no noticeable additional computational

burden in sampling from its conditional distribution. The computational bottleneck for each

model was the sampling of the flux field using HMC. Each study required between 5 and 7

hours of computation time and 10 Gb (1 Gb per thread) of memory to run using R (R Core

Team, 2015) and OpenBLAS (Xianyi, 2016) on a computer with 64 AMD Opteron 6376 2.3 GHz

processors.

In order to study model performance we considered the root-mean-squared prediction error

(RMSPE) and the mean continuous rank probability score (MCRPS, Gneiting et al., 2005)

that penalises both for location error in the posterior distribution and under/over-confidence.

We also carried out a simple validation study on the mole fractions, where we diagnosed the

posterior distributions at times when observations were missing, using the same diagnostics as

for the flux field. Samples from the mole-fraction field, which was fully marginalised out in

our sampling scheme, were obtained by using the samples from the grouped/thinned chains.

Specifically, at the i-th iteration we sampled Y
(i)
2 from p(Y2 | Z2,Y

(i)
1 ,θ

(i)
2 , τ

(i)
2 ), where the

superscript ‘(i)’ indicates the i-th sample.

5.3. Results

Flux prediction: Flux diagnostics in Table 1 indicate that there is no practical difference

between the lognormal model (i.e., λ = 0) and the Box–Cox model when carrying out trace-gas

inversion in the UK and Ireland; this is not surprising since both the posterior mean and pos-

terior median of λ in Model 1 is 0.19. In separate simulation studies on the example illustrated

in Appendix B, we found very little difference in the prediction performance between the log-
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Table 1: Flux field and mole-fraction prediction diagnostics for Models 1–6, Model 1∗, and Model 1∗∗: Entries
give the root-mean-squared prediction error (RMSPE) and the mean continuous rank probability score (MCRPS).
Flux-field diagnostics are averages of scores at each s ∈ DL

1 . Mole-fraction-field diagnostics are averages of scores
at the space-time points at which observations are missing. Model 1∗ and Model 1∗∗ denote the cases when an
inventory from mainland Europe and an inventory from Northern Australia are used for W1, respectively.

Flux (g s−1) Mole Fraction (ppb)

Model RMSPE MCRPS RMSPE MCRPS

1 294.8 154.7 18.4 10.9

2 293.4 154.1 18.4 10.8

3 327.4 180.2 18.5 10.9

4 306.4 155.5 18.5 10.9

5 319.4 160.7 18.5 10.9

6 332.5 178.2 18.5 10.9

1∗ 308.8 165.6 18.4 10.8

1∗∗ 329.1 191.4 18.4 10.8

normal process and the Box–Cox process at these small values for λ. On the other hand, as

seen from Table 1, the truncated Gaussian model (Model 3) performs considerably worse than

Models 1 and 2. Further, the spatially uncorrelated Box–Cox and lognormal models perform

considerably worse than their correlated counterparts, both in terms of RMSPE and CRPS.

In Fig. 4, we provide a violin plot (Hintze and Nelson, 1998), which shows where the true

flux values (here, the UK and Ireland inventory) lie in relation to the posterior distribution of

the flux at each spatial location for the Box–Cox process (Model 1). The colour of the violin

is related to the posterior median, while the background colour of each grid cell denotes the

true flux. Most of the time, the true (in this case the inventory) flux values coincide with

regions of high posterior probability density. Although the width of the intervals containing

high posterior density are large for some regions, the colour map indicates a broad agreement

between the posterior median and the true flux. We can see however that the extremes, namely

the low emissions in the Scottish Highlands and the high emissions in the English Midlands are

not correctly captured. The lognormal process (Model 2) fared slightly better in this respect,

while the poor diagnostics associated with the truncated Gaussian model (Models 3 and 6) are

attributed to over- and under-estimating the flux in these regions, respectively.

