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Summary  
The molecular machinery responsible for DNA replication, the replisome, must efficiently 

coordinate DNA unwinding with priming and synthesis to complete duplication of both 

strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, 

while the lagging strand is produced by repeated cycles of priming, DNA looping, and 

Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach 

to visualize this coordination in the bacteriophage T7 replisome by simultaneously 

monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in 

the lagging strand predominantly occur during priming and only infrequently support 

subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases 

remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-

fragment synthesis behind and independent of the replication complex. Individual 

replisomes display both looping and pausing during priming, reconciling divergent models 

for the regulation of primer synthesis and revealing an underlying plasticity in replisome 

operation. 
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Introduction 
To efficiently replicate DNA, replisomes must solve a directionality problem. Daughter-

strand templates generated at the replication fork have opposing polarities, but 

polymerases can only synthesize in one direction. This geometry permits the leading-

strand polymerase to synthesize continuously, while the lagging-strand polymerase is 

forced to restart at short intervals, extending RNA primers to produce Okazaki fragments 

(Kornberg and Baker, 1992; Okazaki et al., 1968). The textbook ‘trombone model’ (Alberts 

et al., 1983), proposed for prokaryotic systems, offers an elegant solution to this 

directionality problem. In this model, the formation of a replication loop reorients the 

lagging-strand polymerase so that both polymerases reside in the same complex and 

advance in parallel. As synthesis of the nascent Okazaki fragment proceeds, the double-

stranded DNA (dsDNA) product of the lagging-strand DNA polymerase and the single-

stranded DNA (ssDNA) product of the helicase contribute to the formation of a loop that 

grows until the next cycle of Okazaki-fragment synthesis is initiated. The dynamic and 

transient nature of replication loops has made their study challenging, with Electron 

Microscopy of cross-linked intermediates in the T4 and T7 systems providing the most 

compelling characterization (Chastain et al., 2003; Park et al., 1998). Recent single-

molecule observations of replication have provided an alternative, real-time means of 

exploration, revealing the temporal regulation of looping and priming (Duderstadt et al., 

2014; Hamdan et al., 2009; Manosas et al., 2009; Pandey et al., 2009). Nonetheless, the 

inability to directly observe and correlate multiple kinetic events across the replication 

machinery greatly limits mechanistic understanding of the coordination of synthesis on the 

two strands. 

The replication machinery of T7 serves as an elegant model system to study the 

orchestration of enzymatic events during replication. While it contains only four unique 

proteins, the organization of the T7 replisome closely mimics that of more complex 

organisms (Hamdan and Richardson, 2009). At its core lies the T7 gene 4 protein (gp4), 

which assembles into a hexameric ring that displays both helicase and primase activity. 

Multiple copies of the T7 DNA polymerase, a 1:1 complex of the T7 gene 5 protein (gp5) 

and the Escherichia coli thioredoxin processivity factor, synthesize DNA on the unwound 

ssDNA. Finally, the T7 gene 2.5 ssDNA-binding protein (gp2.5) transiently coats exposed 

ssDNA to enhance the lagging-strand polymerase synthesis rate and aid coordination 

within the replisome (Hamdan and Richardson, 2009; Lee et al., 2002).  
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How the slow enzymatic steps of priming and polymerase loading take place on the 

lagging strand without causing loss of coordination with continuous leading-strand 

synthesis is a long-standing question in the field of replication, and several divergent 

models have been proposed based on various strands of experimental evidence (Corn et 

al., 2005; Dixon, 2009; Frick et al., 1999; Hamdan et al., 2009; Lee et al., 2002; Lee et al., 

2006; Li and Marians, 2000; Manosas et al., 2009; Pandey et al., 2009; Swart and Griep, 

1995; Tanner et al., 2008; Yuzhakov et al., 1999). One model postulates that priming 

pauses leading-strand synthesis (Figure 1A) to ensure that the events on each daughter 

strand remain synchronized (Lee et al., 2006). Another hypothesizes that leading-strand 

synthesis continues during primer production through the formation of a ss loop, known as 

a priming loop (Nelson et al., 2008), between the ssDNA-bound primase and helicase 

(Figure 1B). In this scenario, coordination between the two polymerases would require the 

lagging-strand DNA polymerase to be faster than the one on the leading strand to make 

up for the lost time during primer synthesis (Pandey et al., 2009). In these and other 

models, the hand-off of a completed RNA primer to the polymerase starts Okazaki-

fragment synthesis on the lagging strand and leads to the formation of an ss-ds loop, or 

replication loop (Figure 1C).  

 

Recent work has further complicated our understanding of the molecular events during 

replication by demonstrating rapid polymerase exchange (Geertsema et al., 2014; Loparo 

et al., 2011) and the presence of more than two polymerases at the replication fork 

(Geertsema et al., 2014; McInerney et al., 2007; Reyes-Lamothe et al., 2010) supporting 

multiple simultaneous rounds of lagging-strand synthesis. Current models of replication 

have been unsuccessful in reconciling these and other disparate experimental 

observations, leaving the mechanism of coordination of daughter-strand synthesis 

unresolved. The broad diversity of observed replisome behaviors suggests an underlying 

plasticity that may be an intrinsic feature of replisome function. Methodologies that provide 

more detailed information about how the events on each daughter strand are correlated 

are required to clarify the enzymatic pathways exploited by the replisome. 

 

To obtain kinetic detail on coordination between the two daughter strands, we developed 

an assay to simultaneously monitor the kinetics of leading-strand synthesis and lagging-

strand loop formation by single replisomes. In contrast to past studies (Hamdan et al., 

2009; Lee et al., 2006), our assay reveals two loop growth populations: ss loops, formed 

during priming, and ss-ds loops, formed when both the leading strand and Okazaki 
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fragment are synthesized simultaneously. While most looping events are paired with highly 

processive leading-strand synthesis, pausing coincident with priming is also observed. 

