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Abstract 16 

The 3.46 billion-year-old (Ga) Marble Bar Chert Member of the East Pilbara Craton, 17 

Western Australia, is one of the earliest and best-preserved sedimentary successions on Earth. 18 

Here, we interpret the finely laminated thin-bedded cherts, mixed conglomeratic beds, chert 19 

breccia beds and chert folded beds of the Marble Chert Member as the product of low-density 20 

turbidity currents, high-density turbidity currents, mass transport complexes and slumps, 21 

respectively. Integrated into a channel-levee depositional model, the Marble Bar Chert 22 

Member constitutes the oldest documented deep-sea fan on Earth, with thin-bedded cherts, 23 

breccia beds, and slumps composing the outer levee facies tracts, and scours and 24 

conglomeratic beds representing the channel systems.  25 

 26 
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 28 
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1. Introduction 30 

Sedimentary deposits of the Palaeoarchean greenstones of the East Pilbara Craton, 31 

Western Australia, are of particular geological significance for hosting the oldest putative 32 

microfossils (Schopf, 1993; Schopf et al. 2002), the oldest stromatolites (Allwood et al. 2006; 33 

Van Kranendonk, 2006) and preserving evidence of the environmental conditions of the Early 34 

Earth (Robert & Chaussidon, 2006; Hoashi et al. 2009; van den Boorn et al. 2010). Among 35 

these rocks, the c. 3460 Ma Marble Bar Chert Member of the Duffer Formation (Warrawoona 36 

Group) is a typical Archean red-white-grey banded chert remarkably exposed at the Marble 37 

Bar Pool and Chinaman Pool localities (Fig. 1; Buick & Barns, 1984; Van Kranendonk, 38 

2006). Previous studies on the sedimentary rocks of the Marble Bar Chert MemberMfocused 39 

on the chemical and thermal conditions associated with the precipitation of these cherts 40 

(Sugitani, 1992; Minami et al. 1995; Kojima et al. 1998; Orberger et al. 2006; van den Boorn 41 

et al. 2007, 2010). However, the depositional environment and the mode of formation of the 42 

Marble Bar Cherts remain subject to debate, and both quiet hydrothermal environments on a 43 

mid-oceanic ridge and large submarine caldera settings have been proposed (Oliver & 44 

Cawood, 2001; Kato & Nakamura, 2003; Van Kranendonk, 2006; Hoashi et al. 2009; van den 45 

Boorn et al. 2010). Hoashi et al. (2009) argued that the haematite grains in the Marble Bar 46 

Cherts precipitated directly when hydrothermal fluids of temperature greater than 60 ºC and 47 

rich in reduced iron mixed rapidly with seawater containing oxygen in a submarine volcanic 48 

depression at depths between 200 m and 1,000 m. Supporting evidence for such a deep 49 

environment for the Marble Bar Chert Member  is at best indirect, based on the absence of 50 

sedimentological or volcanic features characteristic of shallow water settings (Hoashi et al. 51 

2009). The presence of oxygen in deep water strongly questions the common view of 52 

widespread anoxia throughout the Archean, making essential the scrutiny of the depositional 53 

setting of the Marble Bar Chert Member (Konhauser, 2009). This contribution provides a 54 
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comprehensive description of the sedimentary facies and structures of the Marble Bar Chert 55 

Member, along with a depositional model to identify the environmental setting of those 56 

ancient rocks. We conclude that the sedimentary rocks of the Marble Bar Chert Member were 57 

deposited in a deep sea fan at the toe of an emerged continental mass and that most of these 58 

ancient sediments were subjected to short- to long-distance transport. 59 

 60 

2. Geological setting 61 

The Pilbara Block (Western Australia) consists of a granite-gneiss complex and 62 

surrounding greenstone belt (Hickman, 1983). The 3.53-3.165 Ga East Pilbara Terrane – i.e. 63 

the ancient nucleus of the Pilbara Craton – is composed of the Pilbara Supergroup, which 64 

consists of four volcano-sedimentary groups (Van Kranendonk et al. 2007). The lower part of 65 

the Pilbara Supergroup is represented by the 3.515-3.427 Ga Warrawoona Group, which 66 

recorded prehnite-pumpellyite to greenschist facies metamorphism (Hickman, 1983; Van 67 