Although the uncertainty on the flux in the individual grid cells is quite large (as can be seen

from Fig. 4), the uncertainty on the sum of fluxes is not so poorly constrained. This is a natural

consequence of averaging and of the linear operator obtained from the transport model, which

integrates the flux over a large domain at each time point. We consider two levels of aggregation
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Fig. 4: Violin plot summarising the posterior distributions of the fluxes (in g/s) at each grid cell contained in DL
1

for Model 1. Each violin is composed of a double-sided density plot obtained from the samples of (Y1 | Z2,W1).
In each grid cell the ‘x’ symbol and the background cell colour denote the true (unobserved) total flux at that
grid cell. The fill colour of the density denotes the posterior median. The top and right labels on the region
denote the cell centre’s longitude and latitude coordinate, respectively.

that are important, the entire geographic region (i.e., the UK and Ireland together), and the

smaller, country level of aggregation (England, Northern Ireland, Scotland, Wales, and Ireland

separately). Total flux for land territories at the country level for Model 1 are given in Fig. 5,

left panel. These distributions are well constrained and, with the exception of Scotland, contain

the true flux well within the 95% credible interval. The poorer performance in Scotland is due

to the near-zero fluxes in the Highlands that take anomalously low values. Clearly, inferences on

fluxes become more well constrained when spatially aggregating to the resolution of countries

within the UK and Ireland.
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Fig. 5: Box-and-whisker plots summarising the posterior distribution of country-level and whole-domain flux
aggregates. Left panel: The total flux in the land territories of England, Northern Ireland, Scotland, Wales,
and Ireland for Model 1. The triangle denotes the true (unobserved) flux. Right panel: The total flux in the
land territories of the UK and Ireland for Models 1–6, Model 1∗, and Model 1∗∗. The triangle denotes the true
(unobserved) total flux of 2.73 Tg yr−1. The boxes denote the interquartile range, the whiskers extend to the
last values that are within 1.5 times the interquartile range from the quartiles, and the dots show the samples
that lie beyond the end of the whiskers.

The posterior distribution of total methane emissions in the entire geographic region are

summarised in Fig. 5, right panel. The truncated Gaussian models (i.e., Models 3 and 6) do

not contain the true value (2.73 Tg yr−1) within the 95% credible interval. Interestingly, Model

1* (that uses the mainland Europe inventory) performed just as well as Model 1. Clearly, the

sensitivity to the inventory when inferring over aggregated regions is less than when predicting

at a high resolution, as expected. From Fig. 5, right panel, it is apparent that capturing non-

Gaussianity is more important than capturing spatial correlations when predicting aggregates.

On the other hand, models that capture spatial correlation provide considerably better point-

level predictions (compare with Table 1).

Mole-fraction-field prediction: We carry out inference on the mole-fraction field at the

space-time points for which no mole-fraction observation is available (note that bt(s, ·) is still

evaluated at these space-time points and, hence, the true mole fraction is known). From Table 1,

we see that all methods have similar out-of-sample mole-fraction prediction performance. This

is due to the ill-posed nature of the problem: There are a large number of plausible flux fields

that yield similar observations. Hence, unless bt(s, ·) evaluated at the validation space-time

points is very different from all other evaluations (which is unlikely due to prevailing winds and
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Fig. 6: Left panel: Posterior densities of the parameters θ11, θ12, and λ, from left to right, which appear in the flux
field for Models 1–4. Note that the spatial correlation function is specified to be the indicator function in Models
4–6. Since the transformation is also assumed known for Models 5–6, no flux-field parameters need to be inferred
for these models. Right panel: Box-and-whisker plots of samples from the marginal posterior distributions of the
parameters τ2, a, and d, from top to bottom, which appear in the mole-fraction discrepancy term for Models 1–6.
See Fig. 5 for a description of the box-and-whisker plot.

recurring meteorology patterns) mole-fraction prediction performance clearly cannot be used to

draw any conclusions on the flux-field prediction performance.

Posterior distributions of parameters: Flux-parameter posterior distributions for Mod-

els 1–6 are summarised in Fig. 6, left panel, while mole-fraction-parameter posterior distri-

butions are summarised in Fig. 6, right panel (recall that the true values are τ2 = 0.01

ppb−2, a = 0.9, and d = 2.5◦). Irrespective of the model used to describe the flux field, posterior

inferences on the parameters describing the discrepancy term ζt(·) were practically identical for

each case. This is reassuring, as it indicates that inferences over the discrepancy {ζt : t ∈ T }

are well constrained and, by implication, that inferences over {BtY1 : t ∈ T } are as well. This

does not imply that inferences over Y1 are well constrained, and posterior marginal uncertainty

over the elements of Y1 clearly depends on the dimensionality of Y1 due to the aggregation

induced by the matrices {Bt : t ∈ T }.