Strikingly, while ss looping events are frequent, occurring multiple times during each 

replication cycle, ss-ds loops are rare. Using single-molecule fluorescence experiments 

that visualize how individual DNA polymerases are spatially and temporally distributed in 

and around the replisome, we show that polymerases remain bound to the lagging strand 

behind the replication fork, consistent with Okazaki-fragment synthesis behind and 

independent of the replication complex. Taken together, our findings provide a picture of a 

highly dynamic replisome: continuously changing its composition and operating mode so 

that different reaction pathways can be accessed to ensure rapid and robust replication. 

 

Results 
Visualization of leading-strand synthesis 
Single-molecule studies of DNA replication using fluorescence microscopy or force 

spectroscopy allow for the direct observation of distinct structural and kinetic states visited 

by replisomes. Existing methods, however, provide only a single observable of replication 

fork progression, such as the amount of DNA synthesized (Lee et al., 2006; Tanner et al., 

2009; Yao et al., 2009) or the formation of loops (Hamdan et al., 2009; Manosas et al., 

2009; Pandey et al., 2009). Such a one-dimensional readout limits the processes that can 

be studied, typically requiring simplified experimental conditions with some replisome 

components removed and only leading-strand synthesis supported (Lee et al., 2006; 

Manosas et al., 2009; Pandey et al., 2009; Syed et al., 2014; Tanner et al., 2008). Fully 

coordinated replication results in the simultaneous conversion of a single parental DNA 

molecule into two daughter DNA molecules, so there is a need for assays that reveal the 

dynamic coordination and relative kinetics on the leading and lagging strands. 

 

To overcome the limitations of past approaches, we present here a method to 

simultaneously monitor synthesis rates on the leading and lagging strands. To this end, we 

engineered a replication fork into 48.5-kilobase (kb) long λ phage DNA molecules 

(Supplemental Experimental Procedures) with 14.8 kb of DNA ahead of the fork as 

parental replication template and 33.7 kb attached to the leading-strand arm (Figure 2A). 

DNA molecules were attached through the lagging-strand end of the fork to the bottom 

surface of a flow cell (Figure 2B and Video S1) and 1-µm beads were attached to the two 

arms to visualize length changes. A constant laminar flow applied to the flow cell results in 

a drag on the two beads that stretches the DNA molecules with a combined force of 2 pN 
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(Supplemental Experimental Procedures), a force low enough not to inhibit loop formation 

and replication kinetics (Hamdan et al., 2009). Since the beads successfully bind to only a 

fraction of the DNA ends, most replication substrates remain singly labeled with only a 

small subpopulation containing a bead attached to each end. Fortunately, the use of ultra-

wide-field, low-magnification imaging allowed us to visualize tens of thousands of beads 

within one experiment (Figure 2A), without sacrificing resolution (Figure S1), providing 

sufficient throughput to offset the low yields of bead attachment. Rates obtained for 

leading-strand synthesis (105 ±19 bp·s–1) under conditions excluding gp2.5 and priming 

(by omission of ribonucleotides; rNTPs) were consistent with past observations (Lee et al., 

2006; Loparo et al., 2011; Pandey et al., 2009), confirming functional assembly of the 

replication substrate and proper attachment of the beads (Figure S2 & Video S2). 

 
Expected outcomes for different mechanisms 
Several models have been put forward to explain how slow enzymatic steps on the lagging 

strand can occur without loss of coordination with continuous leading-strand synthesis. 

However, to date, distinguishing between these models has been difficult due to the 

challenge of directly correlating kinetic events between the daughter strands. The assay 

presented here provides direct observations of kinetic events on each daughter strand, 

allowing for discrimination among mechanisms. To elucidate the power of two-channel, 

single-molecule observations of replication, and provide insight into the types of kinetic 

information available from these types of observations, we first consider the expected 

experimental outcomes for different mechanisms. 

 

In coordinated replication, different operational modes of the replisome give rise to distinct 

bead kinetics (Figure 3A). During leading-strand synthesis and in the absence of loop 

formation, the length of the leading-strand arm increases, and ss template for the lagging 

strand emerges from the helicase. In the presence of a saturating concentration of gp2.5, 

which is required for coordinated replication (Lee et al., 2002), ssDNA is equal in length to 

dsDNA (Hamdan et al., 2009) (Figure S3). As a consequence, the position of the parental-

strand bead (A) remains relatively constant, while the leading-strand bead (B) moves 

downstream with a rate approximately twice the rate of leading-strand synthesis—with 

equal contributions from the newly synthesized duplex DNA and the gp2.5-extended 

lagging strand (Figure 3A; first panel). When a priming site is recognized by the 

replisome, and primer synthesis is initiated, distinct outcomes are predicted for different 

models. If primer synthesis causes leading-strand synthesis to pause, both beads should 
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remain stationary (Figure 3A; second panel), whereas if leading-strand synthesis 

continues during priming, the two beads will move in opposite directions at the rate of 

leading-strand synthesis as an ss loop forms (Figure 3A; third panel).  
 

Following priming, the loading of a lagging-strand polymerase onto the new primer is 

predicted to result in ss-ds loop formation. Since the DNA substrate is attached to the 

surface by the end of the lagging strand, ss-ds loop formation events pull both beads 

toward the attachment point. However, for the leading-strand bead (B) this shortening in 

length is countered by an increase in length from synthesis by the leading-strand 

polymerase; this results in an observed motion of the leading-strand bead (B) that is the 

difference between the leading- and lagging-strand polymerase synthesis rates. In 

contrast, the observed motion of the parental-strand bead (A) is the sum of the synthesis 

rates (Figure 3A; fourth panel).  
 

