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The K-theoretic bulk-edge correspon-
dence for topological insulators

C. Bourne, J. Kellendonk and A. Rennie

Abstract. We study the application of Kasparov theory to topo-
logical insulator systems and the bulk-edge correspondence. We
consider observable algebras as modelled by crossed products,
where bulk and edge systems may be linked by a short exact
sequence. We construct unbounded Kasparov modules encod-
ing the dynamics of the crossed product. We then link bulk
and edge Kasparov modules using the Kasparov product. Be-
cause of the anti-linear symmetries that occur in topological
insulator models, real C∗-algebras and KKO-theory must be
used.

Keywords: Topological insulators, KK-theory, bulk-edge corre-
spondence

Subject classification: Primary 81R60, Secondary 19K35

1. Introduction

The bulk-edge correspondence is fundamental for topological insula-
tors. Indeed, insulators in non-trivial topological phases are charac-
terised by the existence of edge states at the Fermi energy which are
robust against perturbations coming from disorder. This is a topo-
logical bulk-boundary effect, as explained in all details for complex
topological insulators in [51] (see Corollary 6.5.5). The theory of [51]
is based on the noncommutative topology (K-theory, cyclic cohomol-
ogy and index theory) of complex C∗-algebras, an approach to solid
state systems proposed and developed by Bellissard [5, 6].

Complex topological insulators are topological insulators which
are not invariant under a symmetry implemented by anti-linear op-
erators, such as time reversal symmetry. The class of insulators with



anti-linear symmetries require noncommutative topology for real al-
gebras and here the bulk-edge correspondence is still in development.

The bulk-edge correspondence in its noncommutative formu-
lation has two sides. One side is the K-theoretic correspondence,
where the boundary map of K-theory yields an equality between K-
group elements, one of the K-group of the observable (bulk) algebra,
and the other of the K-group of the edge algebra. The other side is
“dual to K-theory”, namely a correspondence between elements of
a theory which provides us with functionals on K-theory. The pair-
ing of K-group elements with the dual theory can be used to obtain
topological numbers from the K-theory elements and, possibly, with
a physical explanation of these numbers as topologically quantised
entities (non-dissipative transport coefficients).

In the complex case this has been achieved using cyclic coho-
mology [31, 33, 51]. The result of applying a functional coming from
cyclic cohomology (one speaks of a pairing between cyclic cocycles
and K-group elements) is a complex number and since the functional
is additive the result is necessarily 0 on elements of finite order. The
most exciting topological invariants, however, lead to K-group ele-
ments which have order 2, the Kane–Mele invariant being such an
example. This is why we look into another theory dual to K-group
theory, namely K-homology (its proper dual in the algebraic sense).
It leads to functionals which applied to K-group elements are Clif-
ford index valued and do not vanish on finite groups. Our specific
aim in this paper is to describe a computable version of the bulk-edge
correspondence for K-homology.

We actually work in the more general setting of Kasparov’s
KK-theory of which K-theory and K-homology are special cases. In
doing so we generalise the approach using Kasparov’s theory for the
quantum Hall effect [8] to the case of all topological insulators.

Whereas the specific details of the insulator feed into the con-
struction of K-group elements, the K-homology class appears to be
stable for systems of the same dimension. We call it the fundamen-
tal K-cycle as it is constructed similarly to Kasparov’s fundamental
class for oriented manifolds [28, 40]. It may well be a key feature of
these kinds of condensed matter models that the physics (alterna-
tively the geometry and topology) is governed by classes of this type,
which is effectively the fundamental class of the momentum space.

An important aspect of the K-cycle is that it involves the Dirac

operator in momentum space
∑d
j=1Xjγ

j with Xj the components

of the position operator in d dimensions, and γj the gamma ma-
trices acting in a physical representation of the relevant algebra on
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`2(Zd,Cν) or `2(Zd−1,Cν) (we work in the tight binding approxima-
tion). This operator, or rather its phase, has played a fundamental
role ever since it was employed in the integer quantum Hall effect (the
phase induces a singular gauge transformation sending one charge to
infinity, a process which is at the heart of Laughlin’s Gedankenexper-
iment). The associated index formula has recently been generalised
to all topological insulators [21].

Computing boundary maps in K-homology is notoriously dif-
ficult. It comes down to realising K-homology groups of A as Kas-
parov KKOi(A,R)-groups [27] and determining the Kasparov prod-
uct with the so-called extension class. Until recently this seemed
impossible in general. But recent progress on the formulation of KK-
theory via unbounded Kasparov cycles [4, 10, 16, 18, 24, 37, 44, 46]
make it feasible in our case. We determine an unbounded Kasparov
cycle for the class of the Toeplitz extension of the observable algebra
of the insulator, denoted ext. The task is then to compute the Kas-
parov product of the KK-class of this extension, denoted [ext], with
the class of the fundamental K-cycle of the edge algebra, denoted
λe. One of the important results of this paper is that the product is,
up to sign, the KK-class of the bulk fundamental K-cycle λb,

[ext]⊗̂Ae
[λe] = (−1)d−1[λb],

where [λ•] denotes the class of the Kasparov module in KK-theory.
This is the dual side to the bulk-boundary correspondence, showing
how to relate the fundamental classes of the bulk and edge theo-
ries. We also emphasise that by working in the unbounded setting,
our computations are explicit and have direct link to the underlying
physics and geometry of the system.

We can relate our results about fundamental K-cycles to topo-
logical phases by identifying the (bulk) invariants of topological phases
as a pairing/product of the K-cycle λb with a K-theory class [xb]. We
do not prescribe what the K-group element [xb] of the bulk has to be.
It can be the homotopy class of a symmetry compatible Hamiltonian
(translated from van Daele K-theory to KK-theory) or the class of
the symmetry of the insulator constructed in [9]. Leaving this flexible
gives us the possibility to consider insulators systems of quite gen-
eral symmetry type without affecting the central correspondence. It
also allows our approach to be adapted to different experimental ar-
rangements, an important feature given the difficulties of measuring
Z2-labelled phases experimentally.

The K-theory side of the bulk-edge correspondence can be ob-
tained by realising the K-groups of the bulk algebra A as Kasparov
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KKOj(R, A)-groups so that the boundary map applied to a KK-
class [x] of A is given by the Kasparov product [xb]⊗̂A[ext]. The
bulk-boundary correspondence between topological quantised num-
bers is then a direct consequence of the associativity of the Kasparov
product

([xb]⊗̂A[ext])⊗̂Ae
[λe] = [xb]⊗̂A([ext]⊗̂Ae

[λe]).

The equation says that the two topological quantised entities, that
for the bulk [xb]⊗̂A[λb], and that for the edge [xe]⊗̂A[λe], where
[xe] = [xb]⊗̂A[ext] corresponds to the image of the boundary map
on [xb], are equal. Having said that, the result of the pairing lies in
KKOi+j+1(R,R) which is a group generated by one element and not
a number, and so still needs interpretation. While this number can
sometimes be interpreted as an index (modulo 2 valued, in certain
degrees) we lack a better understanding, which had been possible in
the complex case due to the use of derivations which make up the
cyclic cohomology classes.

Apart from [8], our work relies most substantially on [9] which
used real Kasparov theory to derive the groups that appear in the
‘periodic table of topological insulators and superconductors’ as out-
lined by Kitaev [34]. Our work also builds on and complements that
in [17] for the commutative case and [21, 29, 36, 56] for the noncom-
mutative approach. We consider systems with weak disorder (that is,
disordered Hamiltonians retaining a spectral gap). The substantial
problem of strong disorder and localisation will not be treated here.

1.1. Relation to other work

There have been several mathematical papers detailing aspects of the
bulk-edge correspondence for topological insulators with anti-linear
symmetries. Graf and Porta prove a bulk-edge correspondence for
two-dimensional Hamiltonians with odd time-reversal symmetry us-
ing Bloch bundles and without reference to K-theory [20]. Similar
results are obtained by Avilla, Schulz-Baldes and Villegas-Blas us-
ing spin Chern numbers and an argument involving transfer matrices
[3, 55]. Spin Chern numbers are related to the noncommutative ap-
proach to the quantum Hall effect and, as such, allow samples with
disorder to be considered.

An alternative approach is taken by Loring, who derives the
invariants of topological phases by considering almost commuting
Hermitian matrices and their Clifford pseudospectrum [41]. Such a
viewpoint gives expressions for the invariants of interest that are
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amenable to numerical simulation. Loring also relates indices asso-
ciated to d and d + 1 dimensional systems, a bulk-edge correspon-
dence [41, Section 7]. What is less clear is the link between Loring’s
results and earlier results on the bulk-edge correspondence for the
quantum Hall effect, particularly [31, 33].

Papers by Mathai and Thiang establish a K-theoretic bulk-
edge correspondence for time-reversal symmetric systems [42, 43],
and more recently with Hannabuss [22] consider the general case of
topological insulators. Mathai and Thiang show that the invariants
of interest in K-theory pass from bulk to edge under the boundary
map of the real or complex Pimsner–Voiculescu sequence. Mathai
and Thiang also show that, under T-duality, the boundary map in K-
theory of tori can be expressed as the conceptually simpler restriction
map. Similar results also appear in the work of Li, Kaufmann and
Wehefritz-Kaufmann, who consider time-reversal symmetric systems
and their relation to the KO, KR and KQ groups of Td [39]. A bulk-
edge correspondence then links the topological K-groups associated
to the bulk and boundary using the Baum–Connes isomorphism and
Poincaré duality.

Recent work by Kubota establishes a bulk-edge correspondence
in K-theory for topological phases of quite general type [36]. Kub-
ota follows the general framework of [17, 56] and considers twisted
equivariant K-groups of uniform Roe algebras, which can be com-
puted using the coarse Mayer–Vietoris exact sequence and coarse
Baum–Connes map. Classes in such groups are associated to gapped
Hamiltonians compatible with a twisted symmetry group. An edge
invariant is also defined and is shown to be isomorphic to the bulk
class under the boundary map of the coarse Mayer–Vietoris exact
sequence in K-theory [35, 36]. The use of Roe algebras and coarse
geometry means that there is the potential for systems with impuri-
ties and uneven edges to be considered.