Inventory sensitivity: Over-reliance on the quality of the ‘prior inventory,’ and uncer-

tainties associated with it, is an ongoing topic of concern in atmospheric trace-gas inversion

(e.g., Berchet et al., 2015). In Table 1, we give diagnostics for two other models (Model 1∗

and Model 1∗∗) that are identical to Model 1 but with inventories W∗
1 (taken from mainland

Europe containing parts of France, Switzerland, and Germany) and W∗∗
1 (taken from Northern

Australia) instead. The inventory W∗
1 is, at first sight, entirely different from that attributed
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to the UK and Ireland (see Fig. 3). However, it contains similar spatial properties that aid

in the assimilation; in particular, the maximum likelihood estimate of λ obtained using geoR

(Ribeiro Jr. and Diggle, 2015) with W∗
1 as data, is 0.21. As seen from Table 1, the quality of

flux prediction for Model 1∗ deteriorates but not drastically so.

On the other hand, the inventory W∗∗
1 is much smoother (recall Fig. 3, right panel); the

maximum likelihood estimate of λ obtained using geoR with W∗∗
1 as data, is 0.83, and the

posterior mean obtained using our hierarchical model with the Box–Cox process (Section 3.3),

is 0.68. This value for λ is considerably higher than that obtained with the correct inventory

and shows the impact that the inventory has on the inference of the transformation parameter.

As expected, the use of this inventory considerably deteriorates the flux prediction (see Table

1).

From these two experiments with W∗
1 and W∗∗

1 , we conclude that while the inventory

remains important in trace-gas inversion in this framework, its effect on the flux-prediction

performance may not dominate. Further, all that is needed is an inventory that has similar

spatial characteristics as those of the true flux field; one can justifiably expect that any accepted

methane inventory for the UK and Ireland will be reasonable for use within our framework. From

a statistical perspective, prior sensitivity has been shifted from the inventory (process layer) to

the spatial properties of the inventory (parameter layer).

Lognormal model may not always be adequate: From the results above, one might

think that for our study there is no benefit in considering the Box–Cox trans-Gaussian model

over the lognormal model. We provide a counter-example by simply replacing the inventory

we used for the UK and Ireland with the one from Northern Australia (Figure 3, right panel),

and re-running the entire OSSE with the same meteorology and station locations as those in

the UK and Ireland for Models 1–6. Since the methane emissions in this region are lower than

those in the UK and Ireland, we set τ2 = 4 ppb−2 so that the discrepancy does not overwhelm

the signal of interest. Recall that the maximum likelihood estimate of λ obtained using geoR

for this inventory is 0.83; the posterior mean obtained for Model 1 using the true inventory

in the assimilation was 0.81. From these estimates, one might expect that a lognormal spatial

process model for the flux field will not perform well in this region; indeed, in Table 2 we see

that both the Box–Cox spatial process (Model 1) and the truncated Gaussian process (Model

3) considerably outperform the lognormal process (Model 2) in this case. Again, spatially

correlated models are seen to outperform the spatially uncorrelated ones in flux prediction but,
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Table 2: Flux field and mole-fraction prediction diagnostics for Models 1–6 when the mole-fraction data is simu-
lated from an inventory from Northern Australia: Entries give the root-mean-squared prediction error (RMSPE)
and the mean continuous rank probability score (MCRPS). Flux-field diagnostics are averages of scores at each
s ∈ DL

1 . Mole-fraction-field diagnostics are averages of scores at the space-time points at which observations are
missing.

Flux (g s−1) Mole Fraction (ppb)

Model RMSPE MCRPS RMSPE CRPS

1 13.7 7.1 0.8 0.5

2 17.8 10.3 0.9 0.5

3 13.9 7.2 0.8 0.5

4 18.8 10.4 0.9 0.5

5 24.5 14.3 0.9 0.5

6 19.1 10.5 0.9 0.5

more importantly, the Box–Cox model is able to adapt well in this very different scenario.

Reproducible code for this OSSE is available from https://github.com/andrewzm/atminv.

6. Discussion

Lognormality in flux-field modelling was considered for methane flux inversion by Ganesan

et al. (2014) and Ganesan et al. (2015), however they did not make use of spatial models.

Spatial lognormality of the flux field was subsequently considered in Zammit-Mangion et al.