Thus, the predicted bead kinetics for various models result in different outcomes (Figure 
S4B,C, D), demonstrating the wealth of information that can be obtained from the assay. 

One other convenient property of the experimental design is easy removal of all looping 

dynamics from the leading-strand synthesis traces simply by subtracting the motion of 

parental-strand bead (A) from that of leading-strand bead (B). This analysis allows for the 

kinetics on the leading and lagging strands to be clearly distinguished and modeled. 

 
Simultaneous Imaging of DNA looping and Leading-Strand Synthesis  
Observation of replication by single T7 replisomes reveals highly processive leading-

strand synthesis correlated with multiple cycles of loop growth and release on the lagging 

strand. Figure 3B shows length changes in an individual DNA molecule as a function of 

time in the flow of a buffer containing gp4, gp5-trx, gp2.5, Mg2+, four deoxynucleoside 5’-

triphosphates, ATP and CTP – the subset of ribonucleoside triphosphates required for 

primase activity by gp4 (Frick et al., 1999; Scherzinger et al., 1977). Surprisingly, loop 

formation events start simultaneously with the initiation of leading-strand synthesis, a time 

at which limited lagging-strand template is available, and they occur continuously until the 

leading strand is completely duplicated. Rate reductions that coincide with loop formation 

events are observed in the leading-strand bead B trace, as compared to the corrected 

leading-strand trace (bead B – bead A).  
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To interpret the observed bead behavior, we considered the expected traces for the 

coordination models (Figure S4B, C, D). The pausing model predicts stalling events in 

both A and B traces prior to loop formation, a phenomenon not visible for the traces shown 

here (additional traces can be seen in Figure S5). In contrast, the ss-loop model predicts a 

slowing of leading-strand bead (B) motion during ss-loop growth (Figure S4C, D), 

consistent with the observed rate reductions (Figure 3B, traces ‘B’ versus ‘B-A’). However, 

subsequent to these slowing events the ss-loop model predicts a pause or reversal in 

leading-strand bead (B) motion during ss-ds-loop growth (given a lagging-strand rate that 

is equal to or greater than the leading-strand rate, respectively). Strikingly, neither of these 

behaviors is observed, suggesting alternative possibilities: that ss-ds loops are too short 

lived to be apparent in the traces, that the lagging-strand synthesis rate is much lower than 

the leading-strand rate, or that ss-ds loops are not present.   

 

To distinguish among the alternate mechanistic interpretations, we used an unbiased, 

quantitative analysis of the bead kinetics to identify different operational modes of the 

replisome. Past studies relied on manual identification of changes in bead kinetics 

resulting from polymerase synthesis (Lee et al., 2006; Tanner et al., 2008), loop growth 

(Hamdan et al., 2009), or pausing events (Lee et al., 2006); but two-bead observations of 

coordinated replication display a higher level of complexity, reflecting a combination of 

multiple behaviors. Furthermore, background noise due to random bead fluctuations, 

which obscures the transitions between kinetic states, is more pronounced at the low 

forces required to avoid inhibition of loop formation (Hamdan et al., 2009). To detect 

kinetic changes and model distinct linear regimes in bead motion, we developed a multi-

line fitting procedure using change-point theory. Briefly, regions of enzymatic activity are 

modeled by recursively fitting line pairs to smaller and smaller subregions. During each 

fitting cycle the most likely time point where a change in rate occurred is used as the 

location where one line ends and the next begins. The line pair resulting from this 

procedure defines the next two subregions for analysis. To avoid over fitting, only two-line 

fits above a threshold value are accepted (corresponding to a 1% false positive rate given 

the experimental error). This procedure allows for automated analysis of the experimental 

observations resulting in a complete list of distinct regions and their corresponding kinetics 

(Figure 3C). 
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Priming and lagging-strand synthesis underlie looping 

Two types of DNA loops with distinct kinetics have been hypothesized to form during 

replication: ss and ss-ds loops. While ss loops grow at the rate of leading-strand synthesis, 

ss-ds loops grow as the sum of both polymerase synthesis rates (Figure 1). To classify 

the observed DNA loops, we constructed a two-dimensional map of loop growth vs. 

leading-strand synthesis using the results of kinetic change-point analysis from 53 

individual molecules (Figure 4A). The map shows the location and relative weight 

(indicated with a color scale) of all individual pairs of leading and lagging-strand synthesis 

rates, providing a global view of the frequency of visits to different kinetic states by 

replisomes. Analysis of the loop-growth rates reveals two broad populations described well 

by two Gaussians (105 ± 28 bp·s–1, 234 ± 54 bp·s–1), consistent with the formation of both 

loop types. In contrast, leading-strand synthesis is best fit by a single Gaussian (128 ± 55 

bp·s–1). Based on the observed kinetics, we classify the slow loop-growth events as ss 

loops, having approximately the same rate as leading-strand synthesis, and the fast 

events as ss-ds loops, showing nearly twice the rate of synthesis.      

