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Abstract 

In this study the biomimetic reproduction of the Oxygen Evolving Centre (OEC) of 

PSII, consisting of a CaMn4O4 cluster held in place by the surrounding protein scaffold, 

was attempted in a simplified manner. In the OEC the water oxidation reaction takes 

place on one binuclear Mn-O2-Mn site in a repetitive manner. A mimic of this feature 

was attempted by using Mn porphyrins in close proximity held in place by a conducting 

poly(3,4-ethylenedioxythiophene) (PEDOT) matrix. In another approach, an inorganic, 

crystalline MnxOy deposited on a conducting graphene substrate was used for the same 

purpose. 

 

Films of Mn porphyrin / PEDOT (PEDOT:PSS in the case of electrochemical 

polymerisation) were fabricated by embedding the porphyrin in PEDOT during vapour 

phase polymerisation and electrochemical polymerisation of the conducting polymer.  

The Mn porphyrin species studied were 5,10,15,20-tetraphenylporphyrinato 

manganese(III) chloride (MnTPP), 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato 

manganese(III) chloride sodium salt (MnTPPS), 5,10,15,20-tetrakis(4-

methylpyridinium)porphyrinato manganese(III) chloride tetraiodide (MnTMPyP), 

poly(5-(4-vinylphenyl)10,15,20-tris(4-sulfonatophenyl) porphyrinato manganese(III) 

chloride sodium salt (MnPVTPPS). The films were tested by linear sweep voltammetry 

(LSV) and chronoamperometry (CA) under illumination to analyse photocurrent 

activity in an aqueous electrolyte. The samples were further studied by UV-Vis 

spectroscopy and elemental analysis to confirm the exact status of the porphyrin - 

complexed Mn ion in the film corresponding to observed levels of photocurrent activity. 

The MnTPP/PEDOT composite was singled out for detailed analysis to confirm, by gas 

chromatography, the evolution of O2 and H2 at a constant potential of 0.7 V (vs 



 

 

viii 

 

Ag/AgCl) under illumination. This material was then further studied by elemental 

analysis and UV-Vis spectroscopy to reveal that the Mn ion was lost, from the 

porphyrin centre, during the polymerisation step, leaving a free base porphyrin in the 

film. The gas evolution was therefore linked to decomposition processes rather than the 

interaction between Mn centres.  

 

Using a different approach, MnxOy - birnessite was electrodeposited on conductive FTO 

glass as well as graphene - coated substrates. To mimic reaction centre composition, Ca 

ions were incorporate into manganese oxides. This was achieved by adding Ca ions 

during an electrodeposition step or embedded into the graphene substrate prior to 

electrochemical process. These materials underwent a study by linear sweep 

voltammetry and chronoamperometry to ascertain the most productive combination of 

the catalytic species and variations of the graphene substrate. While the Ca ion 

incorporation did not lead to an appreciable increase in water oxidation, the 

MnxOy/RLCGO composite featured a low onset of water oxidation at 1.1 V (vs 

Ag/AgCl) with electrocatalytic performance surpassing that of Pt in the range 1.1 – 1.3 

V (vs Ag/AgCl) in an aqueous electrolyte. 
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1 Introduction 

1.1 The advance of miniaturisation 

Modern-day human society is utterly dependent on efficient machines for the 

production of goods and energy, transportation, construction and, more recently, 

processing of information. Our traditional view of machines, however, is based on 

macro-scale mechanisms utilising kinematics and chemistry to deliver reliable industrial 

performance in all fields of human endeavour.  Thanks to scientific and technological 

developments in the 20
th

 century there is an increasing trend to turn attention towards 

inward progress – the miniaturisation of machines. 

 

Miniaturisation as a technological concept arose with the advent of microelectronics in 

the mid-20
th

 century as one of the first forays into highly structured matter and function 

on the microscopic scale made by humans. In line with that newfound optimism for 

technology, Richard Feynman first raised the concept of artificial molecular scale 

machines in his seminal 1959 talk “There‟s Plenty of Room at the Bottom” [1].  The 

talk revolved around the idea that complex structuring at the nanoscale was a yet 

unrealised area full of potential, giving rise to the famous challenge of writing the entire 

Encyclopaedia Britannica on the head of a pin. Feynman posited the idea of utilising 

near-molecular scale nanotechnology to construct matter at the atomic scale and 

upwards. The concept was famously explained as a tiny robot the size of a nanoparticle 

that would have small robot arms to physically attach atoms to one another, building up 

structures by design. Evoking the imagery of “Maxwell‟s Demon” [2], an imaginary 

microscopic agent able to perform tasks at the atomic level seemingly against the laws 

of thermodynamics, the concept remains highly speculative and to date not physically 
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achieved. It is nonetheless an inspiring concept and expresses the historic shift in 

technology, understood as large and impressive in the form of towering ships, bridges 

and skyscrapers in the past, towards small and efficient, in the form of microchips and 

robotics. 

 

At the same time biology was entering the molecular scale with Linus Pauling‟s work 

on the function of proteins in 1948 [3] and radically advanced with Watson and Crick‟s 

discovery of DNA in 1953 [4] as the core mechanism of genetics and therefore life. The 

continued focus on molecular scale processes in biology has led to the establishment of 

molecular biology and modern biotechnology. In a similar vein to Feynman‟s proposal, 

biological enzymes have been thought of and referred to as machines in the 

biochemistry community for some time [5]. Expanding on that notion, K. Eric Drexler 

posited the idea of approaching biological enzymes as machines in 1981 as well as 

utilising other molecular components and functions like bacterial flagellum, 

microtubules and intermolecular forces in conjunction for building a nanoscale device 

[6]. He outlined a strategy of first using proteins to create hybrid systems consisting of a 

protein with appended molecular components to extend its functionality. Molecular 

scale analogues to structural components, conductive wires and sensors would need to 

be utilised to build a macromolecular assembly capable of performing basic tasks on 

that scale. Building such a device would be painstakingly done at first with macroscopic 

scale scientific equipment but once such a functioning system exists as a reliable tool, 

newer more refined models could be made using that tool in progressive iterations to 

eventually transcend the limitations of the organic system. The challenges of even the 

first step lie in understanding the critical components that determine the mechanism of 

action in proteins. Furthermore proteins are folding systems that rely on very specific 
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aqueous conditions and cannot be easily made to function outside of that environment, 

or branch out into other areas such as forming of crystal lattices. 

 

 

Figure 1.1 A rotary bearing based on modified diamond structure (left) and schematic of 

a mechanosynthetic device based on a Stewart platform (right). Reproduced with 

permission from reference [7]. 

 

In his following works Engines of Creation [8] and Nanosystems: Molecular Machinery 

Manufacturing and Computation in 1992 [9] as well as the review Molecular 

Nanomachines - Physical Principles and Implementation Strategies [7] Drexler has 

written extensively, albeit entirely theoretically, about the dramatic advantages that 

would be conferred upon society if we had available to us manufacturing machines that 

operate in the realm of 1-1000 nm. The previous concept of engineering proteins was 

expanded upon by proposing an entirely artificial system using ultra-small gears, cogs, 

and moving parts built from molecular scale crystals of covalently bound carbon 

structures termed diamondoids. Such a device would be capable of transporting reagents 

to active sites and forming molecules from molecular or atomic substrates in successive 
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steps along an assembly line in a process called mechanosynthesis (an example of a 

nanoscale component and a mechanosynthetic device is shown in Figure 1.1). This 

technology often referred to as assembler or nanofactory and nanobots in popular 

media, is based on extensive theoretical modelling of possible structures and function, 

and hitherto not realised in physical form. It is presented as a design goal to be 

accomplished by a series of more basic models with which more efficient and smaller 

models could be fashioned. The existence of such technology in physical form would 

have profound historic impact on humanity as a whole, quite possibly ending the era of 

human physical labour altogether as products could be built entirely using a replicator 

system that performs complex construction from the molecular scale upwards. 

 

Drexler‟s proposal has however, at best, proven to be exceedingly difficult to realise 

with current atomic placement techniques, if not impossible. The problem lies in the 

fact that to date, known enzymatic systems from biology have been proven challenging 

to reproduce, let alone engineer directly.  In other words, full control over enzymes and 

enzyme-like systems has not yet been accomplished. In this thesis the fundamentals of 

what would constitute a machine on the molecular level are explored to elucidate the 

concept of molecular manufacturing machines. To date, the only true molecular 

manufacturing machines that exist are the components that comprise living organisms at 

the cellular level. It is therefore prudent to employ a biomimetic approach, using known 

biological systems as a precedent, in order to understand the dynamics of machine-like 

action on the molecular level. The challenge is to arrive at an elegant, reductionist 

understanding and application of abiological catalysts that are machine-like in their 

actions. 
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1.2 The principles of “kinematic manufacturing machines” 

As noted in the review of Garcia-Garibay and Vogelsberg [10] a machine is generally 

defined as a dense, multicomponent assembly of parts that transmits force, motion or 

energy from one component to another. In a kinematic manufacturing machine, that 

impulse is used to transform starting materials into new articles or items. The translation 

of force by movement is defined by the term kinematic. A framework can be 

established, drawing on General System Theory by Ludwig von Bertalanffy [11] and 

recently extended upon [12]. This framework provides an overview of the features of a 

machine in an overall sense, which can be applied to the more specific case of kinematic 

manufacturing machines. The individual components of a kinematic manufacturing 

machine must typically display certain properties, including the following: 

 

(1) Regular and repetitive action by 

(2) a multiplicity of coupled components under the influence of 

(3) a transfer of energy, where the individual actions are 

(4) restricted to a single degree of freedom that defines the action of the component, 

and where the 

(5) system acts dynamically and rapidly with clear input and output trajectories.  

 

In order to realise its function, the individual components of a machine must typically 

be precisely designed and machined so as to achieve structural complementarity with 

the other parts with which they interact. Thus, for example, machines commonly use 

interdigitating cogs.  Inter-component structural complementarity of this type is needed 

to ensure that each part moves only along optimum pathways and trajectories to thereby 

be coupled to the other parts, allowing them all to work collectively as one in a 
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synchronous manner [12, 13]. This also applies to electronic machines such as 

computers, where the translation of energy is not by movement but by selectively 

passing current through components. Such collective coupling and optimum trajectories 

are essential to the efficient transmission of the driving energy impulse with the 

minimum energy consumption. Without coupling, the required synchronicity of the 

multi-component assembly is destroyed and the machine cannot achieve its function. 

Therefore the principles above can be extended on by including the following additional 

principles which therefore also apply to kinematic manufacturing machines: 

 

(6) The required coupling of the components and their interaction with the input and 

output are typically achieved by structural complementarity. This has the effect 

of 

(7) restricting the action of the machine components to the optimum pathways and 

trajectories, to thereby 

(8) ensure optimal energy transfer and 

(9) ensure synchronicity in the system. 

 

The absence of any one of these features destroys the synchronicity of the assembly and 

thereby makes the machine action impossible. A final set of features therefore arise 

from the fact that the above properties are not optional, but required for the sustained 

functioning of the system. If one of the properties is absent or not optimised, the error 

compounds non-linearly, leading to the machine not operating properly or not operating 

at all. This can be likened to having one gear out of place in a clockwork mechanism, 

resulting in, not one less gear movement overall, but the potential complete breakdown 

of the mechanism. Such a feature of a machine is known as synergy, which refers to the 
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situation where system is capable of producing a result that is more than the sum of its 

parts [13]. More specifically, this type of synergy is called functional convergence in 

Complex Systems Science [13]. Functional convergence refers to the property of a 

system where every part functions cooperatively with every other part. That is, their 

concerted actions and functions converge to create new capabilities that would 

otherwise not be possible. Therefore, in addition to the previous points, one more 

crucial property of kinematic manufacturing machines is: 

 

(10) Synergy and specifically a form of synergy called functional convergence. 

 

The above descriptions summarise the set of key principles behind the operation of 

machines in general. When they are simultaneously present they unequivocally indicate 

the presence of a machine performing work in a repetitive and sustained fashion. The 

above rules can be applied to kinematic manufacturing machines, that is, machines that 

perform work with moving parts in order to manufacture a physical product. In this 

specific case, the input and output are physical compounds and structures, and the 

transfer of energy achieved by the motion of components forcing starting materials to 

interact with one another, forming new products. The actions of biological and 

abiological catalysts may be assessed in terms of these criteria, as one would analyse the 

mechanism of action behind a macro-scale manufacturing machine, such as a robotic 

assembly for automobile construction. 
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1.3 Enzymes as “molecular manufacturing machines” 

Catalysts are species that accelerate chemical reactions without themselves being 

consumed in the process. Much like macro-scale manufacturing machines, they 

transform reactants, known as substrates, into new chemical entities, called products. 

The most efficient catalysts by far are the catalysts of biology known as enzymes. The 

maintenance and creation of life on Earth depends on the ability of enzymes to facilitate 

chemical transformations in biochemical systems. To this end, enzymes often display 

truly amazing vigour, specificity, and reliability [13]. The fact that life itself depends on 

the action of enzymes testifies to their remarkable power. 

 

Our understanding of how enzymes operate has been unfolding over more than 100 

years.  In 1894, Emil Fischer discovered that the specificity of glycolytic enzymes 

indicates that they must have a particular shape into which the substrate fits exactly 

[14]. He described the process of enzyme-substrate interactions as being similar to a key 

fitting a lock. The substrate only bound and was transformed if its shape was 

complementary to the docking site presented by the active site of the enzyme. This 

feature came to be known as molecular recognition and the theory as the “Lock-and-

Key” theory.  Modifications were later proposed by Haldane in the 1930‟s and Koshland 

in 1958.  In their view, the match between the key and the lock need not be exact, 

provided that the substrate or the active site could distort to thereby realize an “induced 

fit”[15]. 

 

In 1946, Linus Pauling made an important advance.  He noted that many enzyme active 

sites were structurally complementary to the optimum “transition state” of the reaction 

that they catalysed, not the substrate [3]. He suggested that this structural 
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complementarity likely caused the enzyme to form a transition state that was close to 

ideal, thereby minimizing the energy consumed in the reaction, facilitating its course. 

This has been supported by subsequent work [16, 17]. 

 

One consequence of Pauling‟s theory was the realization that if enzyme active sites 

complement their optimum transition state, then they must also control the way in 

which substrate functional groups approach each other or disengage from each other 

during reaction.  In fact, they must limit this approach or disengagement to trajectories 

that are close to ideal since the optimum transition state represents the energetically 

most favourable arrangement for reaction.  This realisation spawned a range of theories 

seeking to capture the concept of “optimized approach trajectories and collision 

pathways” [18-23].
 

 

The concept of an “ideal” collision between the reactants must necessarily involve 

repeated, regular motion in the enzyme to mediate such a collision over and over again, 

with each repeat generating a new product molecule. Starting in the 1970‟s, biochemists 

therefore started examining the link between repetitive conformational motion in 

enzymes and their catalytic properties [24-29].  Evidence has since been collected for 

the existence of a network of “coupled protein motions” that facilitate enzymatic 

catalysis and that occur on the same timescale as the microscopic rate at which the 

enzyme generates product molecules [24]. This network appears to comprise of fast, 

equilibrium thermal motions that contribute to slower conformational changes which 

control the rate of production [24, 30, 31]. 
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In the early 1990‟s, Bob Williams, a bio-inorganic chemist at Oxford University put 

together the concepts of molecular recognition (by structural complementarity), 

optimised approach trajectories and pathways, and the role of regular, repeated 

conformational motion along a single degree of freedom in his description of enzymes 

as “dynamic mechanical devices” [32]. In effect, Williams recognised that kinematic 

mechanical devices also display all of the above elements, albeit at a macro- not at a 

molecular scale. Thus, just as the interdigitating cogs of a machine harness structural 

complementarity to interlock their teeth and thereby constrain their trajectories and 

motions to the optimum, so do the components and active sites of enzymes.  That is, 

protein motions in enzymes guide the substrate through a strictly limited set of optimum 

movements [32]. They do so in a manner analogous to the way in which the 

components in mechanical devices are constrained by their structure to interact ideally 

with each other [32]. These motions are, moreover, driven by regular, repeated 

conformational flexing on the molecular scale by the enzyme, which is qualitatively 

identical to the mechanical impulse that drives macro-scale machines.   

 

Swiegers subsequently elaborated upon the proposals of Williams and explained their 

fundamental origin in his book on “Mechanical Catalysis” [12]. Dynamism in substrate 

uptake and product expulsion by enzymes was shown to be another key feature of their 

action, and that their catalytic properties demonstrate functional convergence [12]. 