(2015), in which a two-stage inferential approach was adopted. In this article, we extend

these works by proposing a new class of non-Gaussian spatio-temporal bivariate models for use

in atmospheric trace-gas inversion. The bivariate model may be fully characterised through

the use of cumulant functions (Appendix A). It is very flexible, and yet it requires only the

specification of a univariate Box–Cox spatial process, a univariate Gaussian spatio-temporal

field, and an interaction function. Most previous works in this area use models that contain

only parts of the class of models we consider in this article.

In the hierarchical model of Section 3.3, the quantity of interest, Y1, is not directly observed.

This implies that the mole-fraction data is conditionally uninformative of the flux field (Poirier,

1998) and, in this case, the quantity Y1 is frequently termed unidentifiable. Unidentifiability

does not prohibit Bayesian learning on Y1, since Y1 and Y2 are never a priori independent

in this problem. Xie and Carlin (2006) proposed a way to measure the permissible extent of

learning obtained from the data in this context of “unidentifiability.” Such measures may prove

useful for trace-gas-inversion experimental design through the use of simulation studies, such as
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the one conducted in this article.

We implemented a fully Bayesian approach to flux inversion, in which a degree of non-

Gaussianity was incorporated through the Box–Cox-transformation parameter. Our results

provide further evidence that both non-Gaussianity and spatial correlation are particularly

important features to model in trace-gas inversion of methane and, further, that the degree

of non-Gaussianity is also important. The truncated Gaussian assumption (adopted in Miller

et al., 2014) seems unsuitable for the UK and Ireland case, while the lognormal process (Zammit-

Mangion et al., 2015) seems unsuitable for parts of Northern Australia. The Box–Cox process

adapts well to both and more generally to largely different types of flux fields.

Covariates, such as population density, could be used to describe spatial features, and it

is also possible that their inclusion could motivate the use of a Gaussian field for the stochas-

tic component that remains. However, the use of covariates does not especially simplify the

problem. In this example, covariates will almost certainly need to be spatially weighted and,

further, their inclusion precludes the possibility for using the inventory in the assimilation, since

these inventories are constructed using surrogate information such as population density. The

advantage of only using second-order and higher-order prior descriptors is that the posterior

distribution of the spatial pattern of fluxes is predominantly data-driven. Critically, in this

study we have shown that usable flux inferences can be obtained at several resolutions of im-

portance (e.g., the country level) with a reduced reliance on the inventory. This result may

have implications for other geophysical fields of study that rely heavily on data assimilation.

Although transport models are in constant development and regularly validated (e.g., Ah-

madov et al., 2009; Ryall and Maryon, 1998), they are by no means perfect. We acknowledge

this with the use of a discrepancy term that we model as conditionally Gaussian and space-time

separable (see (13)). This is overly simplistic; however, there is not enough information in the

data to warrant a more complex model. For short-lived gases such as carbon monoxide, the

discrepancy term also captures misspecification arising from linearisation. If nonlinearity of the

flux-mole-fraction mapping is deemed important to model, then one might consider replacing

the linear mapping with a higher-order one or even a stochastic one (using, for example, a

Gaussian process emulator). In the latter case, computation and model interpretability are

rendered more difficult. For example, the bivariate process of Section 2.2 would then need to

be interpreted using modified cumulants (Schultz et al., 1978).

Finally, a comment is needed on inferring the transformation parameter λ within our frame-
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work. With both the UK/Ireland and the Australia OSSE simulations, fitting a standard

Box–Cox spatial model to the inventory data using geoR yielded maximum likelihood estimates

within 0.02 of the posterior mean obtained using our fully Bayesian approach (on the models

with the correct inventory). Thus, as expected, the data in trace-gas inversion is not informative

of λ, although clearly this parameter plays a big role in the flux-prediction performance. Box

and Cox (1964) suggested that a value of λ be selected in light of its posterior distribution,

following which a standard analysis with fixed λ could be carried out. Christensen et al. (2001)

further argue that only a select-few ‘interpretable’ values for λ should be chosen and that stan-

dard maximum likelihood can guide one’s choice. We do not oppose these statements and, in

light of the insensitivity of the mole-fraction data on λ in this application, one might prefer to

estimate λ offline and use it as a “plug-in.” This pragmatic approach is unlikely to adversely

affect the results in any meaningful way in regional inversions.
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Appendix A. Derivation of cross-cumulant functions

