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Sulfosalt melts and heavy metal (As-Sb-Bi-Sn-Pb-Tl) fractionation during
volcanic gas expansion: The El Indio (Chile) paleo-fumarole

Abstract
High-sulfidation vein gold deposits such as El Indio, Chile, formed in fracture arrays <1000m beneath paleo-
solfatara in volcanic terranes. Stable isotope data have confirmed a predominance of magmatic vapor during
the deposition of arsenic-rich sulfide-sulfosalt assemblages in this deposit. These provide a unique
opportunity to analyze the processes and products of high-temperature volcanic gas expansion in fractures
that form the otherwise inaccessible infrastructure deep inside equivalent present-day fumaroles. We provide
field emission scanning electron microscope and LA-ICP-MS micro-analytical data for the wide range
of>heavy, semi-metals and metalloids (arsenic, antimony, bismuth, tin, silver, gold, tellurium and selenium) in
the complex pyrite-enargite-Fe-tennantite assemblages from Copper Stage mineralization in the El Indio
deposit. These data document the progressive fractionation of antimony and other heavy metals, such as
bismuth, during crystallization from a sulfosalt melt that condensed from expanding vapor at about 15MPa
(150bars) and >650°C following higher temperature vapor deposition of crystalline pyrite and enargite. The
sulfosalt melt aggressively corroded the earlier enargite and pyrite and hosts clusters of distinctive euhedral
quartz crystals. The crystallizing sulfosalt melt also trapped an abundance of vugs within which heavy metal
sulfide and sulfosalt crystals grew together with K-Al silicates and fluorapatite. These data and their geologic
context suggest that, in high-temperature fumaroles on modern active volcanoes, over 90% of the arsenic
content of the primary magmatic vapor (perhaps 2000mgkg -1) was precipitated subsurface as sulfosalt.
Subsurface fractionation may also account for the range of exotic Pb-Sn-Bi-Se sulfosalts observed in fumarole
sublimates on active volcanoes such as Vulcano, Italy, as well as on extra-terrestrial volcanoes such as Maxwell
Montes, Venus.
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Sulfosalt melts and heavy metal (As-Sb-Bi-Sn-Pb-Tl)
fractionation during volcanic gas expansion: the El Indio
(Chile) paleo-fumarole

R. W. HENLEY, J . MAVROGENES AND D. TANNER

Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia

ABSTRACT

High-sulfidation vein gold deposits such as El Indio, Chile, formed in fracture arrays <1000 m beneath paleo-sol-

fatara in volcanic terranes. Stable isotope data have confirmed a predominance of magmatic vapor during the depo-

sition of arsenic-rich sulfide–sulfosalt assemblages in this deposit. These provide a unique opportunity to analyze the

processes and products of high-temperature volcanic gas expansion in fractures that form the otherwise inaccessible

infrastructure deep inside equivalent present-day fumaroles. We provide field emission scanning electron micro-

scope and LA-ICP-MS micro-analytical data for the wide range of heavy, semi-metals and metalloids (arsenic, anti-

mony, bismuth, tin, silver, gold, tellurium and selenium) in the complex pyrite-enargite-Fe-tennantite assemblages

from Copper Stage mineralization in the El Indio deposit. These data document the progressive fractionation of anti-

mony and other heavy metals, such as bismuth, during crystallization from a sulfosalt melt that condensed from

expanding vapor at about 15 MPa (150 bars) and >650�C following higher temperature vapor deposition of crystal-

line pyrite and enargite. The sulfosalt melt aggressively corroded the earlier enargite and pyrite and hosts clusters of

distinctive euhedral quartz crystals. The crystallizing sulfosalt melt also trapped an abundance of vugs within which

heavy metal sulfide and sulfosalt crystals grew together with K-Al silicates and fluorapatite. These data and their

geologic context suggest that, in high-temperature fumaroles on modern active volcanoes, over 90% of the arsenic

content of the primary magmatic vapor (perhaps 2000 mg kg)1) was precipitated subsurface as sulfosalt. Subsur-

face fractionation may also account for the range of exotic Pb-Sn-Bi-Se sulfosalts observed in fumarole sublimates

on active volcanoes such as Vulcano, Italy, as well as on extra-terrestrial volcanoes such as Maxwell Montes, Venus.
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INTRODUCTION

One of the beauties of magmatic-hydrothermal ore depos-

its lies in the insights that they provide to otherwise inac-

cessible crustal processes in and around volcanoes. For

example, heavy metals1 (As, Sb, Bi, etc.) discharge continu-

ally from active volcanic-gas fumaroles with temperatures

up to about 1100�C, yet what controls the abundance of

these environmentally toxic elements in these discharges is

poorly understood. Direct sampling is hazardous, fraught

with practical difficulty and limited to surface discharges

that may already have deposited key component elements

subsurface during expansion of the gas phase to atmo-

spheric pressure. One way of gaining insight into these

environments is through analysis of their fossil equivalents.

Stable isotope data from ‘high sulfidation’ enargite-gold

deposits around the world consistently show that the fluid

responsible for their formation was dominantly magmatic in

origin with very limited admixture of groundwater (Deyell

et al. 2004, 2005; Rye 2005). These and fluid inclusion data

commonly infer the formation of ‘silica-alunite’ wallrock

1A heavy metal is a member of a loosely-defined subset of ele-

ments that exhibit metallic properties. It mainly includes the tran-
sition metals, some metalloids, lanthanides, and actinides as well as

the Group Va (15) elements, As, Sb, and Bi.
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alteration from acidic condensate derived from low salinity

magmatic vapor and temperatures up to at least 500�C (Hen-

ley & Berger 2011). In the Maricunga Belt, straddling the

Argentine-Chile border, a number of such deposits have been

described in detail. The 8.0–8.9 Ma Pascua-Lama and Tam-

bo deposits, for example, are associated with blankets of

advanced argillic alteration (Chouinard et al. 2005; Deyell

et al. 2004) that are interpreted as equivalent to the extensive

solfatara observed in modern day volcanic belts. By contrast,

a number of high-sulfidation enargite-gold deposits, such as

Summitville, Colorado (Bethke et al. 2005) and El Indio

(Jannas et al. 1999), occur as veins in association with

advanced argillic wallrock alteration and are interpreted from

their geology as having formed within 1500 m of the paleo-

surface as feeders to higher level but now eroded solfatara

(Berger & Henley 2011; Henley & Berger 2011). As such,

these vein deposits are the fossil equivalents of the feeders for

modern day active fumaroles2 so that the mineral assemblages

preserved within them enable us to at least partially unravel

some of the reaction sequences that occur as volcanic gas

expands within high-temperature fumaroles in modern day

volcanoes.

In this study, we provide new data for mineral composi-

tions and sulfide–sulfosalt phase relations at El Indio. They

enable a new understanding of the processes controlling the

relative abundance of heavy and semi-metals and metalloids

in volcanic fumarolic discharges and their sublimates on Earth

as well as on volcanically active planets; bismuth-lead sulfides

and sulfosalts, for example, have been deduced from radar

reflectance data to constitute the high level ‘metallic snow’

capping on volcanoes on Venus (Schaefer & Fegley 2004).