 

1.4 The catalytic basis of kinematic molecular manufacturing machines 

Enzymes typically perform at frequencies of up to several million molecules.s
-1

 [33] 

with often astonishingly high selectivity even in the very mixed feedstock streams of 
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biology. By comparison, man-made catalysts typically achieve nowhere near the above 

turnover frequencies and have to rely on highly purified feedstock streams because their 

selectivity is so poor. That is, the catalyst sites do not successfully target specific 

molecules for uptake and can be easily blocked by other molecules that are not 

catalysed, whereas an enzyme is capable of interacting with only one type of molecule 

within a diverse mix of organic compounds that typically exist in its surroundings. One 

may ask: what fundamental feature of catalysis is generally different in enzymes 

compared to abiological catalysts?  In other words, what is the reason for the high 

catalytic performance of enzymes compared to abiological, man-made catalysts? 

 

A key insight to answering this question can be realised by comparing the processes in 

enzymes to that of macro-scale kinematic manufacturing machines, that is, machines 

that generate a product by the successive interaction of moving parts. In such a 

manufacturing machine, as noted in a previous section, the great production efficiency 

is achieved by limiting and synchronising the motion of components to a single, 

optimum degree of freedom which comprises the manufacturing action. Likewise 

enzymes are believed to control and direct the movement of substrates, causing them to 

collide with each other at the optimum point of transition state formation. That is, the 

transition state arises not as a random statistical probability due to thermal motion but 

the enzyme moves in such a way as to create ideal collisions between reactants. Like 

macro-scale kinematic manufacturing machines, enzymes are therefore similarly 

believed to control and constrain how substrates approach and “collide“ with each other 

at the optimum point of transition state formation. That is, they are believed to generally 

create “ideal“ or near ideal collisions between reactants, with their overall rate of 

catalytic turnover determined by their rate of conformational flexing along the single 
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degree of freedom. By contrast, man-made catalysts would not generally have a 

capacity for such control; they would have multiple degrees of freedom available to 

them and be unconstrained in this respect. 

 

 

Figure 1.2 Schematic depiction of a non-catalysed chemical reaction as (a) a collision 

between two molecules, A and B, leading to a chemical reaction where products are 

formed, and (b) the energy profile throughout this process, showing the minimum 

energy needed for product formation (termed: the activation energy, EA). Reproduced 

with permission from reference [34]. 

 

In the classic collision theory model by Max Trautz [35], chemical reaction proceeds by 

collision between reactants to form products (see Figure 1.2). The overall rate of 

reaction (k) is given by the Arrhenius equation [Eq. (1)], which consists of two factors: 

(i) the frequency of collision between the reactant molecules (the pre-exponential term 



 

 

13 

 

A, known as the “Collision Frequency”), and (ii) the proportion of those collisions that 

are sufficiently energetic to result in product formation (the exponential term, -EA/RT, 

where EA is the “Activation Energy” of the reaction) [34]. The rate of all chemical 

reactions, including by catalysis, is controlled by whichever of these terms is the rate 

limiting factor. 

k = A exp (-EA/RT) 

In the case of a kinematic molecular manufacturing machine, the reaction rate must 

clearly be determined by the collision frequency (A), since this is what the catalyst does 

– it creates (ideal) collisions.  By contrast, a man-made catalyst that does not constrain 

action along a single degree of freedom is not limited by the collision frequency but 

rather by the proportion of collisions that are successful – that is, by the exponential 

term, -EA/RT, and the activation energy (EA) of the reaction. 

 

This hypothesis is enhanced by observations in enzymology by Michaelis and Menten, 

who found that the kinetics of enzymes generally depends on a pre-reaction enzyme-

substrate complex, termed the “Michaelis Complex” [36]. If enzymes act as kinematic 

molecular manufacturing machines, the Michaelis complex can be understood as the 

molecular machine after it has taken up a reactant substrate and while it is going 

through the process of conformationally flexing along its single degree of freedom 

leading to product formation. The formation of the Michaelis complex and the 

switching between it and the free-standing enzyme state can therefore be understood as 

rate limiting. By comparison, the kinetics of abiological catalysts are not generally 

limited by such a species, and are instead governed by their activation energy, EA [12, 

34]. 
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1.5 The mechanism of oxygen evolution in photosynthesis: a case study 

Natural photosynthesis is the natural process that converts carbon in the atmosphere to 

organic compounds in plants using sunlight and water. It consists of two major parts, 

termed Photosystem I and II (PSI, PSII), of which PSII is tasked with oxidising water 

using sunlight to supply electrons that are transmitted through a complex pathway to 

PSI where they are eventually utilised to produce metabolic compounds from CO2 in the 

atmosphere. In the context of this thesis PSII is of vital importance as its function is to 

efficiently split water using sunlight. Understanding the process of water splitting and 

utilising it efficiently is currently a hot topic of interest as it can offer a bountiful source 

of energy for humans, in the form of captured hydrogen gas [37]. Once this process is 

fully understood it can be applied, and the resulting hydrogen ions can be easily reduced 

to form H2 for use in other applications. 
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1.5.1 The structure of the oxygen evolving centre in photosystem II 

 

Figure 1.3 Side view of the structure of Photosystem II. Reproduced with permission 

from reference [37]. 

 

Photosystem II (PSII) is a protein complex nested in the thylakoid membrane of plant, 

algae and cyanobacteria that consists of 19 protein subunits and 57 cofactors that 

facilitate light absorbance, charge transfer and finally water oxidation (Figure 1.3) [37, 

38]. Of special interest is the oxygen evolving centre (OEC), sometimes also called 

water oxidising complex (WOC), which performs the crucial step of water oxidation. It 

consists of a cube-shaped molecule made up of four Mn and one Ca atom with 

surrounding ligands, called a cubane, that was first elucidated by X-Ray crystallography 

by Ferreira in 2004 [39]. The exact structure of the cubane complex is to date hotly 
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contested, as new crystallographic data becomes available, as well as more detailed 

analysis on the oxidation state of the individual Mn ions. 

 

Figure 1.4 S-state cycle of water oxidation by the OEC. Reproduced with permission 

from reference [37]. 

 

 

Figure 1.5 S-state cycle of the OEC with mean oxidation states according to Stranger 

and Pace (blue) and others (red; in brackets), from reference [40-42] [43]. 

 

The Mn4Ca cluster operates through a series of five intermediate states that make up the 

cyclic mechanism of action of the compound, referred to as the Kok or S-state cycle 

[44]. The states are advanced by four, light-driven, one-electron oxidations by the P680 

reaction centre (see Figure 1.4). Up to state S3 [45], water molecules can freely 
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exchange with the catalytic site until the final oxidation occurs in a concerted manner at 

S4, resulting in subsequent release of O2. The mean Mn oxidation states proposed by 

Stranger and Pace [40-42] and others (in brackets) [43] are shown in Figure 1.5. The 

chemistry performed by the OEC occurs at high turnover (~1000 s
-1

), is 

thermodynamically efficient (< 0.3 V overvoltage) and involves Earth abundant 

elements (Mn, Ca). This makes it a highly attractive candidate for biomimetic studies. 

 

 

Figure 1.6 The two most recent X-ray crystal structures of the OEC (from references 

[46, 47]) (left) and dimensionally accurate superimposition of the “London” and 

“Berlin” OEC structures with a simplified drawing in the inset (right). Reproduced with 

permission from reference [48]. 
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Figure 1.7 Dimensionally accurate superimposition of the (a) “London” (yellow) and 

“Berlin” (red-purple) OEC structures and the more recent (b) “Osaka” structure (blue) 

superimposed on the two, and (c) a simplified drawing of the structure, all without 

surrounding protein. Reproduced with permission from reference [48]. 

 

Seven X-ray crystal structures have been reported for the S1 state, with resolutions from 

3.7 Å to 1.9 Å [39, 46, 47, 49-51]. The two most recent [46, 47] reveal all atoms except 

for hydrogen and are shown in full in Figure 1.6 (a) and (c). A more simplified 

superimposition of three earlier structures without the surrounding protein [48] is shown 

in Figure 1.7. Pace and Stranger have performed substantial computational analysis and 

physical characterisation of the Mn-Mn distances [52, 53] by extended X-ray absorption 

fine structure (EXAFS) measurements and have determined that the S1 OEC (as 

crystallised) can adopt multiple simple tautomeric forms. These forms differ by single-

proton internal transfers (see Figure 1.6). These findings point to the Mn-Mn distances 

being longer than previously reported [43, 50] due to the Mn in the 1.9 Å structure 

having undergone X-ray induced reduction [54, 55]. The distances were found to be 

~2.8-3.0 Å and point to a new model where the oxidation states for individual Mn ions 

in the S1 state are III, III, III, II rather than the established III, IV, III, II model [47]. The 

cumulative findings by Pace and Stranger [52, 53] by means of Time-Dependent DFT 
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[56] and empirical analysis approaches [40-42] support this paradigm. Furthermore, 

Pace and Stranger have elucidated the critical role played by the Ca ion in the OEC in 

transporting water ligands to the nearby „cleft‟ region between Mn1, 3 and Ca [40, 57]. 

 

Figure 1.8 Simulation of the model complex Mn4O4L6 during catalysis, based on the 

OEC. Reproduced with permission from reference [48]. 

 

Dismukes and Ruettinger performed a simulation of a close cubane mimic to the OEC 

form, Mn4O4L6, where L = (p-MeOC6H4)2PO2
-
, showing the physical conformational 

change in the OEC during the S-State cycle (see Figure 1.8) [58-60]. Information on the 

precise oxidation state and distance between the Mn ions is crucial when attempting to 

build biomimetic catalysts that function along those principles. It is therefore vital to 

replicate as closely as possible the structure of the Mn4O4Ca cluster for repeated, 
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sustainable water oxidation, given that complete replication of functioning PSII is, so 

far, impossible outside of a living cell. 

 

1.6 Abiological bio-inspired catalysts 

In this and the following sections several man-made catalysts that can be said to display 

actions, features, or outcomes that are consistent with a kinematic manufacturing action 

are reviewed in the context of water oxidation and reduction. The mechanism of action 

of many catalysts has not been fully clarified. It is therefore often not possible to 

determine with certainty if a particular catalyst employs a kinematic action or not. In 

such cases, one can only assess the distinctive features that the catalyst exhibits, or 

alternatively, the outcome that it achieves, and determine whether these are consistent 

with such an action. 

 

Porphyrin molecules are of special interest given their versatile photonic and electronic 

nature, capacity to hold metal ions in precise arrangement and direct presence in 

biological systems for these reasons. In nature they are used predominantly as light 

harvesting arrays and charge carriers, and not for direct catalysis. Work has been done 

however on the capability of porphyrins as catalysts, which is explored in the following 

sections, focusing on areas directly related to water-splitting. 

 

1.6.1 Cofacial diporphyrin catalysts for oxygen reduction 

The central aim of this project is to develop simple, practical, molecular machine-type 

catalysts based on biological precedents. One of the difficulties in this respect involves 

finding test groups that are catalytically active only in dimeric and not monomeric form, 
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to utilise the benefit of binuclear reaction sites [61]. Since the “machines” used in 

nature, such as the OEC, comprise of multiple components, at least two catalytic groups 

in close proximity are needed.  These must further generate a notable catalytic effect 

only when they interact with each other in an optimal way.  Moreover, the interactions 

must have been studied and characterised in detail previously. 

 

One catalytic group that matches these requirements and is known to be present in 

numerous enzymatic systems such as PSII, is the group of metalloporphyrins. In co-

facial form, metalloporphyrins catalyse numerous reactions. Starting in 1977 a series of 

catalysts were developed by Collman et al. [62, 63] that involved two metalloporphyrins 

arranged in an eclipsed, face-to-face assembly of “cofacial” porphyrins. The structure of 

these catalysts typically includes some form of covalent linkage between the two 

porphyrins, constraining their motion and position in close proximity to thereby induce 

catalytic action on substrate molecules between the two porphyrins. 

 

 

 

Figure 1.9 Dicobalt diporphyrin oxygen reduction catalyst, from references [62, 63]. 
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Several of these catalysts employ catalytic actions where the facing metalloporphyrins 

appear to act cooperatively (convergently) to reduce dioxygen, O2, to two water 

molecules, H2O.  Such an action would be consistent with the principles of kinematic 

manufacturing. For example, dicobalt porphyrin 1 (see Figure 1.9), was found to 

catalyse the 4-electron reduction of O2 to H2O at pH <3.5 and at potentials negative of 

0.71 V (vs. NHE) when adsorbed on a graphite electrode [62, 63]. The corresponding 

monomer 2 (see Figure 1.9) catalytically generated only the 2-electron product, H2O2 

under similar conditions. Studies showed that 1 did not catalytically convert H2O2 into 

H2O, and therefore did not simply perform successive reductions. That is, the catalytic 

reaction facilitated by 1 was not a sum of two reactions performed by 2, but rather a 

different reaction altogether. This indicates a case of synergy, where the result is not a 

sum of its components, but where the work of separate components converge to create a 

new product. 

 

 

Figure 1.10 Dicobalt diporphyrin oxygen reduction catalyst that is free to flex about 

more than a single degree of freedom, from reference [62, 64]. 

 

The species 3 for example (see Figure 1.10) is a variation of the previous catalyst 1, 

which differs in having greater conformational freedom due to the presence of an extra 

carbon in its linkers.  Unlike 1, 3 exclusively generates H2O2 in a 2-electron process 
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[62, 64, 65]. It can be concluded that the covalent links in species 1 likely constrained 

conformational flexing to oscillation about an eclipsed face-to-face arrangement which 

was crucial to the catalysis, whereas the more flexible linkage in species 3 allowed for 

additional lateral movement that was detrimental to the catalytic action. This could be 

likened to a motor where two gears do not catch each other‟s movement and therefore 

do not work in a concerted fashion. 

 

 

Figure 1.11 Dicobalt diporphyrin oxygen reduction catalysts that are constrained to flex 

about a single degree of freedom, from reference [66-68]. 

 

In further studies the linkage between the two cobalt porphyrins was replaced by a rigid 

aryl linker, as depicted in 4 and 5 (see Figure 1.11) [66-68]. This linker constrained the 

dicobalt porphyrin assembly even more to a single mode of rapid, repeated longitudinal 

flexing. The catalyst is therefore commonly referred as a “Pac-Man” catalyst because of 

this eclipsed face-to-face arrangement. As was the case for species 1, catalysis by this 

species was also found to facilitate the 4-electron oxygen reduction process. Clearly, 

selectivity for the 4-electron reduction of oxygen could be achieved by constraining 

conformational motion of the two metalloporphyrin components to a single degree of 
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freedom that involves regular, repeated opening and closing of the “bite” of the cofacial 

metalloporphyins. 

 

 

Figure 1.12 Monocobalt diporphyrin oxygen reduction catalyst, from reference [69-71]. 

 

A later discovery interestingly demonstrated that partial selectivity for oxygen reduction 

could be achieved with only one redox metal in a diporphyrin assembly [69-71]. Both 

the monocobalt diporphyrin 6 (see Figure 1.12), which is the partially demetallated 

variant of 1, as well as a cobalt-aluminium diporphyrin were found to catalyse the 4-

electron reduction of oxygen, albeit in competition with a simultaneous 2-electron 

process [72]. The second Co ion in 1 was thereby revealed to act as a Lewis acid during 

catalysis [66, 69-71]. 

 

 

Figure 1.13 Dicobalt diporphyrin oxygen reduction catalyst with benzofuran linker, 

from reference [68]. 
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Another study examined a dicobalt diporphyrin 7 that catalysed the reduction of 

oxygen, in a catalytic process that also produced H2O2. In this case the porphyrins were 

linked by a dibenzofuran group, which led the two porphyrins to be angled at 56.5° on 

average (see Figure 1.13); 7 was found to catalyse the conversion of 80% of the O2 

reactants to H2O [68]. The Co-Co distance was found to be on average 8.624 Å, 

substantially longer than the average 3.73 Å reported in 4.  The authors also ascribed the 

catalytic effect to longitudinal flexing. 

 

 

Figure 1.14 Preparation of the μ-superoxo complex of 5 (Reproduced with permission 

from reference [73]). 

 

Mechanistic studies by Collman et al. showed that O2 bound to the cofacial dicobalt 

diporphyrin complex inside the pocket formed between the metal ions, where it is 

initially bound as a μ-superoxide species that bridges the two Co ions (see Figure 1.14) 

[73]. The actual catalyst was found to be the Co
II
Co

III
 form of 1 [66], where the Co

III
 

acted as a Lewis acid. The extreme sensitivity of the overall catalysis process to the 

nature of the conformational flexing brought about by different types of linkers suggests 
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that the O2 reactant binds very transiently to both of the Co ions. If the catalyst opens 

and closes in that brief period of time then the O2 may be, quite literally, pulled apart. 