1.2. Outline of the paper

We begin with a short review of unbounded Kasparov theory in Sec-
tion 2. We particularly focus on real Kasparov theory as it is rela-
tively understudied in the literature.

The central content of this paper is in Section 3, where we con-
struct fundamental K-cycles λ(d) for (possibly twisted) Zd-actions
of unital C∗-algebras. We can then link actions of different order by
the Pimsner–Voiculescu short exact sequence [49], which we represent
with an unbounded Kasparov module. Finally we use the unbounded
product to show that the fundamental K-cycle λ(d) can be factorised
into the product of the extension Kasparov module and λ(d−1) (up
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to a basis ordering of Clifford algebra elements, which may introduce
a minus sign).

In Section 4 we relate our result to topological phases by pair-
ing the K-cycle λ(d) with a K-theory class [xb] related to gapped
Hamiltonians with time reversal and/or particle-hole and/or chiral
symmetry. We also include a detailed discussion on the computa-
tion of the bulk and edge pairings, using both Clifford modules and
the Atiyah–Bott–Shapiro construction as well as semifinite spectral
triples and the semifinite local index formula. Limitations and open
questions are also considered.

Acknowledgements. All authors thank the Hausdorff Research In-
stitute for Mathematics for support. CB and AR thank Alan Carey,
Magnus Goffeng and Guo Chuan Thiang for useful discussions. CB
and AR acknowledge the support of the Australian Research Council.

2. Preliminaries on real Kasparov theory

For the convenience of the reader and to establish notation we briefly
summarise the results in real Kasparov theory of use to us for the
bulk-edge correspondence. The reader may consult [27, 54] or [9,
Appendix A] for more information.

2.1. KKO-groups

The use of Clifford algebras to define higher KK-groups makes it
important to work with Z2-graded C∗-algebras and Z2-graded tensor
products, ⊗̂. A basic reference is [7, §14]. Given a real C∗-module
EB (written E when B is clear) over a Z2-graded C∗-algebra B, we
denote by EndB(E) the algebra of endomorphisms of E which are
adjointable with respect to the B-valued inner-product (· | ·)B on
EB . The algebra of compact endomorphisms End0

B(E) is generated
by the operators Θe1,e2 for e1, e2 ∈ E such that for e3 ∈ E

Θe1,e2(e3) = e1 · (e2 | e3)B

with e · b the (graded) right-action of B on E.

Definition 2.1. Let A and B be Z2-graded C∗-algebras. A real un-
bounded Kasparov module (A, πEB , D) is a Z2-graded real C∗-module
EB , a dense ∗-subalgebra A ⊂ A with graded real homomorphism
π : A → EndB(E), and an unbounded regular odd operator D such
that for all a ∈ A

[D,π(a)]± ∈ EndB(E), π(a)(1 +D2)−1/2 ∈ End0
B(E).

6



Where unambiguous, we will omit the representation π and
write unbounded Kasparov modules as (A, EB , D). The results of
Baaj and Julg [4] continue to hold for real Kasparov modules, so
given an unbounded module (A, EB , D) we apply the bounded trans-
formation to obtain the real (bounded) Kasparov module (A,EB , D(1+
D2)−1/2), where A is the C∗-closure of the dense subalgebra A.

One can define notions of unitary equivalence, homotopy and
degenerate Kasparov modules in the real setting (see [27, §4]). Hence
we can define the group KKO(A,B) as the equivalence classes of
real (bounded) Kasparov modules modulo the equivalence relation
generated by these relations.

Clifford algebras are used to define higher KKO-groups and
encode periodicity. In the real setting, we define C`p,q to be the
real span of the mutually anti-commuting generators γ1, . . . , γp and
ρ1, . . . , ρq such that

(γi)2 = 1, (γi)∗ = γi, (ρi)2 = −1, (ρi)∗ = −ρi.

We now recall the relation between real KK-groups and real
K-theory.

Proposition 2.2 ([27], §6, Theorem 3). For trivially graded, σ-unital
real algebras A, there is an isomorphism KKO(C`n,0, A) ∼= KOn(A).

Each short exact sequence of real C∗-algebras 0 → B → C →
A→ 0 with ideal B and quotient algebra A gives rise to an element
of the extension group ExtR(A,B) and this group is related to the
real Kasparov KK-groups.

Proposition 2.3 ([27], §7). If A and B are separable and nuclear real
C∗-algebras, then

ExtR(A,B) ∼= KKO(A⊗̂C`0,1, B) ∼= KKO(A,B⊗̂C`1,0).

2.2. The product

The generality of the constructions and proofs in [27] mean that all
the central results in complex KK-theory carry over into the real
(and Real) setting. In particular, the intersection product

KKO(A,B)×KKO(B,C)→ KKO(A,C)

is still a well-defined map and other important properties such as
stability

KKO(A⊗̂K(H), B) ∼= KKO(A,B)

continue to hold, where K(H) is the algebra of real compact operators
on a separable real Hilbert space.
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Let (A, E1
B , D1) and (B, E2

C , D2) be unbounded real A-B and
B-C Kasparov modules. We would like to take the product at the
unbounded level. Naively one would like to use the formula

(A, (E1⊗̂BE2)C , D1⊗̂1 + 1⊗̂D2),

where (E1⊗̂BE2)C is the B-balanced Z2-graded tensor product. This
does not make sense as D2 is not B-linear (nor B-linear) and so 1⊗̂D2

does not descend to the balanced tensor product. Instead one needs
to choose a connection on E1

B to correct the naive formula for 1⊗̂D2.
First define the ‘D2 one forms’ by

Ω1
D2

(B) =
{∑

j

bj [D2, cj ] ∈ EndC(E2) : bj , cj ∈ B
}
.

Then a D2 connection on E1 is a choice of dense B submodule E1 ⊂
E1 and a linear map

∇ : E1 → E1⊗̂B Ω1
D2

(B) such that ∇(eb) = ∇(e)b+ e⊗̂[D2, b].

Setting m : Ω1
D2

(B)⊗̂E2 → E2 to be m(a[D2, b]⊗̂f) = a[D2, b]f , we
then define

(1⊗̂∇D2)(e⊗̂f) = (−1)|e|e⊗̂D2f + (1⊗̂m)(∇(e)⊗̂f),

with |e| the degree of e in the Z2-graded module E1
B . A short but

illuminating calculation shows that 1⊗̂∇D2 is well-defined on the
balanced tensor product, and it is reasonable to hope that the for-
mula

D := D1⊗̂1 + 1⊗̂∇D2 (1)

would define an operator on E1⊗̂BE2 such that (A, (E1⊗̂BE2)C , D)
represents the product class.

In fact this is true in very many cases as proved in [24, 40, 44,
46]. These papers provide very general settings where the formula (1)
can be guaranteed to produce an unbounded Kasparov module rep-
resenting the product. These proofs, all in the complex case, proceed
by showing that the conditions of Kucerovsky’s theorem are satis-
fied. We will not develop such a general framework, but concretely
construct potential representatives according to the recipe in Equa-
tion (1), and check Kucerovsky’s conditions directly. Importantly,
Kucerovsky’s theorem is valid in the real case.

To state Kucerovsky’s conditions, we start by defining a cre-
ation operator. Given e1 ∈ E1

B and a ∗-homomorphism ψ : B →
EndC(E2), we let Te1 ∈ HomC(E2, E1 ⊗B E2) be given by Te1e2 =
e1⊗̂e2. One can check that Te1 is adjointable with T ∗e1(f1⊗̂e2) =
ψ((e1|f1)B)e2.
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Theorem 2.4 (Kucerovsky’s criteria [37], Theorem 13). Let (A, π1
E1
B , D1)

and (B, π2E
2
C , D2) be unbounded Kasparov modules. Write E := E1⊗̂BE2.

Suppose that (A, π1
EC , D) is an unbounded Kasparov module such

that

Connection condition. For all e1 in a dense subspace of π1(A)E1,
the commutators[(

D 0
0 D2

)
,

(
0 Te1
T ∗e1 0

)]
are bounded on Dom(D ⊕D2) ⊂ E ⊕ E2;

Domain condition. Dom(D) ⊂ Dom(D1⊗̂1);
Positivity condition. For all e ∈ Dom(D),

((D1⊗̂1)e|De) + (De|(D1⊗̂1)e) ≥ K(e|e)

for some K ∈ R.

Then the class of (A, π1
EC , D) in KK(A,C) represents the Kasparov

product.

In fact, if ∇ satisfies an extra Hermiticity condition (which can
always be achieved), an operator of the form D = D1⊗̂1 + 1⊗̂∇D2

always satisfies the domain condition and connection condition. Un-
der mild hypotheses, the operator 1⊗̂∇D2 will be self-adjoint [46,
Theorem 3.17] and the sum will have locally compact resolvent (that
is, π1(a)(1 + D2)−1/2 compact for a ∈ A) [24, Theorem 6.7]. The
self-adjointness of the sum and the boundedness of commutators
[D,π1(a)] needs to be checked directly, as does the positivity condi-
tion. In our examples all these extra conditions are satisfied and so
the task of checking that we have a spectral triple representing the
product is relatively straightforward.

2.3. Semifinite theory

An unbounded A-C or A-R Kasparov module is precisely a complex
or real spectral triple as defined by Connes. Complex spectral triples
satisfying additional regularity properties have the advantage that
the local index formula by Connes and Moscovici [14] gives com-
putable expressions for the index pairing with K-theory, a special
case of the Kasparov product

K∗(A)×KK∗(A,C)→ K0(C) ∼= Z.

We would like to find computable expressions for more general
Kasparov products. To do this, we generalise the definition of spectral
triple using more general semifinite von Neumann algebras in place
of the bounded operators on Hilbert space.
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Let τ be a fixed faithful, normal, semifinite trace on a von Neu-
mann algebra N . We let KN be the τ -compact operators in N (that
is, the norm closed ideal generated by the projections P ∈ N with
τ(P ) <∞).