Kranendonk et al. 2007). This Group consists of ultramafic, tholeiitic, felsic lavas and 68 

volcaniclastic rocks with subordinate cherts. The Marble Bar Chert Member occurs at the top 69 

of the 3.472-3.465 Ga Duffer Formation and is overlaid by the Apex Basalt Formation (Van 70 

Kranendonk, 2006). This Member is best exposed at the Marble Bar Pool and Chinaman Pool 71 

localities (Fig. 1), 0.5 km away one from another, about 3 km west of Marble Bar.  72 

The Marble Bar Chert Member is a well-preserved unit of centimetre-layered red, 73 

white and dark blue chert up to 200 m thick (Hickman, 1983; Van Kranendonk et al. 2002). 74 

This Member displays important thickness variations that repeat at regular intervals over the 75 

30 km long band along which it outcrops (Hoashi et al. 2009). At the Chinaman Pool and 76 

Marble Bar Pool localities, the deposits of the Marble Bar Chert Member – preserved between 77 

units of pillow basalt and dipping 70ºE – are interpreted to be overturned (Van Kranendonk, 78 

2006). The Marble Bar Chert Member displays a well-marked stratigraphic zoning with 79 
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predominant white and dark-blue chert in the lower part of the unit whereas its uppermost 80 

third of the unit displays more dominant red cherts (Kato & Nakamura, 2003; Van 81 

Kranendonk et al. 2006; Hoashi et al. 2009). 82 

 83 

3. Chinaman Pool and Marble Bar Pool chert facies 84 

A spectacular colour banding is exposed throughout the c. 50 m thick lower Marble 85 

Bar pool section, with the alternation of red, white and dark blue cherts (Kato & Nakamura, 86 

2003; Van Kranendonk, 2006). Red and dark blue coloured bands are largely dominant over 87 

milky white horizons. These contrasted colourations are due to differing amount of minute 88 

haematite inclusions in the microquartz matrix of the chert (Buick & Barns, 1984), with some 89 

subtle grain size variation of the microquartz visible microscopically (Oliver & Cawood, 90 

2001). Red bands are dusted throughout by tiny specs of haematite, goethite, opaque minerals 91 

and rhombic carbonate and possible altered bands of pyrite and magnetite (Sugitani, 1992). 92 

Haematite-rich microbands of the uppermost section – i.e. Zones IV and V of in Archean 93 

Biosphere Drilling Project (ABDP) site 1 (Hoashi et al. 2009) – are parallel to the bedding 94 

plane and vary from ~0.01 mm to ~1 mm in thickness and <1 cm to >10 m in lateral extent. 95 

The microbands are composed of discrete particles (0.1-0.6 µm in diameter) and clusters 96 

(0.001-0.1 mm in diameter) of haematite. Dark-blue bands, which are common in the lower 97 

section, contain microscopic carbonaceous material (kerogen; Sugitani, 1992). The siderite-98 

rich, lowermost zone described by Hoashi et al. (2009) in ABDP site 1 is not exposed at the 99 

surface. The most complete section of the Marble Bar Chert Member is located at Chinaman 100 

Pool. It is composed of two very distinctive sub-units: 1) a well-bedded, evenly and finely flat 101 

laminated lower section characterized by a conspicuous red-white-dark blue banded facies, 102 

and prominent brecciated beds locally referred to as “stick beds” (Hickman & Lipple, 1978; 103 

Hickman, 1983); and 2) an upper section composed of interbedded chert layers and clastic 104 
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deposits made of coarse felsic grains (Fig. 1b). At Marble Bar Pool, there is a unique chert 105 

unit preserved between two pillow basalt units. It is not clear whether the Marble Bar Chert 106 

Member of Chinaman Pool and Marble Bar Pool are part of the same chronostratigraphic unit. 107 

Nevertheless, the comparison of lithologies, fabrics and facies at both sites points to 108 

comparable depositional environments.  109 

The thin-bedded chert facies consist of 0.05-0.40 m thick, evenly and finely laminated 110 

beds of, black or red cherts (Fig. 2a, b). Lamination is only observed in red and dark-blue 111 

cherts and is defined by millimetre-scale variations in granularity and colour (Sugitani, 1992; 112 