SULFIDE–SULFOSALT MINERAL
ASSEMBLAGES IN THE EL INDIO VEINS

The 7 Ma high-sulfidation gold-silver-enargite (Cu3AsS4)

deposit at El Indio, Chile, formed as a sequence of veins at

about 650–1150 m below the surface of a dacitic volcanic

complex (Jannas et al. 1999; Fig. 24). Vein mineralization

occurs within a 2 km2 section of a more extensive (30–

40 km2) region that is characterized by advanced argillic to

argillic alteration (Jannas 1995) within a sequence of

andesitic to dacitic volcaniclastic rocks. The sulfide–sulfo-

salt ore assemblages discussed here developed sequentially

(Jannas et al. 1999) within a syn-volcanic array of active

faults and related fractures. Importantly, they postdate

intense wallrock alteration and silicification – a timing rela-

tionship interpretable as the consequence of structurally

driven coupled changes in fracture permeability and heat

transfer from the expanding magmatic gas (Berger & Hen-

ley 2011). Figure 1 provides a first glimpse of the typical

and often vuggy, sulfide–sulfosalt–quartz relationships that

we document here for the early ore stage (‘Copper Stage’

– as detailed below) at El Indio. These assemblages imme-

diately pose a number of questions. For example, how was

the open space created within the pre-existing pyrite in

which the distinctive tennantite-quartz assemblages devel-

oped? How were the components of the sulfosalts and

their inclusions (Cu, Fe, As, Sb, S, Te, Ag, Bi, Tl, Sn)

transported into this space along with silica? How may we

account for the occurrence of discrete sulfides (e.g., galena

and other heavy metal sulfides), sulfosalt minerals and tiny

gold crystal clusters in some vugs while others are empty?

Figure 2 shows the locations of the sulfosalt-sulfide sam-

ples in the context of the geology of the El Indio deposit3

and the relative time sequence of mineral formation4

within the vein system (Fig. 2C). Jannas et al. (1990,

1999) recognized two principal stages of sulfide–sulfosalt

mineralization in veins that postdate earlier silica-alunite-

pyrophyllite wallrock alteration. The first – the Copper

Stage – was initiated by pyrite deposition followed by a

succession of subparallel bands and cross-cutting veinlets

dominated by enargite, tennantite, and chalcopyrite. The

second – the Gold Stage – was dominated by silica, some-

times chalcedonic, veins that contain a range of more com-

plex sulfosalt and telluride minerals, and in contrast to the

earlier, sulfide–sulfosalt stages appear to preserve isotopic

evidence for groundwater mixing with magmatic vapor5 at

this late stage (Jannas et al. 1990, 1999).

2The term fumarole is applied generically to any vapor discharge

whether from an active volcano or from much lower temperature
steam-heated alteration blankets above geothermal systems. The

isotope signatures of the latter are dominated by evaporative and

mixing processes involving groundwater (Henley & Stewart

1983), in contrast to those of high-temperature fumaroles that are
dominated by volcanic gas with very limited entrainment of

groundwater (Botcharnikov et al. 2003). Since the stable isotope

compositions interpreted from high sulfidation deposits are domi-

nantly of magmatic affinity, we here restrict our usage of the term
to fumarole to high-temperature (> approximately 600�C) vents

that discharge gas mixtures dominated by volcanic gas.

3The sample suite was kindly provided by Francois Robert and the
staff of Barrick (Chile) to represent a wide range of sulfosalt

assemblages across the mine. Table 1 provides sample locations

using mine grid coordinates.
4The term paragenesis is commonly used to infer deposit-scale

mineral sequencing in a vein deposit. We note that in complex
vein arrays, there is no certainty that a given sequence of minerals

at different locations represents synchronicity. Here we prefer to

recognize a sequence of reactions and their products that provide

information about the response of the transport fluid to physico-
chemical changes as they occur in different parts of the vein array.
5Here the generic term magmatic vapor refers to the gas phase

released from sub-volcanic magmatic systems. As noted elsewhere

(Henley & Berger 2011), it is important to note that magmatic

gases expand to the surface via fracture arrays through the crust
and hence from a magmatic gas reservoir rather than necessarily

from a specific body of magma as is commonly assumed.
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This study focuses on the Copper Stage vein assemblages

and specifically the common compositional and textural

themes that underlie the extreme compositional and tex-

tural heterogeneity seen across the entire sample suite.

Mineral compositions and stoichiometry were obtained

using a Zeiss Ultraplus field emission scanning electron

microscope (FESEM) equipped with an INCA Energy 450

System and an Oxford Light Element EDS Detector. To

minimize the required atomic number, absorption and flu-

orescence corrections, appropriate well-characterized min-

erals were used for calibration purposes. Operating

conditions were 15 kV and 1 or 0.6 nA depending upon

which of two detectors was available. Cu-Fe-S phase com-

positions were cross-checked using a JEOL 6400 SEM

equipped with an Oxford Link light element EDS detector

and Oxford ISIS Quant software.

The published oxygen and hydrogen isotope data used

for interpreting the provenance of vein fluids (Jannas et al.

1999) were limited to minerals including alunite and seri-

cite in the wallrock assemblages and suggested a fluid mix-

ture containing at least 60% magmatic fluid. This contrasts

with the much larger magmatic proportion evident at the

higher level, solfatara-related, Tambo and Pascua-Lama

gold-silver deposits (Deyell et al. 2004). New SHRIMP

oxygen isotope data for discrete quartz crystals extracted

from the early copper-rich ore assemblages (D. Tanner,

R. Henley, J. Mavrogenes, P. Holden, T. Mernagh,

unpublished data) have confirmed a much higher propor-

tion of magmatic fluid in the ore stage at El Indio consis-

tent with these adjacent deposits.

Pyrite and tennantite are the most abundant minerals in

the sample suite along with enargite and abundant quartz

as distinctive euhedral crystals (Fig. 1). Nonstoichiometry

is ubiquitous in sulfosalt minerals, but for comparative pur-

poses the ideal formula recommended by Moelo et al.

(2008, p.27) for the isotypic tennantite-tetrahedrite series

is useful; ‘A6(B, C)6X4Y12Z, where A is Cu or Ag in trian-

gular coordination, B is Cu or Ag in tetrahedral coordina-

tion, C is generally a divalent metal (typically Fe or Zn,

but also Hg, Mn, Cd, …) in the same tetrahedral coordi-

nation, X is Sb, As, Bi or Te in trigonal pyramidal coordi-

nation, Y is S or Se in tetrahedral coordination, and Z is S

or Se in a special octahedral coordination’. In the El Indio

suite, Sb M As and Fe M Cu substitution are most promi-

nent with Bi, Te and Se and other heavy metals only

locally above detection (0.1–0.2 wt %) as detailed below.

