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Gold nanoparticle (GNP) boosted radiation therapy can enhance the biological effectiveness of

radiation treatments by increasing the quantity of direct and indirect radiation-induced cellular dam-

age. As the physical effects of GNP boosted radiotherapy occur across energy scales that descend

down to 10 eV, Monte Carlo simulations require discrete physics models down to these very low

energies in order to avoid underestimating the absorbed dose and secondary particle generation.

Discrete physics models for electron transportation down to 10 eV have been implemented within

the Geant4-DNA low energy extension of Geant4. Such models allow the investigation of GNP

effects at the nanoscale. At low energies, the new models have better agreement with experimental

data on the backscattering coefficient, and they show similar performance for transmission coeffi-

cient data as the Livermore and Penelope models already implemented in Geant4. These new mod-

els are applicable in simulations focussed towards estimating the relative biological effectiveness of

radiation in GNP boosted radiotherapy applications with photon and electron radiation sources.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4972191]

I. INTRODUCTION

Gold nanoparticles (GNPs) are currently being studied as

a means of improving clinical outcomes from radiation ther-

apy.1,2 In radiation therapy treatments, nanoparticles are typi-

cally high atomic number metal or metal-oxide particles up to

a few hundred nanometers in size. Owing to their high atomic

number, the particles absorb higher quantities of incident radi-

ation than their surrounding biological medium, increasing

the local energy deposition in the region of the nanoparticle.

Moreover, following excitation and ionisation inside nanopar-

ticles, large numbers of low energy secondary electrons are

produced which may enhance treatment efficiency by increas-

ing the frequency of direct and indirect radiation-induced

biological damage.

Over the last decade, experiments have shown that add-

ing heavy nanoparticles to irradiated cells boosts the biologi-

cal effectiveness of the radiation source used. Across the

nanoparticle compositions studied, GNPs show the highest

potential to increase the radiosensitivity of cells.3–5 A dose

enhancement from using GNPs in radiotherapy has already

been demonstrated using Monte Carlo simulations;6 however

these simulations are of limited accuracy at micrometer

scales, as the continuous physics models used to date break

down at small spatial resolutions.7,8 As one moves towards

more accurate microdosimetric measurements of the impact

of GNPs, discrete physics models become necessary as they

improve the spatial resolution in simulation. As the physical

effects of GNP boosted radiotherapy occur across energy

scales that descend down to 10 eV, Monte Carlo simulations

require discrete physics models down to these very low ener-

gies in order to avoid underestimating absorbed dose and

secondary particle generation. Currently, very few Monte

Carlo codes provide discrete models of electron transport in

gold.9,10 In this work, we present an implementation of dis-

crete electron transport models in gold inside the Geant4

Monte Carlo particle transport simulation toolkit.11–13

The implementation of GNP transport models in Geant4

provides a valuable tool to the community for GNP-related

studies, as it benefits from existing developments within the

Geant4-DNA low energy extension of the Geant4 toolkit.

Geant4-DNA already implements discrete electron, proton

and alpha particles transport models in liquid water14–16 as

well as modelling the physico-chemical and chemical stages

of liquid water radiolysis.17,18 These features are available to

the medical physics community through Geant4 itself, as

well as the TOPAS19 and GATE20 packages.

a)Author to whom correspondence should be addressed. Electronic

addresses: dousatsu-univtky@umin.ac.jp and sakata@cenbg.in2p3.fr
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We describe the electron transport models in gold which

have been included in Geant4 in Sec. II (Geant4 v10.02.p01

is used throughout this paper). The models for elastic scatter-

ing, electronic excitation, plasmon excitation, ionisation, and

bremsstrahlung are presented here. We then offer a valida-

tion of the models before summarising our results.