That is, the O-O bond may be cleaved by the process of progressively increasing the 

separation between the two O atoms during the opening of the diporphyrin complex. If 

the catalyst is unable to pull the O2 apart in that brief period, or perhaps introduces 

motion that is not optimal for the cleavage of that bond, then a slower 2-electron 

process occurs, yielding H2O2. 

 

Thus in the 4-electron reduction by 1, 4 and 5 we arguably see a process governed by 

the mechanics of conformational flexing, in synchronisation with μ-O2 binding. In other 

words the rate of reaction is governed by how the separate processes of regular, 

repeated conformational flexing and dynamic binding of the reactant to the catalyst 

overlap [34]. To achieve optimal O-O cleavage these two processes must occur 

synchronously, which can only happen if the catalyst flexes rapidly and regularly, along 

a single degree of freedom, about a structure that complements the optimum transition 

state. When this is achieved, then the two Co porphyrins act in a cooperative, 

“convergent” manner, as is the case in 1, 4 and 5. When it is not achieved, as in 2 or 3, 

then the 4-electron reaction does not take place. Instead, 2-electron reduction to H2O2 

occurs. In the cases of 6 and 7 we can see that there are varying degrees of optimisation 

possible as well, rather than an outright binary choice between two possible reactions. 

The synergy in 1, 4 and 5 yields a new capability, that of O-O cleavage, rather than the 

sum of the actions of the individual components that would otherwise facilitate the 

H2O2 formation. In a way this can be understood as if one were to alter the length of 

pistons in an internal combustion engine, in the sense that there is one optimal 

arrangement that works in synchronisation with the other components. Various 
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arrangements where the desired work done is in suboptimal coexistence with other 

processes lead to partial combustion or complete breakdown of the engine.  

 

1.6.2 Cofacial diporphyrin catalysts for water oxidation 

 

Figure 1.15 Dimanganese diporphyrin water oxidation catalyst from reference [74-76] 

 

In comparison to the field of cofacial diporphyrin catalysts for oxygen reduction there 

are fewer studies on similar systems for water oxidation. One notable example is the 

cofacial dimanganese diporphyrin catalyst 8, which was shown by Naruta and 

colleagues to catalyse the oxidation of water into O2 (see Figure 1.15). Species 8 is 

believed to bind H2O molecules at each of the two Mn atoms, forming transient Mn
V
=O 

intermediates. Then, upon closing of the bite angle during flexing, the reactive Mn-

bound O atoms are brought together into collision, forming O2, which is immediately 

expelled. The proposed mechanism for oxygen evolution in this system is therefore the 

repeated collision of transient Mn
V
=O intermediates facilitated by the cofacial stacking 

and flexing of porphyrins at an appropriate distance [74]. This action is directly 

analogous to that of a machine as confirmed by the fact that equivalent metaloporphyrin 

monomers, like 9, are entirely catalytically inactive for the same reaction. 
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Figure 1.16 Variants of 8 with different linker and porphyrin functionalization, 

overview of species (left) and turnover numbers for each species with respect to Mn-Mn 

distance (right). Reproduced with permission from reference [76]. 

 

Naruta and colleagues also analysed different linkers as well as meso and β-pyrrolic 

functionalization on the porphyrin, and compared catalytic rates with special attention to 

the Mn-Mn distance in the different variants [76]. In this case, O2 evolution by H2O2 

disproportionation catalysis was tested in acetonitrile-benzonitrile solvent in the 

presence of a base. The findings confirmed the critical nature of the Mn-Mn separation 

with only one catalyst performing at turnover rates of several thousand molecules per 

minute compared to several hundred at best by the other variants under the same 

conditions (see Figure 1.16). When the Mn ions were too distant or not in an eclipsed 

arrangement the reaction would not occur at all. 
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1.6.3 Intermolecular and matrix assisted organic catalysts 

As noted in the previous sections many monomeric metalloporphyrins and also 

phthalocyanines catalyse the 2-electron reduction of O2 into H2O2 whereas their 

dimeric, cofacial analogues are capable of 4-electron reduction to H2O involving O-O 

bond cleavage. An interesting observation has been made however that some 

monomeric metalloporphyrins facilitate the former reaction when adsorbed at low 

concentrations on graphite, but catalyse the latter reaction when adsorbed at higher 

concentrations [77]. The suggestion was made that some of the molecules adsorbed in a 

side-on, pairwise fashion whereas some adventitiously arranged in a eclipsed fashion 

and thereby facilitated catalysis [77].  

 

 

Figure 1.17 Phthalocyanine tetrasulfonate Fe(III) complex and its catalytic reactions, 

from reference [78]. 

 

A relevant example is the tetrasulfonated iron phthalocyanine 9 (see Figure 1.17). When 

adsorbed at low concentrations on graphite it facilitates the electrocatalytic reduction of 

O2 by a 2-electron process, giving H2O2. However as the concentration is increased, this 

gives way to the 4-electron reduction to H2O [77-79]. While establishing the exact 

mechanism of reaction proved difficult, the observed variation in product as a function 

of loading is consistent with a cooperative effect. 
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Figure 1.18 5,10,15,20-tetraphenylporphyrinato cobalt(II) and its catalytic reactions, 

from reference [80]. 

 

Instead of concentrating monomeric metalloporphyrin at the surface of an electrode, 

another approach involves concentrating the metalloporphyrin within a conducting 

matrix, such as a densely-packed conducting polymer. One example is the cobalt 

complex of the tetraphenylporphyrin 10 [80](see Figure 1.18). This species catalyses 

exclusively the 2-electron reduction reaction of O2 into H2O2 when dissolved in 

solution. When adsorbed onto graphite, even at high loadings, it also only facilitates this 

reaction. However when incorporated into a layer of vapour phase polymerised 

polypyrrole, which by itself is not a catalyst of O2 reduction, it was found to facilitate 

the 4-electron reduction to H2O [80]. The proportion of the 4-electron product increased 

with higher loading, reaching close to 100%. 
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Figure 1.19 Diferrocene and ferrocene sulfonate catalysts in polypyrrole, from reference 

[81, 82]. 

 

A similar example is the catalyst 11 made by Chen and Swiegers [81, 82], which 

consisted of a powerful hydrogen reduction differocene catalyst [83, 84] tethered to 

pyrrole and subsequently polymerised as a conductive polymer in a thin layer. The 

resulting conducting polymer proved to be a powerful hydrogen generating catalyst (see  

Figure 1.19). An unexpected side product from this experiment was that the control 

coating 12, consisting of a monomeric ferrocene sulfonate incorporated into polypyrrole 

as a counter-ion, also displayed significant hydrogen generating catalysis. In fact it was 

so powerful that it produced approximately 7 times more hydrogen than an equivalent 

platinum electrode under similar conditions [81, 82]. The origin of the catalytic activity 

of 11 was shown to arise from the presence of high loadings of ferrocene sulfonate; a 

comparable coating containing p-toluene sulfonate as a counter-ion displayed no 

catalytic effect. It was proposed that a statistically significant proportion of the 

ferrocene sulfonate adventitiously arranged in close proximity to each other in the 

poly(pyrrole) so that it was able to act in a similar fashion to the diferrocene variant. 

While the precise catalytic mechanism remains unclear due to the practical difficulties 
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of studying catalysis in porous conducting polymer the catalytic effect displayed by 12 

is certainly remarkable. 

 

 

Figure 1.20 Manganese porphyrin embedded in conductive polymer acting as a water 

oxidation catalyst, from reference [85, 86] 

 

This line of work has recently been extended to include a manganese porphyrin based 

on the dimanganese porphyrin 8 by Naruta. In this case the monomer was incorporated 

into poly(terthiophene) (PTTh) 13 [85] or poly(3,4-etheylenedioxythiophene) (PEDOT) 

14 [86] within a dense polymeric layer formed by vapour phase polymerisation (see 

Figure 1.20). The resulting composite material was found to be a powerful light-assisted 

electrocatalyst for water oxidation.  
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Electrochemical studies of the resulting electrodes in 0.1 M Na2SO4 at pH 7 revealed a 

significant photocurrent at only 0.25 sun intensity (SoLux daylight MR16 halogen light 

bulb, 12V, 50W) with a low onset potential. Photocurrent under light illumination was 

reported as low as 0.68 V in the case of PTTh and 0.32V in the case of PEDOT (both vs 

Ag/AgCl). This is much lower than the theoretically lowest onset potential for water 

oxidation at pH 7, of 0.6 V (vs Ag/AgCl) (0.83 V vs SHE). Through gas detection by 

GC-MS, the photocurrent observed in 0.1 M Na2SO4 at pH 7 as well as seawater was 

correlated to oxygen evolution from water oxidation. Moreover, the selectivity of both 

13 and 14 was such that even in seawater they generated only O2 with no Cl2 side 

product detected [85, 86]. While water oxidation (2H2O -> O2 + 4H
+
 + 4e

-
; E

0
 1.23 V) is 

in theory thermodynamically favoured over Cl2 formation (2Cl- -> Cl2 + 2e
-
; E

0
 1.36 V) 

in seawater, the lower overpotential of chloride oxidation means that chlorine is 

inevitably formed in conventional electrolysis of seawater. This is a problem affecting 

all man-made catalysts unless placed in an ion-exchange resin [87]. The only other 

known catalyst selective enough to oxidise water in seawater without forming chlorine 

gas is the biological catalyst system PSII found in marine and hypersaline organisms. 

This demonstrates the remarkable selectivity of this artificial catalyst system, for which 

the mechanism of action may well accord with that of a kinematic manufacturing 

machine. 
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1.6.4 Cubane catalysts 

In a 2011 review Swiegers et al. [48] illustrated the structural similarities between 

several man-made catalysts based on the OEC template and the OEC itself and found a 

remarkable overlap in structure and function despite a clear difference in the metal 

element in the structures. 

 

 

Figure 1.21  Nocera and Kanan‟s Co-phosphate water oxidation catalyst, (a) X-ray 

structural model of the cobaltate cluster, (b) structural arrangement of the surface of the 

clusters and (c) overall cubane structural motif of the catalyst. Reproduced with 

permission from reference [48]. 

 

One of the more prominent water oxidation catalysts is the Co-phosphate system 

described by Nocera and Kanan [88-92]. The catalyst was shown to consist of cubical 

arrays, initially believed to be a heterogenous particulate nanocrystalline catalyst; it was 

observed that it dissolved in open solution thereby forming a homogeneous catalyst (see 

Figure 1.21). The surface of the arrays involve an “open-face” checkerboard of 

puckered Co-O recesses and protrusions, which are formed by crystal grain formation 

with the base Co4O4 cubane as the unit cell. Evidence suggested that it self-assembles 
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and disassembles during turnover [88-92]. The Co-O cubane structure at the surface was 

believed to disassemble, releasing O2 during water oxidation. 

 

 

Figure 1.22 Birnessite water oxidation catalyst, (a) single crystal X-ray structure of a 

Mn-O extended sheet layer in K birnessite (Mn ions purple, O red), (b) structural 

arrangement of the Mn-O sheet layers in birnessite. Reproduced with permission from 

reference [48]. 

 

A Mn-O birnessite mineral catalyst was reported by Spiccia et al. that formed 

nanoparticles inside Nafion film under suitable conditions [93]. The birnessite 

nanoparticles were found capable of catalysing H2O into O2. This species consists of a 

layered structure of stacked, 2D strata of hetero-ions interleaved with 2D extended Mn-

O sheets and was hypothesised to be the evolutionary origin of the PSII-WOC [94]. 
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Figure 1.23 Co3O4 spinel water oxidation catalyst, (a) single-crystal X-ray structure (Mn 

blue, O red), (b) the cubane structure of the B-site of the catalyst and (c) structural 

formations at the surface of the Co3O4 spinel that derive from the B-site. Reproduced 

with permission from reference [48]. 

 

Another cobalt catalyst of interest is the Co3O4 spinel heterogenous water oxidation 

catalyst reported by Previtt and further studied by Frei (see Figure 1.23) [95, 96]. It was 

shown to become highly active for water oxidation in heterogeneous, nanoparticulate 

(nanorod) form [95]. The structure of the B-site of the spinel comprises of a Co4O4 

cubane motif which is identical to that of the Co-phosphate catalyst shown previously 

(Figure 1.23), as well as the PSII-OEC. The surface of this catalyst comprises of a 

mixture of “open face” A and B sites. Likewise, they feature puckered, half-cube Co-O 

recesses or protrusions. The activity of the nanoparticulate form is substantially greater 

than in equivalent microparticulate form [95, 96] and studies indicated that the spinel 

cycles through Co4
+
 intermediates during water oxidation catalysis [97]. 
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Figure 1.24 (a) X-ray structure of a λ-Mn2O4 spinel catalyst (Mn purple, O red), (b) 

cubane structural motif and (c) structural formations at the surface from the B-site. 

Reproduced with permission from reference [48]. 

 

Recent work by Dismukes et al. showed that the spinel LiMn2O4, which is inactive for 

water oxidation, becomes a highly active catalyst when the Li ion is removed from the 

A-site. The remaining Mn2O4 contains a Mn4O4 cubane structure in its B-site (see 

Figure 1.24) [98]. The key structural change resulting from removing the Li ions is the 

freeing up of the shared μ3-O atoms in the B-site thus allowing for more motion, which 

could explain the catalytic effect [48]. 
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Figure 1.25 (a) Dimensionally accurate superimposition of the reported X-ray 

structure of a [Co4(H2O)2(PW9O34)]
10- 

polyoxotungstate water oxidation catalyst (red 

and blue structure) and the “London” X-ray structure of the PSII-WOC (yellow), and 

(b) the structural arrangement of the [Co4(H2O)2(PW9O34)]
10- 

polyoxotungstate core. 

Reproduced with permission from reference [48]. 

 

The final notable homogeneous water oxidation catalyst is the complex reported by Hill 

et al. [99], [Co4(H2O)2(PW9O34)]
10-

 (Figure 1.26). This species contains the cubane core 

and is stabilised by oxidatively resistant bulky poly(oxotungstate) ions. This complex 

also dynamically self-assembles in water to yield the highest recorded turnover 

frequency of any abiological catalyst for water oxidation, >5 s
-1

 at pH 8) [99]. While the 

mechanism of catalysis for this species is unknown, the core structure is effectively that 

of a cubane. When superimposed with the “London” structure of the OEC (see Figure 

1.25) it can be inferred that the catalytically active site includes open-faced 

arrangements. 
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Remarkable overlaps exist in these structures in terms of interatomic distances and bond 

lengths [48], which is especially visible when the X-ray crystallographic structures of 

the aforementioned catalysts are superimposed on one another, as well as with PSII-

WOC structures. This suggests that close mimicking of the PSII-WOC in terms of 

physical dimensions, if not using the exact same elements, can lead to powerful water 

oxidation catalysts. The regenerative as well as stabilising aspect of the surrounding 

protein framework, remains however largely unaddressed, leading to limited turnover 

numbers as the catalyst can eventually degrade through mismatched action by its 

components, or blocked by trace impurities in the substrate over time. 

 

1.7 Strategies for creating non-biological “molecular manufacturing machines” 

Using the above insights two possible routes have been identified in which molecular 

manufacturing machines that are non-biological in their origin, may be created [12, 13]: 

 

1.7.1 Highly structured molecular technique 

The first technique consists of constructing highly structured assemblies that closely 

mimic the enzymatic assemblies found in nature. Likewise, smaller yet precisely 

engineered components can be built to harness some of the critical parts of enzymatic 

systems identified as performing a mechanical mode of action [12, 13, 34], such as the 

aforementioned cofacial porphyrin systems. This approach relies on the proposition 

that, if enzyme active sites are complementary to their transition states and ideally set 

up for molecular manufacturing, then covalently-assembled molecular models with 

similar shapes and constituents should also be.  The key problem with this approach 
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however, is that it requires great precision in molecular design and often extreme 

synthetic complexity to realise a target molecular manufacturing machine. 

 

Recent studies into protein engineering by Dutton and others [100-104] utilised ab initio 

designed simple proteins called foldamers [105-108] in an attempt to study enzyme 

design. These are a good example of the highly structured approach. However, such 

artificial enzyme species have to be precisely synthesised using biological methods 

rather than organic chemistry, and are exceedingly difficult to achieve. 

 

1.7.2 Combinatorial intermolecular technique 

A potentially easier and more practical approach, involves a combinatorial technique 

[12, 13, 80] like that found in aforementioned porphyrin-polymer systems. In this case 

monomers containing un-connected catalytic groups are concentrated within limited 

volumes.  For simple systems, a small, but statistically significant proportion of them 

may thereby become trapped in optimal dispositions to facilitate a kinematic mode of 

catalysis.  That small proportion will then be powerful catalysts and perform as 

kinematic molecular manufacturing machines.  All of the other catalytic groups that are 

inopportunely disposed will be inactive. With further experimentation the synthesis and 

deposition methods may be engineered to maximise the proportion of molecules 

arranged in a catalytically active fashion. The main advantage of this more indirect 

technique is that it avoids the often arduous discovery process and complex synthetic 

procedures needed in the previous technique. As such, it offers a desirable, simpler 

route to inexpensive and practically useful molecular manufacturing machines. 