As Fe-substitution is ubiquitous from about 0.7 to 1.7

atoms per formula unit (29–30 atoms), we use the term

Fe-tennantite in reference to this phase. Se is a trace com-

ponent and does not significantly substitute for S, so we

have referenced Fe-tennantite compositions to S = 13

using the generic formula for the tennantite-tetrahedrite

solid solution series (Cu, Ag)10(Fe, Cu)2(Sb, As, Bi,

Te)4S13. Referenced to this composition, Cu+Fe in the

Fe-tennantite ranges from 11.7 to 12.5 atoms per formula

unit. A small analytical error for Cu may occur as discussed

by Makovicky & Karup-Møller (1994), but is not relevant

to the substitutions in the X site that are of principal inter-

est here. For convenience we here define an Antimony

Number, NSb, to refer to the atomic ratio Sb ⁄ (As + Sb)

expressed as percent and equivalent to the relative propor-

tion of Fe-substituted tetrahedrite in the solid solution.

NSb varies from 0% to 77% within this sample suite.

Figure 1 shows how the ‘Copper Stage’ tennantite-

quartz assemblages infill fractures and open space in earlier

unzoned pyrite; the As content of the pyrite is below detec-

tion (approximately 0.1 wt %) consistent with the electron

microprobe data of Jannas (1995). These relationships are

detailed at the micron scale in Fig. 3 and show that pyrite

has been corroded to give complex but smooth boundaries

against the subsequent Fe-tennantite. The latter was intro-

duced together with silica via a network of fractures

(Fig. 3G). Its composition is variable with NSb in this

example, ranging from 1% to 32.3% (mean = 12.6%) and

from 2.4 to 6.3 (mean = 4.5) in atomic % Fe. Figure 3B–F

shows that the Fe-tennantite infill is itself comprised of dis-

tinctive compositional domains. Domain boundaries are

curved and in some cases highlighted by apparently ex-

solved ‘blebs’ of CuFeS2. Figure 3E shows crystallization of

Te-Pb-Bi-enriched Fe-tennantite occurring adjacent to low

NSb, high Fe, Fe-tennantite. Tellurium is generally below

detection (<0.1–0.2 wt%), reaching 3 atomic percent at

Ns > approximately 22 (Fig. 3D). The Fe-tennantite here is

metal deficient (10.7–11.3) relative to the idealized formula

(A+B+C =12) and consistent with the range of electron

microprobe analyses of Jannas (1995).

In Fig. 4A,B, the Fe-tennantite domains are distinct. The

major domains are rimmed by an abundance of small vugs

Fig. 1. Reflected light image of typical relationships between Fe-tennantite

(Fe-tn), pyrite (py) and euhedral quartz (qz) in the Copper Stage of miner-

alisation at the El Indio enargite-tennantite gold deposit. Note the relative

timing of Fe-tennantite, pyrite, quartz and the occlusion of sulfosalt inclu-

sions in the euhedral quartz. Sample EI1300.
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reminiscent of the vuggy margins of pillow basalts, have

curved boundaries and an inter-domain region comprised of

zoned Fe-tennantite crystallites and blebs of chalcopyrite.

Larger ragged-margin vugs characterize the core of the

rimmed domains where NSb ranges from 3.3% to 4% and Fe

from 4.4 to 5.0 atomic %. Large vugs and clusters of euhe-

dral quartz crystals are primarily, but not exclusively associ-

ated with the interior of the rimmed domains. The zoned

sulfosalt between these domains is comprised of

Fe-tennantite with similar iron content, but in contrast,

(A)

(C)

(B)

Fig. 2. (A) Projection of relative sample locations onto the generalized geological map of the El Indio Mine 3965-Level (3965 m above sea level). (B) illustra-

tive cross section showing relationship of fault arrays, mineralized fractures and alteration and (C) sequence of mineral reaction products during mineralisa-

tion; modified to include data reported in this paper (e.g. the presence of trace tin, bismuth and tellurium in the Fe-tennantite). A–C are modified from

Jannas (1995) and Jannas et al. (1999).
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compositional boundaries are curved and clearly defined.

There are oscillations in NSb that are clearly shown by the

brightness contrast in back-scattered images with NSb vary-

ing systematically from about 4 to at least 77% with tellu-

rium and bismuth both below detection (< approximately

0.1wt %).

Enargite, Cu3AsS4, is far less common than Fe-tennan-

tite in the sample suite. Figure 5A shows early enargite,

characterized by well-developed cleavage, aggressively

replaced by Fe-tennantite but retaining its cryptic crystal

outline, identifiable in both reflected light and FESEM

backscatter and secondary electron images (Fig. 5A,B).

Here, vugs are common along the enargite cleavage but

appear less common in Fe-tennantite. The bright area in

the right edge of Fig. 5B is one of the rare, localized

occurrence (see detail below) of bismuth enrichment to

1.2 atomic % Bi6 within Fe-tennantite (NSb = 4–13%) that

also hosts isolated tiny vugs enclosing galena.

Laser ablation inductively coupled mass spectrometry

(LA-ICP-MS) was used to traverse this area (Fig. 5B). A

slit was placed into the laser aperture and traversed the

sample at 1 lm sec)1. Scans were performed at a repetition

rate of 7 Hz, keeping the gas signal constant between 45

and 50 mJ. The gas background was collected before and

after ablation. As the results could not be normalized, raw

data are presented (Fig. 5C). The distinction of enargite

from Fe-tennantite is evident from the relative iron concen-

tration. It is evident from the co-variation of trace element

concentrations that the replacement of enargite by Fe-ten-

nantite was accompanied by introduction of Sb, Ag, Bi,

Hg, Te and Sn. These highly variable relative concentra-

tions are consistent with their occurrence, along with Pb as

PbS, as discrete inclusions in the sulfosalts. These relation-

ships show that the reaction of enargite to Fe-tennantite

was not simply a response to a change in temperature or

the relative activity of sulfur that redistributed trace ele-

ments from the original enargite, but that these heavier

elements were introduced during the replacement reaction.

The complexity of the replacement is illustrated in

Fig. 5D,E.

Figure 6A provides an example of the relationship

between CuFe1-xS ([Cu+Fe] ⁄ S = 49.7–50.3%) and Fe-ten-

nantite, (NSb = 1.7–39.6) with up to 0.7 atomic % Bi (see

also Mavrogenes et al. 2010; Fig. 2B,C) associated with

vugs in a Fe-tennantite matrix. The largest of these vugs

contains crystalline K-mica (K ⁄ Al, 0.32, Al ⁄ Si, 0.7). Fig-

ure 6B–F shows examples of the aggressive reaction relation-

ship between Fe-tennantite and pyrite that is common

throughout the sample suite. A distinct monomineralic rim

of chalcopyrite is sometimes preserved around pyrite rem-

nants (Fig. 6D) but generally, corroded pyrite interfaces

directly with Fe-tennantite while CuFe1-xS2 may form inde-

pendent crack-fill (Fig. 6C) textures through pyrite. In some

samples, a cryptic boundary of the original pyrite is preserved

by the distribution of CuFe1-xS2 blebs (see Mavrogenes

et al. 2010; Fig. 2A). Jannas (1995) notes that CuFe1-xS2

forms separate veins in some parts of the deposit.