Definition 2.5 ([12]). Let N be a graded semifinite von Neumann al-
gebra with trace τ . A semifinite spectral triple (A,H, D) is given by a
Z2-graded Hilbert space H, a graded ∗-algebra A ⊂ N acting evenly
on H and a densely defined odd unbounded self-adjoint operator D
affiliated to N such that

1. [D, a] is well-defined on Dom(D) and extends to a bounded
operator on H for all a ∈ A,

2. a(1 +D2)−1/2 ∈ KN for all a ∈ A.

A semifinite spectral triple (A,H, D) isQC∞ if for ∂ = [(1+D2)1/2, ·]
and b ∈ A ∪ [D,A], ∂j(b) ∈ N for all j ∈ N.

A unital semifinite spectral triple is p-summable if (1 +D2)s/2

is τ -trace-class for all s > p.

If we take N = B(H) and τ = Tr, then we recover the usual
definition of a spectral triple.

Theorem 2.6 ([25]). Let (A,H, D) be a complex semifinite spectral
triple associated to (N , τ) with A the C∗-completion of A. Then
(A,H, D) determines a class in KK(A,C) with C a separable C∗-
subalgebra of KN .

Semifinite spectral triples can also be paired with K-theory
elements by the following composition

K0(A)×KK(A,C)→ K0(A)
τ∗−→ R, (2)

with the class in KK(A,C) coming from Theorem 2.6. The semifinite
index pairing is, in general, real-valued and as such can potentially
detect finer invariants than the usual pairing. Importantly, the local
index formula can be generalised to QC∞ and p-summable semifinite
spectral triples for p ≥ 1 [12, 13]. Hence the semifinite local index
formula may be used to compute the map in Equation (2).

One may ask if the converse is true. That is, given an unbounded
Kasparov A-C module, can we construct a semifinite spectral triple?
If the algebra C possesses a faithful semifinite norm-lower semicon-
tinuous trace, the answer is often yes (see for example [48]). If a
sufficiently regular (complex) semifinite spectral triple can be con-
structed, then we may use the semifinite local index formula to com-
pute the map given in Equation (2). Therefore semifinite spectral

10



triples and index theory can be employed in order to compute in-
variants of complex systems from pairings of K-theory classes with
unbounded Kasparov modules.

Remark 2.7 (Real semifinite spectral triples and the local index for-
mula). While the definition of a semifinite spectral triple and semifi-
nite index pairing can be extended to real algebras, the semifinite
local index formula can not be used to detect torsion invariants as
it involves a mapping to cyclic cohomology. However, one may nat-
urally ask whether the semifinite local index formula can be used to
detect integer invariants in the real setting (e.g. arising from K0(R)
or K4(R)). We are of the opinion that a local formula can be em-
ployed to access real integer invariants as in [12, 13], though the
details of the proof given for the complex case need to be checked
for the real case.

3. The bulk-edge correspondence in K-homology

We consider the version of K-homology due to Kasparov in which the
K-homology of the C∗-algebra A arises asKKO(A,R) or (KK(A,C)
in the complex case). It follows from Kasparov’s work that any ex-
act sequence of (trivially graded) C∗-algebras gives rise to a long
exact sequence in K-homology whose boundary map is given by the
internal Kasparov product with the extension class defined by the
exact sequence. This is a very general statement which is in general
not computable. In our case, however, we are able to compute the
product and hence the boundary map on what we call fundamental
classes. Our formula is very explicit and avoids homotopy arguments.

We apply this to the context of topological insulators. The fun-
damental classes do not depend on the symmetries. The Clifford
algebra comes into play through the use of the Dirac operator and
should be understood as a geometrical input. This will be different in
Section 4 where Clifford algebras are used to encode the symmetries
of an insulator.

3.1. The bulk algebra and its extension

The bulk algebra is the observable algebra of the solid seen as infinite
and without boundary. It is also referred to as the noncommutative
Brillouin zone and was developed in [5, 6]. We work in the tight
binding approximation where the configuration space is Zd. In this
case the bulk algebra is the crossed product algebra C(Ω,MN )oα.θZd
of matrix-valued continuous functions over a compact space Ω by the
group Zd.
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The space Ω may be thought of as a space of disorder configu-
rations. The disorder space is equipped with a topological structure
and action α of Zd by shift of the configuration. We also usually
assume that Ω possesses a probability measure that is invariant and
ergodic under the Zd-action to obtain expectation values. The space
Ω could be taken to be a point, or contractible to a point. The lat-
ter point of view is taken in [51] but this excludes the interesting
possibility of describing for instance quasicrystals. The algebra of
N ×N matrices, MN , is used to incorporate internal degrees of free-
dom like spin. Whereas these internal components are important for
the implementation of certain symmetries, for instance odd time re-
versal, they do not interfere with the main topological constructions
which will follow and, in order not to overburden the notation we
will suppress them.

An external magnetic field can be incorporated by a two cocy-
cle θ : Zd × Zd → C(Ω, S1) to twist the action, but note that the
existence of anti-linear symmetries puts restrictions on the form of
such a magnetic field. Indeed, for systems with symmetries which are
implemented by anti-linear operators we are bound to look at a real
sub-algebra of the above algebra. In this case we consider therefore
C(Ω) as the algebra of real valued continuous functions and exclude
the possibility of complex-valued twisting cocycles. The presence of
a boundary will impose further constraints on any possible cocycle,
and we examine this below.

It will be useful to recall some details on crossed products. Let
B be a unital C∗-algebra with action α of Zd and twisting cocycle
θ : Zd × Zd → B (with values in the unitaries of the center of B).
The twisted crossed product A = B oα,θ Zd is the universal C∗-
completion of the algebraic crossed product A := Bα,θZd given by
finite sums

∑
n∈Zd bnS

n where bn ∈ B, n ∈ Zd is a multi-index
and Sn = Sn1

1 · · ·S
nd

d is a product of powers of d abstract unitary
elements Si subject to the multiplication extending that of B by

Sib = αi(b)Si, SiSj = θijSjSi, S∗i = S−1
i .

The map αi is the automorphism corresponding to the action of
ei ∈ Zd for ei are the standard generators and the elements θij
belong to B and can be obtained from the cocycle θ.

Let us consider the case d = 1 in which θ = 1. Given a left
action ρ of B on a module M one obtains a left action π of BαZ on
the module given by the algebraic tensor product `2(Z) ⊗M . The
action π is given on elementary tensors by

π(b)(δj ⊗ ξ) = δj ⊗ ρ(α−j(b))ξ, π(S)(δn ⊗ ξ) = δn+1 ⊗ ξ (3)
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with {δj}j∈Z the standard basis of `2(Z) and ξ ∈ M . We will be
interested in the case where M is a Hilbert module so that we can
expect the action to extend to an action of the C∗-crossed product
BoαZ on the completion of the algebraic tensor product `2(Z)⊗M
which we denote by `2(Z,M).

The above procedure can be iterated and hence yields a repre-
sentation of C(Ω)oα,θZd, if it can be rewritten as an iterated crossed
product. This is always that case if we allow C(Ω) to be replaced by
its stabilisation [47] but the induction principle may also be modified
to yield directly a representation of C(Ω) oα,θ Zd [47].

Of importance for our application to physics is the family of
representations {πω}ω∈Ω which are induced by the evaluation repre-
sentations evω : C(Ω)→ R (or C). These πω are thus representations
of C(Ω) oα,θ Zd on `2(Zd). They look as follows

πω(f)δn = f(αn(ω))δn, πω(Si)δn = θ(n, ei)(ω)δn+ei (4)

with f ∈ C(Ω). A tight binding Hamiltonian is a self-adjoint element
of A,

h =
∑
n∈Zd

vnS
n (5)

where the functions vn ∈ C(Ω) are chosen such that the expression is
self-adjoint and the sum has only finitely many non zero terms (if we
take internal degrees of freedom into account then the vn are matrix
valued). The representations πω give rise to a family of Hamiltionians
Hω = πω(h) which are unitarily equivalent for points ω in the same
orbit.

It is important that the twisting cocycle θ can be arranged in
such a way that SiSd = SdSi for all i ∈ {1, . . . , d}. This implies that
we can rewrite the bulk algebra as a crossed product by Z (where α‖

is the action of Zd−1 on C(Ω) given by restricting α)

C(Ω) oα,θ Zd ∼=
(
C(Ω) oα‖,θ Zd−1

)
oαd

Z.

This allows us to view the bulk algebra as a quotient algebra of a
Toeplitz extension.

We quickly recall the Toeplitz extension for a real or complex
unital C∗-algebra B with Z-action α. Very similar to the construction
of the crossed product B oα Z we can consider BαN the algebra
given by finite sums

∑
k∈N S̃

kbk + (S̃∗)kck, where bk, ck ∈ B and S̃k

and (S̃∗)k are k-th powers of abstract elements and multiplication is
determined by

S̃b = α(b)S̃, S̃∗b = α−1(b)S̃, S̃∗S̃ = 1, S̃S̃∗ = 1− p
13



with p = p∗ = p2 a projection. Thus S̃ is no longer unitary but an
isometry. There is a unique ∗-algebra morphism q : BαN → BαZ
determined by q(S̃) = S which is the identity on the subalgebra B.
Its kernel is the ideal generated by p which can easily be seen to
be isomorphic to F ⊗ B where F is the algebra of the finite rank
operators. The exact sequence

0→ F ⊗B → BαN
q→ BαZ→ 0

is the algebraic version of the Toeplitz extension, the C∗-version is
obtained by taking the universal C∗-closures. The C∗-closure of BαN,
denoted by T (α), is the Toeplitz algebra of the Z-action α and the
closure of F ⊗B is the stabilisation of B, K⊗B with K the algebra
of complex operators on a separable (real or complex) Hilbert space.

As for crossed products, given a left action ρ of B on a module
M one obtains a left action π̃ of BαN on `2(N)⊗M by

π̃(b)(δn ⊗ ξ) = δn ⊗ ρ(α−n(b))ξ, π̃(S̃)(δn ⊗ ξ) = δn+1 ⊗ ξ,

where π̃(S̃∗)(δn ⊗ ξ) = δn−1 ⊗ ξ and we set δn = 0 for n < 0.