 

Several additional and independent lines of evidence support the idea that the observed 

DNA shortening in the parental strand (bead A) is the result of both ss- and ss-ds-loop 

formation. Exploiting the high efficiency of single bead labeling of DNA molecules, we 

explored experimental conditions that alter looping dynamics with only parental-strand 

beads (A) present. First, we inhibited priming by omitting rNTPs and observed that looping 

was abolished (Figure 4B), consistent with inhibition of both priming and lagging-strand 

synthesis. Second, we conducted experiments by pre-loading the leading-strand 

polymerase and gp4 helicase–primase onto the DNA, and starting replication only in the 

presence of gp2.5, dNTPs, and rNTPs. These conditions selectively prevent ss-ds loop 

formation due to the absence of lagging-strand polymerases (Lee et al., 2006; Loparo et 

al., 2011). Consistent with our initial classification, the faster loops were abolished, while 

the slower loops remained (Figure 4C & S7). Furthermore, the lengths of ss loops 

increased when only the leading-strand polymerase was present (Figure 4D cf. Figure 
4E), which is expected due to the absence of lagging-strand polymerases available for 

primer hand-off.    

 

Examination of loop-formation frequencies reveals that ss loops form five times more often 

than ss-ds loops (Figure 4F). Moreover, on average only 1% of the synthesis required to 

complete duplication of the lagging strand was observed among the 53 molecules 
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analyzed with simultaneous imaging. In contrast, we previously demonstrated in single-

molecule experiments visualizing the replication of fluorescently stained DNA that the 

lagging strand is completely duplicated under our experimental conditions (Geertsema et 

al., 2014; Hamdan et al., 2009). We considered several explanations for these divergent 

observations. We first excluded the possibility that the applied force inhibits loop formation 

by confirming similar looping dynamics at lower stretching forces (Figure 4G, 4H, & S8). 

We next evaluated alternative coordination mechanisms given recent observations of rapid 

polymerase exchange (Geertsema et al., 2014; Loparo et al., 2011) and the presence of 

more than two polymerases at the replication fork (Geertsema et al., 2014; McInerney et 

al., 2007; Reyes-Lamothe et al., 2010). Taken together, our results and these previously 

reported findings suggest a scenario in which most lagging-strand synthesis is conducted 

behind the replisome and outside the context of ss-ds loops.  

 

Lagging-strand polymerases remain behind the replisome 
Recent work examining the composition of the replisome during replication has revealed 

that polymerase exchange is a frequent event (Geertsema et al., 2014; Loparo et al., 

2011), occurring on the same timescale as Okazaki-fragment synthesis. These 

observations cast doubt on the classic model of replication in which polymerases are 

retained within the replisome and recycled from one Okazaki fragment to the next. The 

triggers for the recycling process are proposed to be either a signaling event (by a protein 

factor or catalytic step) or a collision event (when the lagging-strand polymerase reaches 

the previous Okazaki fragment). However, if a new polymerase is used for the synthesis of 

almost every Okazaki fragment, as suggested by previous exchange observations 

(Geertsema et al., 2014), these pathways are not required. Supporting this line of 

reasoning, several studies have suggested that no specific protein factor exists for 

signaling (Kurth et al., 2013), and that collision events are orders of magnitude too slow to 

support efficient replication (Dohrmann et al., 2011). These findings suggest polymerase 

release is a stochastic event with many possible triggers. The previously reported single-

molecule observations of polymerase exchange (Geertsema et al., 2014; Loparo et al., 

2011) present the possibility that polymerases may remain bound to Okazaki fragments 

outside the context of a loop behind the replisome and that a new polymerase is recruited 

from solution to initiate synthesis of the next Okazaki fragment.  

 

To visualize how individual DNA polymerases are spatially and temporally distributed in 

and around the replisome we conducted rolling-circle replication with fluorescently labeled 
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polymerases and imaged the products using fluorescence time-lapse microscopy (Figure 
5A). The rolling-circle template allows for continuous synthesis of a single product with the 

replisome clearly visible at the tip and the lagging-strand extending behind, thereby greatly 

simplifying polymerase tracking and analysis. Processive replication events reveal 

polymerases remaining on the lagging strand behind the replisome (Figure 5B). Some 

polymerases remain bound on the lagging strand for very long times (minutes) consistent 

with stalling upon completion of Okazaki-fragment synthesis (Dohrmann et al., 2011; 

Huber et al., 1987). Examination of kymographs from 55 replication events reveals that 

polymerase emergence from the replication fork is four times more frequent than direct 

binding from solution to the lagging-strand (Figure 5C & S10), and the mean spacing 

between polymerases is 3.8 ± 0.4 kb, consistent with most polymerases rapidly completing 

Okazaki-fragment synthesis near the replication fork and dissociating (Figure 5D). The 

average number of polymerases per replisome spot is 2.6 ± 0.8, in good agreement with 

past observations from Geertsema et al. (2014). The average number of polymerases per 

spot on the lagging-strand is 1.5 ± 0.5, consistent with single polymerases left behind 

given the exponential distribution of polymerase spacing combined with the diffraction limit 

resulting in two or three polymerases in some spots (Figure S11). Further, we showed that 

the presence of T7 exonuclease and DNA ligase, the enzymes responsible for Okazaki-

fragment processing, did not alter the distribution of polymerases on the lagging strand 

(Figure S12). Taken together, these observations are consistent with most lagging-strand 

synthesis being conducted outside the replisome, providing an explanation for the 

observed low number of ss-ds loops. 