While pyrite and enargite corrosion and replacement by

Fe-tennantite are common, bismuthinite (Bi2S3)-(CuBi)1-y

S2-Fe-tennantite (NSb = 14.1–35.3) assemblages occur

locally replacing earlier Fe-tennantite and infilling cracks

through pyrite (Figs 5B and 7). Here the tennantite does

not contain detectable tellurium, but bismuth ranges from

0.2 to 2.4 atomic %, equivalent to about 0.1 atoms per

formula unit. Even more interesting is the spectacular

zonation of bismuth (Fig. 7C) extending outward from a

distinctive radiating fracture array in pyrite across pre-exist-

ing Fe-tennantite. Figure 7D shows bismuthinite

([Cu,Bi]1-yS2)-Fe-tennantite intergrowths, and Figure 7E

shows how the bismuth-rich assemblage corrodes earlier

Fe-tennantite (NSb = 0–2.2, with Te and Bi below detec-

tion) and pyrite.

Micron-scale and larger vugs are common throughout

the Fe-tennantite-enargite assemblages (Fig. 8, and see

Mavrogenes et al. 2010). Many appear to be empty but

others have well-developed linings with discrete crystals

(Fig. 8B–D). It is important to note that quite different

mineral phases occur in vugs that may only be a few tens

of microns apart. For example, clusters of gold crystals

(Fig. 8C) and Cu2S vug linings (Fig. 8D) occur with dis-

tinctive PbS inclusions in Fe-tennantite that replaced earlier

enargite alongside a quartz crystal (Fig. 8E). Figure 6G

shows pyrite with a vug that contains Fe-tennantite-

chalcopyrite intergrowths together with empty space or

vapor. Isolated tin-minerals such as kuramite (�Cu3SnS4)

and thallium-rich inclusions occasionally occur in the

Fe-tennantite (Fig. 6F).

Table 1 Sample locations for the El Indio sample suite: map coordinates

and elevation (Z meters above sea level). For relative locations in the con-

text of the geology see Fig. 2.

Sample number X m Y m Z masl

1279 406753.67 6709922.68 3817.14

1281 406392.82 6709244.91 3690.85

1285 407065.56 6709858.6 4116.92

1300 407211.45 6709991.64 3811.37

1458 406433.96 6709409.06 3726.87

1692 406668.62 6709701.05 3698.98

2441 407185.53 6710057.74 3925.26

4124 406574.59 6709669.69 3982.69

4216 406760.78 6709916.61 3788.68

4268 406532.89 6709416.77 4063.7

4289 406339.17 6709523.65 3890.88

6There are inevitable peak overlap issues when separating heavy

metal spectra for analysis. Here we only report bismuth, tellurium,
and lead enrichment at concentrations well above the detection

limit and where there is good peak discrimination.
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One of the most striking relationships throughout the

sample suite is the occurrence of quartz as euhedral, often

doubly terminated, crystals (Fig. 1 and Mavrogenes et al.

2010; Fig. 1) within Fe-tennantite – but not within pyrite.

Figure 8G provides an example of the development of a

single euhedral quartz crystal within a matrix of Fe-tennan-

tite (NSb = 13.1), Fe and Bi = 3.9 and 1.4 atomic %,

respectively. In Figure 5E, a quartz cluster inside enargite

has occluded Fe-tennantite and is rimmed by Fe-tennan-

tite, suggesting that a volume change attended quartz

growth simultaneous with crystallization of Fe-tennantite.

Tanner et al. (submitted) have identified residual silica

hydrates within the quartz crystals indicating that the crys-

tallization of quartz occurred by dehydration from a higher

temperature silica hydrate. Homogenization of ‘primary’

vapor-rich inclusions can therefore only provide an

estimate (455�C, Mavrogenes et al. 2010) of the final crys-

tallization temperature of quartz from the primary silica

(A)

(B) (C)

(D) (E)

(F) (G)

Fig. 3. Back scattered images of sulfosalt assem-

blages, analytical spot data shown in white as

NSb, Fe atom percent where NSb = 100 · Sb ⁄
(As + Sb) with Sb and As in atomic percent.

Multiple analyses of Fe-tennantite assemblages

within open space in fractured pyrite illustrating

the range of tennantite compositions along with

variable substitution of Bi and Te. Note the distri-

bution of euhedral quartz crystals, curved

domain boundaries and crystallization of discrete

phases within domains. Sample EI1300T. The

textural relationship shown in (F) may be inter-

preted as a wetting relationship (A. Tomkins,

pers. comm. 2011).
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hydrate rather than the deposition temperature of the pri-

mary assemblage from which they formed. Relationships

between NSb zoning and euhedral quartz crystals (e.g.,

Figs 5E and 8G, and Mavrogenes et al. 2010; Fig. 1C)

support this interpretation. The presence of sulfide- and

sulfosalt-melt inclusions in quartz (Fig. 9) confirms co-pre-

cipitation of the precursor silica hydrate and sulfosalt melt.

DISCUSSION

Nuccio et al. (1999) have shown that high-temperature

fumaroles (i.e., > approximately 600�C) in active volcanic

environments form by isenthalpic expansion of magmatic

vapor through available high permeability fracture arrays.

Henley & Berger (2011) argued from a review of the geo-

logical setting and geochemistry of high-sulfidation lode

gold deposits worldwide, including El Indio, that all were

formed in a similar shallow subfumarolic setting with abun-

dant evidence of high-temperature gradients to >500�C
preserved in the presulfide silica-alunite wallrock alteration

that effectively sealed and insulated the sulfide-stage vapor

expansion from surrounding groundwater flow (Henley &

Berger 2011, Fig. 7).

The mineral relationships shown in Figs 1–8 and their

associated analyses illustrate a complex rapidly evolving sul-

fide–sulfosalt–silica depositional setting, 650–1150 m

below the paleo-surface at El Indio. Our data show that in

the Copper Stage (Fig. 2C), pyrite was deposited first in

available fracture space and, following its fracturing, was

succeeded by localized deposition of crystalline enargite in

open space. Enargite was followed by Fe-tennantite that

filled available space and aggressively corroded the earlier

crystalline enargite and pyrite. The preservation of cryptic

crystal faces of replaced enargite and pyrite and the wide-

spread occurrence of vugs provide evidence, as discussed

below, of high-temperature diffusion-controlled replace-

ment reactions in the presence of a vapor phase. The Fe-

tennantite developed a range of heterogeneous textures

with discrete domains fractionating progressively to higher

NSb with localized enrichment in bismuth and other heavy

metals.

The combination of these textural and compositional

relationships, the contemporaneous evolution of distinctive

euhedral quartz crystals with extreme oxygen isotope zona-

tion, the sulfosalt phase relations (discussed below) and the

evidence for vapor-rich conditions at >455�C in a shallow,

low-pressure environment indicate that the Fe-tennantite

deposited from an expanding magmatic vapor as a high-

temperature sulfosalt melt(S) that then cooled and crystal-

lized. Symplectic textures (Fig. 6A) occur locally and may

be interpreted (Mavrogenes et al. 2010) as the separation

of excess Cu-Fe from the primary sulfosalt melt as the melt

field shrank away from the starting composition

(Fig. 9A,A¢). Figure 5D shows a distinctive relationship

between high and low Fe-tennantite that may indicate local

melt immiscibility. Fe-tennantite is sometimes localized

around euhedral and more complex quartz intergrowths

(e.g., Figs 4B and 5E) in the manner of a wetting relation-

ship (Figs 3F and 5E). Such wetting involving sulfosalt

melts (as discussed below) has been demonstrated experi-

mentally by Tomkins (2010).