Since all joint cumulants associated with independent variables are zero (e.g., Severini, 2005,

Theorem 4.16), we focus here on the linear system (4) in which the discrepancy term is zero.
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Consider two random vectors Y1 ∈ RN and Y2 ∈ RM such that Y2 = AY1, and A is a

real-valued M × N matrix. Let the columns of A be denoted as a1, . . . ,aN , and denote the

characteristic functions of Y1 and Y2 as

ϕY1(t1) = E(exp(ιt′1Y1)) =

∫
RN

exp(ιt′1Y1)p(Y1)dY1,

and

ϕY2(t2) = E(exp(ιt′2Y2)) =

∫
RM

exp(ιt′2Y2)p(Y2)dY2,

respectively. The distribution of Y1 is obtained from

p(Y1) =

∫
RM

p(Y2 | Y1)p(Y1)dY2 =

∫
RM

δ(Y2 −AY1)p(Y1)dY2,

where δ(·) is the Dirac delta function. Let Y ≡ (Y′1,Y
′
2)
′ and tY ≡ (t′1, t

′
2)
′. Then the

characteristic function of Y, ϕY(tY) = E(exp(ιt′YY)), is given by

ϕY(tY) =

∫
RN

∫
RM

exp

ι[t′1, t′2]
Y1

Y2


p(Y2 | Y1)p(Y1)dY2dY1

=

∫
RN

exp

ι[t′1, t′2]
 Y1

AY1


p(Y1)dY1

=

∫
RN

exp

ι[t′1, t′2]
 I

A

Y1

p(Y1)dY1.

We therefore obtain the result,

ϕY(tY) = ϕY1(t11 + t′2a1, . . . , t1N + t′2aN ). (A.1)

Equation (A.1) is a natural extension to the result of Kuznetsov et al. (1965, Appendix I), who

showed that

ϕY2(t2) = ϕY1(t′2a1, . . . , t
′
2aN ), (A.2)

but (A.1) allows us to derive all cross-cumulant functions as limits of Riemann sums.

Returning to the original application, consider a random field Y2(s) =
∫
D b(s,u)Y1(u)du

(i.e., let ζ(·) = 0). If Y1(·) has continuous realisations with probability one, and the function
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b(s,u) is continuous, then this integral can be represented approximately as,

Y2(si) =

N∑
j=1

Y1(uj)b(si,uj)∆uj ; si ∈ D,

where N is large and ∆uj is a small region in D centred at uj . Now, let Y1 ≡ (Y1(uj) : j =

1, . . . , N)′ and Y2 ≡ (Y2(si) : i = 1, . . . ,M)′. Further, recall that ϕY1(t1) and ϕY2(t2) are

the characteristic functions of Y1 and Y2, respectively. We saw that Y ≡ (Y′1,Y
′
2)
′ has char-

acteristic function ϕY(tY), where tY ≡ (t′1, t
′
2)
′. Then, from (A.1), we have the approximate

representation,

ϕY(tY) = ϕY1

(
t11 +

M∑
i=1

t2ib(si,u1)∆u1 , . . . , t1N +

M∑
i=1

t2ib(si,uN )∆uN

)
. (A.3)

Under conditions outlined in Kuznetsov et al. (1965), the characteristic function of the

process Y1(·) evaluated at {uj : j = 1, . . . , N} can be expanded as a series

ϕY1(t1) = exp

ι N∑
j=1

κ1Y1(uj)t1j +
ι2

2

N∑
j,j′=1

κ2Y1Y1(uj ,uj′)t1jt1j′ + . . .

.
Using this series definition for ϕY1(t1) in (A.3), we obtain

ϕY(tY) = exp

ι N∑
j=1

κ1Y1(uj)

[
t1j +

M∑
i=1

t2ib(si,uj)∆uj

]

+
ι2

2

N∑
j,j′=1

κ2Y1Y1(uj ,uj′)

[
t1j +

M∑
i=1

t2ib(si,uj)∆uj

][
t1j′ +

M∑
i′=1

t2i′b(si′ ,uj′)∆uj′

]

+ . . .