II. DESCRIPTION OF Geant4-DNA PHYSICS
MODELS FOR GOLD

We have implemented new physics models for elastic

scattering, electronic and plasmon excitation and ionization

within Geant4 for electron transportation in gold. The phys-

ics model used for each process is given in Table I, noting

that for bremsstrahlung a model from the standard Geant4

sub-package is used, G4SeltzerBergerModel.21 The inte-

grated cross sections for the newly implemented physics

models are shown in Figure 1. A similar hybrid approach,

where different theories are used to represent the various

inelastic processes of the material, has also been employed

in the MONSEL code22 for secondary electron transport sim-

ulations. An alternative approach is the use of a model

dielectric response function for the target material.23–26

Although the approach based on the dielectric function

allows some degree of self-consistency through the restric-

tions imposed by various sum-rules, it often requires elabo-

rate algorithms for properly deducing the contribution of the

individual inelastic processes.27,28

The implemented physics models allow electron trans-

port down to 10 eV (shown in grey in Figure 1). This limit

comes from the energy limit of elastic scattering. At this

level, electron tracks are killed and their energy is deposited

locally. For photon transportation, we use the existing

Livermore model set already implemented in Geant4

(G4EmLivermorePhysics29). Detailed descriptions of the

new models are provided in Secs. II A–II D.

A. Elastic scattering

The FORTRAN77 code ELSEPA developed by Salvat30

was used to calculate scattering angles and integrated cross

sections for elastic scattering. ELSEPA calculates the scat-

tering angle in the laboratory frame by a relativistic partial-

wave method using a local central interaction potential for

atoms in both the solid and vapor states, across a wide inci-

dent electron energy range (10 eV–1 GeV). ELSEPA consid-

ers the electrostatic interaction potential, electron exchange

potential, correlation-polarization potential, and the imagi-

nary absorption potential inside the local central interaction

potential. In this study, we calculate differential cross sec-

tions from ELSEPA, and then integrate these cross sections

in ELSEPA using the default solid state configuration for

gold. The default configuration itself is calculated using a

bounded atom Muffin-tin model31 where a numerical Dirac-

Fock distribution has been used to estimate the electron

distribution.

B. Electronic excitation

Four excitation channels are considered in our model-

ling of the electronic excitation of gold. At lower energies,

scaled cross-sections were used based on experimental data.

These were complemented by theoretical cross-sections at

higher energies. The excitation channels simulated are listed

below, along with the upper energy for experimental cross-

section data, Eexp
32,33

ð5d106sÞ2S1=2 ! ð5d96s2Þ2D3=2 E exp < 5:8 eV

ð5d106sÞ2S1=2 ! ð5d96s2Þ2D5=2 ðNo DataÞ
ð5d106sÞ2S1=2 ! ð5d106pÞ2P1=2 E exp < 577 eV

ð5d106sÞ2S1=2 ! ð5d106pÞ2P3=2 E exp < 577 eV:

This approach of mixing experimental and theoretical

cross sections is also used by TRAX.9,10 The low-energy

cross sections were calculated by scaling relative experimen-

tal cross sections to match theoretical cross sections calcu-

lated using Dirac B-Spline R-matrices (DBSRMs)32,33 which

is an extension of the BSR complex34 to the fully relativistic

Dirac scheme, as the DBSRM calculation differs signifi-

cantly from experimental data at low energies. The Bethe-

Born approximation predicts the excitation probability for

the S, D, and P states. For the P state, the probability follows

TABLE I. Summary of implemented physics models for electron transportation.

Physics process Corresponding model Class name Energy range

Elastic scattering Relativistic partial wave analysis (ELSEPA) G4DNAELSEPAElasticModel 10 eV–1 GeV

Electronic excitation Dirac B-spline R-matrixþ experiment G4DNADiracRMatrixExcitationModel 1.14 eV–1 GeV

Plasmon excitation Quinn model G4DNAQuinnPlasmonExcitationModel 9.0 eV–1 GeV

Ionization Modified relativistic binary encounter Bethe Vriens G4DNARelativisticIonisationModel 8.3 eV–1 GeV

Bremsstrahlung Seltzer and Berger model G4SeltzerBergerModel 1 keV–10 GeV

FIG. 1. Integrated electron cross sections as a function of incident electron

energy in gold for each Geant4-DNA physics model developed in this work.

The cross section for Bremsstrahlung is not shown, as it is significantly

lower than the other cross section. All electrons with their energy below

10 eV (shown in grey) are killed and their energy is deposited locally.