Strikingly, the El Indio Copper Stage sulfide-quartz

assemblages have no resemblance to the textures typically

encountered in epithermal gold deposits that formed in

paleo-geothermal systems where liquid water dominated at

close to its liquid–vapor phase boundary. As noted below,

(A) (B)

(C) (D)

Fig. 4. Back scattered images of sulfosalt assem-

blages. (A,B) Relationship of low NSb Fe-tennan-

tite with distinct vuggy margins to highly

fractionated Fe-tennantite (to NSb = 75.6), and

euhedral quartz. (C,D) Complex oscillatory NSb

zonation of Fe-tennantite as discrete domains

within vuggy low NSb Fe-tennantite. Note the

occurrence of fluorapatite and corroded sulfur-

deficient chalcopyrite in (D). Sample EI4216FIB.

ccp, chalcopyrite.
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the pressure in the Copper Stage fractures and the intense

prior wallrock alteration restricted groundwater entry to

the expanding gas flow until reservoir pressures declined.

Phase relationships and heavy metal fractionation

Phase relations in the multicomponent tennantite-tetrahe-

drite solid solution series [(Cu,Ag)10(Fe, Cu)2(Sb, As, Bi,

Te)4S13] are poorly known but, by analogy with synthetic

sulfosalt minerals used in the semiconductor industries,

inevitably complex. To propose an integrated interpretation

of the El Indio data, we here develop an empirical phase

relation model based on the compositional relations detailed

above and available experimental data for simpler systems.

Stability relations for phases in the water-free ternary Cu-

As-S system were determined experimentally by Maske &

Skinner (1971) who demonstrated the extent of the sulfo-

salt melt phase relative to end-member tennantite (melting

point 665�C, Fig. 9A, A¢). Experimental data for the equiv-

alent Cu-Sb-S system (Skinner et al. 1972) show that above

540�C, tetrahedrite melts to a similarly large compositional

range. Tatsuka & Morimoto (1977) determined that the

presence of iron at >1.72 atomic percentage increased the

melting point of tetrahedrite by 12.7�C per atomic % iron.

Our data contain 4–5 atomic % iron, suggesting a maximum

increase in the melting point of Fe-tennantite of about

60�C. Assuming that the effects of trace components are

negligible, as a first approximation, the system may be

regarded as a binary solid solution between proxy end mem-

bers – Fe-tennantite and Fe-tetrahedrite (Fig. 9B). However

Maske & Skinner (1971) show that the stability field of ten-

nantite expands relative to the field of melt immediately

(A) (B)

(D) (E)

(C)

Fig. 5. (A,B) Relationships between enargite

(with distinct cleavage), quartz with Fe-tennan-

tite. Note the cryptic margin of replaced enargite

that is clearly visible in reflected light (A) and the

backscatter image (B). Analytical spot data

shown as NSb, Fe (atom percent). Note zonation

of the Fe-tennantite and the highly localized

Bi-enrichment (see text). The dashed line is the

laser ablation traverse whose data is shown in

(C). (C) Laser ablation traverse (raw data, see

text). (D) Intergrowth of low-Fe sulfosalt (NSb =

2.9–4.3) and lower NSb (1.8–4.1) sulfosalt in

back scattered imagery, (E) Cluster of quartz

crystals with a halo of low NSb Fe-tennantite

inside vuggy enargite, visible in reflected light.

Note the occlusion of Fe-tennantite by the

quartz margin. Sample EI4216. En, enargite,

Fe-tn, Fe-tennantite.
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below its melting point (665.5�C) so that here we include a

solvus maximum (M) at about NSb = 10% but note that the

original study took no account of the composition of any

small fraction of vapor in the closed tube experiments.

While the existence of M is not critical to the hypothesis

developed here, we have presented some analytical data sug-

gesting that fractionation toward low NSb values occurs

locally. Sugaki et al. (1982) provided a limited range of

experimental data for the Cu-As-Sb-S system and suggested

a eutectic at about NSb = 70 ± 5% and 565�C. The El Indio

data (and our unpublished data from other deposits) has an

apparent upper NSb limit of approximately 77%, as discussed

below, so that in Fig. 9B we have made provision for a

eutectic (E), at about 600�C (allowing for the effect of iron

in the structure).

The depositional sequence and reaction relationships at

El Indio indicate trapping of Fe-tennantite melt in open

space in fractured pyrite. The data presented here also indi-

cate crystallization of enargite, postpyrite, as a solid phase

that was later progressively dissolved by Fe-tennantite melt.

These data then suggest that condensation of the Fe-ten-

nantite melt from the vapor occurred at >665�C and

<694�C (because crystalline enargite formed prior to

Fe-tennantite) directly from magmatic vapor. By implica-

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Fig. 6. Mineral intergrowths and replacement

textures. (A) FESEM backscatter image showing

symplectic Fe-tennantite (NSb = 2.0) – chalcopy-

rite intergrowth. Spot analyses with interaction

diameter about 2 lm are shown as NSb. Note the

presence of vugs and the intergranular space

containing high Sb tennantite. Sample EI1285.

(B) Fe-tennantite replacement of pyrite (py) to

produce ‘archipelago’ texture. Sample EI1285, in

reflected light. (C,D) chalcopyrite (ccp) and Fe-

tennantite (Fe-tn) replacement of pyrite. Sample

EI1300 reflected light. (E) chalcopyrite and

Fe-tennantite replacement of pyrite. Note pres-

ence of vugs and infill textures. Sample EI1300

backscatter image with JEOLSEM analyses. (F)

Progressive replacement of pyrite by chalcopyrite

and Fe-tennantite. Note the trail of vugs and vug

infills and the occurrence of bright heavy metal

phases; Te indicates high Te in the spectrum and

others indicate high Pb. ku is tentatively identified

by analysis as kuramite, Cu3SnS4. Sample EI1300,

backscatter image. (G) Fe-tennantite partially fill-

ing a vug in pyrite with the tennantite showing

possible phase unmixing with the release of chal-

copyrite. Sample EI1300, backscatter image. (H)

experimental simulation of metastable chalcopy-

rite rim formation by tennantite (NSb = 25) by

reaction with pyrite with development of intersti-

tial symplectite in tennantite in the interstices;

2 days at 700�C (Bouma 2010).
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tion, the deposition of crystalline pyrite occurred above this

temperature but below the stability limit of pyrite (approxi-

mately 742�C). Simultaneous trapping of gas as vapor-filled

vugs in Fe-tennantite is consistent with these data especially

with the recognition of Cu2S, sulfosalts and silica as discrete

phases coating the inner surface of many vugs. The El Indio

phase assemblages further suggest that silica hydrate

co-deposited as a discrete immiscible phase7 with the sulfo-

salt melt. Water released during subsequent dehydration

mixed with vapor trapped during melt condensation and

may be responsible for the evolution of the wide range of

vug minerals that we have described in these assemblages.