 

Priming is regulated by looping and pausing 
Two mechanisms have been proposed that explain how the T7 replisome deals with slow 

primase activity (Figure 1). In one, priming pauses leading-strand synthesis (Lee et al., 

2006). In the other, ss-loop formation permits leading-strand synthesis to continue during 

priming (Pandey et al., 2009). The observation of frequent ss-loop formation events, 

dependent on rNTPs and thus priming, strongly favors a coordination mechanism in which 

leading-strand synthesis continues during priming (Pandey et al., 2009). Nonetheless, 

detailed analysis of the leading-strand synthesis kinetics also reveals the existence of 

pausing events (Figure 6A). Pauses occur in approximately half of the molecules with a 

pause lifetime of 5.0 ± 0.7 s obtained from leading-strand bead (B) only observations 

(Figure 6B), consistent with previous estimates (Lee et al., 2006).   
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To understand the importance of pausing for coordination, we used the two-dimensional 

information contained within our observations and directly correlated the relative locations 

of pausing and looping events (Figure 6C & D). To quantify this relationship, we 

constructed a histogram of all pause positions relative to loop growth by normalizing the 

loop durations. This analysis shows that the vast majority of pausing events occur at the 

end of loop growth or right after loop release (Figure 6D & S13). Since almost all loops are 

ss loops, the results of this analysis are consistent with past observations of pause 

frequency increasing in conditions with priming (Lee et al., 2006). These findings further 

refine our understanding of pausing behavior extending it to show that, under conditions of 

coordinated replication, pauses only occur during or after completion of some priming 

events. Pauses are half as frequent as ss loops and not all pauses occur during loop 

release (Figure 6D). 

 

Discussion 
A Unified Model for Primer Synthesis Regulation 
Our results reconcile divergent priming models and provide new insights into past 

observations. In a prior study, we reported single-molecule observations of loop formation 

(Hamdan et al., 2009) using a flow-stretching assay with only a single bead attached to the 

parental strand. Observations with this single observable lead to the conclusion that all 

loops during coordinated T7 replication are ss-ds loops. The independent readout of 

leading-strand synthesis from the two-bead assay presented here, provides critical 

information previously absent, revealing that the looping behavior observed represents a 

mixture of both ss and ss-ds loop types, instead of exclusively ss-ds loops as previously 

suggested (Hamdan et al., 2009).  

 

A long-standing question in the field of replication has been whether the behavior of 

subsystems of the replisome are different than their activity in the context of the unified 

whole. The models for priming discussed in this work support two divergent views. In one, 

priming sets the clock for the replication fork by transiently stalling synthesis, in the other, 

the leading strand is less influenced by the events on the lagging strand. The ability to 

correlate events on the leading and lagging strands has allowed us to evaluate these 

ideas directly. The observation that pauses tend to punctuate looping events, provides a 

more detailed view of enzymatic coordination within the replisome. Why only some priming 

events lead to pausing, and whether these pauses are involved in synchronization or are 

simply a byproduct of the complex acrobatics required to orchestrate the process (Corn et 
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al., 2005; Lee and Richardson, 2002), will require further studies beyond the scope of this 

work. However, the observed correspondence between pausing and looping reveals how 

communication among replisome subsystems may enhance coordination, and 

demonstrates an underlying flexibility in the regulation of primer synthesis. 

 
Multiple pathways underlie replisome coordination 

Our findings suggest a timeline for the sequence of events that occur during phage T7 

replication (Figure 7). The process begins with unwinding of parental duplex DNA by the 

helicase coupled to synthesis by the leading-strand polymerase (Figure 7; panel A). As 

the leading-strand complex progresses, the primase subunits within gp4 continuously 

sample the lagging-strand template as it emerges from the helicase. Once a priming site 

sequence is recognized and engaged, priming proceeds in two steps. First, two rNTPs are 

condensed into a dinucleotide, followed by extension into a full tetranucleotide primer 

(Frick et al., 1999; Swart and Griep, 1995). Leading-strand synthesis is continuous during 

this process resulting in ss loop formation (Figure 7; panel B). Upon completion of primer 

synthesis, a polymerase bound to the helicase loads onto the primer (Figure 7; panel C). 

Infrequently, stalling of leading-strand synthesis occurs, consistent with our previously 

observed primase-induced halting of leading-strand synthesis (Lee et al., 2006). Our 

proposed pathway diverges most significantly from past work in the next stage: Our data 

show the majority of polymerase loading events on the lagging strand culminate in 

polymerase release from the helicase (Figure 7; panel E), consistent with recently 

observed high frequencies of polymerase exchange at the fork (Geertsema et al., 2014). 

Okazaki-fragment synthesis would then proceed behind the replisome, with ss-ds looping 

events (Figure 7; panel D) only happening in rare cases where polymerase exchange is 

slow.  

 

Several features of our proposed sequence of events confer robustness to replisome 

operation. First, ss loop formation removes the need for a direct signal to stop leading-

strand synthesis during each cycle of lagging-strand synthesis, dramatically simplifying the 

communication required within the replisome (Manosas et al., 2009; Pandey et al., 2009). 

Second, the frequent release of polymerases from the helicase upon completion of loading 

rapidly frees up additional polymerase binding sites on the helicase allowing more 

polymerases to associate with the replisome and become available for loading onto new 

primers. Third, by forgoing polymerase recycling and allowing for completion of Okazaki-

fragment synthesis after polymerase release, the T7 replication machinery has more time 
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to conduct primer synthesis and polymerase loading at the fork. Such a mechanism aids in 

ensuring that leading-strand synthesis does not outpace lagging-strand synthesis. 

Furthermore, polymerase dissociation from the lagging strand during Okazaki-fragment 

synthesis does not require signaling or collision mechanisms of regulation. Overall, these 

characteristics support the idea that T7 replisomes have a narrower operational mandate 

than previously thought whereby polymerases must be efficiently targeted to primers, but 

can then readily exchange to reset the cycle.    

 
Implications for Replication Coordination 

Conservation of replisome architecture throughout the domains of life suggests replication 

may be guided by the same operating principles in different systems, but defining that set 

of operating principles for even one system has proven challenging. Many competing 

coordination mechanisms have been proposed based on observations made under a wide 

range of experimental conditions and, in many cases, using only a subset of replisome 

components. Our ability to simultaneously visualize leading-strand synthesis and loop 

formation represents a significant advance in studying coordination within fully 

reconstituted replisomes. The results from this work provide a holistic view of the 

replication cycle, revealing that many previously proposed mechanisms of coordination, 

which were considered incompatible, are all employed at some frequency.   