 



 

 

41 

 

Recent studies [34, 85, 86, 109-111] provide good examples of the combinatorial 

method as molecules that are structural similar to the critical components found in PSII 

are identified and mimicked by simpler, man-made variants, such as porphyrins, 

ferrocenes and cubanes. This method was utilised in this thesis to follow on the 

established catalytic systems and study them in more detail. 

 

1.8 Research strategy 

The aforementioned combinatorial technique was used in the research work that forms 

this thesis. The aim was to develop catalytic systems based on metalloporphyrins and 

cubanes capable of facilitating the same or similar catalytic reactions as their biological 

counterparts, whilst avoiding the complexities involved in their synthesis. 

 

1.8.1 Conducting polymers 

Conducting polymers were established as a field with the discovery of high intrinsic 

conductivity in polyacetylene in 1977 [112]. Polyacetylene was found to exhibit an 

unusually high conduction due to its conjugated backbone when subjected to chemical 

or electrochemical oxidation [113]. Upon oxidation, a positively charged “hole” is 

introduced in the backbone, effectively doping the polymer. Further oxidation leads to 

formation of conduction bands similar to those found in doped semiconductor systems, 

allowing charge to travel along the polymer chain. This effectively enables electrical 

conduction along the polymer chain, at conductivities that, under ideal conditions, may 

approach that of common metallic conductors[114]. 
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A number of studies have been done on the conduction mechanism, as well as other 

chemical species forming conductive polymers [113, 115, 116]. Of note are the poly-

heterocyclic species notably poly(pyrrole) and poly(thiophene), and later poly(3,4-

ethylenedioxythiophene) (PEDOT), which increasingly became the focus of conducting 

polymer work [115, 117, 118]. A recent study also revealed the utility of PEDOT in 

applications relevant to water splitting [119]. 

 

1.8.2 Porphyrins 

 

Figure 1.26 Porphyrin species explored in this thesis: (a) 5,10,15,20-

tetraphenylporphyrinato manganese(III) chloride (MnTPP), (b) 5,10,15,20-tetrakis(4-

sulfonatophenyl)porphyrinato manganese(III) chloride sodium salt (MnTPPS), (c) 

5,10,15,20-tetrakis(4-methylpyridinium)porphyrinato manganese(III) chloride 

tetraiodide (MnTMPyP), (d) poly(5-(4-vinylphenyl)10,15,20-tris(4-sulfonatophenyl) 

porphyrinato manganese(III) chloride sodium salt (MnPVTPPS). 

 

Previous work [85, 86, 111] was expanded on by incorporating several types of 

manganese porphyrins into PEDOT (see Figure 1.26). These included the simple (a) 

5,10,15,20-tetraphenylporphyrinato manganese(III) chloride (MnTPP) and its 

functionalised water soluble variants (b) 5,10,15,20-tetrakis(4-

(a) (b) (c) (d) 
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sulfonatophenyl)porphyrinato manganese(III) chloride sodium salt (MnTPPS) and (c) 

5,10,15,20-tetrakis(4-methylpyridinium)porphyrinato manganese(III) chloride 

tetraiodide (MnTMPyP). A polymeric variant, (d) poly(5-(4-vinylphenyl)10,15,20-tri(4-

sulfonatophenyl) porphyrinato manganese(III) chloride sodium salt (MnPVTPPS) was 

also studied. The catalytic performance of each was examined and their specific 

properties in the deposited films evaluated using UV-Visible light absorbance 

spectroscopy (UV-Vis). The species (b) and (c) above have the additional feature of 

dense packing brought about by their charge pairings [120]. This feature was utilised in 

an attempt to facilitate cofacial aggregation during deposition. The species (d) above 

consisted of repeating units of porphyrin along a polymer backbone, which can force 

densely packed arrangements of porphyrins with some fraction achieving co-facial 

positioning. All of the above contain a Mn(III) ion in the core, raising further 

similarities to the proposed oxidation states of the Mn in the OEC as described by Pace 

[47]. 

 

The porphyrins embedded in conducting polymer films were extensively studied using 

UV-visible absorbance spectroscopy due to their highly specific light absorbance 

spectra, from which structural details could be inferred [121]. Typically a porphyrin 

produces a strong absorbance peak in the 380-460 nm region called the Soret Band, or 

B-Band, which is distinctive of its status in the polymer. Its shift can be compared to 

literature data so as to determine whether the porphyrin contains a metal core and which 

oxidation state the metal ion is in. A secondary feature is called the Q-Bands, which are 

typically 2-4 absorbance peaks of smaller intensity. They also change with metal 

incorporation in the core and are a useful secondary means of analysis with which to 

confirm the overall state of the porphyrin. Cofacial porphyrins also display excitonic 
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coupling brought on by close face-to-face or side-to-side arrangements, measurable 

using UV-vis absorbance spectroscopy [122]. Therefore, cofacial packing can also be 

inferred from the shift of the Soret Band, when applicable. 

 

1.8.3 Graphene oxide and reduced graphene oxide 

Since its discovery by Geim in 2004, the aromatic carbon allotrope graphene has 

become renowned for its promising electronic and physical properties [123-126]. At 

first the material was made by exfoliating single sheets of sp
2
 hybridised carbon 

arranged in a honeycomb lattice with scotch tape. A new method was established for 

higher throughput synthesis from an earlier method for the synthesis of graphitic oxide 

from graphite called the Hummers method [127], with modifications which included, 

among others, exfoliation by ultrasonic waves [128, 129]. Graphene oxide (GO) has 

proven to be versatile and preferred by researchers for its enhanced chemical processing 

features. It is highly water soluble while retaining most of its high conductivity when 

reduced to graphene.  It is often referred to as reduced graphene oxide (RGO) or 

chemically converted graphene (CCG) [130]. Recent advances by Jalili et al. have led to 

a new class of graphene oxide called liquid crystalline graphene oxide (LCGO), so 

named for its remarkable property of acting like a liquid crystal when dispersed in water 

as big sheets [130-133]. Furthermore graphene oxide contains numerous carboxylic acid 

and phenolic functional groups on the surface [134, 135] that can be controlled by 

targeted reduction to strike a compromise between degree of functionalization and 

conductivity. 
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1.8.4 Calcium manganese oxide catalysts 

 

Figure 1.27 Proposed MnxOy-graphene composite structures. 

 

A new OEC-inspired biomimetic MnxOy-graphene composite catalyst material was 

investigated during the studies for this thesis in collaboration with Assoc. Prof. Ron 

Pace and Prof. Rob Stranger from the Australian National University (ANU). This 

catalyst aimed to mimic the matrix-assisted effect of the PSII protein scaffold on the 

OEC by experimentally depositing known MnxOy [136] as well as CaMnxOy [137, 138] 

catalysts on graphene substrates. These substrates contain carboxylic and phenolic 

moieties that can serve to mimic the protein scaffold in PSII in direct contact with the 

OEC, specifically the tyrosine groups that provide H
+
/e

-
 transport pathways to the 

surrounding system (see Figure 1.27). In the cases where calcium was absent from the 

Mn catalyst it was added to the graphene oxide by chemical cross-linking [139] in an 

attempt to bring Ca ions in close proximity to the Mn clusters to mimic its role in the 

OEC. 
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1.9 Thesis aims 

The aim of this work is to synthesize and carefully examine novel, bio-inspired water 

oxidation catalysts. This will be attempted through a combinatorial approach to test 

candidate species embedded in a PEDOT or graphene matrix. The porphyrin-polymer 

and manganese oxide-graphene composites will be tested in electrochemical 

experiments to determine the relative magnitude of potential catalytic performance for 

each species. The most promising samples will be studied in greater detail to reveal 

more information pertinent to their structure and likely mechanism of action. Within the 

context of the greater framework of molecular manufacturing machines, only the area of 

water oxidation will be explored in this study. 
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2 Experimental 

2.1 Introduction 

This chapter explains the experimental details of the work in this thesis: materials and 

reagents used, instrumentation, synthesis methods for the compounds used in 

experiments, fabrication of samples, characterisation and testing methods. The thesis 

chapters that follow refer to relevant sections of this chapter when discussing fabrication 

methods as well as specific experimental details, where applicable. 

 

2.2 Chemicals and reagents used 

The following chemicals and reagents were used as received unless stated otherwise. 

Reagent name Grade, Batch #, 

Preparation 

Company 

4-Pyridinecarboxyaldehyde   Aldrich 

3,4-Ethylenedioxythiophene (EDOT) distilled Amsheng Chemical 

4-Bromobenzaldehyde 99%, BCBH9835V Aldrich 

Acetone 99.8% Univar 

Ammonia solution 25% (aqueous) Chem-Supply 

Azobisisobutyronitrile (AIBN) 12% in acetone Sigma 

Benzaldehyde 99%, MKBP5021V Sigma-Aldrich 

Calcium acetate monohydrate 

(Ca(AcO)2H2O) 

  Sigma 

Calcium chloride (CaCl2) Anhydrous, 039K0057 Sigma-Aldrich 

Calcium hydroxide (Ca(OH)2)   Aldrich 

Calcium nitrate tetrahydrate 

(Ca(NO3)2) 

  Aldrich 

Chloroform 99.8%, 280091 Chem-Supply 

Cyclohexane   Sigma 

Dichloromethane (DCM)   Aldrich 

Diethyl ether 99.7%, 15 04 0243 RCI Labscan 

Diethylhydroxylamine    Sigma Aldrich 

Dioxane 99.8%, 03396MMV Sigma Aldrich 

Ethanol Abs, 268373 Chem-Supply 

Graphene oxide (GO) 2.2% wt in water ANFF Wollongong 
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n - Hexane 95%, 15 070238 RCI Labscan 

Hydrochloric acid (HCl) 32% Chem-Supply 

Hypophosphorous acid 50% Sigma-Aldrich 

Iodomethane (CH3I) 99% Biedel-de Haën 

Iron(III) p-toluenesulfonate 

hexahydrate (Fe-pTS) 

  Aldrich 

Liquid crystal graphene oxide (LCGO) 11 mg/mL in water IPRI 

Manganese (II) acetate tetrahydrate 

(Mn(AcO)24H2O) 

  Sigma 

Manganese chloride (MnCl2) 97%, MKBG4107V Aldrich 

Methanol   Ajax Finechem 

Milli-Q water     

N,N-Dimethylformamide (DMF) 99.8%, 12 03 0053 RCI Labscan 

n-Butyllithium 2.5 M in hexanes, 

STBD2349V 

Aldrich 

Poly(sodium 4-styrenesulfonate) (PSS) 18% aqueous soln, AV 

MW 70,000 

Sigma 

Potassium carbonate (K2CO3) AR, 1205532 Univar 

Potassium hydroxide (KOH) RG, >/ 90% flakes Sigma-Aldrich 

Potassium permanganate (KMnO4)   Sigma 

Powdered silica 40-63 µm, 52 Davisil 

Propionic acid 99.5%, 276317 Chem-Supply 

Pyridine RG, PI01232500 Scharlau 

Pyrrole 97%, distilled Merck 

Reduced graphene oxide (RGO) 0.05% wt in water ANFF Wollongong 

Sodium borohydride (NaBH4)   Sigma 

Sodium dithionite (Na2S2O4)   Ajax Finechem 

Sodium hydroxide (NaOH) Pellets Chem-Supply 

Sodium nitrate (NaNO3)   Sigma 

Sodium sulfate (Na2SO4) 99%, 15327KO Sigma Aldrich 

Sulfuric acid (H2SO4)   Ajax 

Tetrahydrofuran (THF) HPLC grade, DK952 Honeywell 

Toluene 99.5%, 279723 Chem-Supply 

Triethylamine 99.6%, STBD41184 Sigma-Aldrich 

Trifluoroacetic acid (C2HF3O2)(TFA)  Sigma-Aldrich 

Triphenylphosphine 99%, 07521DE Sigma-Aldrich 

      

Fluoride tin oxide (FTO) glass  <10 Ω/□, >77% 

transmittance 

Zhuhai Kaivo 

Epoxy resin     

Pelco conductive silver paint  14352 Ted Pella Inc. 

Nail polish     

Copper wire (cladded) 0.5 mm diameter 

0.9 mm with cladding 
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2.3 Instruments and techniques for fabrication 

2.3.1 Spin coating 

 

Figure 2.1 Photograph of the spin coating apparatus. 

 

Spin coating of solutions on glass substrates was performed on a Laurell Model WS-

400V-6NPP/LITE spin coating apparatus (Figure 2.1). The general method consisted of 

placing a piece of cleaned substrate inside the instrument, which held the sample in 

place by vacuum suction. A small amount of solution (typically 150 µL) containing the 

desired compound was spread evenly on the surface of the substrate, which was then 

spun at a high rate (1000 rpm) for a few seconds. The solvent was evaporated by 

placing the substrate on a hotplate immediately thereafter, leaving a thin film on the 

substrate.  
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2.3.2 Sonication 

 

Figure 2.2 Photograph of the bath sonicator (left) and tip sonicator (right). 

 

A Branson B2500R-MTH bath sonicator was used for general chemical workup such as 

dissolving/dispersing compounds in liquid and cleaning of glass substrates in 

appropriate solvents. A Sonics Vibracell tip sonicator was employed for more rigorous 

dispersions of solids in water used for spray coating (see Figure 2.2). 
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2.3.3 Cleaning of electrodes with UV-Ozone and Plasma treatment 

 

Figure 2.3 Photographs of the UV-Ozone system (left) and plasma cleaning system 

(right). 

 

Electrode substrates that were prepared for deposition were cleaned in a Novascan PSD 

Pro Series Digital UV Ozone System or Harrick Plasma PLASMAFLO PDC-FMG 

(Figure 2.3). This cleaning system was used to degrade potential traces of organic 

matter left on substrates such as FTO and microscope glass after prior ultrasonic 

washing in acetone and water. In addition this type of treatment significantly increased 

the hydrophilicity of the affected substrate [1-3] which was necessary for subsequent 

coating with materials in aqueous solution or dispersion. A typical procedure consisted 

of laying the slides onto the platform facing upwards and activating the unit for 10 min 

of treatment. Afterwards the substrate slides were ready for immediate use in coating 

and deposition experiments. 
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2.3.4 Spray coating 

 

Figure 2.4 Photograph of the Sonotek spraying system. 

 

Spray coating of dispersed solids in water (graphene oxide, reduced graphene oxide) 

was performed using a Sonotek spray coating instrument (Figure 2.4). A sample feeding 

mechanism pumped the dispersion through an ultrasonication tip which dispersed the 

sample onto the substrate in a cone shaped spray. The substrate was affixed to a hotplate 

underneath the spray tip, onto which the tip would spray while moving in a raster type 

pattern using an XYZ electronic rail system. The liquid flow rate, hotplate temperature, 

tip sonication speed, tip movement speed and height were adjusted to assure optimal 

deposition of the sample. 

 

2.3.5 Doctor blade coating 

A PK K Control Coater doctor blade instrument was used to coat films of liquid 

crystalline graphene oxide (LCGO) containing reducing agent. The machine employed a 

large metal blade that was held in place at a set distance above the base plane upon 

which the substrate was laid (typically fluoride tin oxide glass or Multapex 75 µm PET 
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sheet). A dispersion of material was spread horizontally in a uniform fashion; when the 

blade was pulled across the substrate at a controlled, even speed. 

 

2.3.6 Sputter coating 

 

Figure 2.5 Photograph of Edwards FTM6 Auto 306 sputter coater. 

 

An Edwards FTM6 Auto 306 sputter coater (Figure 2.5) was used to prepare Pt coated 

glass for use as control working electrodes in control experiments. This service was 

provided under the supervision of Dr Tony Romeo at the University of Wollongong 

Electron Microscopy Centre. 
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2.3.7 Laser cutter 

 

Figure 2.6 Photograph of the laser cutter apparatus. 

 

A Universal Laser Systems PLS6MW laser cutter (Figure 2.6) was employed to cut 

interlocking plates of Perspex that were used to build vessels for experiments. The 

plates were designed using CorelDraw. 

 

2.3.8 Electrodeposition 

 

Figure 2.7 Photograph of the EDAQ466 unit. 