244901-2 Sakata et al. J. Appl. Phys. 120, 244901 (2016)



the analytical function, r / lnðEÞ=E where E is the incident

electron energy. For the S and D states, the probability fol-

lows r / 1=E2. We extend the low energy cross sections

using these two analytical formulae when experimental data

are not available. No scaled cross sections currently exist

based on experimental data for the channel ð5d106sÞ2S1=2

! ð5d96s2Þ2D5=2; therefore the DBSRM-based cross section

is used for all energies in this channel. All the atomic states

used in the DBSRM calculation were calculated using the

GRASP2K relativistic atomic structure package.35

C. Plasmon excitation

Plasmon excitation refers to the excitation of dynamic

oscillations in the conduction electrons of a material. In

gold, free electrons can lose energy by exciting volume plas-

mon excitations. Cross-sections and energy losses in volume

plasmon excitation are given by Quinn.36

The cross section for volume plasmon excitation from

the Quinn model can be calculated from the number of atoms

per unit volume n and the mean free path k via the equation

rPE ¼
1

nk
¼ 1

n

�hxp

2a0E
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

0 þ 2mexp�h
p

� p0

p�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xp�h p2 � 2með Þ

p
 !

; (1)

where E is the energy of the incident electron, �h is the reduced

Planck constant, a0 is the Bohr constant, me is the mass of

an electron, and xp is the plasmon frequency given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnve2Þ=ð�0me

p
Þ where e is the electron charge, �0 is the elec-

trical field constant, nv is the density of valence electrons, and

p and p0 are the incident electron momentum and Fermi

momentum, respectively. The density of valence electrons can

be calculated from

nv ¼
qNANv

Mmol

; (2)

where q is the density of the target material, Mmol is its molar

mass, Nv is the number of valence electrons (2 for a complete

6s shell in the ground state of gold), and NA is Avogadro’s

number. The momenta p and p0 are derived from the same

formula p ¼
ffiffiffiffiffiffiffiffiffiffiffi
2meE
p

. The Fermi momentum p0 can be found

by replacing E with the Fermi energy EF via9

EF ¼
h2

8me

3nv

p

� �2=3
1

e
: (3)

The energy lost by incident electrons in gold is also cal-

culated theoretically. Following the Quinn model, the energy

loss by plasmon excitation can be calculated as:

Ep ¼ �h� xp ¼ �h�

ffiffiffiffiffiffiffiffiffiffi
nve2

�0me

s
: (4)

D. Ionization and atomic de-excitation

A modified Relativistic Binary Encounter Bethe Vriens

(RBEBV) model was used to calculate the integrated

ionization cross section and the energy of electrons ejected

during ionization. The RBEBV model is an empirical correc-

tion to the Binary Encounter Bethe Vriens model37 for high

atomic number elements.38,39

The energy differential cross section following the

RBEBV model rIoni can be written in the following form:

drIoni

dw
¼ 4pa2

0a
4N

b2
t þ b2

u þ b2
b

� ��
v

� �
2b0
� /

tþ 1

1

wþ 1
þ 1

t� w

� ��

� 1þ 2t0

1þ t0=2ð Þ2
þ 1

wþ 1ð Þ2
þ 1

t� wð Þ2
þ b02

1þ t0=2ð Þ2

þ ln
b2

t

1� b2
t

 !
� b2

t � ln 2b0ð Þ
 !

� 1

wþ 1ð Þ3
þ 1

t� wð Þ3

 !#
; (5)

where

t ¼ T=B; w ¼ W=B; u ¼ U=B;

b2
t ¼ 1� 1

1þ t0ð Þ2
; t0 ¼ T=mec2;

b2
u ¼ 1� 1

1þ u0ð Þ2
; u0 ¼ U=mec2;

b2
b ¼ 1� 1

1þ b0ð Þ2
; b0 ¼ B=mec2: (6)

Here, me is the mass of electrons, c is the speed of light, T is

the kinetic energy of the incident electron, B is the bound

electron binding energy, W is the ejected electron kinetic

energy, U is the bound electron kinetic energy, a0 is the Bohr

radius, N is the occupation number of the subshell to be ion-

ized, and a is the fine structure constant.