 

Sampling of different coordination mechanisms by replisomes is guided in part by physical 

constraints. In the case of T7, we observe that priming on the lagging strand is most 

frequently coordinated with leading-strand synthesis through the formation of a ss loop, 

and only in rare cases by pausing of leading-strand synthesis. However, in T7, primase 

and helicase activities are conducted by a single protein that assembles into a hexameric 

ring (gp4). In contrast, replisomes from other organisms, such as E. coli, use separate 

proteins to conduct helicase and primase activities. This added complexity and separation 

of enzymatic function allows for a broader range of coordination pathways—priming 

activity could occur in the absence of ss looping or pausing (Dixon, 2009). Primases may 

be released from the replisome to complete priming behind the fork (Yuzhakov et al., 

1999). This complexity increases further in eukaryotic systems, with the use of different 

polymerases for leading- and lagging-strand synthesis as well as primer extension 

(Georgescu et al., 2014; Johansson and Dixon, 2013; Kunkel and Burgers, 2008).  
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In addition to physical restrictions, sampling of divergent coordination mechanisms is 

influenced by environmental factors. While exchange can be frequent under conditions 

with excess replication components in the surroundings, replisomes can also be stable in 

the absence of excess protein and continue replicating long after excess components 

have been removed from the reaction (Debyser et al., 1994; Kadyrov and Drake, 2001; 

Kim et al., 1996; Tanner et al., 2011; Yao et al., 2009). While these two observations may 

appear to contradict one another, it is likely that the presence of excess components in 

solution directly drives these exchange events by initiating a competition between binding 

sites at the replication fork (Geertsema et al., 2014; Geertsema and van Oijen, 2013; 

Tanner et al., 2011). In the case of the polymerases, these binding surfaces interfacing 

with the replisome are numerous including attachment points to the primer, the helicase or 

clamp loader, and even, in some cases, single-stranded binding proteins (Duderstadt et 

al., 2014; Hamdan and Richardson, 2009). In the absence of competition, polymerases 

can continually sample all these sites at the replication fork providing multiple points of 

contact, ensuring a stable attachment. However, under conditions of competition, the 

relatively low affinity of the individual interactions within the replisome allows polymerases 

from solution to quickly outcompete those at the fork, driving polymerase exchange and 

release (Aberg et al., 2016; Geertsema and van Oijen, 2013). 

 

Based on our observations, we envision a spectrum of exchange frequencies and 

coordination mechanisms among replication systems. The bacteriophage T7 replisome 

may sit at one extreme of this spectrum, with polymerase exchange and the rapid release 

of ss-ds loops underling almost every cycle of Okazaki-fragment synthesis. Cellular 

replisomes, such as from E. coli, have proven more robust in the absence of free 

polymerase in solution (Yao et al., 2009) suggesting less frequent polymerases exchange. 

Nonetheless, the observation of multiple polymerases at the replication fork is consistent 

with multiple simultaneous rounds of lagging-strand synthesis ensuring coordination 

(Geertsema et al., 2014; Georgescu et al., 2012; Reyes-Lamothe et al., 2010). Recent 

work in S. cerevisiae has further expanded this picture by suggesting that rapid exchange 

and complex suppression mechanisms ensure proper function of the leading- and lagging-

strand polymerases at the eukaryotic replication fork (Georgescu et al., 2014), supporting 

the notion that ss-ds loop formation may not be required for efficient replication in 

eukaryotes. The importance of exchange events and the sampling of multiple coordination 

pathways remains enigmatic in many cases, but clearly such processes are critical when 

considering that robust replication in cells depends on the ability of replisomes to 
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overcome obstacles encountered on parental chromosomes, such as transcription 

complexes and DNA lesions (Cox et al., 2000; Pomerantz and O'Donnell, 2010; Yeeles et 

al., 2013). 
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Experimental Procedures 
Two-bead DNA Replication assay 
Two-arm λ-phage DNA substrates were surface-tethered inside flowcells constructed by 

placing PDMS lids over functionalized coverslips. Inlets and outlets in the PDMS allowed 

for buffer exchange and introduction of MyOne Tosylactivated paramagnetic beads (1 µm 

diameter, Life technologies) functionalized with anti-fluorescein (Life technologies) and 

anti-digoxigenin (Roche). Beads were added together except where otherwise specified. 

Coordinated DNA synthesis reactions were initiated with purified gp4 helicase–primase (10 

nM hexamers) , T7 DNA polymerase (a 1:1 complex of gp5 and thioredoxin, 80 nM), gp2.5 

(4 µM) in buffer A (40 mM Tris–HCl (pH 7.5), 10 mM MgCl2, 10 mM DTT, 50 mM 

potassium glutamate (pH 7.5), 0.1 mg/ml BSA) containing 600 µM dATP, 600 µM dCTP, 

600 µM dGTP, 600 µM dTTP, 300 µM ATP and 300 µM CTP. The beads were illuminated 

from the side with a fiber illuminator (ThorLabs) and movies were collected using a 29 

Megapixel CCD camera (Prosilica GX6600; Allied Vision Technologies; 5.5 µm pixel size) 

with Streampix imaging software (Norpix) at either magnification 4X (UPLSAPO; Olympus) 

on an IX51 microscope (Olympus) or magnification 7X with a lens (TL12K-70-15; 

lensation) mounted directly to the camera. Replication was monitored by tracking the 

motion of the beads and converting changes in position to basepairs using custom ImageJ 

plugins programmed in house. Kinetic change-point anaylsis yielded similar results for 

movies collected with 2 and 4 fps, so data presented were collected at 2 fps for 

computational convenience.  