 

All electrochemical experiments were carried out on an EDAQ466 potentiostat (Figure 

2.7), which was employed for electrochemical deposition of catalytic films as well as 

subsequent electrochemical testing. In the case of deposition, the unit was used in 
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conjunction with a purpose built vessel containing the working electrode, a 1.3 x 1.3 cm 

Pt mesh counter electrode and a Ag/AgCl miniature reference electrode.  

 

      

Figure 2.8 Electrodeposition Vessel 1: Photo (left) and schematic (right) of the small 

volume electrochemical cell used to electrodeposit samples. 

 

Two vessel designs were used for this technique. Electrodeposition Vessel 1 (EV1) was 

designed for use with very small amounts of reagent (Figure 2.8). A 2 mm thick frame 

of length and width 2.1 x 2.1 cm, made of laser cut Perspex, was attached to a flat piece 

of Perspex. The gaps around the edges were sealed by injecting small amounts of 

chloroform, which dissolved the Perspex to effectively glue the pieces together, with 

subsequent evaporation of the solvent.  A small circular hole, approximately 1.8 mm, 

wide was cut in the top of the frame to serve as an injection point for reagents as well as 

a place to insert a miniature Ag/AgCl reference electrode in experiments. A 1 mm 

circular hole was cut to connect a Pt wire to a Pt mesh counter electrode. The side of the 

frame facing the substrate was coated with a sealing layer of silicone glue to prevent 

leakage of liquid when in use. 

 

The full apparatus consisted of a piece of FTO glass of suitable size, cleaned by 

sonication in acetone and subsequent rinsing and plasma cleaning, with a copper wire 

(0.5 mm diameter) attached to the surface by silver paint and then epoxy glue. The FTO 

glass and counter electrode were clamped together and the polymerisation solution 

 

Working 

Counter 

Reference 
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injected through the hole in the top (Figure 2.7). The dimensions of this vessel were 

chosen so as to work with a minimal volume of solution (~0.9 mL), in order to minimise 

the amount of material needed for each experiment. The miniature Ag/AgCl electrode 

was inserted so as to close the cell to air and not impede the flow between working and 

counter. After deposition the cell was taken apart to drain the solution and wash the 

device; the sample was washed in milli-Q, and dried with pressurised air. The reaction 

area was limited to the 1.5 x 1.5 cm (2.25 cm
2
) inner area of the frame, allowing for 

ready reproduction of films of fixed (and known) dimensions. 

 

 

Figure 2.9 Photo of Electrodeposition Vessel 2. 

 

Electrodeposition Vessel 2 (EV2) was made as modified version of the EV1 to allow 

deposition on more sensitive substrates like graphene films, on Multapex PET and FTO 

glass, without the tight clamping of the counter electrode causing peeling off of the 

underlying film. The vessel was a 3.1 x 4 cm box built from interlocking Perspex plates 

glued together using chloroform (Figure 2.9). Holes were cut in the cover to allow for 

wires to the electrodes. The working cell comprised the substrate chosen in the 

experiment, a counter electrode of 1.3 x 1.3 cm Pt mesh affixed to cladded copper wire, 

and a Ag/AgCl reference electrode. This design required more reagent solution than the 

previous one (~3 mL) but allowed the deposition substrate to be free standing in 
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solution. After deposition, the vessel was drained of solution and washed with Milli-Q 

water and dried using pressurised air. 

 

2.4 Characterisation techniques and equipment 

2.4.1 Mass spectrometry 

Mass spectrometric analysis of porphyrins was performed on a Shimadzu Biotech 

AXIMA Confidence Linear/Reflectron matrix-assisted laser desorption/ionization – 

time of flight (MALDI-TOF) mass spectrometer. The molecular mass of each porphyrin 

was measured and compared to theoretical molecular mass estimates to confirm results. 

The matrix used for analysis was dithranol. 

 

2.4.2 Nuclear magnetic resonance spectrometry 

Nuclear Magnetic Resonance (NMR) A Bruker Ultrashield 400 Plus spectrometer was 

used to verify porphyrin spectra from samples dissolved in deuterated solvents (DMSO, 

D2O, CDCl3) against literature data. 

 

2.4.3 Gas permeation chromatography 

A Shimadzu UFLC system equipped with a RID-10A refractive index detector and a 

Sedere Sedex60LT evaporative light scattering detector was used with a Phenogel 

column of 10 um particle size and 100 Å porosity, 600 x7.8 mm (phenomenex, part 

number: 00K-0642-K0) to determine the molecular weight of the polymeric porphyrin. 

THF was used as the solvent at a flow rate of 1ml/min at room temperature. These 
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characterisations were carried out by Dr Patricia Hayes at the Intelligent Polymer 

Research Institute at the University of Wollongong. 

 

2.4.4 Elemental analysis 

Porphyrin/PEDOT samples were analysed using a Carlo Erba 1106 instrument for CHN 

combustion analysis and a Varian SpectrAA 220 atomic absorption spectrophotometer 

(AAS) for the determination of metal ions present. CHN analysis was provided by Mr 

Sasha Melnitchenko at the Microanalytical Unit of the Australian National University 

Research School of Chemistry and AAS analysis by Sue Butler at the University of 

Wollongong School of Chemistry. 

 

2.4.5 Profilometry 

 

Figure 2.10 Photograph of the Dektak profilometer. 

 

A Veeco Dektak 150 profilometry system (see Figure 2.10) was used to perform 

thickness measurements of deposited films. This was done by making a scratch in 

deposited film on a microscope glass slide using a piece of glass. The profilometer gave 
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a height profile by passing a tip over the sample in a straight line across the scratched 

section. The thickness was determined at several points by calculating the distance 

between the substrate and the top of the film, and the result averaged to yield an average 

film thickness result. 

 

2.4.6 Conductivity measurements 

 

Figure 2.11 Photograph of the Jandel 4 point probe unit (top left), the probe tip 

mechanism (top right) and a closeup of the probe tip (bottom). 

 

A Jandel Model RM3 four point probe was used to measure resistance across deposited 

films and deduct the conductivity of the sample (Figure 2.11). The forward and reverse 

resistance was measured on porphyrin/PEDOT films deposited on non-conductive glass 

and the conductivity calculated using previously obtained thickness of the film from 

profilometry: 
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Resistivity ρ (in Ω cm) was determined by multiplying the average of forward and 

reverse resistance ΩFWD / ΩREV (in Ω/□) by the thickness t (in μm converted to cm). The 

conductivity σ (in S/cm) was obtained by taking the inverse of the resistivity ρ. 

 

2.4.7 UV-visible absorbance spectrometry 

 

Figure 2.12 Photograph of the UV-Vis spectrophotometer. 

 

A Shimadzu UV-1800 Double Slit UV-Vis Spectrophotometer was used for all light 

absorbance spectroscopy (UV-Vis) in a range of typically 350-700 nm (Figure 2.12). 

Solutions of porphyrins were characterised in cuvettes having 1 cm path length. Plastic 

disposable cuvettes were used for water and ethanol and quartz cuvettes for organic 

solvents. Solid film samples on transparent substrates like FTO glass and microscope 

slides were affixed to the sample holder with Blu-Tack, facing the oncoming light 

beam. In all cases the same solvent or piece of clear substrate (where applicable) were 

ρ=
(𝛺𝐹𝑊𝐷 + 𝛺𝑅𝐸𝑉)

2
×

𝑡

10000
 

σ=
1

𝜌
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used as a reference from which a background spectrum could be taken and 

automatically subtracted from the result. UV-Vis analysis was important for the 

characterisation of porphyrins as the wavelengths of absorbance peaks yielded data on 

the configuration of the molecule under different conditions. 

 

2.4.8 Electrochemical cell 

 

Figure 2.13 Schematic of the laser-cut electrochemical cell (left) and photograph of the 

cell as used in experiments (right). 

 

An electrochemical cell was designed, consisting of laser cut Perspex panels of 4.5 mm 

thickness that clipped together to form a cube (Figure 2.13). The panels were attached 

by injecting a tiny amount of chloroform into the crevices, which melted a small amount 

of Perspex and acted as glue, sealing the edges with the plastic itself. The cell design 

employed a fixed sample position and distance between electrodes. It was also relatively 

easy to alter and redesign by cutting new components or replacing each with a modified 

5
.4

 c
m

 

5.2 cm 

3 cm 
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version. The main goals of this design were to minimise movement of the electrodes 

and provide reproducible and stable electrode positions. 

 

The working electrode (sample) was placed inside the vessel by sitting it on the J-

shaped component attached to the lid. The wire protruded through the lid allowing the 

EDAQ terminal cable to be attached with an alligator clip outside the unit. An Ag/AgCl 

reference electrode was inserted through a hole in the lid close to the working electrode 

and the Pt mesh counter electrode through another hole approximately 3 cm away from 

the working electrode surface. The respective terminal cables were attached to the 

electrode wires with alligator clips, with care taken to reproduce the same electrode 

positions each time tests were conducted. 

 

2.4.9 Electrochemical testing 

  

Figure 2.14 Photograph of the EDAQ466 potentiostat. 
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Figure 2.15 Photograph of the light source with IR filter inside a faraday cage cabinet 

(right) and schematic of the light source setup (right). 

 

Electrochemical testing experiments were carried out on an EDAQ466 potentiostat 

(Figure 2.14). Samples were inserted into the electrochemical cell as a working 

electrode.  A BASi Ag/AgCl aqueous salt bridge (KOH, 3 M) reference and 1 x 2 cm Pt 

mesh counter electrode were further incorporated. The prepared films of 

porphyrin/PEDOT or MnxOy-graphene were used as working electrodes in 

photoelectrochemical tests to assess the level of catalytic current density at varying 

voltages (vs Ag/AgCl). In the case of MnxOy only dark current was measured. Sodium 

sulfate (Na2SO4) electrolyte solution (0.1 M) was used. The electrolyte was bubbled 

through with N2 gas while stirring for 30 min before the experiment. The sample was 

placed inside the electrochemical cell, which was located inside a closed faraday cage 

cabinet, 10 cm from an illumination source (a SoLux daylight MR16 halogen light bulb; 

12 V, 50 W, 24
o
; ca. 0.25 sun intensity) with a Thorlabs 315-710 nm visible light 

bandpass filter present 1.5 cm in front of the light source (Figure 2.15). The bandpass 

filter removed most of the heat (infra-red wavelengths) generated by the light source. 

The electrochemical cell consisted of the sample film on FTO glass or PET as the 

10 cm 

1.5 cm 
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working electrode, platinum mesh (1 x 2 cm) as the counter electrode and Ag/AgCl as 

the reference electrode. The film sample was aligned to face the light source directly 

when photocurrent measurements were taken. 

 

Three modes of voltammetry were used on prepared samples for stabilisation and 

testing. This section will outline the general method and more specific parameters are 

noted in the experimental section of each individual chapter. 

 

Cyclic Voltammetry (CV) was performed on porphyrin/PEDOT samples in order to 

electrochemically stabilise the films prior to other testing. Typically, 20 cycles at a scan 

rate of 10 mV/sec in the range 0-0.7 V (vs Ag/AgCl) were performed. This was done to 

equilibrate the charge transfer over that voltage range, as PEDOT can contain static 

charges and not fully oxidised regions throughout the film, which would give a skewed 

result when attempting measurement without conditioning.  

 

MnOx films on graphene substrates were analysed by linear sweep voltammetric 

conditioning.  Linear sweep voltammetry (LSV) was performed on samples by scanning 

the current response in the range 0-0.7 V (vs Ag/AgCl) for PEDOT and 0-1.6 V (vs 

Ag/AgCl). Typically, 5 scans were taken at a scan rate of 5 or 10 mV/sec until the 

sample returned identical results over each repeated scan. The last scan was recorded as 

data and analysed. In photocurrent testing, the light source was then switched on and 

another 3 scans taken, of which the last was recorded as data. This allowed analysis of 

the onset potential of the catalytic current when illumination was involved. The 

resulting data was then divided by the geometric area of the sample to give current 

density (in μA/cm
2
 and mA/cm

2
), allowing ready comparison of separate sample data. 
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From the data obtained through LSV, suitable voltages were chosen to perform 

chronoamperometric (CA) testing of each sample. In this mode the sample was poised 

at a constant potential over time and the current recorded. In the case of PEDOT, the 

voltages used in CA testing were 0.6 V, 0.65 V and 0.7 V (vs Ag/AgCl). Because of 

possible oxidation of the PEDOT film to its fully oxidised state, samples were typically 

held at potential for 1 h to allow the current to stabilise. The light source was then 

switched on and the photocurrent recorded for 10 min, after which the light was 

switched off. The data was then converted to current density by dividing the current by 

the geometric area of the sample. The data was normalised by subtracting the baseline 

current from 1 min before illumination, in order to obtain readily comparable measures 

of photocurrent density for each sample type. Results are typically shown from 1 min 

before illumination until 1 min after. In the case of MnxOy samples on graphene 

substrates, the voltage was set at 1.15 V or 1.6 V (vs Ag/AgCl). The data is also shown 

in full instead of cropping the initial period, as catalysis in dark conditions began with 

activation of the potentiostat rather than illumination. 

 

 

 



 

77 

 

2.4.10 Electrochemical testing with gas sensing 

 

Figure 2.16 Schematic (left) and photograph (right) of the sealed glass electrochemical 

cell used for photoelectrochemical analysis with gas sensing. 

 

 

Figure 2.17 Photograph of the complete electrochemistry and gas chromatography 

apparatus. 

 

Photocurrent testing of high performing porphyrin/PEDOT samples with simultaneous 

gas detection was done using a specialised apparatus and method developed by Dr Lei 

Tong with equipment and training provided by A/Prof. Attila Mozer at the Intelligent 

Polymer Research Institute at the University of Wollongong. The apparatus consisted of 
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a sealed glass electrochemical cell containing the working electrode sample, Ag/AgCl 

reference electrode and Pt mesh counter electrode (Figure 2.16). The cell was filled with 

Na2SO4 electrolyte (0.1 M) and the electrolyte bubbled with Ar gas overnight to remove 

all air inside the cell. The Ar gas was continuously bubbled through the electrolyte 

throughout the photocurrent experiment and used as the carrier gas for a connected gas 

chromatography unit. The electrodes were connected to a CHI potentiostat unit and gas 

outlets for the working and counter electrode were connected to a dedicated Shimadzu 

GC-8A gas chromatograph with copper tubing (Figure 2.17). 

 

The sample was poised at 0.7 V (vs Ag/AgCl) in 0.1 M Na2SO4 for 1 h, then illuminated 

with a Newport solar simulator with 1000 W Xenon lamp wth AM 1.5 filter while 

maintaining an invariant bias. After 4.7 h of testing under illumination, the carrier gas 

was analysed in a Shimadzu GC-8A gas chromatograph and the results plotted over 30 

min of elution time. The carrier gas was tested prior to purging, after purging, and, as 

mentioned above, after 4.7 h under illumination. Testing prior to purging (carrier gas 

argon + air) showed the retention time of gas peaks corresponding to argon, oxygen, 

nitrogen and residual hydrogen.  Testing after purging produced gas peaks 

corresponding to argon only, indicating that any air in the vessel has been fully 

displaced by argon. Testing after illumination gave a qualitative measure of the gases 

produced by photoelectrochemical activity of the sample. 
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3 Vapour phase polymerised Porphyrin/PEDOT films 

3.1 Introduction and Aims 

In this chapter the research strategy described in sections 1.8.1 and 1.8.2 was 

implemented in order to study manganese complex of porphyrins incorporated in 

conducting polymers as water oxidation photocatalysts, as described previously [1, 2]. 

Previous work had examined 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato 

manganese(III) chloride sodium salt (MnTPPS) embedded in poly(terthiophene) (PTTh) 

[1] and poly(3,4-ethylenedioxythiophene) (PEDOT) [2] matrix as catalysts of the 

selective, light-assisted oxidation of water. The strategy was based on a replication of 

the functionality of Naruta‟s cofacial Mn porphyrin catalyst [3-5] using the indirect 

matrix-assisted effect of conducting polymer to simulate the effect of direct covalent 

linkage between two porphyrins. 

 

 

Figure 3.1 Porphyrin species studied in this chapter: (a) 5,10,15,20-

tetraphenylporphyrinato manganese(III) chloride (MnTPP), (b) 5,10,15,20-tetrakis(4-

sulfonatophenyl)porphyrinato manganese(III) chloride sodium salt (MnTPPS) and (c) 

5,10,15,20-tetrakis(4-methylpyridinium)porphyrinato manganese(III) chloride 

tetraiodide (MnTMPyP). 