Van Kranendonk, 2006). Beds of red and dark-blue cherts laterally pinch out as tapered flow 113 

margins and sometimes overlie clast-supported layers. Sub-planar, undulose, parallel 114 

laminations of red and black cherts are characteristic of tracted and suspended-load flows of 115 

low-density currents. The thin-bedded chert facies is interpreted as fine-grained turbidites 116 

(e.g. Piper & Stow, 1991). They make up most of the lower Marble Bar Chert Member and 117 

are only sporadically present in the upper Marble Bar Chert Member. 118 

The beds of the lower Marble Bar Chert Member, up to a few metres thick, contain 119 

bed-confined asymmetric folds, disharmonic folds and typical slump boudins (Fig. 2c). Folds 120 

are not recumbent and trains have not been observed. Locally, beds either pinch out laterally 121 

over a distance of a few meters or display thickening due to minor thrust duplexes (Fig. 2d). 122 

All of these features are indicative of post-depositional, layer-confined deformation of semi-123 

consolidated sediments related to cohesive, gravity-driven mass-transports. Slumped beds are 124 

restricted to the lower Marble Bar Chert Member. 125 

There are two modes of formation for chert breccia material in the lower Marble Bar 126 

Chert Member: 1) late breccia bands and hydrothermal fault arrays at high angles to the 127 

bedding (Oliver & Cawood, 2001); 2) breccia beds conformable or at low angle to bedded 128 

chert and referred to as “stick beds”. The “stick beds” of the Marble Bar Chert Member are 129 



 6 

typically 0.1-0.5 m thick (Fig. 2e–g). Some beds display marked changes in thickness, 130 

pinching and swelling at irregular intervals. Bed thickness commonly doubles at swells. The 131 

“stick beds” are completely layer-confined (Fig. 2e). They commonly exhibit sharp and 132 

conformable basal boundaries with local compaction of underlying lithologies by clasts (Fig. 133 

3a). The “sticks” are angular, sharp-edged, elongated and platy clasts (L/H > 10) of milky 134 

white chert. They are monogenic, of a lithology similar to the underlying ribbon chert. Clasts 135 

are typically arranged in spectacular shingle-like imbrications (long axis sub-parallel to the 136 

bedding or inclined 15-35°) and locally in angular folds (Fig. 2e). Some of the “stick beds” 137 

show normal grading (Fig. 2f). The “stick beds” are intra-formational breccias, resulting from 138 

the fragmentation of shallow buried, early-lithified beds with limited displacement of clasts. 139 

In addition to slump folds and boudins, the textural gradation from slumps to breccia beds 140 

suggests that the breccia beds are dismembered slumps. The fabric of the “stick beds” is 141 

strikingly similar to that of carbonate breccia beds of deep-water slope environments in 142 

Phanerozoic sequences (Dromart et al. 1993; Robin et al. 2010). The “stick beds” are mainly 143 

observed in the uppermost section of the lower Marble Bar Chert Member. Other types of 144 

breccia beds have been recognized in the Marble Bar Chert Member. They consist of layers of 145 

variably elongated (1 ≤ L/H < 10) pebble- to granule-sized intra-formational white-chert 146 

clasts locally displaying normal grading, and locally capped by thin-bedded cherts (i.e. finely 147 

laminated beds of red and dark-blue cherts). These observations suggest that depositional 148 

processes for chert breccia beds, including “stick beds”, vary from: 1) slumps to, 2) 149 

unchannelized mass transport complexes (i.e. cohesive debris flows with only minor evidence 150 

of erosion and sporadic evidence of organization as clast imbrications) and to, 3) high-density 151 

turbidity currents (i.e. non-graded to graded, clast-supported layers overlain by laminated, 152 

turbulent flow fabrics). 153 
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The upper section of the Marble Bar Chert Member at Chinaman Pool consists of 154 

coarse-grained siliciclastic sequences with recurrent thin-bedded cherts (Fig. 2g, h). “Sticks” 155 

of typical milky-white chert are observed as floating clasts in a coarse-grained siliciclastic 156 

matrix (Fig. 2i). Other lithoclasts of these mixed conglomeratic beds consist of mixed 157 

granule- to pebble-sized rounded fragments of mafic (basalt) and felsic (granodiorite) rocks. 158 