The relativistic form of the Vriens / function can be

written as

/ ¼ cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

b2
t þ b2

b

� �
vuut ln

b2
t

b2
b

 !2
64

3
75: (7)

If / ¼ 1, the cross section has no Vriens correction.

We modified the RBEBV calculation by using an empir-

ical parameter v.38 This empirical adjustment originally

accounted for the high radial kinetic energies encountered in

molecular valence shells with high principal quantum num-

bers (�3), and is set equal to the principal quantum number

of the atomic orbital being considered. This parameter has

been used across a wide range of chemical molecules,39

however here we apply it to an ionic solid. Using this param-

eter increases the value of the energy differential cross sec-

tions and integrated cross sections of outer orbitals,

improving the agreement between experimental results40 and

the overall integrated cross sections in the model.

The theoretical formula for the integrated cross section

is given by integration of Eq. (5) formula, namely,

244901-3 Sakata et al. J. Appl. Phys. 120, 244901 (2016)



rIoni ¼
4pa2

0a
4N

b2
t þ b2

u þ b2
b

� ��
v

� �
2b0

� 1

2
ln

b2
t

1� b2
t

 !
� b2

t � ln 2b0ð Þ
" #

� 1� 1

t2

� �(

þ1� 1

t
� ln t

tþ 1

1þ 2t0

1þ t0=2ð Þ2
� /þ b02

1þ t0=2ð Þ2
t� 1

2

)
:

(8)

To model atomic de-excitation following ionization, we

used the existing atomic de-excitation interface in Geant4.41

This simulates both Auger electrons and fluorescence pho-

tons including full cascade relaxation processes.42 The de-

excitation likelihoods and energies for secondary particles

for the 19 inner shells of a gold atom have already been

added to the database. To calculate cross sections using the

modified RBEBV model and perform atomic de-excitations,

we use atomic state parameters, such as binding energies and

kinetic energies of orbital electrons from the Livermore

Evaluated Atomic Data Library (EADL) database.43

III. VALIDATION OF THE NEW MODELS

The models described above have been validated

against both existing low energy electromagnetic models in

Geant4 (specifically the G4EmLivermorePhysics and

G4EmPenelopePhysics constructors29), as well as experi-

mental data where possible. Our first validation tests how-

ever are against recommended stopping power and range

values from ICRU3744 calculated by ESTAR,45 which are a

good benchmark for Monte Carlo calculations. The number

of secondary particles generated, energy of secondary par-

ticles and direction of scattered and secondary particles with

respect to the injected particle axis also serve as a good test

for physics models. We show secondary particle spectra for

electrons and photons with comparison to the Livermore and

Penelope models in Geant4. We also show results from sim-

ple simulations of electron backscattering from a gold plate,

and electron transmission through gold foil. These backscat-

tering and transmission coefficients found from simulation in

the new models show a good agreement with both existing

data and models.

Figure 2 shows average stopping powers and average

track lengths for electrons in gold. In general, a good agree-

ment is shown between our models and ICRU37 calculation,

as well as the Penelope models at low energy. Regarding aver-

age stopping powers, above 10 keV, the implemented physics

models have good agreement with ICRU37 calculations,

experimental data46 and existing Geant4 models. Below this

value, the stopping power of the implemented models agrees

well with the theoretical model of Shinotsuka.47 At such ener-

gies (below 100 eV), experimental measurements are clearly

needed to be able to quantify the accuracy of the proposed the-

oretical models. Since we have not implemented a specific

model for bremsstrahlung, we also show the agreement

between our models and the ICRU37 stopping powers in

the absence of bremsstrahlung at higher energies ( �106 eV).

In this scenario, we also see that our models show good agree-

ment with the ICRU recommendations.

For average track lengths, the different models broadly

agree across all energies tested, both amongst themselves

and with ICRU37 data. Experimental measurements how-

ever suggest that the models overestimate the range

slightly.48–53 In simulation, we calculate the entire track

length of incident electrons, including scattering perpendicu-

lar to the incident particle direction, to produce a quantity

comparable to the ICRU37 recommended values.

Experimental ranges underestimate this value as they do not

consider contributions to the path length from scattering per-

pendicular to the initial particle direction. In addition, near

10 eV, the transmission range values grow inaccurate as elec-

trons below 10 eV are killed (at 10 eV, the average electron

range is around 0.4 nm).