 

(a) (b) (c) 
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That work was extended by incorporating several Mn porphyrin species in PEDOT and 

examining the effect on catalytic performance by this change. The porphyrin species 

studied in this chapter were: (a) 5,10,15,20-tetraphenylporphyrinato manganese(III) 

chloride (MnTPP), (b) 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato 

manganese(III) chloride sodium salt (MnTPPS) and (c) 5,10,15,20-tetrakis(4-

methylpyridinium)porphyrinato manganese(III) chloride tetraiodide (MnTMPyP) 

(Figure 1.26).  The Mn porphyrins were incorporated in low to very low loading levels 

within the PEDOT matrix in order to examine the effects of such loading and illuminate 

fundamental interactions between the PEDOT and the Mn porphyrins.  In the case of the 

cationic species, low loading levels were also intended to minimise repulsive 

interactions between the PEDOT and that species.   

 

The catalytic performance of each porphyrin/PEDOT material was evaluated by 

photoelectrochemical testing and their characteristics in the deposited films analysed 

using UV-Visible light absorbance spectroscopy (UV-Vis). When combined together, 

the species (b) and (c) displayed the additional feature of ion-pairing, leading to dense 

packing [6]. This ion-pairing was utilised in an attempt to bring about cofacial 

aggregation during deposition. All of the porphyrins contain the Mn(III) ion in the core, 

which is similar to the proposed oxidation state of the Mn ions in the OEC as described 

by Pace [7] and therefore of interest. 

 

The porphyrins embedded in PEDOT films were studied using UV-visible absorbance 

spectroscopy due to their highly characteristic light absorbance spectra, from which 

structural details could be inferred [8]. Typically, the porphyrin Soret Band, or B-Band, 

is distinctively shifted in the polymer. Its shift can be compared to literature values so as 
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to determine whether the porphyrin contains a metal ion and in which oxidation state 

the metal ion is in. Cofacial porphyrins also display excitonic coupling brought about by 

close face-to-face arrangements, measurable by UV-visible absorbance spectroscopy 

[9]. Changes in the UV-Vis spectrum of a porphyrin in different chemical 

environments, such as free solution and embedded in PEDOT, could therefore be used 

to make an assessment of the underlying physical condition of the molecule. 

 

This chapter aimed to: (a) prepare the above Mn porphyrins, (b) study their 

incorporation in PEDOT, and (c) examine their photocatalytic properties for water 

oxidation, including the photocurrent density, and (d) compare the resulting data to each 

other. To this end, the Mn porphyrin species shown in Figure 1.26 were incorporated 

into PEDOT by vapour phase polymerisation (VPP). The resulting films were then 

deposited on conductive FTO glass for electrochemical analysis with illumination by a 

light source, as well as UV-Vis analysis of the translucent film on the transparent 

substrate. The better performing samples were then tested further in a 

photoelectrochemical experiment with detection of the gases produced in order to verify 

whether catalytic production of O2 gas from aqueous electrolyte (0.1 M Na2SO4) was 

observed. 
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3.2 Experimental 

3.2.1 Synthesis of 5,10,15,20-tetraphenylporphyrinato manganese(III) chloride 

(MnTPP) 

  

Figure 3.2 Synthesis of 5,10,15,20-tetraphenylporphyrinato manganese(III) chloride 

(MnTPP). 

 

5,10,15,20-tetraphenylporphyrinato manganese(III) (MnTPP) was synthesised 

following a literature procedure based on the Adler synthesis method (Figure 3.2) [10-

12]. Reagent grade pyrrole (7 mL, 0.1 mol) and benzaldehyde (11.6 ml, 0.1 mol) were 

added to boiling propionic acid (375 mL,) in a round bottom flask and stirred. The 

mixture was refluxed for 40 min under air. Afterwards the mixture was cooled down. 

The solid was filtered through a sintered glass funnel and washed with methanol. The 

product was dried in a vacuum oven at 60 °C and weighed (3.09 g, 20% yield). It was 

confirmed as 5,10,15,20-tetraphenylporphyrin (TPP) by MALDI (614.85 MW) and its 

UV-Vis spectrum was shown to be in agreement with the literature [13]. 

 

Manganese insertion was performed by dissolving the TPP (100 mg, 0.16 mmol) with 

MnCl2 (1 g, 7.94 mmol) in 20 mL dimethylformamide (DMF) and stirring at reflux 

under air overnight. After cooling, the solvent was removed in vacuo and the product 

redispersed in water. The product was then extracted with dichloromethane, the solvent 

evaporated and the product dried in a vacuum oven at 60 °C (120 mg, 100% yield). The 
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final product was characterised by UV-Vis and its main absorbance peaks and their 

extinction coefficients were found to agree with published data ( 

Table 3.1) [14]. 

 

UV-Vis absorbance peaks of MnTPP 

Expected (Published) 

[nm (ε, 1/1000 M
-1

 cm
-1

)(log ε)] 

Experimentally Observed 

[nm (ε, 1/1000 M
-1

 cm
-1

)(log ε)] 

478 (119)(5.07) 477.5 (165)(5.22) 

529 (6.6)(3.82) 528.5 (8)(3.90) 

583 (11.2)(4.05) 582.5 (13.9)(4.14) 

618 (13)(4.11) 618 (16)(4.20) 

 

Table 3.1 UV-Vis spectroscopic reference data and experimentally obtained results for 

MnTPP. 

 

3.2.2 Synthesis of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) 

chloride sodium salt (MnTPPS) 

 

Figure 3.3 Synthesis of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato 

manganese(III) chloride sodium salt (MnTPPS). 

 

The synthesis of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) 

chloride sodium salt (MnTPPS) was done by sulfonating TPP and then inserting Mn 



 

85 

 

into the core of the new porphyrin species following literature procedure (Figure 3.3) 

[12, 15].  

 

TPP (2.00 g, 3.25 mmol) was added to sulfuric acid (10 mL), ground into a fine paste 

with mortar and pestle, and then carefully transferred into a round bottom flask. More 

sulfuric acid (40 mL) was added and the mixture was stirred and heated in an oil bath 

(115 °C) for 4 h. Once cooled, the mixture was carefully diluted into a large volume of 

Milli-Q water (300 mL). Calcium hydroxide was added slowly to the mixture in an ice 

bath to neutralise the acid, which caused the mixture to change colour from green to red. 

The solvent was filtered through a sintered glass funnel and the muddy brown/red solid 

washed numerous times with Milli-Q water and filtered. The solvent was then 

evaporated off and the solid redissolved in a smaller quantity of Milli-Q water to which 

sodium hydroxide (1 M) was slowly added until the solution reached a pH of 8-10 

(controlled with indicator paper). The solution was filtered again through a sintered 

glass funnel as well as through paper filters for a number of times. The solvent was then 

evaporated, the solid redissolved in a small quantity of methanol and precipitated with 

the addition of acetone. The solid was then vacuum filtered with a sintered glass funnel 

and dried in a vacuum oven at 60 °C to give the 5,10,15,20-tetrakis(4-

sulfonatophenyl)porphyrin (TPPS) (3.27 g, 98% yield). The sample was analysed with 

UV-Vis and NMR and found to conform with literature data [16]. 

 

The next step was metallation, which involved combining TPPS (2.5 g, 2.44 mmol) and 

MnCl2 (3.2 g, 25.42 mmol) in 100 mL DMF and stirring the mixture at reflux in air for 

2 h. Once cooled down the mixture was neutralised with a few drops of triethylamine 

and the solvent removed under vacuum. The product was redissolved in water and 
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precipitated with acetone. The solid was vacuum filtered through a sintered glass funnel, 

washed with acetone and dried in a vacuum oven at 60 °C. The resulting product was 

5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) chloride sodium salt 

(0.9 g, 33% yield). MnTPPS in water was characterised by UV-Vis spectroscopy and its 

main absorbance peaks and their extinction coefficients were found to agree with 

published data (see Table 3.2) [17]. 

 

UV-Vis absorbance peaks of MnTPPS 

Expected (Published) 

[nm (ε, 1/1000 M
-1

 cm
-1

)(log ε)] 

Experimentally Observed 

[nm (ε, 1/1000 M
-1

 cm
-1

)(log ε)] 

379 (68)(4.83) 378.5 (43)(4.63) 

400 (68)(4.83) 399.5 (43)(4.63) 

467 (100)(5.00) 466.5 (74.6)(4.87) 

564 (10)(4.00) 563 (9.3)(3.97) 

598 (7.5)(3.88) 596.5 (6.4)(3.81) 

776(0.7)(2.85) 777 (1.2)(3.08) 

 

Table 3.2 UV-Vis spectroscopic reference data and experimentally obtained results for 

MnTPPS. 

 

3.2.3 Synthesis of 5,10,15,20-tetrakis(4-methylpyridinium)porphyrinato 

manganese(III) chloride tetraiodide (MnTMPyP) 

 

Figure 3.4 Synthesis of 5,10,15,20-tetrakis(4-methylpyridinium)porphyrinato 

manganese(III) chloride tetraiodide (MnTMPyP). 
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5,10,15,20-Tetrakis(4-methylpyridinium)porphyrinato manganese(III) chloride 

tetraiodide (MnTMPyP) was synthesised by preparing the 5,10,15,20-tetra(4-

pyridyl)porphyrin (TPyP), metallation followed by subsequent methylation (Figure 3.4).  

 

5,10,15,20-Tetra(4-pyridyl)porphyrin (TPyP) was synthesised following the Adler 

method [10] by combining 4-pyridinecarboxyaldehyde (14.47 g, 0.14 mol) and pyrrole 

(0.07 g, 0.14 mol) in refluxing propionic acid (500 mL). The mixture was stirred at 

reflux under air for 1 h then cooled down and the solvent removed in vacuo. The solid 

was redissolved in methanol, neutralised with a small quantity of triethylamine which 

caused the solid to precipitate. The purple solid was then filtered through a sintered 

glass funnel and washed with methanol, water and acetone and dried in a vacuum oven, 

resulting in the product TPyP (3.11 g, 3% yield). The finished product was analysed by 

MALDI, NMR and UV-Vis and the results found to agree with literature [18]. 

 

Manganese was inserted into the freebase porphyrin to give 5,10,15,20-tetra(4-

pyridyl)porphyrinato manganese(III) chloride  (MnTPyP). TPyP (0.5 g, 0.81 mmol) and 

MnCl2 (2 g, 15.89 mmol) were combined in DMF (50 mL) and stirred at reflux 

overnight. The solvent was then removed under vacuum and the solid redissolved in 

water. Triethylamine was added to neutralise the mixture and the product extracted with 

DCM. The solvent was evaporated off and the product dried in a vacuum oven (60 °C) 

to give the compound MnTPyP (234 mg, 41% yield). The compound was characterised 

by MALDI and Uv-Vis and the results found to be in agreement with literature data 

[18]. 
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The final step was methylating the pyridyl group by combining MnTPyP (56 mg, 0.08 

mmol) with excess of iodomethane (2 mL, ) in methanol (10 mL) in an ice bath 

following a modified literature procedure [8]. The mixture was purged with nitrogen 

gas, heated to reflux and stirred under nitrogen overnight. The solvent was then 

removed by evaporation (gently blowing nitrogen gas over the mixture) and the product 

dried in a vacuum oven (60 °C). The product was 5,10,15,20-tetrakis(4-

methylpyridinium)porphyrinato manganese(III) chloride tetraiodide (MnTMPyP) (115 

mg, 100% yield). MnTMPyP in water was characterised by UV-Vis spectroscopy and 

its main absorbance peaks and their extinction coefficients were found to agree with 

published data (see  

Table 3.3) [17]. 

 

UV-Vis absorbance peaks of MnTMPyP 

Expected (Published) 

[nm (ε, 1/1000 M
-1

 cm
-1

)(log ε)] 

Experimentally Observed 

[nm (ε, 1/1000 M
-1

 cm
-1

)(log ε)] 

378 (32)(4.51) 377 (32)(4.51) 

399 (32)(4.51) 400 (34)(4.53) 

463 (92)(4.96) 462.5 (89)(4.95) 

561 (8.4)(3.92) 560 (9.4)(3.97) 

681 (0.74)(2.86) 679 (1.4)(3.15) 

 

Table 3.3 UV-Vis spectroscopic reference data and experimentally obtained results for 

MnTMPyP. Data shown as [nm (ε, 1/1000 M
-1

 cm
-1

)(log ε)] 

 

3.2.4 Fabrication of Porphyrin/PEDOT by vapour phase polymerisation 

Vapour phase polymerised (VPP) films of PEDOT with and without porphyrin were 

prepared following a method adapted from literature [19]. Solutions were prepared 

containing the oxidant, iron(III) p-toluenesulfonate hexahydrate (Fe-pTS) (85mg, 
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1.25x10
-4

 M, 10% by mass), and pyridine at half a molar equivalent of the oxidant (5 

µL, 0.625x10
-4

 M), combined in 80% ethanol/water (1 mL). The source method 

required an alcohol solvent for Fe-pTS whereas most porphyrins used in this study were 

water soluble (with exception to MnTPP). The ethanol/water mixture was determined as 

a suitable compromise to ensure both chemical species were fully dissolved. Pyridine 

was added to the oxidant solution to impede a polymerisation process that did not 

produce a conductive polymer [19, 20]. The porphyrin species MnTPP, MnTPPS, 

MnTMPyP and MnTPPS+MnTMPyP were added to the solution at varying 

concentrations. In the case of the MnTPPS+MnTMPyP mixture, both porphyrins were 

added in a 1:1 ratio and the concentration used to identify the mixture was the combined 

concentration of porphyrin species in solution. This was usually done before the 

addition of Fe-pTS and pyridine to the mixture to ensure that the porphyrin dissolved 

completely. The porphyrin concentrations in the separate mixtures are shown in Table 

3.4. The concentration of porphyrin was varied to test the effect of porphyrin loading on 

the photocatalytic performance on the films prepared from the porphyrin/oxidant 

solution by vapour phase polymerisation. 

 

MnTPP MnTPPS/PEDOT MnTMPyP MnTPPS+MnTMPyP 

1 mg/mL / 1.42 mM 0.87 mg/mL / 0.78 mM 1 mg/mL / 0.78 mM 1 mg/mL / 0.78 mM 

2 mg/mL / 2.84 mM 1.74 mg/mL / 1.57 mM 2 mg/mL / 1.57 mM 2 mg/mL / 1.57 mM 

3 mg/mL / 4.27 mM 2.61 mg/mL / 2.35 mM 3 mg/mL / 2.35 mM 3 mg/mL / 2.35 mM 

 

Table 3.4 Porphyrin concentrations in spin coating solutions for vapour phase 

polymerisation. 
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Figure 3.5 Schematic for cutting fluorine doped tin oxide (FTO) glass slides containing 

PEDOT film (left), photograph of the vessel used for vapour phase polymerisation 

(right) and of a typical porphyrin/PEDOT film resulting from the process (far right). 

 

Fluorine doped tin oxide (FTO) glass was cut into rectangles with the dimensions 2.7 x 

5.5 cm and later 3.0 x 5.0 cm to make full use of the given FTO slab (Figure 3.5). 

Additionally, a line was drawn 1 cm from the edge on the long side as a marking for 

later. Microscope glass slides were also cut to 5.5 cm length and cleaned alongside the 

FTO slides. Slides were cleaned in acetone and then milli-Q water for 20 min each in a 

sonication bath. Each slide was rinsed with milli-Q water and dried with pressurised air 

before UV-ozone treatment for 20 min. After that treatment, slides were ready to 

commence vapour phase polymerisation immediately. 

 

Vacuum distilled EDOT (0.4 ml) was thawed and inserted into a sealed conical flask 

embedded with an alligator clip to hold a sample above the liquid (Figure 3.5). The 

Oxidant/porphyrin solutions (Table 3.4) were filtered through 0.2 µm syringe filters 

5- 5.5 cm 

1 cm 

2.7 - 3 cm 

0.4 cm 

0.4 cm 0.4 cm 1.9-2.1 cm 

4.1 - 3.6cm 
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before being spin coated onto the slides (1000 rpm, 15 sec, 0.2 mL) followed by 

immediate drying at 80°C in air on a hotplate for 5 min. To limit the area for 

polymerisation to precise dimensions, the oxidant film was carefully swabbed off with a 

cotton tip and ethanol from the 1cm line marking to create a clean zone above the film. 

The aim was to keep the affected area consistent when the sample was eventually tested 

in water electrolyte for electrochemical measurements. 

 

The samples were then inserted into the conical flask, which had been heated in an oven 

to 60°C, then returned to the oven to polymerise in air for 40 min. Samples were 

thereafter retrieved from the conical flask and left to dry in air at room temperature 

overnight. The resulting samples were films of PEDOT, MnTPP/PEDOT, 

MnTPPS/PEDOT, MnTMPyP/PEDOT and MnTPPS+MnTMPyP/PEDOT. Each was 

washed by submerging in Milli-Q water for 30 s, then letting the liquid run down by 

holding the slide upright on a paper towel. Tests showed that the use of ethanol as a 

washing solvent caused the porphyrin to leach out of MnTPP/PEDOT. The sample was 

dried in air for a few minutes then dried in an oven for 30 min at 60°C in air. After this 

treatment, films were ready to be tested.  