3.2. The edge algebra

The Toeplitz algebra T (α) has a physical interpretation which we
now explain. Recall that the bulk algebra is of the form A = Bαd

Z
where B = C(Ω)α‖,θZd−1. Starting with the evaluation representa-
tion evω : C(Ω) → R (or C) we obtain a representation of B on
`2(Zd−1). This representation, in turn, induces a representation of
BαN on `2(N) ⊗ `2(Zd−1). The latter is dense in `2(Zd−1 × N) and
Zd−1 × N is the configuration space for the insulator on half-space,
that is, the insulator seen as infinite with a boundary, the so-called
edge, which is at Zd−1×{0}. The representation of Bαd

N looks away
from the edge like that of A = Bαd

Z, but at the edge the translation
Sd in the perpendicular direction is truncated. The algebra Bαd

N,
or rather its closure T (α) can therefore be seen as the observable
algebra of the insulator with boundary.

Recall that the kernel of the quotient map is the ideal generated
by the projection p. In the evaluation representation this projection
becomes the projection onto the subspace C⊗ `2(Zd−1) = `2(Zd−1×
{0}), and hence is naturally associated to the edge. Thus the elements
of F ⊗ B are represented as operators which are localised near the
edge. The ideal of the Toeplitz extension F ⊗ B (and its C∗-closure
K⊗B) can therefore be referred to as the (stabilised) edge algebra.
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3.3. Fundamental K-cycles for Zd-actions

Consider a real or complex (possibly twisted) crossed product A =
B oα,θ Zd with its algebraic version A = Bα,θZd, which is spanned
by finite sums

∑
n S

nbn. Our task is to construct an unbounded
Kasparov module encoding the Zd-action. We remark that similar
constructions appear in [23, 48, 50] in the complex setting.

We consider the representation of the crossed product Boα,θZd
on the Hilbert module `2(Zd)⊗B =: `2(Zd, B) obtained by iteration
of (3) associated with the left regular representation of B on B (by
left multiplication). More precisely, the map ı : Bα,θZd → `2(Zd)⊗B,
ı(Snb) = δn ⊗ b is an inclusion of the dense subalgebra A into the
Hilbert module such that the representation of A on the image of ı
is given by left multiplication:

Snb1 ·(δm⊗b2) = ı(Snb1S
mb2) = δn+m⊗α−m−n(θ(m,n))α−m(b1)b2

The Hilbert module is the completion of ı(A) w.r.t. the B-valued
inner product

(λ1 ⊗ b1 | λ2 ⊗ b2)B = 〈λ1, λ2〉`2(Zd) b
∗
1b2,

and norm ‖ξ‖2 = ‖(ξ | ξ)B‖B . The C∗-module also carries a right-
action of B by right-multiplication. Note that on ı(A) the inner prod-
uct may be written as

(ı(a1) | ı(a2))B = Φ0(a∗1a2)

Where Φ0 : A→ B, Φ0(Snb) = δn0b is the usual conditional expecta-
tion. This expectation being positive we have Φ0(b∗ab) ≤ ‖a‖AΦ0(b∗b)
for any positive a ∈ A and b ∈ B.

Proposition 3.1. The left-action of A on `2(Zd, B) extends to an
adjointable representation of B oα,θ Zd.

Proof. We first check adjointability of the elements of A acting on
ı(A) by computing

(a · ı(a1) | ı(a2))B = Φ0((aa1)∗a2)

= Φ0(a1a
∗a2) = (ı(a1) | a∗ · ı(a2))B

Furthermore, the action of A on ı(A) is uniformly bounded:

‖a‖2End = ‖ sup
a′∈A
‖ı(a′)‖=1

(a · ı(a′) | a · ı(a′))B‖

≤ sup
a′∈A
‖ı(a′)‖=1

‖a∗a‖A ‖Φ0(a′
∗
a′)‖ = ‖a∗a‖A.
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Hence the action extends by continuity, first from A on ı(A) to a
bounded action of A on `2(Zd, B) and then to a bounded action of
the whole C∗-algebra A on `2(Zd, B). It then follows that all elements
of A are adjointable. �

Inside `2(Zd, B) we consider the elements em = δm ⊗ 1B for
m ∈ Zd. We compute that for b ∈ B

Θel,em enb = Θel,em(δn ⊗ b) = (δl ⊗ 1B) · (δm ⊗ 1B | δn ⊗ b)B
= δm,n δl ⊗ b = δm,n el · b.

In particular we note that∑
m∈Zd

Θem,em = Id`2(Zd,B)

and so {em}m∈Zd is a frame for the module `2(Zd, B).

The last ingredient we need for a Kasparov module is a Dirac-
like operator, which we construct using the position operators, Xj :
Dom(Xj) → `2(Zd, B) for j ∈ {1, . . . , d} such that Xj(δm ⊗ b) =
mj(δm ⊗ b) for any m ∈ Zd. We construct the Dirac-like operator
by employing an irreducible Clifford representation. On the graded
vector space

∧∗Rd (we denote the grading by γ∧∗ Rd) there is a
representation of C`d,0 and a representation of C`0,d. The generators
γj of C`d,0 and the generators ρj of C`0,d act by

γj(w) = ej ∧ w + ι(ej)w, ρj(w) = ej ∧ w − ι(ej)w,

for {ej}dj=1 the standard basis of Rd, w ∈
∧∗Rd and ι(v)w the

contraction of w along v. These two actions graded-commute. On
the tensor product space `2(Zd, B)⊗

∧∗Rd we define

D :=

d∑
j=1

Xj ⊗ γj .

Proposition 3.2. Consider a possibly twisted Zd-action α, θ on a C∗-
algebra B. Let A be the associated crossed product with dense subal-
gebra A = Bα,θZd. The data

λ(d) =

(
A⊗̂C`0,d, `2(Zd, B)B ⊗

∧∗
Rd,

d∑
j=1

Xj ⊗ γj , γ∧∗ Rd

)
defines an unbounded A⊗̂C`0,d-B Kasparov module. The C`0,d-action
is generated by the operators ρj. In the complex case we have C in
place of R in the above formula.
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Proof. The left-action of A is adjointable by Proposition 3.1. By con-
struction D graded-commutes with the left Clifford representation.
What remains to be checked is that [D, a] =

∑
j [Xj , a] ⊗ γj is ad-

jointable for a ∈ A and (1+D2)−1/2 is compact. It is directly verified
that

[Xj , S
nb] = njS

nb

and so we see that [Xj , a] ∈ A for all a ∈ A. In particular the
commutator is an adjointable operator. Furthermore, D2 =

∑
j X

2
j ⊗

1 and hence (1+D2)−1/2 = (1+ |X|2)−1/2⊗1, where |X|2 =
∑
j X

2
j .

Using the frame {em}m∈Zd , we note that (1+|X|2)em = (1+|m|2)em
and so

(1 +D2)−
1
2 =

∑
m∈Zd

(1 + |m|2)−
1
2 Θem,em ⊗ 1,

which is a norm-convergent sum of finite-rank operators and so is
compact. �

3.4. The fundamental K-cycles for the bulk and the edge

We apply the construction of Proposition 3.2 to Ab = C(Ω) oα,θ Zd
and to Ae = C(Ω) oα‖,θ Zd−1 to obtain the fundamental class for

the bulk and for the edge, respectively. We let Ab = C(Ω)α,θZd and
Ae = C(Ω)α‖,θZd−1 and obtain

λb =
(
Ab⊗̂C`0,d, `2(Zd, C(Ω))C(Ω) ⊗

∧∗
Rd, Db, γ∧∗ Rd

)
, (6)

with Db =
∑k
j=1Xj⊗γk. We call λb the fundamental K-cycle of the

bulk. Similarly we call λe the fundamental K-cycle of the edge given
by(
Ae⊗̂C`0,d−1, `

2(Zd−1, C(Ω))C(Ω)⊗
∧∗

Rd−1, De, γ∧∗ Rd−1

)
, (7)

with De =
∑d−1
j=1 Xj ⊗ γj . These are unbounded representatives for

elements in KKOd(A,C(Ω)) and KKOd−1(B,C(Ω)) (in the real
case, otherwise it’s KK).

3.5. The extension module

We recall that given a twisted crossed product A = Boα,θZd, we can
unwind the Zd action to write A =

(
B oα‖,θ Zd−1

)
oαd

Z. We can
then construct the Toeplitz algebra T (αd) and short exact sequence

0→ K⊗Boα‖,θ Zd−1 → T (αd)→
(
B oα‖,θ Zd−1

)
oαd

Z→ 0. (8)

We can associate the algebras Boα,θZd and K⊗Boα‖,θZd−1 to bulk

and edge systems respectively. Hence we denote Ae = B oα‖,θ Zd−1

and Ab = B oα,θ Zd ∼= Ae oαd
Z.
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Equation (8) gives rise to a class [ext] in the extension group
Ext(Ab, Ae), which by Proposition 2.3 is the same as the group
KKO(Ab⊗̂C`0,1, Ae) (or KK(Ab⊗̂C`1, Ab) if complex).

We compute boundary maps in K-theory and K-homology by
taking the Kasparov product with the class [ext] representing the
short exact sequence of Equation (8) and identified as an element of
KKO(Ab⊗̂C`0,1, Ae). In order to make boundary maps computable,
we require an unbounded representative of this class.

Proposition 3.3. Let B be a unital C∗-algebra and A = Boα Z. The
extension class of the Toeplitz extension of the Z-action is represented
by the fundamental K-cycle of the Z-action,(

BαZ⊗̂C`0,1, `2(Z, B)B ⊗
∧∗

R, D = X1 ⊗ γ1 , γ∧∗ R) . (9)

There is an analogous result for complex algebras.

It serves the clarity of arguments further down to denote D =
N ⊗ γext for the extension module.

Proof. The above module defines the same KK-class as the bounded
cycle (

A, `2(Z, B)B , 2P − 1
)

where P = χ[0,∞)(N). From [53, Proposition 3.14] we know that this
class is the extension class of the short exact sequence

0→ End0
B [P (`2(Z, B))]→C∗(PBαZP, End0

B [P (`2(Z, B))])

→ Q→ 0, (10)

where C∗(PBαZP, End0
B [P (`2(Z, B))]) is a closed subalgebra of the

adjointable operators, EndB [P (`2(Z, B))], and Q the quotient. Now
P is the projection onto `2(N, B) and hence PBαZP = BαN. More-
over, using [7, §13]

End0
B [P (`2(Z, B))] ∼= K(`2(N))⊗B.