The presence of vugs requires that consideration be

given to the possible geometry of a vapor-melt relation

(‘vaporus’) in the system Cu(Fe)-As-Sb-S. Figure 10 is a

simplification of these more complex relations relative to

the solid solution series assumed for Fe-tennantite to

Fe-tetrahedrite in Fig. 9B. As very little is known about

vapor-melt relations for sulfide or sulfosalt compositions,

we assume for simplicity that the melt–vapor phase geome-

try is similar to that of the solidus-liquidus for the system.8

The deposition of both crystalline pyrite and enargite from

the vapor phase prior to the condensation of Fe-tennantite

melt suggests that the vapor-melt phase boundary for this

system lies below the melting point of enargite (Fig. 10).

(A)

(B) (C)

(D) (E)

Fig. 7. (A) Localization of high bismuth domain

in jigsaw fractured pyrite with diffusion-con-

trolled zoning outward across earlier vuggy

Fe-tennantite. ‘B to E’ indicate the location of

the detailed images and analysis sets (B–E). (B)

well developed fabric of bismuthinite + Fe-ten-

nantite(lighter grey) corroding earlier pyrite(e)

(26.8.10, SOI6), (C) ‘reaction front’ with Fe-ten-

nantite (Bi = 2 to 2.4 atom percent Bi) + Cu-Bi

phase X in contact with low NSb dark grey,

Fe-tennantite (Bi < detection) that in turn is

nucleated on vugs (analysis 9.09.10 SOI8). The

Bi ⁄ (Cu + Bi) atomic ratio of phase X ranges from

44% to 49%. (D) intergrowth of bismuthinite

(including in open vugs), and Fe-tennantite (Bi

up to 1.3 at.percent). Arrow indicates exsolution

intergrowth of bismuthinite and Fe-tennantite

(NSb > 35%, 0.6–1.3 atomic percent Bi)

(19.8.10, SOI2), (E) pyrite replacement by

intergrowth of bismuthinite, Cu-Bi phase X and

Fe-tennantite (26.8.10, SOI9). bis, bismuthinite,

X, Cu-Bi phase X, py, pyrite and Fe-tennantite

spot analyses designated by, for example, 2.2,

5.5, Bi 2.3, as Nsb, Fe, Bi (atom. percent).

7Experimental data and observations on magmatic sulfide deposits

elsewhere indicate that sulfide melts may contain several percent
water (Wykes & Mavrogenes 2005) that may in turn lower melt-

ing temperatures by a maximum of about 35�C.

8Hansen & Aderko (1958, p.177) show an analogous vaporus–

melt phase relationship in the system As-S up to >700�C.
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The bulk concentrate mined from El Indio had an

NSb of 2.9% (Balaz et al. 2000) and contained about 45

wt% enargite. The most abundant Fe-tennantite composi-

tion in the El Indio sample suite also limits the anti-

mony content of the initial melt to NSb approximately

5%, with the content of other metals and semi-metals

<0.2 wt%). The fractionation of high NSb zoned Fe-ten-

nantite further suggests that the NSb of the magmatic

vapor phase (V0) was higher than that of the bulk mined

concentrate and in the vicinity of the average crustal

abundance ratio for granite and basalt (NSb = 7.6 and

5.8% respectively). The El Indio data show that during

fractionation the sulfosalt melt composition became

enriched in antimony and the NSb for the crystallizing

sulfosalt increased to a maximum of 77%, suggesting a

system eutectic (Fig. 10).

Sb, Bi and Te are the principal substituents for As in the

X site of the standard tennantite formula of Moelo et al.

(2008). Assuming that for large-ion Group 5A (syn.

Group 15) heavy metals that metal-sulfur bond energies

are similar, the principal steric control on semi-metal sub-

stitution into crystalline tennantite is bond length. It is

then a reasonable assumption that partitioning between

weakly structured melt and vapor should similarly reflect

relative bond lengths because the electron configurations

of the large heavy metal ions result in similar vapor phase

speciation. Our data show that the concentrations of bis-

muth and tellurium generally remain below detection until

the Fe-tennantite composition reaches NSb > 20(B in

Fig. 10). At NSb approximately 20, 80% of the original

arsenic in the vapor has crystallized with commensurate

increase in the melt concentration of other metals. In turn,

(A) (B)

(C) (D)

(E) (F)

(G) (H)

Fig. 8. Vugs and mineral inclusions. (A) Large

and small vugs typical of the broken surfaces of

the El Indio samples, en, enargite; EI1300a, (B)

euhedral fluorapatite (F-ap) crystals in a cavity in

Fe-tennantite (Fe-tn), EI1300, (C) cluster of gold

crystals (Au) in a vug in Fe-tennantite, EI1300T,

(D) Cu2S lining a vug in Fe-tennantite, EI4268,

(E) inclusions or vug fillings of galena, ga, in Fe-

tn (NSb13.1%, Fe 3.9, 1.4%Bi), adjacent to laser

ablation track, EI4216 (cf Fig. 5C), (F) sulfosalt

inclusion (unmixed sulfosalts providing a spot

analysis (approximately 2 lm) of NSb = 11%)

inside a pyrite inclusion in a euhedral quartz crys-

tal, EI1300T, (G) Intergrowth of quartz and Fe-

tennantite; note the discrete hexagonal quartz

crystals growing within the quartz mass,

EI4216FIB (cf. Fig. 5), (H) Euhedral quartz

(EI1285, 7524), showing primary sulfide ⁄ sulfosalt

melt inclusions. (A–D) and (F) are secondary

electron images on fractured surfaces, (E) is a

back scattered image, and G–H are reflected

light images. The hatchured area in (E) is the ter-

mination of a laser ablation track.
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the vapor (derived from silica hydrate dehydration) associ-

ated with the melt also fractionates and becomes enriched

in heavy metals (Fig. 10) in a sequence consequent on

their respective metal–sulfur bond distances (Table 2).9 We

suggest that it is this process that leads to the evolution of

the composition of the vapor phase and results in the wide

range of discrete heavy metal vug minerals as well as

incompatible phases such as aluminosilicates and fluora-

patite. The late release of vapor enriched in bismuth

through new cracks in the pyrite results in the localized

complex bismuth assemblages (Fig. 7).

Bismuth has received attention as a potential flux that

reduces the melting point of sulfides such as galena (Tom-

kins et al. 2007). The great majority of Fe-tennantite anal-

yses in the El Indio suite have bismuth contents below

FESEM detection (approximately 0.1 wt %), indicating that

bismuth is a trace element10 in the primary sulfosalt melt

with a potential to lower the melting point by at most a

few degrees. However, despite the low concentration of

bismuth, domains of bismuth enrichment occur locally

within fractured pyrite and enargite (Figs 5B and 7A) and

appear to have developed by diffusion into adjacent pre-

existing Fe-tennantite. Figure 9C reproduces the experi-

mental data of Sugaki & Shima (1972) for the system

Cu2S-Bi2S3 and includes the range of compositions for the

(CuBi)1-yS2 phase that appears to be in equilibrium with

Bi2S3 and Bi-substituted Fe-tennantite. These data, again

noting the occurrence of Cu2S in coexisting vugs, indicate

phase unmixing from melt above 650�C in the presence of

vapor. A complex mix of bismuthinite and (CuBi)1-yS2

occurs with Fe-tennantite (NSb = 50.9, Bi = 1.3 atomic %)

as a discrete zone in fractured pyrite (Fig. 7A). The precur-

sor to this assemblage was highly reactive to pyrite and

consumed earlier lower NSb Fe-tennantite (Fig. 7D,E).