)
. (A.4)

Now ϕY(tY) may also be expanded as a series:

ϕY(tY) = exp

ι N∑
j=1

κ1Y1(uj)t1j + ι

M∑
i=1

κ1Y2(si)t2i

+
ι2

2

M∑
i,i′=1

κ2Y2Y2(si, s
′
i)t2it2i′ +

ι2

2

N∑
j,j′=1

κ2Y1Y1(uj ,u
′
j)t1jt1j′

+
ι2

2

M,N∑
i,j′=1

κ2Y2Y1(si,u
′
j)t2it1j′ +

ι2

2

M,N∑
i′,j=1

κ2Y1Y2(uj , s
′
i)t2i′t1j + . . .

)
. (A.5)
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Expanding (A.4) and comparing coefficients of the products of elements in tY to those in (A.5),

we deduce that

κ1Y2(si) =

N∑
j=1

b(si,uj)κ
1
Y1(uj)∆uj ,

κ2Y1Y2(uj , s
′
i) =

N∑
j′=1

κ2Y1Y1(uj ,uj′)b(s
′
i,u
′
j)∆u′j

,

κ2Y2Y2(si, s
′
i) =

N∑
j,j′=1

b(si,uj)b(si′ ,uj′)κ
2
Y1Y1(uj ,uj′)∆uj∆u′j

,

...

These sums tend to Riemann integrals, such as those shown in (8) and (9), provided b(·, ·),

κ1Y1(·), κ2Y1Y1(·, ·), . . . are Riemann-integrable. Similar arguments can be used to derive third-

order cross-cumulants. For example, it can be shown that

κ3Y1Y1Y2(uj ,uj′ , si′′) =

∫
κ3Y1Y1Y1(uj ,uj′ ,uj′′)b(si′′ ,uj′′)duj′′ ,

and thus we can formulate all the cross-cumulants of the joint process (Y1(·), Y2(·)) from those

of Y1(·) through the interaction function b(·, ·).

These results can be extended to (4), where the discrepancy term is included (and is inde-

pendent of Y1(·)) by taking advantage of the additive property of cumulants and the fact that all

joint cumulants associated with independent variables are zero (Severini, 2005, Theorem 4.16).

Appendix B. Example illustrating higher-order cross-cumulant functions for bi-

variate processes

From the relationship between moments and cumulants, it can be shown that κ1Yi(·) =

E(Yi(·)), κ2YiYj (·, ·) = CYiYj (·, ·) ≡ cov(Yi(·), Yj(·)) and κ3YiYjYk(·, ·, ·) = E((Yi(·) − µi(·))(Yj(·) −

µj(·))(Yk(·)−µk(·))). These relationships hold even if the moment generating function does not

exist (as is the case, for example, with the lognormal process; see Severini, 2005, p. 116). Assume,

for illustration, that Y1(·) is a spatial lognormal process such that lnY1(·) is a Gaussian process

with mean function µ̃1(·) and covariance function C̃Y1Y1(·, ·); then the first two spatial cumulant

functions are the well known mean and covariance functions of the lognormal process (e.g.,

Aitchison and Brown, 1957), while the third-order spatial cumulant function can be obtained
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by repeated application of the standard expression used to find the moments of a multivariate

lognormal distribution (e.g., Kotz et al., 2000, p. 219):

κ3Y1Y1Y1(u1,u2,u3) =κ1Y1(u1)κ
1
Y1(u2)κ

1
Y1(u3)

(
exp(C̃Y1Y1(u1,u2) + C̃Y1Y1(u1,u3) + C̃Y1Y1(u2,u3))

− exp(C̃Y1Y1(u1,u2))− exp(C̃Y1Y1(u1,u3))− exp(C̃Y1Y1(u2,u3)) + 2
)
.

We use these expressions to illustrate second-order and third-order properties of the joint

process (Y1(·), Y2(·)) in a simple scenario with ζ(s) = 0; s ∈ D = [−10, 10] ⊂ R (i.e., d = 1).