Hence C∗(PBαZP, End0
B [P (`2(Z, B))]) is the completion of BαN

and Q is the completion of BαZ as required. �

Applying Proposition 3.3 to Equation (8), we have the un-
bounded representative of the extension class,(

Ab⊗̂C`0,1, `2(Z, Ae)Ae ⊗
∧∗

R, N ⊗ γext, γ∧∗ R)
with Ae = B oα‖,θ Zd−1 and Ab = Ae oαd

Z. The Clifford actions of

C`0,1 and C`1,0 on
∧∗R are generated by the operators

ρext(w) = e ∧ w − ι(e)w, γext(w) = e ∧ w + ι(e)w,

18



respectively, where e is the basis element of R.

3.6. From Kasparov module to spectral triple

Recall the map evω : C(Ω) → F (for F = R or C), which gives a
family of representations {πω}ω∈Ω of the crossed product C(Ω)oα,θ
Zd on `2(Zd) subject to the covariance condition, Snπω(a)(S∗)n =
παn(ω)(a). The representations πω were used in [9] to define a real or
complex spectral triple

λb(ω) =

(
A⊗̂C`0,d, πω`

2(Zd)⊗
∧∗

Rd,
d∑
j=1

Xj ⊗ γj , γ∧∗ Rd

)
. (11)

The spectral triple gives a K-homology class for the crossed-product
algebra, which by the covariance relation is independent under a
fixed α-orbit of Ω.

Let us link the bulk spectral triple of Equation (11) to the
fundamental K-cycle studied in Proposition 3.2. We take the trivially
graded Kasparov module

evω = (C(Ω), evωF, 0)

with evω the evaluation representation of C(Ω). The Kasparov mod-
ule evω represents a class in KKO(C(Ω),R) (or KK(C(Ω),C)) that
can be paired with our fundamental K-cycle.

Proposition 3.4. The spectral triple λb(ω) is unitarily equivalent to
the internal product of the unbounded bulk Kasparov module λb with
evω.

Proof. Because the evaluation Kasparov module is very simple, we
can easily compute the internal product(

A⊗̂C`0,d, `2(Zd, C(Ω))⊗
∧∗

Rd,
d∑
j=1

Xj ⊗ γj , γ∧∗ Rd

)
⊗̂C(Ω) (C(Ω), evω

F, 0)

∼=
(
A⊗̂C`0,d, H⊗

∧∗
Rd,

d∑
j=1

Xj ⊗ 1⊗ γj , γ∧∗ Rd

)
with H = `2(Zd, C(Ω))⊗evω F. We identify `2(Zd, C(Ω))⊗evω F with
`2(Zd) under which Xj ⊗ 1 7→ Xj and the left-action of A takes the
form

Smg · δn = θ(n,m)g(αn(ω))δn+m = πω(Smg)δn.

Hence we recover λb(ω). �
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3.7. The product

Recall that for the case B = C(Ω), the bulk and boundary algebra
are related by a Toeplitz extension.

0→ K⊗ C(Ω) oα‖,θ Zd−1 → T (αd)→ C(Ω) oα,θ Zd → 0.

Proposition 3.3 gives us an unbounded Kasparov module that rep-
resents this short exact sequence. We now state the most important
result of the paper, namely that the Kasparov product of the ex-
tension module with the fundamental edge module λe gives, up to a
cyclic permutation of the Clifford generators, the fundamental bulk
module. The product with the extension class is the boundary map
arising from the bulk-edge short exact sequence and the correspond-
ing long exact sequence in KK-theory. Our result is actually a special
case of the following theorem.

Theorem 3.5. Let B be a unital real or complex C∗-algebra with
fundamental K-cycles λ(d) and λ(d−1) for (possibly twisted) Zd and
Zd−1-actions. Then the unbounded Kasparov product of the exten-
sion Kasparov module from Proposition 3.3 with λ(d−1) gives, up
to a cyclic permutation of the Clifford generators, the fundamental
module λ(d). On the level of KK-classes this means

[ext]⊗̂[λ(d−1)] = (−1)d−1[λ(d)],

where −[x] denotes the inverse of the KK-class.

Proof. We will focus on the real setting though note that the case
of complex algebras and modules follows the same argument. We
denote by Ae = B oα‖,θ Zd−1 and Ab = B oα,θ Zd ∼= Ae oαd

Z
with dense subalgebras Ae and Ab. We are taking the product of an
Ab⊗̂C`0,1-Ae module with an Ae⊗̂C`0,d−1-B module. Our first step
is an external product of the Ab⊗̂C`0,1-Ae module with the identity
class in KKO(C`0,d−1, C`0,d−1). This class can be represented by
the Kasparov module(

C`0,d−1, (C`0,d−1)C`0,d−1
, 0, γC`0,d−1

)
with right and left actions given by right and left Clifford multipli-
cation. The external product results in the Ab⊗̂C`0,d-Ae⊗̂C`0,d−1

module represented by(
Ab⊗̂C`0,d,

(
`2(Z, Ae)⊗

∧∗
R ⊗̂C`0,d−1

)
Ae⊗̂C`0,d−1

,

N ⊗ γext⊗̂1, γ∧∗ R⊗̂γC`0,d−1

)
.

20



We now take the internal product of this module with theAe⊗̂C`0,d−1-
B-module representing the edge. We start with the C∗-modules,
where(
`2(Z, Ae)⊗R

∧∗
R ⊗̂R C`0,d−1

)
⊗̂Ae⊗̂C`0,d−1(

`2(Zd−1, B)⊗R
∧∗

Rd−1
)

∼=
(
`2(Z, Ae)⊗Ae

`2(Zd−1, B)
)
⊗R
∧∗

R ⊗̂R

(
C`0,d−1 ·

∧∗
Rd−1

)
∼=
(
`2(Z, Ae)⊗Ae

`2(Zd−1, B)
)
⊗R
∧∗

R ⊗̂R
∧∗

Rd−1

as the action of C`0,d−1 on
∧∗Rd−1 by left-multiplication is nonde-

generate.
Next we define 1⊗∇Xj on the dense submodule `2(Z,Ae)⊗Ae

`2(Zd−1, B) for all j ∈ {1, . . . , d− 1}, where

(1⊗∇ Xj) (δk ⊗ ae ⊗ δn ⊗ b)
= δk ⊗ ae ⊗Xjδn ⊗ b+ δk ⊗ 1⊗ [Xj , ae]δn ⊗ b (12)

with {δk}k∈Z an orthonormal basis of `2(Z), ae ∈ Ae, {δn}n∈Zd−1

an orthonormal basis for `2(Zd−1) and b ∈ B. The operator is well-
defined as [Xj , ae] ∈ Ae for ae ∈ Ae. Then(
Ab⊗̂C`0,1⊗̂C`0,d−1,

(
`2(Z, Ae)⊗Ae `

2(Zd−1, B)
)

(13)

⊗
∧∗

R ⊗̂R
∧∗

Rd−1, N ⊗ 1⊗ γext⊗̂1 +

d−1∑
j=1

(1⊗∇ Xj)⊗ 1⊗̂γj
)

is a candidate for the unbounded product module, where the Clifford
actions take the form

ρext⊗̂1(ω1⊗̂ω2) = (e1 ∧ ω1 − ι(e1)ω1)⊗̂ω2

1⊗̂ρj(ω1⊗̂ω2) = (−1)|ω1|ω1⊗̂(ej ∧ ω2 − ι(ej)ω2),

for j ∈ {1, . . . , d− 1} with |ω1| is the degree of the form ω1. Similar
equations hold for γext⊗̂1 and 1⊗̂γj . Arguments very similar to the
proof of Proposition 3.2 show that Equation (13) is a real or com-
plex Kasparov module depending on what setting we are in. We now
briefly check Kucerovsky’s criterion (Theorem 2.4). The connection
criterion holds precisely because we have used a connection ∇ to
construct 1⊗∇ Xj . The domain condition is a simple check and the
positivity condition is explicitly checkable as the operators of interest
act as number operators. Therefore the unbounded Kasparov mod-
ule of Equation (13) is an unbounded representative of the product
[ext]⊗̂Ae

[λ(d−1)] at the level of KK-classes.
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Our next task is to relate the module (13) to λ(d). We first
identify

∧∗R ⊗̂R
∧∗Rd−1 ∼=

∧∗Rd and use the graded isomorphism
C`p,q⊗̂C`r,s ∼= C`p+r,q+s from [27, §2.16] on the left and right Clif-
ford generators by the mapping

ρext⊗̂1 7→ ρ1, 1⊗̂ρj 7→ ρj+1,

γext⊗̂1 7→ γ1, 1⊗̂γj 7→ γj+1.

Therefore applying this isomorphism gives the unbounded Kasparov
module(
Ab⊗̂C`0,d, (`2(Z, Ae)⊗Ae `

2(Zd−1, B))⊗
∧∗

Rd,

N ⊗ 1⊗ γ1 +

d−1∑
j=1

(1⊗∇ Xj)⊗ γj+1

)
with C`0,d-action generated by ρj(ω) = ej ∧ ω − ι(ej)ω and C`d,0-
action generated by γj(ω) = ej ∧ ω + ι(ej)ω for ω ∈

∧∗ Rd and
{ej}dj=1 the standard basis of Rd.

Next we define the map `2(Z, Ae)⊗Ae
`2(Zd−1, B)→ `2(Zd, B)

on generators as

δk ⊗ ae ⊗ δn ⊗ b 7→ αkd(ae) · δ(n,k) ⊗ b

for k ∈ Z, n ∈ Zd−1 and αd the automorphism on Ae such that
Ab = Ae oαd

Z. One easily checks that this map is compatible with
the right-action of B and B-valued inner product and, thus, is a
unitary map on C∗-modules. We check compatibility with the left
action by Ab ∼= C∗(Ae, Sd), where for ce ∈ Ae,

ce(δk ⊗ ae ⊗ δn ⊗ b) = δk ⊗ α−kd (ce)ae ⊗ δn ⊗ b

7→ αkd
(
α−kd (ce)ae

)
· δ(n,k) ⊗ b

= ce
(
αkd(ae) · δ(n,k) ⊗ b

)
.