Sedimentary structures include meter-scale moderately incised channels and some trough-159 

cross beds (Figs 2n, 3b). Inverse to normal grading, multilayering, clast imbrication and 160 

outsized clasts are common features (Fig. 2j). We interpret these deposits, except the thin-161 

bedded cherts, to be typical high-density turbidites. 162 

An unambiguous meter-scale syn-depositional growth fault is located in the upper 163 

section of Chinaman Pool. It consists of a normal, listric fault sealed upwards by chert beds 164 

and passing downwards to a subhorizontal shear zone (Fig. 2k, l). The hanging wall block is 165 

affected by a typical rollover anticline and supports a sand-filled channel created by the listric 166 

fault collapse. This syn-depositional feature makes it an unmistakable stratigraphic polarity 167 

criterion. In addition, it suggests that the unconformable surface that bounds the lower and 168 

upper Marble Bar Chert Member and shows truncation and onlap stratal termination features 169 

(Fig. 2m) was generated by the collapse of a much larger listric fault. 170 

 171 

4. A channel-levee depositional model for the Marble Bar Chert Member 172 

The set of facies and sedimentary structures, including unconformable surfaces, 173 

observed in the Marble Bar Chert Member describes a general channel-levee depositional 174 

system (Fig. 2), such as originally described by Mutti (1977). In these gravity-driven 175 

depositional systems, the levees of the subaqueous channel-levee systems form from the 176 

overbanking of predominantly fine-grained sediment (silts and clays) because of the spill over 177 

of turbulent flows as they move down the channel system (Mutti & Normark, 1987; Piper & 178 
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Deptuck, 1997). Colour-banded mud and clay are the most common sedimentary facies within 179 

the overbank deposits, with rare interbeds of coarser sediment composed of silt-size particles 180 

occurring in laminae and sharp-based thin beds (Normark & Damuth, 1997). Conversely, 181 

channel deposits consist of thick-bedded coarse facies including structureless to chaotic sand 182 

beds, graded and cross-bedded sand beds (normal grain-size grading is predominant and many 183 

graded sand beds grade upward through silt to clay at top), plus chaotic mud (mud clasts 184 

deriving from localized sediment failure from inner levees). The channel deposits of the 185 

Marble Bar Chert Member are dominated by coarse-grained siliciclastics. The internal 186 

geometry of the channel-fill deposits indicates that the channels were cut prior to and during 187 

their infilling. The bedding surfaces of the upper and lower channel deposits tend to be 188 

parallel to the flat channel tops and to the irregular channel floors, respectively. Bedding 189 

surfaces of lower channel deposits gradually onlap the basal channel surface. Slumping, other 190 

mass-flows and late fracture-related deformation have removed the original dip of the levee 191 

beds. The bedded cherts of the Marble Bar Chert Member appear to have been indurated 192 

before burial compaction, probably very early, at time of sea-floor exposure. The best 193 

supportive evidence for early lithification of these cherts comes from the occurrence of cherts 194 

as reworked clasts in the mixed conglomeratic facies (Fig. 2j) and from load cast features due 195 

to differential compaction of distinctively indurated material (Fig. 3a). Due to early 196 

lithification, siliceous levee slopes may display higher angle of repose than typical modern 197 

siliciclastic subaqueous levees do (5° at best; e.g. Gervais et al. 2001; Mingeon et al. 2001; 198 

Broucke et al. 2004). Slope over-steepening by early lithification combined to slope 199 

overloading by high sediment flux on the channel levee would explain the frequent 200 

occurrence of slumping and other mass gravity flows observed in the lower Marble Bar Chert 201 

Member sequence. Hence, the slumped beds, mass-flow deposits, turbidite beds, and growth 202 
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faults make a comprehensive assortment of gravity driven sedimentary processes in a slope 203 

environment.  204 

 205 

5. Discussion and conclusion 206 

In the Marble Bar Chert Member, polymictic conglomeratic and pebbly-sandstone 207 

units – including granodiorite and basaltic sources –characterize the channel deposits of the 208 

channel-levee depositional model (Fig. 2). This suggests that theses 3.456 Ga sediments were 209 

deposited at the toe of emerged and differentiated continental lands, which is consistent with 210 

the oldest angular unconformity reported in the East Pilbara Craton (Buick et al., 1995). Thus, 211 

the deposits of the Marble Bar Chert Member were not related to a mantle plume as suggested 212 

by Kato & Nakamura (2003), nor to mid-ridges and active spreading centres, as proposed by 213 