Let Y1(·) be a lognormal process on D, with lnY1(·) having mean function µ̃1(s) = −2 and

covariance function

C̃Y1Y1(u1, u2 | θ1) =
1

τ1
exp
(
−θ11|u1 − u2|θ12

)
, (B.1)

where θ1 ≡ (θ11, θ12)
′, and θ11 > 0, 0 < θ12 < 2. Here, we set the scale parameter θ11 = 0.8, the

smoothness parameter θ12 = 1.7, and the precision parameter τ1 = 1. We let b(s, u); s, u ∈ D,

be a truncated Gaussian density function centred and truncated at s with variance varying

smoothly with u, representing a typical highly directional interaction function in u; see Fig. B.7,

top-left panel. We now concentrate on the spatial location s = 0, and we carry out the integra-

tions required to find the spatial cumulant functions, such as those in (8)–(11), on a discrete grid

DL = {−9.9,−9.7, . . . , 9.9}. In the bottom-left, top-right, and bottom-right panels of Fig. B.7,

we show the second-order cross-cumulant function (i.e., cross-covariance function) κ2Y2Y1(0, u2),

the third-order cross-cumulant function κ3Y2Y1Y1(0, u2, u3), and the third-order auto-cumulant

function κ3Y2Y2Y2(0, s2, s3), respectively, for u2, u3, s2, s3 ∈ DL. It is clear from these panels

that asymmetry is naturally present in the cross-covariance functions and the third-order cross-

cumulant functions. Also, the two third-order cross-cumulant functions are markedly different

from each other; in contrast, if Y1(·) were Gaussian the third-order cumulants would have been

zero everywhere. Of course, Y1(·) need not be lognormal, but the spatial cumulant functions

of Y2(·) and those of the joint process (Y1(·), Y2(·)) depend critically on the spatial cumulant

functions of Y1(·).
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Fig. B.7: Properties of a non-Gaussian process constructed from (4) with ζ(·) = 0 and Y1(·) a lognormal pro-
cess. Top-left panel: The interaction function b(s, u); s, u ∈ DL. Bottom-left panel: The interaction func-
tion b(0, u2);u2 ∈ DL, and the second-order cross-cumulant function κ2

Y2Y1
(0, u2);u2 ∈ DL. Top-right panel:

The third-order cross-cumulant function κ3
Y2Y1Y1

(0, u2, u3);u2, u3 ∈ DL. Bottom-right panel: The third-order
auto-cumulant function κ3

Y2Y2Y2
(0, s2, s3); s2, s3 ∈ DL. In all panels, the diamond symbol denotes the origin

u2 = u3 = s2 = s3 = 0.

Appendix C. Derivation of conditional distributions

Appendix C.1. The discrepancy parameters

Consider the conditional distribution, p(τ2,θ2 | Z2,Y1) ∝ p(Z2 | τ2,θ2,Y1)p(τ2)p(θ2). This

is given by

p(τ2,θ2 | Z2,Y1) ∝
(∫

p(Z2 | Y2)p(Y2 | τ2,θ2,Y1)dY2

)
p(τ2)p(θ2)

∝ |Qζ;τ2,θ2 |
1/2

[∫
exp

(
−1

2
(Z2 −CY2)

′V−1(Z2 −CY2)

−1

2
(Y2 −BY1)

′Qζ;τ2,θ2(Y2 −BY1)

)
dY2

]
p(τ2)p(θ2)

∝
p(τ2)p(θ2)|Qζ;τ2,θ2 |

1/2

|C′V−1C + Qζ;τ2,θ2 |1/2
(C.1)

× exp

(
−1

2
Y′1B

′Qζ;τ2,θ2BY1 +
1

2
D′θ2(C′V−1C + Qζ;τ2,θ2)−1Dθ2

)
,
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where Qζ;τ2,θ2 ≡ Σ−1ζ;τ2,θ2 , C ≡ bdiag({Ct : t ∈ T }), V ≡ bdiag({Vt : t ∈ T }), B ≡ (B′t : t ∈ T )′

and

Dθ2 ≡ (C′V−1Z2 + Qζ;τ2,θ2BY1).

The prior distributions p(τ2) and p(θ2) are bounded uniform distributions, with limits as de-

scribed in Section 5.