Furthermore,

Sd(δk ⊗Ae ⊗ δn ⊗ b) = δk+1 ⊗ ae ⊗ δn ⊗ b

7→ αk+1
d (ae) · δ(n,k+1) ⊗ b

= Sdα
k
d(ae)S

∗
d · δ(n,k+1) ⊗ b

= Sd
(
αkd(ae) · δ(n,k) ⊗ b

)
and so the generators of the left-action are compatible with the iso-
morphism. It is then straightforward to check that the compatibility
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of the left-action extends to the C∗-completion. Next we compute
that

N(δk ⊗ ae ⊗ δn ⊗ b) = kδk ⊗ ae ⊗ δn ⊗ b

7→ kαkd(ae) · δ(n,k) ⊗ b = Xd

(
αkd(ae) · δ(n,k) ⊗ b

)
as αkd(ae) commutes with Xd. Lastly we use Equation (12) to check
that

(1⊗∇ Xj)(δk ⊗ ae ⊗ δn ⊗ b) = δk ⊗ (ae + [Xj , ae])⊗ δn ⊗ b

7→ αkd(ae + [Xj , ae]) · δ(n,k) ⊗ b

= αkd(Xjae) · δ(n,k) ⊗ b

= Xj

(
αkd(ae) · δ(n,k) ⊗ b

)
as [Xj , ae] ∈ Ae for ae ∈ Ae and αkd(Xj) = Xj for j ∈ {1, . . . , d− 1}.
We note that the identification 1⊗∇Xj 7→ Xj requires us to use the
smooth subalgebra Ae ⊂ Ae in order for [Xj , ae] to be a well-defined
element of Ae. This is typical of the unbounded product and why we

need to have the equality Ae · `2(Zd−1, B) = `2(Zd−1, B).
To summarise, the unbounded Kasparov module representing

the product is unitarily equivalent to(
Ab⊗̂C`0,d, `2(Zd, B)B ⊗

∧∗
Rd, Xd ⊗ γ1 +

d−1∑
j=1

Xj ⊗ γj+1, γ∧∗ Rd

)
(14)

with left and right Clifford actions as previously. This is almost the
same as the bulk module λ(d), the only difference being the labelling
of the Clifford basis. The map ξ(γj) = γσ(j) and ξ(ρj) = ρσ(j) for
σ(j) = (j − 1)mod d is potentially an orientation reversing map on
Clifford algebras. Taking the canonical orientation ωC`0,d = ρ1 · · · ρd
on C`0,d,

ξ(ωC`0,d) = ρdρ1 · · · ρd−1 = (−1)d−1ρ1 · · · ρd = (−1)d−1ωC`0,d ,

and similarly for the γj and C`d,0. Using [27, §5, Theorem 3], such
a map on Clifford algebras will send the KK-class of the Kasparov
module of Equation (14) to its inverse if d is even or leaves the
KK-class invariant if d is odd. Therefore at the level of KK-classes,
[ext]⊗̂Ae

[λ(d−1)] = (−1)d−1[λ(d)] as required. �

Remark 3.6. It would be preferable to have an explicit unitary equiv-
alence implementing the coordinate permutation of Clifford indices
as existing proofs demonstrating the signed equality arising from a
permutation require (explicit) homotopies. The difficulty of defining
reasonable equivalence relations on unbounded Kasparov modules
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stronger than ‘unitary equivalence modulo bounded perturbation’
means that such homotopies compromise the computability and any
interpretation stronger than mere (signed) equality of KK-classes.

Remark 3.7. Applying Theorem 3.5 to the case of B = C(Ω), we
can decompose the bulk module λb into the product of the extension
class linking bulk and edge algebras with the edge module (up to the
sign (−1)d−1).

We also obtain a bulk-edge correspondence for the bulk spectral
triple λb(ω) using the decomposition

[λb(ω)] = [λb]⊗̂C(Ω)[evω] = (−1)d−1[ext]⊗̂Ae
[λe]⊗̂C(Ω)[evω],

where [λe]⊗̂C(Ω)[evω] is represented by the spectral triple

λe(ω)=

(
Ae⊗̂C`0,d−1, πω

`2(Zd−1)⊗
∧∗

Rd−1,

d−1∑
j=1

Xj⊗γj , γ∧∗ Rd−1

)
and is associated to an edge system.

4. K-theory, pairings and computational challenges

In this section we outline how our rather general results about Kas-
parov modules and twisted Zd-actions can be related to topological
phases and the bulk-edge correspondence.

As mentioned in the introduction, the measured quantities in
insulator models involve the pairing of a K-theory class with a dual
theory, be it cyclic cohomology, K-homology or the more general
Kasparov product.

Computing these pairings gives rise to analytic index formu-
las, which are in general a Clifford module valued index in the sense
of Atiyah–Bott–Shapiro [1]. In the case of integer invariants, cyclic
formulas may be used to obtain more computable expressions for
disorder-averaged quantities. The case of torsion indices is more com-
plicated and we finish with some brief remarks about computing such
invariants.

4.1. Symmetries and K-theory

Recall that our Hamiltonian of interest is a self-adjoint element h
in the crossed-product algebra C(Ω) oα,θ Zd. A Hamiltonian h with
spectral gap at 0 represents an extended topological phase if h is
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compatible with certain symmetry involutions. The symmetries of in-
terest to us are time-reversal symmetry (TRS), particle-hole (charge-
conjugation) symmetry (PHS) and chiral (sublattice) symmetry, al-
though we emphasise that other symmetries such as spatial involu-
tion may be considered. The following result, due in various forms to
numerous authors, associates a K-theory class to a symmetry com-
patible Hamiltonian.

Proposition 4.1 ([9, 17, 29, 36, 56]). Let h ∈ C(Ω) oα,θ Z be self-
adjoint with a spectral gap at 0. If h is compatible with time-reversal
symmetry and/or particle-hole symmetry and/or chiral symmetry
then we may associate a class in Kj(C(Ω)oZd) or KOj(C(Ω)oZd),
where j is determined by the symmetries present. The details are
summarised in Table 1.

The specific class associated to a symmetry compatible Hamil-
tonian in Proposition 4.1 may arise in several (largely equivalent)
ways.

One may consider a subgroup G of the CT -symmetry group
{1, T, C,CT} ∼= Z2×Z2 with C denoting charge-conjugation (particle-
hole), T time-reversal and CT sublattice/chiral symmetry. A topo-
logical phase can then be considered as a Hamiltonian with spec-
tral gap (assumed to be at 0), whose phase h|h|−1 acts as a grad-
ing for a projective unitary/anti-unitary (PUA) representation of
G ⊂ {1, T, C,CT} on a complex Hilbert space H. This is the per-
spective first developed in [17] in the commutative setting and then
extended to noncommutative algebras in [9, 36, 56]. The even/odd
nature of the time-reversal and charge-conjugation symmetries is en-
coded in the cocycle that arises in the projective representation. The
class in Kj(A) or KOj(A) for A ⊂ C(Ω)oα,θZd from Proposition 4.1
and Table 1 is determined by the subgroup G of the CT -symmetry
group and its PUA representation.

One may also consider the gapped Hamiltonian h to be oddly
graded by the presence of a chiral/sublattice symmetry, in which case
the phase h|h|−1 determines a class in the van Daele K-theory of the
algebra, which can then be related to real or complex K-theory.1

Other symmetries can be incorporated by considering Real struc-
tures on the observable algebra. By considering the various types of
symmetries and whether they are even and odd, one can derive Table
1. See [29] for further information.

1We have assumed A = C(Ω)oα,θ Rd to be trivially graded. Hence for h to have
odd grading then we must first consider a larger graded algebra which we can

then reduce to the trivially graded A. See [29].
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Symmetry type K-theory group
even TRS KO0(A)
even TRS, even PHS KO1(A)
even PHS KO2(A)
even PHS, odd TRS KO3(A)
odd TRS KO4(A)
odd TRS, odd PHS KO5(A)
odd PHS KO6(A)
even TRS, odd PHS KO7(A)

N/A K0(A)
chiral K1(A)
Table 1. Symmetry types and the correspond-
ing K-theory group of the ungraded algebra A =
C(Ω)oα,θZd (real or complex). See Proposition 4.1.

The generality and flexibility of KK-theory mean that we can
use either the symmetry class or the van Daele class in terms of
pairing or the bulk-edge correspondence. The choice of K-theory
class can therefore be determined in order to model the specifics of
an experimental set-up. This is important as the techniques being
employed to define/measure Z2-invariants of topological phases are
still in development.

4.2. Pairings, the Clifford index and the bulk-edge correspondence

As briefly explained, a symmetry compatible gapped Hamiltonian
gives rise to a class in Kj(A) or KOj(A) for A the real or complex
ungraded crossed product C(Ω) oα,θ Zd. By Theorem 2.2, we can
relate the K-theory groups to KK(C`j , A) or KKO(C`j,0, A). Hence
we can consider the map

KKO(C`j,0, C(Ω) oα,θ Zd)×KKO(C(Ω) oα,θ Zd⊗̂C`0,d, C(Ω))

→ KKO(C`j,d, C(Ω)) (15)

given by the internal Kasparov product, where the class in the group
KKO(C(Ω) oα,θ Zd, C(Ω)) is represented by the fundamental K-
cycle for the Zd-action, λb (an analogous map occurs in the complex
case).

Like the case of the quantum Hall effect, where the Hall con-
ductance is related to a pairing of the Fermi projection with a cyclic
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cocycle or K-homology class, we claim that the quantities of inter-
est in topological insulator systems arise as pairings/products of this
type.