The localization of the bismuthinite-(CuBi)1-yS2 assem-

blage by fractured pyrite and enargite indicates that a bis-

muth-rich vapor phase evolved during cooling of the

assemblage moved through fractures in the pyrite and

reacted with the Fe-tennantite such that concomitant

enrichment in bismuth to more than 1.3 atomic % enabled

formation of Cu-Bi-S minerals.

Far-from-equilibrium chemical reactions

None of the textural or compositional relationships pre-

served in the El Indio suite may be interpreted as having

(C)

(B)

(A)

(A′)

Fig. 9. (A, A¢) Phase relations in the system Cu-As-S between 663 and

650�C (from Maske & Skinner 1971) showing the rapid change in the

extent of the sulfosalt melt field over a small temperature range and

the isolated tennantite composition just prior to melting; (B) empirical

phase relations for the tennantite-tetrahedrite solid solution series (see

text), (C) Phase relations in the system Cu2SBi2S3 (Sugaki & Shima

1972) showing the range of CuBi1-yS2 compositions from sample

EI1285 (Fig. 7B–D).

9A similar pattern of heavy metal fractionation has been described

by Helmy et al. (2010) for experiments involving sulfide melts and

monosulfide solid solution in the context of magmatic sulfide
deposits.
10At El Indio, the bismuth concentration of mined pyrite-sulfosalt
concentrates is about 0.1%, which translates into 0.2 atom percent

relative to total antimony and arsenic.
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formed in a close-to-equilibrium state. The diffusion-con-

trolled replacement of pyrite and enargite by Fe-tennantite

and the localization of bismuth-rich assemblages clearly

indicate a far-from-equilibrium chemical environment

(Henley & Berger 2000) resulting from the throttling of

magmatic vapor from high to low pressure in the fracture

array. This arises because the vapor phase solubilities of

metals as well as the speciation of major components such

as alkali chlorides and silica are strongly pressure-depen-

dent (Henley & Berger 2011). Because the principal sol-

vent interaction is the weak bonding between, for example,

CuCl2,g and H2Og, in the form of CuCl2,nH2Og clusters

(or equivalent sulfide species), changes in the activity of

water during expansion are critical controls on the vapor

phase solubility of sulfides and sulfosalts. Arsenic as arsenic

sulfide or hydroxide vapor species (Pokrovski et al. 2005)

are similarly victims of expansion and rapidly react with

other destabilized metal species to deposit complex sulfo-

salt minerals. Even though experimental data are not avail-

able for metal species in volcanic gases, it is clear that as

magmatic vapor expands within a fracture network, rapid

changes in the total vapor pressure inevitably establish far-

from-equilibrium depositional conditions, in turn setting

in train the solid-melt-vapor fractionation processes pre-

served at El Indio. The aggressive replacement of pyrite

and enargite by Fe-tennantite, as discussed below, is a

prime example.

In a far-from-equilibrium environment, fast reactions

yield products that are subsequently unstable and the

resultant intermediate assemblages continue to react

toward an equilibrium or stationery state. However, their

progress is limited by, for example, the relative diffusion

rates of the species involved, resulting in incomplete

replacement and preservation of remnants of the interme-

diate phases. In the El Indio assemblages described here,

chalcopyrite is preserved as an intermediate product of the

replacement of pyrite by Fe-tennantite and sometimes

forms discrete veins through pyrite. These remnants of the

reaction sequences suggest that both pyrite and enargite

crystallized rapidly from the vapor phase but were unstable

with respect to Fe-tennantite melt. Subsequently, the

early-fractionated Fe-tennantite was unstable with respect

Fig. 10. Synthesis of sulfide-sulfosalt deposition

and fractionation sequence in the system Cu-Fe-

As-Sb-S – heavy metals as discussed in the text.

Melting point of enargite from Muller & Blachnik

(2002).

Table 2 Relative metal–sulfur bond distance in crystalline solids (calculated

from the data of Brese & O’Keeffe 1991) with respect to the structural site

in tennantite (see text). R3 is the cube of the bond distance relative to the

As–S bond expressed as a percent to illustrate the size difference of ions in

a substitution relationship. For comparison, bond distance parameters are

also shown for selected other heavy metals.

Element

Bond valence

parameter

Tennantite

structural site

Atomic

weight R3 (%)

Cu 1.86 B 63.55

Ag 2.15 B 107.87

Zn 2.09 C 65.37

Fe 2.16 C 55.85

Mn 2.20 C 54.94

Cd 2.29 C 112.4

Hg 2.32 C 200.59

As 2.26 X 74.92

Sb 2.45 X 121.75 27

Sn 2.45 X 118.69 27

Te 2.45 X 127.6 27

Bi 2.55 X 208.98 44

S 2.07 32.06

Au 2.03 196.97

Se 2.25 78.96

Mo 2.35 95.94

Re 2.37 186.2

Tl 2.63 204.37

Pb 2.78 207.2
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to the bismuth-enriched vapor (that evolved during Fe-

tennantite fractionation of the heavy metals) through new

cracks in the remaining brittle pyrite and enargite.

Coupled substitution reactions

A number of secondary processes attend the interaction of

sulfosalt melt with earlier crystalline phases. Fe-tennantite

melt aggressively corrodes and replaces both pyrite and

enargite (Figs 5 and 6). The detail shown in Fig. 6 indi-

cates that the reaction proceeds by initial pitting of the

pyrite by reacting with vapor followed by a reaction

sequence through chalcopyrite to Fe-tennantite. The pres-

ence of isolated heavy metal inclusions, including Te and

Sn minerals, and the LA-ICP-MS data (Fig. 5) show that

this reaction introduced a wide range of elements not pres-

ent in the early pyrite or enargite and therefore indicates

that the reaction was not simply a response to changing

activity of sulfur species. Preservation of cryptic crystal out-

lines (Fig. 5B) shows that the sequence of coupled substi-

tution and electron transfer reactions (c.f. Renock 2010)

occurred by diffusion. The solid state replacement of

enargite involves electron transfer (AsV to AsIII) coupled

with substitution by SbIII and other trace semi-metals and

partial exchange of CuII by Fe into the structure as FeII,

FeIII, and FeII ⁄ III (Makovicky et al. 1990). Blanchard et al.

(2007) suggest that arsenic substitution in pyrite occurs by

replacement of sulfur in the unit cell. An association with

vugs, some containing Cu2S, suggests the release of a sec-

ondary vapor phase during these reactions. The pyrite-Fe-

tennantite reaction involves inward diffusion of CuI and

AsIII probably kinetically controlled by vacancies in the pyr-

ite (Birkholz et al. 1991) with a counter diffusion of Fe

resulting in CuFeS2, with Fe as FeIII (Pearce et al. 2006), as

an intermediate phase forming rims and discrete veins. Fig-

ure 6H shows an experimental simulation of the reaction

pyrite + tennantite (NSb = 25) (Bouma 2010) at 700�C
with pyrite reacting rapidly with the tennantite melt to pro-

duce a well-defined metastable rim of CuFeS2 within 48 h.