 

Kinetic change-point algorithm and distribution construction 
To extract detailed kinetic information from complex two-bead observations we developed 

a novel multi-line fitting procedure inspired by an algorithm developed for modeling 

fluorescence intensity data (Yang, 2011). Bead motion was modeled by recursively fitting 

line pairs to smaller and smaller subregions. During each fitting cycle the most likely 

position for a change in motion (kinetic change-point) defined each segment, and each 

currently fit segment defined the boundaries for the next cycle of analysis. To avoid over 

fitting, pairs of line segments below a threshold value were rejected (corresponding to a 

1% false positive rate given the error model). Tethered beads undergo Brownian 

fluctuations, which can be modeled using a Gaussian error model. For such an error 

model the likelihood of observing the set of positions 𝑋 𝑌  given experimental error σ for a 

line of slope 𝑎! and intercept 𝑏! is  
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𝐿 𝑌 𝑋;𝑎! , 𝑏! =
1
2𝜋𝜎!

𝑒!
!!!!!∗!!!!! !

!!!
!

!!!

. 

To evaluate the relative likelihood of a two line fits versus a single line fit, within a given 

region, we searched for the most likely positions of kinetic change-points using the 

likelihood ratio: 

𝐿! 𝑘 =
𝐿!(two lines)
𝐿!(one line) =

𝐿! ∗ 𝐿!
𝐿!

 . 

The maximum value of this ratio was taken as the most likely position for a kinetic change-

point. In practice, working with the log of this ratio provided additional computational 

convenience. Moreover, the threshold value of this log-likelihood ratio corresponding to a 

1% false positive rate is easily calculated numerically using a closed-form expression 

(Yang, 2011).  

 

Once all kinetic change-points above the threshold were determined, rate distributions 

were constructed using the slopes from single line fits between each set of consecutive 

kinetic changepoints. To properly account for experimental uncertainty, each slope 

estimate and associated standard error were used to define a Gaussian. These Gaussians 

were time-weighted, summed and binned to generate the final distributions seen in 

Figures 4A, 4B, 4C. The loop length and type histograms seen in Figures 4D and 4E 
were generated using ss and ss-ds looping events as defined by segment slopes below 

and above a cutoff of 175 bp/s as indicated by a dashed line in Figures 4A. For the low 

force condition of 0.7 pN, the length of gp2.5-coated ssDNA remains 73% that of dsDNA, 

so the same cutoff of 175 bp/s was used in generating Figures 4F, 4G, and 4H. The 

pause duration histogram seen in Figure 6B was generated using the lifetimes of line 

segments exhibiting at least a 3-fold reduction in rate to a value below 50 bp s-1. Only 

twenty pauses were observed in the two-bead dataset, which was not sufficient for a 

reliable estimate of the mean duration of pauses. Therefore, leading-strand bead (B) 

observations made with the same conditions were used to determine the mean pause 

duration (Figure 6B). In all cases, consecutive lines within the same slope range were 

considered as single events, and their lifetimes were added. All error bars represent the 

standard deviation (SD) from 100 cycles of randomly resampling the data by 

bootstrapping. The uncertainties reported for the exponential fits in Figures 4D, 4E, 4H, 
5D, 6B represent the standard deviation of the mean values from fits of all resampled 

distributions. 
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Fluorescence time-lapse microscopy of labeled polymerases 
T7 DNA polymerases labelled with Alexa Fluor 488 and M13 rolling-circle replication 

substrates were generated as previously described (Geertsema et al., 2014). Coordinated 

replication was established using a constant flow of purified gp4 helicase–primase (2.5 nM 

hexamers), Alexa488-labeled T7 DNA polymerase (a 1:1 complex of gp5 and thioredoxin, 

20 nM), gp2.5 (1 µM) in buffer A containing 600 µM dATP, 600 µM dCTP, 600 µM dGTP, 

600 µM dTTP, 300 µM ATP and 300 µM CTP. The proteins were diluted 4-fold as 

compared to the bead experiments, which was necessary for imaging of single 

polymerases. Labeled polymerases were illuminated with a 488-nm laser (Coherent) 

through a 60× TIRF objective [Olympus, UApoN, N.A. = 1.49 (oil)] and image sequences 

were captured with an EMCCD camera (Andor) using Micro-Manager imaging software at 

5 fps. A detailed description of the image processing procedure can be found in the 

Supplemental Experimental Procedures. 

 

Code availability 
All analysis was performed using custom ImageJ plugins programmed in house. Source 

code for most analysis tools is available at GitHub under Single Molecule Biophysics 

plugins for ImageJ. Source code used for kinetic change-point analysis is provided upon 

request.  

 
Supplemental Data 
Supplemental Data includes Supplemental Experimental Procedures, eleven figures, one 

table and three movies. 
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Figure Legends 
Figure 1. Coordination Models. (A) Priming pauses the replisome to ensure that leading-

strand synthesis does not outpace lagging-strand synthesis. (B) Helicase unwinding and 

leading-strand synthesis continue during priming by the formation of a lagging-strand ss 

loop emerging from the helicase. This configuration keeps the primer in close physical 

proximity to the fork facilitating hand-off to a lagging-strand polymerase. (C) Coupled 

leading- and lagging-strand synthesis leads to the formation of an ss-ds loop that grows as 

the sum of the ssDNA output of helicase activity and the synthesis rate of the lagging-

strand polymerase. A detailed description of how the models were constructed can be 

found in the Supplement. 