Without specifying a particular K-theory class, we can make
some general comments about the pairing with the fundamental K-
cycle. The unbounded product with the fundamental cycle has the
general form (

C`j,d, EC(Ω), X̃, Γ
)
,

with EC(Ω) a countably generated C∗-module with a left-action of
C`j,0. The construction of the product is done in such a way that
the left-action of C`j,d graded-commutes with the unbounded oper-

ator X̃. This implies that the topological information of interest is

contained in the kernel Ker(X̃) as a C∗-submodule of EC(Ω), see [9,
Appendix B].

Let us now associate an analytic index to the product in Equa-
tion (15).

Definition 4.2. We let r,sMC(Ω) be the Grothendieck group of equiv-
alence classes of real Z2-graded right C(Ω)-C∗-modules carrying a
graded left-representation of C`r,s.

Using the notation of Clifford modules, Ker(X̃) determines a
class in the quotient group j,dMC(Ω)/i

∗(j+1,dMC(Ω)), where i∗ comes
from restricting a Clifford action of C`j+1,d to C`j,d. Next, we use
an elementary extension of the Atiyah–Bott–Shapiro isomorphism,
[1] and [54, §2.3], to make the identification

j,dMC(Ω)/i
∗
j+1,dMC(Ω)

∼= KOj−d(C(Ω)).

Definition 4.3. The Clifford index, Indexj−d(X̃), of X̃ is given by the
class

[Ker(X̃)] ∈ j,dMC(Ω)/i
∗
j+1,dMC(Ω)

∼= KOj−d(C(Ω))

We remark that Indexk reproduces the usual (real) C∗-module
Fredholm index as studied in [19, Chapter 4] if k = 0, see [54].

Of course we may instead wish to use an invariant probability
measure P on Ω to obtain invariants averaged over the disorder space
rather than K-theory classes of the disorder. We will return to this
question in Section 4.3.

4.2.1. The bulk-edge correspondence. Let us now apply Theorem
3.5 to our study on pairings. Denoting by [xb] the K-theory class
represented by the symmetry compatible Hamiltonian (using either
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van Daele K-theory or the graded PUA representation), we have
that

[xb]⊗̂Ab
[λb] = (−1)d−1[xb]⊗̂Ab

[ext]⊗̂Ae [λe].

Using associativity of the Kasparov product to group the terms on
the right in two different ways, the real index pairing will either be
a pairing

KKO(C`j,0, C(Ω) oα,θ Zd)×KKO(C(Ω) oα,θ Zd⊗̂C`0,d,R)

→ KOj−d(C(Ω)),

the bulk invariant, or a new (but equivalent) pairing

KKO(C`j,0⊗̂C`0,1, C(Ω) oα‖,θ Zd−1)

×KKO(C(Ω) oα‖,θ Zd−1⊗̂C`0,d−1,R)→ KOj−d(C(Ω)).

The second pairing yields an invariant that comes from the edge
algebra C(Ω) oα‖,θ Zd−1 of a system with boundary. Theorem 3.5
ensures that regardless of our choice of pairing, the result is the same
and so we obtain the bulk-edge correspondence for real and complex
algebras. In particular non-trivial bulk invariants imply non-trivial
edge invariants and vice versa. Furthermore, we see that the bulk-
edge correspondence continues to hold under the addition of weak
disorder. In complex examples, the value of the edge pairing can
be interpreted as a response coefficient of the edge system like, for
instance, the conductance of a current concentrated at the boundary
of the sample [30, 31, 33, 51].

Remark 4.4 (Wider applications of Theorem 3.5). The bulk-edge cor-
respondence and Theorem 3.5 are largely independent of the sym-
metry considerations of topological phases. Instead, it is a general
property of the (real or complex) unbounded Kasparov module rep-
resenting the short exact sequence

0→ K⊗ C(Ω) oα‖,θ Zd−1 → T (αd)→ C(Ω) oα,θ Zd → 0

and the fundamental K-cycles on the ideal and quotient algebras we
have constructed.

In particular, the fact that the factorisation occurs on the K-
homological part of the index pairing means other K-theory classes
and symmetry types can be considered without changing the result
and is independent of the symmetries present. For example, if we were
to consider symmetry compatible Hamiltonians of a group G̃ that in-
cluded spatial involution or other symmetries, then provided that the
symmetry data can be associated to a class in KKO(C∗(G̃), A) (or
complex), the pairing would still display the bulk-edge correspon-
dence.
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Separating the topological information arising from the internal
symmetries of the Hamiltonian from the (non-commutative) geome-
try of the Brillouin zone highlights an advantage of using Kasparov
theory to study topological systems with internal symmetries. We ob-
tain the flexibility to change the K-theoretic data without affecting
the geometric information that is used to obtain the topological in-
variants of interest and vice versa.

4.3. Semifinite spectral triples and integer invariants

Given a unital C∗-algebra (real or complex) B with possibly twisted
Zd-action, we have given a general procedure to obtain an unbounded
Boα,θ Zd-B module and class in KKO(Boα,θ Zd⊗̂C`0,d, B). If the
algebra B has a faithful, semifinite and norm-lower semicontinous
trace τB , there is a general method by which we can obtain a semifi-
nite spectral triple as studied in [25, 38, 48]. Such a condition on B is
satisfied in the physically interesting case of B = C(Ω,MN ), where
the disorder space of configurations is equipped with a probability
measure P such that supp(P) = Ω. The measure is usually assumed
to also be invariant and ergodic under the Zd-action.

Given the C∗-module `2(Zd, B) and trace τB , we consider the
inner-product

〈λ1⊗b1, λ2⊗b2〉 = τB((λ1 ⊗ b1 | λ2 ⊗ b2)B) = 〈λ1, λ2〉`2(Zd) τB(b∗1b2),

which defines the Hilbert space `2(Zd)⊗L2(B, τB) where L2(B, τB)
is the GNS space.

Lemma 4.5. The algebra A = Boα,θ Zd acts on `2(Zd)⊗L2(B, τB).

Proof. This follows from the identification of `2(Z)⊗L2(B, τB) with
`2(Z, B)⊗B L2(B, τB). �

Proposition 4.6 ([38], Theorem 1.1). Given T ∈ EndB(`2(Zd, B))
with T ≥ 0, define

Trτ (T ) = sup
I

∑
ξ∈I

τB [(ξ | Tξ)B ] ,

where the supremum is taken over all finite subsets I of `2(Z, B) such
that

∑
ξ∈I Θξ,ξ ≤ 1. Then Trτ is a semifinite norm-lower semicon-

tinuous trace with the property Trτ (Θξ1,ξ2) = τB [(ξ2 | ξ1)B ].

Lemma 4.7. Let End00
B (`2(Zd, B)) be the algebra of the span of rank-1

operators, Θξ1,ξ2 with ξ1, ξ2 ∈ `2(Zd, B), and N be the von Neumann

algebra End00
B (`2(Zd, B))′′ with weak-closure taken in the bounded

operators on `2(Zd) ⊗ L2(B, τB). Then the trace Trτ extends to a
trace on the positive cone N+.
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Proof. This is just the dual trace construction, or an explicit check
can be made as in [48, Proposition 5.11]. �

Proposition 4.8. The tuple(
A⊗̂C`0,d, `2(Zd)⊗ L2(B, τB)⊗

∧∗
Rd,

d∑
j=1

Xj ⊗ γj , (N ,Trτ )

)

is a QC∞ and d-summable semifinite spectral triple.

Proof. The commutators [Xj , a] are bounded by analogous argu-
ments to the proof of Proposition 3.2. We use the frame {em}m∈Zd ⊂
`2(Zd, B) with em = δm ⊗ 1B to compute that

Trτ ((1 + |X|2)−s/2) = Trτ

( ∑
m∈Zd

(1 + |m|2)−s/2Θem,em

)
=
∑
m∈Zd

(1 + |m|2)−s/2 τB((em | em)B)

=
∑
m∈Zd

(1 + |m|2)−s/2 τB(1B)

by the properties of Trτ . The sum of (1 + |m|2)−s/2 for m ∈ Zd
will be finite for s > d and τB(1B) = 1. Hence (1 + |X|2)−s/2 is
Trτ -trace-class for s > d as required.

Our spectral triple is QC∞ if A⊗̂C`0,d preserves the domain

of (1 + D2)k/2 for any k ∈ N, which reduces to checking that A
preserves the domain of (1 + |X|2)k/2⊗ 1 on `2(Zd)⊗L2(B, τB). We
recall that elements of A are of the form

∑
n S

nbn with bn ∈ B and
n ∈ Zd a multi-index such that |n| < R for some R. We compute
that

(1 + |X|2)k/2
∑
|n|<R

Snbn · (ψ(x)⊗ b)

=
∑
|n|<R

(1 + |x− n|2)k/2ψ(x− n)⊗ α−x+n(θ(x, n))α−x(bn)b

for x ∈ Zd. Because n is strictly bounded and θ(x, n) is unitary for
all n, x ∈ Zd, the Hilbert space norm of the sum over finite n of
(1 + |x− n|2)k/2ψ(x− n)⊗ α−x(αn(θ(x, n))bn)b is well-defined and
norm-convergent for ψ ⊗ b in the domain of (1 + |X|2)k/2. �
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Let us return to the case of B = C(Ω), where C(Ω) is endowed
with the invariant probability measure TP. The semifinite index pair-
ing with the symmetry K-theory class is given by the composition

KOj(C(Ω) oα,θ Zd)×KKO(C(Ω) oα,θ Zd⊗̂C`0,d, C(Ω))

→ KOj−d(C(Ω))
(TP)∗−−−−→ R

or a complex analogue. Hence the semifinite index pairing of the spec-
tral triple of Proposition 4.8 measures disorder-averaged topological
invariants. Furthermore in the case of complex algebras and modules,
the semifinite local index formula [12, 13] gives us computable ex-
pressions for the index pairing. We expect similar results to hold for
the case of real integer invariants (e.g. those that arise from KO0(R)
or KO4(R)), though delay a more detailed investigation to another
place.

4.4. The Kane–Mele model and torsion invariants

As an example, we consider 2-dimensional systems with odd time
reversal symmetry from [15, 26] and considered in [9, Section 4].