The replacement of early pyrite by sulfosalts is common

to high-sulfidation deposits worldwide. It is further docu-

mented for sulfide–sulfosalt assemblages at the Chinkuash-

ih deposit, Taiwan, where subsolfatara mineralization is

preserved to about 1500 m below the original surface

(R. Henley, B. Berger, unpublished data) and the replace-

ment reaction is shown to be pressure-dependent, with

lower pressures favoring sulfosalts.

SYNTHESIS

Figure 1 posed a number of questions. How were fractures

developed through the pre-existing pyrite and how was

open space created within which the complex ‘porphyritic’

tennantite-quartz assemblages developed? How were the

components of the sulfosalts (Cu, Fe, As, Sb, S, ±Te, Ag,

Bi, Tl, Sn) transported into this space along with silica?

How may we account for the occurrence of discrete sulfide

(e.g., galena and other heavy metal sulfides), sulfosalt min-

erals, and tiny gold crystal clusters in some vugs while oth-

ers are empty? The data presented here indicate that

magmatic vapor expansion through the controlling fault

array of the El Indio fumarole-vent system was a conse-

quence of on-going crustal stress that opened a network of

cracks and dilatations. Vapor expansion first deposited pyr-

ite at about 700�C in this newly opened fracture space.

The fracture array remained under stress with subsequent

fracturing of the early pyrite and the switch to the deposi-

tion of enargite and subsequent condensation of a multi-

component, low-viscosity (Dobson et al. 2000) sulfosalt

melt containing dispersed silica hydrate at >675�C. The

composite sulfosalt melt flowed through fractures into

available dilatations with aggressive corrosion and dissolu-

tion of the earlier pyrite and enargite (Figs 5 and 6). The

sulfosalt melt then crystallized, as described below, to pro-

duce the complex zoned Fe-tennantite and discrete heavy

metal inclusions (Fig. 3 and 4). During melt crystallization,

the dispersed hydrated silica coalesced progressively and

crystallized to euhedral quartz with entraped melt inclu-

sions (Fig. 8G,H) and sequential release of water. Trace

element partitioning between this released water and frac-

tionating sulfosalt melt resulted in the abundant mineral-

ized vugs and the wide range of heavy metal inclusions in

the Fe-tennantite, including gold (Fig. 8A–F).

Interestingly, the cross-cutting ‘Gold Stage’ chalcedonic

silica veins11 (Jannas 1995) are characterized by a geo-

chemically more complex suite of sulfides and sulfosalts

than the Copper Stage, including tungstates, silver, lead

and bismuth sulfides, tellurides, and gold (Fig. 2). As

described above, these elements are also present within the

earlier Fe-tennantite assemblages where clearly defined

zonation and abundant vugs indicate heavy metal fraction-

ation between the solid, the contiguous melt and vapor

phases. It is possible, and permitted by the oxygen and

deuterium isotope data of Jannas et al. (1999), that this

distinctive phase of mineralization is a lower pressure phe-

nomenon related to the mixing of evolved heavy metal-

enriched vapor and groundwater in available fractures as

pressure in the magmatic vapor reservoir decreased as a

result of discharge.

Vapor phase geochemical processes in active fumaroles

The sulfide–sulfosalt assemblages preserved in the fracture

system at El Indio around one thousand meters below the

paleo-surface provide insights to the processes occurring in

11The fluid inclusion data reported by Jannas (1995) are primarily
from the secondary quartz within the recrystallized silica in these

veins.
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modern active volcanoes. While enargite and tennantite are

found in pumice on Popacatapetl, Mexico (Larocque et al.

2008), arsenic minerals are rare in fumarole sublimates

except as complex sulfosalts such as vurroite,

Pb20Sn2(Bi,As)22S54Cl6 in association with other rare com-

plex sulfosalts such as lillianite Pb2.88Bi2.12(S5.67Se0.33)S6

and galenobismutite, Pb3Bi2S6 (e.g., Garavelli et al. 2005,

Pinto et al. 2006) at, for example, Vulcano, Italy, and Ku-

driavy, Kurile Islands. Similarly, antimony minerals are sel-

dom observed in fumarole sublimates or encrustations

although Africano et al. (2002, 2003) have shown that

both As and Sb are enriched in altered rocks adjacent to

fumarole vents. Because the deposition of enargite and

Fe-tennantite in the El Indio paleo-fumarole requires that

the expanding magmatic vapor becomes depleted in arsenic

and relatively enriched in heavier metals, a similar vertical

separation of heavy metals may be occurring in these active

fumaroles.

Williams-Jones et al. (2002) reviewed and summarized a

limited range of metals for fumarolic discharges from

andesitic to felsic volcanoes. We are here only concerned

with high-temperature fumaroles with exit temperatures

above 600�C with minimal interaction with external

groundwater or cold magmatic vapor condensate. With the

exception of Mount St. Augustine, Alaska (870�C,

33 mg kg)1), the reviewed arsenic concentrations were well

below 4.5 mg kg)1. Low arsenic concentrations are also

confirmed by the data of Signorelli (1997) with the only

exceptions in his data set being Vulcano (625�C,

30 mg kg)1) and Galeras, Colombia (642�C, 15 mg kg)1).

Antimony analyses are not commonly reported for fuma-

role condensate samples perhaps because of very low val-

ues. In the data tabulated by Williams-Jones et al. (2002),

antimony concentrations range from 0.01 to 0.5 mg kg)1

giving an NSb range for the gas discharges of 0.4–26.12

This contrast between the subsurface arsenic-rich sulfo-

salt assemblages described at El Indio 900 m or so below

the surface of a paleo-solfatara and the arsenic-poor subli-

mates and vapor discharges observed in modern fumarole

vents and sampling tubes highlights the problem that gas

samples taken at surface close to atmospheric pressure are

potentially depleted in metals because of subsurface deposi-

tion during expansion from higher pressures. We suggest

that this contrast arises because some 90% or more of the

arsenic in a magmatic gas is deposited subsurface along

with antimony. The ratio of the volume of quartz to ten-

nantite shown in Fig. 1 is about 30% and is equivalent to a

SiO2 ⁄ As mole ratio of about 1.5, because the solubility of

silica in a low-density vapor is around 3000 mg kg)1

(Manning 1994) at magmatic temperatures. Assuming

quantitative deposition of both silica and arsenic, the origi-

nal arsenic concentration of the magmatic vapor would

therefore have been about 2000 mg kg)1.13 In present-day

fumaroles, most of this arsenic is probably also deposited

subsurface in response to vapor expansion or is dispersed

by vapor condensation into groundwater that flows away

from the volcanic center and potentially constitutes a

health hazard in some districts. Similarly, the primary vapor

concentration of antimony would be around 200 mg kg)1.

The common occurrence of bismuth sulfosalts around

active fumaroles also suggests enrichment of the vapor

phase in bismuth as well as other heavy metals as a conse-

quence the of subsurface fractionation of As-Sb sulfosalts

as described here.14 Likewise, the ‘metallic snow’ observed

on Maxwell Montes in the Venusian Highlands (Schaefer

& Fegley 2004) may directly or indirectly be attributed to

similar vapor expansion processes.
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