Lascelles (2007). In the northern part of the Marble Bar greenstone belt (Fig. 1), the youngest 214 

3.458-3.427 Ga Panorama Formation consists of mudstones and sandstones also interpreted to 215 

represent turbidites near a continental margin of a differentiated and evolved continent (Kato 216 

& Nakamura, 2003). The only known deep gravity-driven deposits on Earth older than that of 217 

the Marble Bar Chert Member are 3700 to 3800 Ma normally graded sandstone layers 218 

interpreted as turbidites from the Isua greenstone belt (Rosing, 1999). These sedimentary 219 

rocks have been strongly metamorphosed to at least amphibolite facies conditions and are 220 

strongly deformed (Nutman, 2006). Thus, complete turbiditic sequences at Isua remain rare 221 

and could result from depositional mechanisms other than turbidity flows (Fedo, Myers & 222 

Appel, 2001). These putative Isua turbidites are devoid of terrigenous clastic sediments, 223 

implying deposition in an oceanic environment in the vicinity of volcanic edifices (Rosing, 224 

1999). Because the Marble Bar Chert Member yields a low-grade metamorphism (Van 225 

Kranendonk et al. 2007), it preserves a unique set of facies documenting the earliest deep-sea 226 

fan on Earth.  227 
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Modern channel-levee complexes are observed in the middle section of deep-water 228 

fans downstream of the continental slope break, at very variable water depth (500 – 3000 m; 229 

Richards, Bowman & Reading, 1998). Additional sedimentary structures – e.g. wave-driven 230 

deposits such as hummocky and swaley cross-beds – that would further constrain the water 231 

depth were not observed. Thus, a depth range of 200 to 1000 m proposed for the depositional 232 

setting of the Marble Bar Chert Member (Hoashi et al. 2009) appears to be minimal.  233 

The red cherts of the Marble Bar Chert Member are made of silt-sized clusters of 234 

haematite crystals (Sugitani, 1992; Hoashi et al. 2009). Hoashi et al. (2009) argued that these 235 

haematite crystals are primary and precipitated when hot hydrothermal fluids (> 60 °C), rich 236 

in reduced iron, mixed rapidly with seawater containing oxygen. Such a process for the 237 

oxidation of dissolved ferrous (reduced) iron – entering the oceans from hydrothermal vents – 238 

questions the common view of widespread anoxia throughout the early Archean (Konhauser, 239 

2009). In our proposed deep subaqueous depositional model for the Marble Bar Chert 240 

Member, these haematite particles may not be in situ sediments. Whatever their mechanism of 241 

formation – i.e. transformation of a precursor lithology or direct precipitation from a silica-242 

rich fluid (cf. Van den Boorn et al. 2007) – dark-blue and red cherts were formed in 243 

superficial environments and transported downslope by density currents. This challenges the 244 

view of Hoashi et al. (2009) that Palaeoarchean deep (> 200 m) bottom ocean waters were at 245 

least locally oxidizing.  246 

 247 

 248 
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 362 

 363 

FIGURE CAPTIONS 364 

 365 

Figure 1. Exposure of the Marble Bar Cherts at Chinaman and Marble Pools. (A) Geological 366 

map of the Marble Bar area (simplified after Kato & Nakamura 2003). (B) Simplified 367 

geological map of the Chinaman Pool area showing locations of measured sections. 368 

 369 

Figure 2. The channel-levee depositional model for the Marble Bar Chert Member showing 370 

illustration of the associated depositional facies. Orange dots are 5 cm across. 371 

 372 

Figure 3. (A) Intra-formational breccia from the Chinaman Pool Section: monogenic, early-373 

lithified chert clasts inducing load casts during differential compaction (arrows). (B) Trough-374 

cross bedding in a coarse sand- to granule-size clastic deposit (upper section of the Marble 375 

Bar Chert Member at Chinaman Pool).   376 
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