Appendix C.2. The flux field

It is straightforward to show that using the Pericchi (1981) prior distribution under the

assumption that the transformed field is multivariate normal, p(β, τ1 | Y1,θ1, λ) is multivariate

Normal-Gamma (O’Hagan, 2000, Chapter 9); that is,

(β, τ1 | Y1,θ1, λ) ∼ NGa

(
β̂θ1,λ, X′R̃

−1
Y1Y1;θ1X, |D

L
1 |,

S2
θ1,λ

2

)
, (C.2)

where NGa(µ,Q, α1, α2) denotes the multivariate Normal-Gamma distribution with location

µ, scale Q, shape α1 and rate α2. Writing out

p(Y1 | θ1, λ) =
p(Y1 | β, τ1,θ1, λ)p(β, τ1,θ1 | λ)p(λ)

p(β, τ1 | Y1,θ1, λ)p(θ1, λ)
, (C.3)

we deduce that

p(Y1 | θ1, λ) ∝

(
S2
θ1,λ

2

)−|DL1 |
Jλ. (C.4)

Note that (Y1 | θ1, λ) depends on Y1 through S2
θ1,λ

as in normal-linear models (O’Hagan, 2000,

Section 9.29) and, in our case, also on the Jacobian, Jλ.

Now, the required full conditional distribution is

p(Y1 | Z2,W1,θ2, τ2,θ1, λ) ∝ p(Z2 | τ2,θ2,Y1)p(Y1 | θ1, λ). (C.5)

The second term in the product on the right-hand side of (C.5) is given by (C.4), while the first
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term is obtained through marginalisation of Y2, as in (C.1). Hence,

ln p(Y1 | Z2,W1,θ2, τ2,θ1, λ)

= const− 1

2
Y′1B

′(Qζ;τ2,θ2 −Qζ;τ2,θ2(C′V−1C + Qζ;τ2,θ2)−1Qζ;τ2,θ2)BY1

+ Y′1B
′Qζ;τ2,θ2(C′V−1C + Qζ;τ2,θ2)−1C′V−1Z2

− |DL
1 | ln

(
S2
θ1,λ

2

)
+ ln Jλ, (C.6)

where ‘const’ collects all the terms that are not a function of Y1.

For Hamiltonian Monte Carlo, we also need the derivative of (C.6). By substituting (22)

into (21) we can re-write S2
θ1,λ

as S2
θ1,λ

= G′λΨθ1Gλ, where

Ψθ1 = R̃
−1
Y1Y1;θ1 − R̃

−1
Y1Y1;θ1X(X′R̃

−1
Y1Y1;θ1X)−1X′R̃

−1
Y1Y1;θ1 .

Then, the required derivative is

∂ ln p(Y1 | Z2,W1,θ2, τ2,θ1, λ)

∂Y′1
= −B′(Qζ;τ2,θ2 −Qζ;τ2,θ2(C′V−1C + Qζ;τ2,θ2)−1Qζ;τ2,θ2)BY1

+ B′Qζ;τ2,θ2(C′V−1C + Qζ;τ2,θ2)−1C′V−1Z2

− 2|DL
1 |

S2
θ1,λ

∂G′λ
∂Y′1

Ψθ1Gλ + G
(2)
λ,1 �G

(1)
λ,1,

where G
(1)
λ,1 ≡ (∂gλ(Y1,i)/∂Y1,i : i = 1, . . . , |DL

1 |), G
(2)
λ,1 ≡ (∂2gλ(Y1,i)/∂Y

2
1,i : i = 1, . . . , |DL

1 |), the

operator � denotes element-wise division,

∂G′λ
∂Y′1

=

(
∂G′λ1
∂Y′1

0

)
=
(

diag(G
(1)
λ,1) 0

)
, (C.7)

and we have used the fact that

∂S2
θ1,λ

∂Y′1
=
∂G′λΨθ1Gλ

∂Y′1
= 2

(
∂G′λ
∂Y′1

)
Ψθ1Gλ. (C.8)

Appendix C.3. The flux-field parameters

From (C.3), we have

p(θ1, λ | Y1) =
p(Y1 | β, τ1,θ1, λ)

p(β, τ1 | Y1,θ1, λ)

p(β, τ1,θ1 | λ)p(λ)

p(Y1)
,
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from which we deduce that

p(θ1, λ | Y1) ∝ |R̃Y1Y1;θ1 |
−1/2|X′R̃

−1
Y1Y1;θ1X|

−1/2(S2
θ1,λ)−|D

L
1 |Jλp(θ1)p(λ). (C.9)

This is similar to Equation 8 in De Oliveira et al. (1997); however they used the prior distribution

given by Box and Cox (1964) instead, which results in different powers of S2
θ1,λ

and Jλ in (C.9).
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