 

           

Figure 3.6 Early porphyrin/PEDOT film (left) and later enhanced version (right). 
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At first, electrochemical tests were conducted on samples by submerging the FTO glass 

slide in electrolyte up to the edge of the film with the EDAQ electrode attached to the 

top of the glass slide. In later experiments this was improved by attaching copper wire 

to the FTO surface with conductive silver paint and epoxy resin (see Figure 3.6). When 

the silver paste was fully solidified, epoxy glue was used to cover the contact area of the 

wire as well as any exposed clean FTO glass surface. The FTO glass slides with 

PEDOT film were also cut in half and each fashioned into a working sample. This 

allowed ready fabrication of duplicates for each sample. The surface area of film was 

measured out for every sample and the current data converted to current density to 

eliminate the influence of size variations on the overall results. 

 

3.2.5 Thickness and conductivity measurement 

The thickness and conductivity of each sample was measured using a Dektak 

profilometer and four point probe as described in sections 2.4.5 and 2.4.6. 

 

3.2.6 Electrochemical testing 

The prepared VPP PEDOT and porphyrin/PEDOT samples were subjected to 

electrochemical testing with the apparatus and methods described in sections 2.4.8 and 

2.4.9. In a typical experiment the electrochemical cell was filled with Na2SO4 (0.1 M) 

that had been degassed with N2 gas and stirred for 1 h. The sample was inserted as the 

working electrode with a Ag/AgCl reference electrode and platinum mesh counter 

electrode in their respective places. 
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Before testing, CV was performed on the film for 20 cycles at 10 mV/sec in order to 

stabilise the film. LSV sweeps were then performed over the range of 0-0.7 V at a scan 

rate of 5 mV/sec. Voltages beyond 0.7 V (vs Ag/AgCl) were not studied in order to 

avoid irreversible oxidative damage to the film. In a typical experiment, 5 sweeps were 

done in the dark and then 3 sweeps with illumination turned on. This ensured that the 

LSV spectrum remained constant over the course of data recording as it was otherwise 

affected by charge imbalances brought on by static electricity and low electrolyte 

mobility. The last of the LSV sweeps with and without illumination were used as data. 

This method was applied to all of the films in this chapter. In all cases the resulting 

current (in µA) was converted into current density (in µA/cm
2
) by dividing by the 

geometric area of the film. The geometric area was calculated by measuring the 

dimensions of the polymer film on the substrate with a ruler. In certain cases, electronic 

noise brought on by an unknown external interference was removed from the data by 

subtracting a sine wave function. 

 

Following the LSV measurement, each sample was tested by CA at set potentials of 0.6 

V, 0.65 V and 0.7 V (vs Ag/AgCl). In a typical experiment the chosen voltage was 

applied to the film for 1 h without illumination to equilibrate the baseline current. The 

light was then switched on to measure the resulting photocurrent for 10 min and then 

turned off. Data shown below was taken from 1 min before illumination to 1 min after 

illumination. The data (in µA) was normalised by subtracting the baseline before 

illumination and the results converted to current density (in µA/cm
2
) by the same 

method as above. The same method was also employed in conjunction with a gas 

sensing mechanism by GC as outlined in section 2.4.10. 
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3.3 Results and Discussion 

3.3.1 VPP porphyrin/PEDOT films 

Electrode films were prepared by vapour phase polymerisation (VPP) of 3,4–

ethylenedioxythiophene (EDOT) into the conducting polymer PEDOT, commonly on 

FTO glass and microscope slides. The method described in section 3.2.4 was used to 

make PEDOT films with and without Mn porphyrin species embedded in the matrix. 

Contrary to other methods of polymerisation, VPP allows the in situ formation of 

polymer with an embedded chemical species without the compound having to play a 

role as counter-ion. The high density of the film allowed for species without high 

binding affinity to the polymer to stay embedded. 

 

 

Figure 3.7 Porphyrin/PEDOT films: (a) PEDOT, (b) MnTPPS/PEDOT, (c) 

MnTMPyP/PEDOT, (d) MnTPPS+MnTMPyP/PEDOT, (e) MnTPP/PEDOT. 

 

Vapour phase polymerisation of PEDOT yielded thin films on glass, which were 

typically blue for control PEDOT films and green when a doping porphyrin was present 

(see Figure 3.7). The change in colour was a sign of porphyrin presence and could be 

studied in more detail through UV-visible light spectroscopy. The absorbance patterns 

were instrumental in determining the overall state of the porphyrins in the film, with 

special attention to the state of the metal atom in the core. Five types of films were 

prepared (see Figure 3.7): PEDOT, MnTPPS/PEDOT, MnTMPyP/PEDOT, 

(a) (b) (c) (d) (e) 
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MnTPPS+MnTMPyP/PEDOT, MnTPP/PEDOT. Mn Porphyrin was added to the 

polymerisation solutions at various different concentrations before polymerisation, 

resulting in films with different levels of porphyrin loading (see Table 3.5).  

 

MnTPPS MnTMPyP 
MnTPPS+ 

MnTMPyP 
MnTPP 

0.87 mg/mL / 0.78 mM 1 mg/mL / 0.78 mM 0.78 mM 1 mg/mL / 1.42 mM 

1.74 mg/mL / 1.57 mM 2 mg/mL / 1.57 mM 1.57 mM 2 mg/mL / 2.84 mM 

2.61 mg/mL / 2.35 mM 3 mg/mL / 2.35 mM 2.35 mM 3 mg/mL / 4.27 mM 

 

Table 3.5 Porphyrin concentrations in solutions for vapour phase polymerisation. 

 

3.3.2 Thickness and Conductivity 

The polymer film samples were made on both FTO glass and microscope slide glass in 

parallel. Microscope slide glass was used for thickness and conductivity testing of the 

samples as the smooth, non-conducting substrate allowed for easier measurements for 

both of these tests. The samples yielded the following representative results: 

 

Sample Thickness (µm) Conductivity (S cm
-1

) 

PEDOT 0.094 266 

MnTPPS/PEDOT 0.076 272 

MnTMPyP PEDOT 0.085 242 

MnTPPS+MnTMPyP/PEDOT 0.09 195 

MnTPP/PEDOT 0.129 109 

 

Table 3.6 Representative thickness and conductivity of the porphyrin/PEDOT films. 

 

The method used for vapour phase polymerisation resulted in fairly thin films of 

conducting polymer, generally on the order of ~0.1 µm. The conductivity was 

calculated according to the method described in section 2.4.6. The films generally had a 
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conductivity of 100-300 S cm
-1

, which was modest compared to values of 800 S cm
-1

 

that have been reported in literature [19-25]. The polymerisation itself was performed in 

air in a sealed vessel at a set temperature (60° C). Minute differences in moisture and air 

composition have been reported to have significant effects on the polymerisation 

process, which could not be completely controlled in this case. 

 

3.3.3 Photoelectrochemical testing of PEDOT 

Each PEDOT sample was tested in an electrochemical cell as described in section 3.2.6. 

From this experiment a baseline photocurrent level could be ascertained in order to 

compare the samples that were modified by the inclusion of porphyrin. 

 

 

Figure 3.8 (I) LSV of PEDOT, (a) dark, (b) with illumination. (II) CA of PEDOT at (a) 

0.6 V, (b) 0.65 V, (c) 0.7 V. 

 

Sample Current Density (µA/cm
2
) 

 
0.6 V 0.65 V 0.7 V 

PEDOT 0.68 0.75 0.90 

 

Table 3.7 Photocurrents of PEDOT at different voltages (vs Ag/AgCl). 
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The LSV of the PEDOT film with and without illumination (Figure 3.8) showed an 

onset potential of 0.55 V. The maximum photocurrent was observed in the region 0.6–

0.7 V (vs Ag/AgCl). 

 

In the photocurrent test by CA, the control PEDOT produced the following sets of 

photocurrents: 0.68 µA/cm
2
 at 0.6 V, 0.75 µA/cm

2
 at 0.65 V, 0.90 µA/cm

2
 at 0.7 V (see 

Table 3.7). The conducting polymer PEDOT has attracted some interest for its potential 

role in water splitting in the past, albeit more so for water reduction rather than 

oxidation [20, 26, 27]. While a minor photocatalytic effect was not unexpected, in this 

case the PEDOT served as a catalyst support rather than a catalyst by itself.
 

 

3.3.4 Photoelectrochemical testing of MnTPPS/PEDOT 

The electrochemical testing regime described in the previous section was applied to the 

MnTPPS/PEDOT sample. This allowed for a comparison with unmodified PEDOT, as 

well as with the literature precedent [2]. 
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Figure 3.9 LSV of MnTPPS/PEDOT at (I) 0.87 mg/mL, (II) 1.74 mg/mL, (III) 2.61 

mg/mL. (a) dark, (b) with illumination. 

 

The LSV spectra of this sample features a similar onset potential as that of control 

PEDOT, with an increasing photocurrent starting at 0.55 V (Figure 3.9). There was a 

minor increase in photocurrent with increasing concentration of MnTPPS in LSV but 

these differences were more pronounced in the potentiostatic measurements. 
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Figure 3.10 CA at (I) 0.6 V, (II) 0.65 V, (III) 0.7 V.  (a) PEDOT, (b) MnTPPS/PEDOT 

at 0.87 mg/mL, (c) 1.74 mg/mL, (d) 2.61 mg/mL. 

 

MnTPPS/PEDOT Current Density (µA/cm
2
) 

Porphyrin Loading 0.6 V 0.65 V 0.7 V 

0.87 mg/mL / 0.78 mM 0.78 0.83 0.95 

1.74 mg/mL / 1.57 mM 1.14 1.32 1.78 

2.61 mg/mL / 2.35 mM 1.19 1.46 1.88 

PEDOT 0.68 0.75 0.90 

 

Table 3.8 Photocurrent density of MnTPPS/PEDOT at different voltages (vs Ag/AgCl) 

 

When poised at the test potentials of 0.6 V, 0.65 V and 0.7 V the samples consistently 

outperformed PEDOT in photocurrent (see Figure 3.10), indicating enhanced catalytic 

activity of the porphyrin MnTPPS in the PEDOT matrix. The photocurrent consistently 

increased with concentration, as well as voltage, reaching a maximum of 1.88 µA/cm
2
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at 0.7 V (see Table 3.8). This was comparable to the previously reported result for this 

kind of material under similar conditions, albeit lower than the reported 2.89 µA/cm
2
 

[2]. 

 

3.3.5 Photoelectrochemical testing of MnTMPyP/PEDOT 

The MnTMPyP/PEDOT sample was tested by LSV and CA as per the previous section. 

 

 

Figure 3.11 LSV of MnTMPyP/PEDOT at (I) 1 mg/mL, (II) 2 mg/mL, (III) 3 mg/mL. 

(a) dark, (b) with illumination. 

 

The LSV spectrum of this sample showed consistently lower photocurrents compared to 

MnTPPS/PEDOT, similar in magnitude to that of the sample with PEDOT only (see 

Figure 3.11). The onset voltage profile was similar to the previous samples. 
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Figure 3.12 CA at (I) 0.6 V, (II) 0.65 V, (III) 0.7 V.  (a) PEDOT, MnTMPyP/PEDOT 

at (b) 1 mg/mL, (c) 2 mg/mL, (d) 3 mg/mL. 

 

MnTMPyP/PEDOT Current Density (µA/cm
2
) 

Porphyrin Loading 0.6 V 0.65 V 0.7 V 

1 mg/mL / 0.78 mM 0.76 0.75 0.86 

2 mg/mL / 1.57 mM 0.67 0.78 0.98 

3 mg/mL / 2.35 mM 0.83 0.89 1.01 

PEDOT 0.68 0.75 0.90 

 

Table 3.9 Photocurrent density of MnTMPyP/PEDOT at different voltages (vs 

Ag/AgCl). 

 

When poised at the voltages 0.6 V, 0.65 V and 0.7 V, the samples exhibited 

photocurrents with only minor improvement compared to that of PEDOT (see Figure 

3.12). The photocurrent density increased with concentration but the effect was very 

small compared to MnTPPS/PEDOT (see Table 3.9). 
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3.3.6 Photoelectrochemical testing of MnTPPS+MnTMPyP/PEDOT 

This sample was of particular experimental interest as it was an exploratory trial into 

ion-paired porphyrins as water oxidation catalysts in PEDOT. It was tested by LSV and 

CA as the preceding samples.  

 

 

 

Figure 3.13 LSV of MnTPPS+MnTMPyP/PEDOT at (I) 1 mg/mL, (II) 2 mg/mL, (III) 

3 mg/mL. (a) dark, (b) with illumination. 

 

Upon testing using the same electrochemical/photocurrent setup as with previous 

samples, the combined MnTPPS+MnTMPyP/PEDOT films featured an LSV profile 

much like that of MnTMPyP/PEDOT (see Figure 3.13). 
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Figure 3.14 CA at (I) 0.6 V, (II) 0.65 V, (III) 0.7 V. (a) PEDOT, 

MnTPPS+MnTMPyP/PEDOT at (b) 1 mg/mL, (c) 2 mg/mL, (d) 3 mg/mL. 

 

MnTPPS+MnTMPyP/PEDOT Current Density (µA/cm
2
) 

Porphyrin Loading 0.6 V 0.65 V 0.7 V 

1 mg/mL / 0.78 mM 0.97 1.01 1.22 

2 mg/mL / 1.57 mM 1.03 1.07 1.31 

3 mg/mL / 2.35 mM 0.80 0.91 1.14 

PEDOT 0.68 0.75 0.90 

 

Table 3.10 Photocurrent density of MnTPPS+MnTMPyP/PEDOT at different voltages 

(vs Ag/AgCl). 

 

The photocurrent density obtained from chronoamperometry at set voltages was also 

small, with very minor gains over that of PEDOT alone (see Figure 3.14 and Table 
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3.10). The pairing of MnTPPS and MnTMPyP prior to incorporation into PEDOT did 

not lead to increased photocatalytic performance. 

 

3.3.7 Photoelectrochemical testing of MnTPP/PEDOT films 

The MnTPP/PEDOT was tested by LSV and CA as previous samples. 

 

 

Figure 3.15 LSV of MnTPP/PEDOT at (I) 1 mg/mL, (II) 2 mg/mL, (III) 3 mg/mL. (a) 

dark, (b) with illumination. 

 

Photoelectrochemical testing of MnTPP/PEDOT films yielded results similar to that of 

MnTPPS/PEDOT in LSV, but with a higher photocurrent; a more pronounced elevation 

of light-driven current was found in this type of sample compared to the others (see 

Figure 3.15). 
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Figure 3.16 CA at (I) 0.6 V, (II) 0.65 V, (III) 0.7 V. (a) PEDOT, MnTPP/PEDOT at (b) 

1 mg/mL, (c) 2 mg/mL, (d) 3 mg/mL. 

 

MnTPP/PEDOT Current Density (µA/cm
2
) 

Porphyrin Loading 0.6 V 0.65 V 0.7 V 

1 mg/mL / 1.42 mM 2.37 2.91 4.01 

2 mg/mL / 2.84 mM 1.53 1.89 2.62 

3 mg/mL / 4.27 mM 0.99 1.11 1.47 

PEDOT 0.68 0.75 0.90 

 

Table 3.11 Photocurrent density of MnTPP/PEDOT at different voltages (vs Ag/AgCl) 

 

The CA results showed the highest levels of photocurrent so far in this work, with a 

maximum photocurrent of 4 µA/cm
2
 at 0.7 V (vs Ag/AgCl) (see Figure 3.16). What was 

perhaps most unexpected about the performance of this sample is that it scaled 

negatively with increasing concentration, as can be seen when the results are tabulated 
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(see Table 3.11): The higher the concentration, the lower the recorded photocurrent. 

These early findings were deemed significant enough to warrant a more thorough 

analysis of this porphyrin/polymer combination, which is described in the following 

chapter. 

 

3.3.8 Photoelectrochemical testing of VPP MnTPP/PEDOT with gas sensing 

In light of the results presented in the previous section MnTPP/PEDOT was chosen for 

a photocurrent test with an attached gas chromatograph to analyse the gas, if any, 

produced by the sample. Films of MnTPP/PEDOT at 2.133 mM (1.5 mg/mL) porphyrin 

concentration were made according to the method explained in section 3.2.4 and tested 

in an electrochemistry cell apparatus specialised for sensitive gas sensing (see section 

2.6.10). 