Accurately simulating the yield and energy of secondary

particles generated in GNPs is important in understanding

particle track structures inside gold, as well as the biological

effects in the surrounding medium, which are dominated by

low energy electron interactions. We ran simulations to cal-

culate the spectra of secondary particles generated within

bulk gold. Figure 3 shows energy spectra of secondary pho-

tons and electrons generated in a 50 lm thick gold foil fol-

lowing irradiation by 20 MeV incident electrons. The

secondaries come from photoelectric ionization, Compton

scattering, pair production, ionization by electron impact,

and atomic relaxation following ionization. Bremsstrahlung

FIG. 2. Comparison of physics models with ESTAR data. Stopping powers (left) and track length (right) are shown alongside ESTAR data and experimental

measurements across a range of incident electron energies. Dotted lines are used to show the predictions from the Penelope and Livermore models below their

recommended minimum energies. Stopping powers are considered both including and without radiative energy losses from bremsstrahlung.

244901-4 Sakata et al. J. Appl. Phys. 120, 244901 (2016)



radiation also contributes at high energies to the photon spec-

trum. For the physics models studied, the majority of

secondaries occur between 10 eV and 1 keV. It is worth not-

ing the steep drop in secondary production in the Penelope

physics models below 100 eV is caused by the model being

extended outside its domain of validity.

The backscattering coefficient for electrons incident

upon a gold plate, and the transmission coefficient for elec-

trons impacting a thin gold foil provide a good means of val-

idation for electron transport models across a wide energy

range. The backscattering coefficient as a function of inci-

dent energy is shown in Figure 4. Backscattering simulations

are compared with several experimental measurements.54–58

In order to provide a fair comparison to experimental data,

experimental results are only used when the backscattering

coefficient measurement covers close to half or all the possi-

ble backscattering solid angle. Two curves are shown for

each physics model, the first considering backscattered elec-

trons with energies above 50 eV and the next considering

those above 125 eV, as the thresholds from the experiment

vary between 50–120 eV. Especially, at low energies, the

new gold physics models have much better agreement with

experimental data, compared to the Livermore and Penelope

models.

The number of transmitted electrons per unit angle

through gold foil was simulated for two different foil

widths (9.658 lm and 19.296 lm), using incident electrons

with energy 15.7 MeV (Figure 5). The new physics models

agree well with the existing physics models in Geant4

for these geometries, as well as with the experimental

measurements.59

IV. CONCLUSION

Improved physics models for gold are necessary to bet-

ter model the impact of GNPs in radiotherapy via Monte

Carlo simulations. We implemented new physics models

for electron transportation in gold in Geant4 that are appli-

cable down to 10 eV. Especially, at low energies, the new

models have better agreement with experimental data for

the backscattering coefficient, and show roughly similar

performance for the transmission coefficient when com-

pared to the Livermore and Penelope models already in

Geant4. The average track length of the electrons in gold at

10 eV using the new models is around 0.4 nm. These mod-

els then allow the simulation of electrons in GNPs down to

a few tens of nanometers. The physics models include

atomic de-excitation with a full cascade of relaxation pro-

cesses for gold. Accordingly, these new models are applica-

ble in simulations seeking to measure the biological effect

of radiation in GNP-boosted radiotherapy with photon and

electron radiation sources.

FIG. 3. Energy spectra of secondary particles generated in gold. Both the photon (left) and electron (right) secondary spectra are shown following irradiation

by 20 MeV electrons. The production cut for secondary particles is 1 eV.

FIG. 4. The backscattering coefficient, g, from a 5 cm gold plate in vacuum,

as a function of incident electron energy. In this simulation, 50 eV and 125 eV

are considered as threshold of backscattered electron counting for fair compar-

ison with experiments. The production cut of secondary particles is 1 eV.

FIG. 5. Distribution of the quantity of transmitted electrons per unit angle as

a function of angle (measured from the incident electron direction) for inci-

dent 15.7 MeV electrons. Results are shown for electrons transmitted

through a gold foil of thickness 9.658 lm and 19.296 lm.
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