Recall the bulk Hamiltonian Hω
KM =

(
hω g
g∗ ChωC

)
acting on Hb =

`2(Z2)⊗C2N , with hω a Haldane Hamiltonian, g the Rashba coupling
and C component-wise complex conjugation such that g∗ = −CgC.
We take the symmetry group G = {1, T} whose time-reversal in-

volution is implemented by the operator RT =

(
0 C
−C 0

)
on Hb.

We follow [9, Section 4] and construct the projective symmetry class
[PGµ ] ∈ KKO(C`4,0, C(Ω) o Z2). The class [PGµ ] is represented by
the Kasparov module(

C`4,0, Pµ(AoG)⊕2
A , 0,Γ

)
,

where Pµ is the Fermi projection, (A o G)A is a C∗-module given
by the completion of AoG under the conditional expectation of the
G-action on A and Γ is the self-adjoint unitary given by the phase
Hω
KM |Hω

KM |−1.

For simplicity, we will pair [PGµ ] with the spectral triple coming
from the evaluation map evω. Namely we have the real spectral triple

λb(ω) =

(
Ab⊗̂C`0,2, πω (`2(Z2)⊗ C2N )⊗

∧∗
R2, Xb, γ∧∗ R2

)
with Xb =

∑2
j=1Xj⊗12N ⊗γj and Ab a dense subalgebra of C(Ω)o

Z2 given by matrices of elements in C(Ω)αZ2.
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Let us now consider a bulk-edge system. We may link bulk
and edge algebras by a short exact sequence, which gives rise to a
class [ext] ∈ KKO(C(Ω)oZ2⊗̂C`0,1, C(Ω)oZ) by the procedure in
Section 3.5. We will omit the details and instead focus on the bulk
and edge pairings, where the edge spectral triple is given by

λe(ω) =
(
Ae⊗̂C`0,1, πω

(`2(Z)⊗ C2N )⊗
∧∗

R, X1 ⊗ γedge, γ∧∗ R)
with Ae a dense subalgebra of C(Ω) o Z. Our bulk pairing is the
product[

PGµ
]
⊗̂A

[(
A⊗̂C`0,2, πω

(`2(Z2)⊗ C2N )⊗
∧∗

R2, Xb, γ∧∗ R2

)]
KKO(C`4,0, A)×KKO(A⊗̂C`2,0,R)→ KO2(R) ∼= Z2,

which can be expressed concretely as the Clifford module valued
index,〈

[PGµ ], [λb(ω)]
〉

= [Ker(PµXbPµ)]

∼= DimC Ker[Pµ((X1 + iX2)⊗ 1)Pµ] mod 2

using a particular choice of Clifford generators. By Theorem 3.5 and
the associativity of the Kasparov product, this is the same as the
pairing

−
(
[PGµ ]⊗̂A[ext]

)
⊗̂Ae[(

Ae⊗̂C`0,1, πω
(`2(Z)⊗ C2N )⊗

∧∗
R, X1 ⊗ γedge, γ∧∗ R)] ,

a map

KKO(C`4,0⊗̂C`0,1, C(Ω) o Z)×KKO((C(Ω) o Z)⊗̂C`0,1,R)

→ KO4−1−1(R) ∼= Z2,

which is now an invariant of the edge algebra C(Ω)oZ. Analytic ex-
pressions can be derived for the edge invariant by taking the Clifford
index of the (edge) product module.

We would like to examine the edge pairing more closely. We first
review what occurs in the complex setting as developed in [30, 31].
Let ∆ ⊂ R be an open interval of R such that µ ∈ ∆ and ∆ is
in the complement of the spectrum of Hω

KM . By considering states
in the image of the spectral projection P∆ = χ∆(ΠsH

ω
KMΠs) for

Πs : `2(Z2)→ `2(Z⊗ {. . . , s− 1, s}) the projection, we are focusing
precisely on eigenstates of the Hamiltonian with edge that do not
exist in the bulk system, namely edge states. We use the projection
P∆ to define the unitary

U(∆) = exp

(
−2πi

ΠsH
ω
KMΠs − inf(∆)

Vol(∆)
P∆

)
.
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It is a key result of [30, 31] that U(∆) is a unitary in (C(Ω) o
Z)C and, furthermore, represents the image of the Fermi projection
under the (complex) K-theory boundary map. That is, the unitary
[U(∆)] ∈ K1((C(Ω)oZ)C) represents the complex Kasparov product
[Pµ]⊗̂AC [ext] for trivially graded algebras. The authors of [31] show
that the pairing of [U(∆)] with the boundary spectral triple can be
expressed as

σe = −e
2

h
T̂ (U(∆)∗i[X1, U(∆)])

= − lim
∆→µ

1

Vol(∆)
T̂ (P∆i[X1,ΠsH

ω
KMΠs]), (16)

where T̂ = T ⊗ Tr is the trace per unit volume along the boundary
and operator trace normal to the boundary. One recognises Equation
(16) as measuring the conductance of an edge current (as P∆ projects
onto edge states). Unfortunately, in the Kane–Mele example, the

expression T̂ (P∆i[X1,ΠsH
ω
KMΠs]) is zero as there is no net current

and the cyclic cocycle cannot detect the Z2-index we associate to the
edge channels. This leads us to summarise the remaining difficulties
in our approach.

5. Open problems

Interpreting torsion-valued invariants. A concrete representation of
the torsion-valued index pairings that give rise to both bulk and edge
pairings is a much more difficult task than in the complex case, where
invariants can be expressed as the Fredholm index of the operators
of interest. This is because we have to consider Kasparov products,
which give rise to a ‘Clifford module’ index.

One advantage of unbounded Kasparov theory is that the op-
erators we deal with and the modules we build have geometric or
physical motivation and so can be linked to the underlying system.
In particular it would be desirable to link the Clifford module in-
dex with a more physical expression for the edge pairing as the edge
invariant is meant to be directly linked to the existence of edge chan-
nels on a system with boundary. This remains an open problem in
the field and is related to the difficulty of measuring torsion-labelled
states.

A further complication is that there are two copies of Z2 in the
real K-theory of a point: in degrees 1 and 2. These different indices
arise in different ways, and have different interpretations: see [11].
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Disorder, localisation, and spectral gaps. Throughout this ar-
ticle we have required that the Hamiltonian retains a spectral gap.
This is so that there is an unambiguous method of constructing K-
theory classes associated to the Hamiltonian. It is well-known, how-
ever, that the complex pairing with the fundamental class continues
to make sense whenever the spectrum of the Hamiltonian has a gap
of extended states.

For the quantum Hall effect Bellissard et al. showed that this
phenomenon arises physically from localisation arising from disor-
der [6]. Mathematically this was reflected in the properties of commu-
tators between the position operator X and the projector χ(−∞,a](H)
for a a point in such a gap of extended states of H. In turn this
behaviour is seen in the expression for the Chern character, which
makes sense for non-torsion invariants, but seemingly has no ana-
logue for torsion invariants. Importantly, disorder does not affect the
construction of the K-homology fundamental class.

The real local index formula. For non-torsion invariants of topo-
logical insulators, it seems reasonable to expect that the entirety of
the machinery developed for complex topological insulators in [51]
has an exact analogue. The use of a Chern character, the analysis
of disorder and localisation, the Kubo formula relating topological
invariants to linear response coefficients all make perfect sense.

While all this seems quite reasonable, there is a quite a lot
of detail to check. There are many steps in the production of, for
instance, the local index formula, and the heavy reliance on spectral
theory means that numerous details of the proof require a careful
check.

The K-theory class. Relating experiments on topological phases
to details of single particle Hamiltonians with symmetries is not a
simple task. The measured quantities should correspond to pairings
of the fundamental class with K-theory classes of the observable
algebra arising from the Hamiltonian.

Having the K-homology data (the fundamental class) fixed al-
lows us to compare the results of future experiments with the pre-
dictions arising from pairing with different K-theory classes.
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bornés dans les C∗-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I
Math, 296(21):875–878, 1983.

[5] J. Bellissard. Gap labelling theorems for Schrödinger operators. In
From number theory to physics. Springer, Berlin, 538–630, 1992.

[6] J. Bellissard, A. van Elst and H. Schulz-Baldes. The noncommutative
geometry of the quantum Hall effect. J. Math. Phys., 35(10):5373–5451,
1994.

[7] B. Blackadar. K-Theory for Operator Algebras, volume 5 of Mathemat-
ical Sciences Research Institute Publications. Cambridge Univ. Press,
1998.

[8] C. Bourne, A. L. Carey, and A. Rennie. The bulk-edge correspondence
for the quantum Hall effect in Kasparov theory. Lett. Math. Phys.,
105(9):1253–1273, 2015.

[9] C. Bourne, A. L. Carey, and A. Rennie. A noncommutative framework
for topological insulators. arXiv:1509.07210, 2015. To appear in Rev.
Math. Phys.

[10] S. Brain, B. Mesland and W. D. van Suijlekom. Gauge theory for
spectral triples and the unbounded Kasparov product. J. Noncommut.
Geom. 10(1):135–206, 2016.

[11] A. L. Carey, J. Phillips, H. Schulz-Baldes. Spectral flow for skew-
adjoint Fredholm operators. Preprint, to appear.

[12] A. L. Carey, J. Phillips, A. Rennie and F. Sukochev. The local index
formula in semifinite von Neumann algebras. I. Spectral flow. Adv.
Math., 202(2):451–516, 2006.

[13] A. L. Carey, J. Phillips, A. Rennie and F. Sukochev. The local index
formula in semifinite von Neumann algebras. II. The even case. Adv.
Math., 202(2):517–554, 2006.

[14] A. Connes and H. Moscovici. The local index formula in noncommu-
tative geometry. Geom. Funct. Anal., 5(2):174–243, 1995.

[15] G. De Nittis and H. Schulz-Baldes. Spectral flows associated to flux
tubes. Ann. Henri Poincaré, 17(1):1–35, 2016.

[16] I. Forsyth and A. Rennie. Factorisation of equivariant spectral triples
in unbounded KK-theory. arXiv:1505.02863, 2015.

[17] D. S. Freed and G. W. Moore. Twisted equivariant matter. Ann. Henri
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