 
Figure 2. Experimental Setup. (A) Ultra-low-magnification single-molecule imaging. Tens 

of thousands of single molecules are imaged simultaneously with wide-field optical 

microscopy using a low-magnification, high-numerical-aperture objective. Top right: 

Representative image showing 27,000 beads collected at 4X magnification. Bottom left: A 

replication fork introduced into the middle of lambda DNA with bead attachment sites at 

each end. Bottom right: zoomed-in section of wide-field image depicting pair of beads 

attached to a DNA substrate. (B) Two-bead assembly stretched by flow with a long 

leading-strand arm and short parental strand arm.  

 

Figure 3. Simultaneous Imaging of DNA looping and Leading-Strand Synthesis. (A) 

Operational modes of the replisome discriminated by the two-bead replication assay. (B) 

Observation of simultaneous leading- and lagging-strand synthesis (Video S3). Top: 

motion of leading-strand bead B (green) and leading-strand synthesis B-A (black). Bottom: 

corresponding motion of parental-strand bead A showing looping dynamics during 

replication (black) with loop growth and release events indicated by red and gray bars, 

respectively. Conversion of observed bead displacements (right axis) to DNA length 

changes (left axis) depends on careful consideration of all forces and distinct DNA regions 

(Figure S6). Additional traces can be seen in Figure S5. (C) Results of kinetic change-

point analysis for the molecule shown in B. Red lines indicate segments fitted based on 

detected change-point positions.   

 

Figure 4. Looping dynamics. (A) Two-dimensional map of leading-strand synthesis and 

loop growth events (Nmol = 53 molecules). Individual peaks represent the relative rates at 

given times determined by kinetic change-point analysis with widths defined by the 
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standard error from linear fitting. A scatter plot of peak positions can be seen in Figure S9. 

One-dimensional distributions are displayed for each axis (gray bars – top and right) with 

indicated peak rates obtained from Gaussian fits. (B) Parental-strand bead A assay 

showing that omitting rNTPs abolishes looping. (C) Parental-strand bead A assay showing 

that preassembling leading-strand replisomes with no lagging-strand polymerases 

abolishes ss-ds loops, but ss loops remain. In panels B and C the gray bars represent the 

loop growth rates (parental-strand bead A) from simultaneous observations of coordinated 

replication at 2 pN (same data as displayed in panel A), while the red bars represent 

observations of replication with only parental-strand bead A attached. (D) Parental-strand 

bead A assay showing that ss loop lengths increase in the absence of lagging-strand 

polymerases as compared to (E) ss loop lengths for simultaneous observations using 

conditions of coordinated leading- and lagging-strand synthesis. The gray bar represents 

undersampled short loops excluded from fitting. (F) The relative frequency of ss and ss-ds 

loops under fully coordinated conditions evaluated using the two-bead dataset. (G) 

Parental-strand bead A assay showing that the relative frequency of ss to ss-ds loops 

does not change when the applied force is reduced by three-fold (from 2 to 0.7 pN). (H) Ss 

loop length likewise remains unchanged by a three-fold reduction in force. The gray bar 

represents undersampled short loops excluded from fitting. In all cases, error bars 

represent the standard deviation (SD) from 100 cycles of randomly resampling the data by 

bootstrapping. 

 

Figure 5. Polymerases remain bound to the lagging strand. (A) (left) Rolling-circle 

replication assay with replisome components colored as in Figure 2B with the addition of 

yellow circles representing the fluorescent labels for imaging. Replication results in a 

lengthening of the lagging strand that is stretched by flow. This allows the remaining 

polymerases to be distinguished from the replisome. (right) Example kymograph showing 

the positions of polymerases (white) during replication. (B) Replisome (gray) and 

polymerase (black) positions from tracking the polymerases displayed in panel A. Light 

blue regions represent standard error from tracking. (C) Frequency of polymerases 

emerging from the replisome versus binding directly to the lagging strand. (D) Histogram of 

polymerase spacing on the lagging strand (red bars; Nmol = 222) fit with a single-

exponential decay (black line). Spacings shorter than 3 kb were not included in the fitting 

(gray bar) due to undersampling resulting from DNA fluctuations and the diffraction limit. 
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Figure 6. Pauses in leading-strand synthesis. (A) Representative pausing event in 

leading-strand synthesis (black) from a simultaneous leading- and lagging-strand 

observation (parental-strand bead A trace not shown). Red lines indicate segments fitted 

based on detected change-point positions with the upper left inset providing a close-up 

view. (B) Histogram of pause durations calculated from a leading-strand bead B only 

dataset (red bars; Nmol = 395) fit with a single-exponential decay (black line). (C) Example 

trajectory showing the correspondence of pausing in leading-strand synthesis (top – black 

line) to loop growth and release (bottom – black line) on the lagging strand. Red lines 

indicate segments fitted based on detected change-point positions. (D) Distribution of 

pause locations (bottom) relative to loop locations (top) normalized by the loop duration. In 

all cases, error bars represent the standard deviation (SD) from 100 cycles of randomly 

resampling the data by bootstrapping. 

 
Figure 7. Life cycle of a replisome. Multiple pathways confer robustness to replisome 

operation. (A) The replisome conducts leading-strand synthesis while searching for a 

priming site. (B) During priming an ss loop grows on the lagging strand while leading-

strand synthesis continues. Infrequently, this process causes pausing of leading-strand 

synthesis. (C) Completion of primer synthesis triggers polymerase loading onto the new 

primer. (D) Infrequently ss-ds loops form as the replisome performs Okazaki-fragment 

synthesis. (E) More often polymerases are released onto the lagging strand so that 

Okazaki fragment synthesis can be completed behind the replisome while the next round 

of primer synthesis and polymerase loading take place. 
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