 

  

Figure 3.17 CA of MnTPP/PEDOT (1.5 mg/mL) at 0.7 V in 0.1M Na
2
SO

4
 (left), bubble 

formation on the electrode surface after prolonged testing (right).  (*) light on, (**) light 

off. 
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Figure 3.18 GC data taken after overnight purging (I) prior to CA and (II) after 4.7 h of 

illumination at 0.7 V (vs Ag/AgCl) in 0.1 M Na
2
SO

4
. 

 

The sample was tested by CA by poising the sample at 0.7 V (vs Ag/AgCl) in 0.1 M 

Na2SO4 for 1 h, then illuminating with the Xenon lamp while at a steady bias (see 

Figure 3.17). After 4.7 h the gas was tested in a gas chromatograph and the results 

plotted over 30 min elution time. Prior to the photocatalytic testing the gas was analysed 

and found to exhibit only an argon peak, indicating that air in the vessel has been fully 

removed by the argon carrier gas (see Figure 3.18 (I)). The GC data after 4.7 hours 

confirmed the presence of oxygen, but, surprisingly, also hydrogen and one other gas 

that appeared to coincide with the retention time for carbon monoxide, CO (see Figure 

3.18 (II)). Nitrogen gas was wholly absent from the gas spectrum after photocatalytic 

testing of the sample, indicating that the detected gases were not the result of air leaking 

into the system. 
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3.3.9 UV-Vis spectroscopy of PEDOT 

The films prepared in section 3.2.4 were analysed by UV-Vis spectroscopy, starting 

with the control PEDOT sample. 

 

 

Figure 3.19 UV-Vis spectrum of vapour phase polymerised PEDOT. 

 

The UV-Vis spectrum of PEDOT featured the characteristic conduction band pattern 

found for PEDOT in the chemical literature (Figure 3.19) [19]. A broad region of 

increasing absorbance was observed starting from 490 nm and extending well into the 

infrared. 
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3.3.10 UV-Vis spectroscopy of porphyrin films 

Solutions of the Mn porphyrin species in 80% ethanol/water were prepared and spin 

coated onto glass slides (see section 3.2.4). The UV-Vis absorbance profile was 

collected.  

 

Figure 3.20 Superimposed UV-Vis spectra of porphyrin species deposited on glass in 

the same fashion as for VPP, but without the oxidant present. (a) MnTPPS+MnTMPyP, 

(b) MnTPPS, (c) MnTMPyP, (d) MnTPP. The Soret Band peaks were marked with a 

vertical line. 

 

The Soret Band peaks of MnTPPS, MnTMPyP and MnTPPS+MnTMPyP were 

observed at 477 nm while that of MnTPP was at 485 nm (Figure 3.20). The peak 

absorbance for the mixture of the two oppositely charged porphyrins 

MnTPPS/MnTMPyP remained at the same wavelength but featured a broadened peak 

with lower intensity at 477 nm. This was consistent with the UV-Vis characteristics 

reported for this arrangement of porphyrins [6]. The Soret Band of MnTPP was found at 

485 nm. 
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3.3.11 UV-Vis spectroscopy of porphyrin/Fe-pTS films 

Solutions of porphyrin species in 80% ethanol/water were then prepared and spin coated 

onto glass slides following the same method as for VPP porphyrin/PEDOT, including 

the oxidant and pyridine, and examined by UV-Vis. This experiment demonstrated the 

UV-Vis absorbance profile of each porphyrin on a glass surface, highlighting possible 

changes to the porphyrin structure caused by the Fe-pTS oxidant. 

 

Figure 3.21 Superimposed UV-Vis spectra of porphyrin species deposited on glass in 

the same fashion as the VPP procedure, including the oxidant but before 

polymerisation. (a) Fe-pTS+pyridine and (b) MnTPPS+MnTMPyP, (c) MnTPPS, (d) 

MnTMPyP, (e) MnTPP. 

 

The Soret Bands were observed at 473.5 nm for MnTPP, 469.5 nm for MnTMPyP, 

471.5 for MnTPPS and 470.5 nm for MnTPPS/MnTMPyP (Figure 3.21). A broad, 

intense peak was recorded for Fe-pTS + pyridine starting at 450 nm and extending into 

the UV region. The depositions consisting of porphyrin and oxidant/base all exhibited 

this broad peak. A small shift in the Soret Bands wavelength by about 6-10 nm was 
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observed for each porphyrin, compared to the spectra of the films without oxidant (see 

section 3.3.3 and Figure 3.20. The shift seemed to be consistent throughout the spectra, 

covering both the Soret and Q Bands, suggesting a shift due to aggregation rather than a 

change in the structure of the porphyrin. This confirmed that the porphyrins used in this 

experiment did not react with the oxidant. The polymerisation experiment could 

therefore proceed with the porphyrins in the oxidant mixture. 

 

3.3.12 UV-Vis spectroscopy of MnTPPS/PEDOT 

The MnTPPS/PEDOT films prepared in section 3.2.4 were each tested by UV-Vis 

spectroscopy in order to observe any significant changes to the spectra compared to that 

of the porphyrin on glass without PEDOT. 

 

Figure 3.22 UV-Vis spectra of (a) MnTPPS, and (b) MnTPPS/PEDOT films at 0.87 

mg/mL, (c) 1.74 mg/mL and (d) 2.61 mg/mL. The Soret Band shifts are indicated with 

lines and arrows. 

350 400 450 500 550 600 650 700 750

A
bs

or
ba

nc
e 

(a
.u

.)

Wavelength (nm)

a

b

c

d

*

**



 

112 

 

The UV-Vis spectra for MnTPPS/PEDOT films exhibited more complexity than that of 

the porphyrin alone (see Figure 3.22). In the case of 0.87 mg/ml concentration, there 

were three absorbance peaks visible at 425.5 nm, 446 nm and 487.5 nm (b), shifting 

from the reference peak for the Mn porphyrin itself at 477 nm (a, *). The peak at 487 

nm could be attributed to the porphyrin on the surface that was marginally affected by 

the PEDOT and shifted to the red region by about 10 nm. The two new peaks indicated 

a more significant interaction between the porphyrin in the polymer. 

 

3.3.13 UV-Vis spectroscopy of MnTMPyP/PEDOT 

The MnTMPyP/PEDOT films prepared in section 3.2.4 were analysed by UV-Vis 

spectroscopy in the same fashion as the previous films. 

 

Figure 3.23 UV-Vis spectra of (a) MnTMPyP, (b) MnTMPyP/PEDOT at 1 mg/mL, (c) 

2 mg/mL and (d) 3 mg/mL. The Soret Band shifts were indicated with lines and arrows. 

 

The UV-Vis spectra of MnTMPyP/PEDOT films on glass displayed a significant 

change to the Soret Band compared to that without PEDOT, from 477 nm to 436 nm 
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(see Figure 3.23). At 2 mg/ml the shift was a little more pronounced, with the peak at 

433.5 nm. In contrast to MnTPPS, there was a completely uniform change in the light 

absorbance profile of this species rather than multiple absorbance peaks. This indicates 

that the porphyrin molecules in the matrix on the whole rearranged to one particular 

arrangement. However the shift was less than that in MnTPPS/PEDOT, which went to 

425.5 nm. 

 

3.3.14 UV-Vis spectroscopy of MnTPPS+MnTMPyP/PEDOT 

The MnTPPS+MnTMPyP/PEDOT films prepared in section 3.2.4 were analysed by 

UV-Vis spectroscopy in the same fashion as the previous films. 

 

 

Figure 3.24 UV-Vis spectra of (a) MnTPPS+MnTMPyP, MnTPPS+MnTMPyP/PEDOT 

at (b) 1 mg/mL, (c) 2 mg/ml and (d) 3 mg/ml. The Soret Band shifts are indicated with 

lines and arrows. 

 

350 400 450 500 550 600 650 700 750

A
bs

or
ba

nc
e 

(a
.u

.)

Wavelength (nm)

d

c

b

a

*

**



 

114 

 

The UV-Vis spectrum of MnTPPS+MnTMPyP/PEDOT at 1 mg/ml displayed a change 

in the Soret Band compared to that without PEDOT, moving from from 477 nm to a 

dominant peak at 444 nm and a shoulder at 433 nm (see Figure 3.24). At 2 and 3 

mg/mL the change was more uniform to one peak at 425.5 nm. These spectra very much 

resembled that of MnTMPyP/PEDOT. What was surprising was the higher absorbance 

of the Soret Band peaks compared to that of the mixture in solution and cast on the film. 

It was possible that the polymerisation process of PEDOT had an unexpected effect on 

the arrangement of the two porphyrins which would otherwise show a lowered 

absorbance profile compared to that of the porphyrins studied in isolation. 

 

3.3.15 UV-Vis absorbance spectroscopy of MnTPP/PEDOT films 

The MnTPP/PEDOT films prepared in section 3.2.4 were analysed by UV-Vis 

spectroscopy in the same fashion as the previous films. This sample was of interest as it 

displayed the highest levels of photocurrent density measured in this work. 

 

Figure 3.25 UV-Vis spectra of (a) MnTPP, (b) MnTPP/PEDOT at 1 mg/mL, (c) 2 

mg/mL and (d) 3 mg/mL. The Soret Band shifts were indicated with lines and arrows. 
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UV-Vis spectra of MnTPP/PEDOT exhibited interesting behaviour of the porphyrin 

Soret Band, similar to that of MnTPPS/PEDOT (see Figure 3.25). In all three 

PEDOT/MnTPP samples, there was a clear change in the peak absorbance wavelength 

towards two smaller wavelengths, from one peak at 485 nm to two peaks at 425 & 447 

nm. This could indicate complex interaction between the porphyrin and the surrounding 

polymer, leading to face-to-face and/or oblique arrangement [9]. Similarly to MnTPPS 

the intensity of the peak at 425 nm increased with concentration indicating a preference 

for one arrangement as concentration increased. 

 

3.3.16 Overview of porphyrin spectroscopic data 

The change in Soret Band wavelength of the porphyrins in the PEDOT matrix invited a 

discussion on the status of the porphyrin, with the main hypothesis being that the metal 

in the core had changed oxidation state. This would be in line with the active sites of 

manganese ions with different oxidation states in natural photosynthesis [28-31]. For 

that purpose, a literature survey was conducted to find the reported Soret Band 

wavelengths for the oxidation states of the manganese porphyrins used in this study. 

 

Porphyrin 

Mn Oxidation state 

Wavelength (nm) Ref. 

II III IV 

MnTPPS (water) 436 469 424 [8, 17] 

MnTMPyP (water) 441 463 422 [8, 17]  

MnTPP (water emulsion) 432 468 418 [32] 

MnTPP (DCM)  478 425 [32] 

 

Table 3.12 Soret Band peaks of Mn porphyrins at different oxidation states. 
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Sample Wavelength (nm) 

MnTPPS/PEDOT 

before polymerisation   477 

after polymerisation 426  484 

MnTMPyP/PEDOT 

before polymerisation   477 

after polymerisation  436  

MnTPPS+ MnTMPyP/PEDOT 

before polymerisation   477 

after polymerisation 425 444  

MnTPP+PEDOT 

before polymerisation   485 

after polymerisation 425 448  

 

Table 3.13 Overview of Soret Band peaks identified in porphyrin/PEDOT samples. 

 

The results of this survey are summarised in Table 3.12. The experimentally derived 

results are summarised in  

Table 3.13. Judging from the UV-Vis data of the porphyrin/PEDOT films there was 

some similarity between the absorbance wavelengths recorded experimentally to those 

reported in literature for the oxidation states of Mn porphyrins. At first glance one may 

raise the hypothesis of a change in oxidation state of the Mn porphyrins in the PEDOT 

matrix. 

 

A common feature of the higher performing samples (MnTPPS/PEDOT and 

MnTPP/PEDOT) was the dual peak structure, suggesting the Mn porphyrins in the 

matrix were simultaneously present in different oxidation states. The close proximity of 

Mn ions in different oxidation states was identified as a characteristic feature of the 

OEC found in Nature [33-39]; possible parallels in a synthetic system were therefore of 

high interest. 
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3.4 Conclusions 

The interaction between the porphyrin species and PEDOT was studied on the basis of 

UV-Vis absorbance peaks characteristic to each species. By analysing the position of 

the Soret Band for each porphyrin inside the PEDOT film it was possible to draw a 

hypothesis on the possible configuration the porphyrins in the film. At this point of the 

work it remained unclear whether the change in absorbance was due to the change in 

oxidation state of the Mn core in the porphyrin or due to another yet unknown 

phenomenon. The UV-Vis data was compared to literature data as much as possible but 

did not allow for definite confirmation on the exact state of the porphyrin. The common 

feature of samples that featured high photocurrents was the two peak structure, with one 

at 425 nm and the other at 445 nm or 484 nm. The absorbance wavelengths were 

compared to the Soret Band position of Mn(IV), Mn(II) and Mn(III) oxidation states of 

the corresponding metalloporphyrin in literature. This resulted in some degree of 

correlation whereby the UV-Vis peaks found in porphyrin/PEDOT samples could be the 

result of a change in oxidation state of the core Mn ion. The species MnTPP/PEDOT, as 

it was the highest performing sample type in terms of photocurrent, was chosen to be 

studied by gas sensing during photoelectrochemistry and featured oxygen gas evolution 

as recorded by GC. This system was examined in greater detail in the next chapter in 

order to understand the behaviour of the porphyrin inside the PEDOT matrix. 
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4 Analysis of MnTPP/PEDOT 

4.1 Introduction and Aims 

As noted in the previous chapter, the porphyrin species 5,10,15,20-

tetraphenylporphyrinato manganese(III) chloride (MnTPP) was inserted into PEDOT 

and tested as a photocatalyst of water oxidation [1, 2]. The doping was carried out by 

vapour phase polymerisation, which is known to produce dense polymer layers that can 

readily trap bulky species such as neutral or potentially cationic species like MnTPP, 

within the polymer matrix. The species Mn(III)Cl(TPP) and its cationic counterpart 

Mn(III)(TPP)
+
, after dissociation of its Cl

-
 ligand, may be repelled by PEDOT when the 

polymer is in its conducting, oxidised state. To minimise this repulsive effect and 

associated electrochemical changes to the PEDOT, only relatively low levels of MnTPP 

were incorporated.  It was hoped that this would also help illuminate the interactions 

that occurred between the MnTPP and PEDOT at the most fundamental level.    

 

As noted in the previous chapter, MnTPP/PEDOT proved to be a very unusual and 

highly distinctive material in that it:  

(a) displayed the highest overall performance in terms of photocurrent density of 

all of the metalloporphyrin/PEDOT composites that were prepared (see Table 4.1),  

(b) yielded photocurrents that increased with decreasing loading levels (see 

Table 3.11), in complete contrast to all of the other metalloporphyrin/PEDOT 

composites, whose photocurrents increased with increasing doping levels, and 

(c) generated, uniquely and unexpectedly, a mixture of oxygen and hydrogen 

when illuminated with sunlight when poised at 0.7 V (vs Ag/AgCl) in 0.1 M Na
2
SO

4
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(see Figure 3.18 and section 3.3.8).  By contrast, MnTPPS/PEDOT generated 

exclusively oxygen under comparable conditions.   

 

For these reasons, it was decided to subject the MnTPP/PEDOT composite to a more 

detailed study, which would hopefully elucidate its mechanism of action at least to 

some extent.  New samples of MnTPP/PEDOT were prepared and tested. The tests 

included more comprehensive UV-Vis spectroscopic analysis of the composite, as well 

as the species that were leached from the composite when it was washed.  The 

spectroscopic data was compared to that of the same Mn porphyrin under different 

conditions, such as with different Mn oxidation states. Comparisons were also made 

with the porphyrin alone, free base and / or protonated state.  Such comparisons allowed 

for an assessment of the likely state of the porphyrin in the PEDOT composites.  

Elemental analysis of the MnTPP/PEDOT was also carried out. 

 

Sample Porphyrin Loading 0.6 V 0.65 V 0.7 V 

MnTPP/PEDOT 1 mg/mL / 1.42 mM 2.37 2.91 4.01 

MnTPPS/PEDOT 2.61 mg/mL / 2.35 mM 1.19 1.46 1.88 

MnTPPS+MnTMPyP/PEDOT 2 mg/mL / 1.57 mM 1.03 1.07 1.31 

MnTMPyP/PEDOT 3 mg/mL / 2.35 mM 0.83 0.89 1.01 

 

Table 4.1 Summary of the highest CA photocurrent density results (in µA/cm
2
) per 

sample in chapter 3.  
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Figure 4.1 GC trace of the gases produced by MnTPP/PEDOT after 4.7 h of 

illumination at >3 sun, while poised at 0.7 V (vs Ag/AgCl) in 0.1 M Na
2
SO

4
 (from 

section 3.3.8). 

 

The focus of this chapter is, consequently, on an in-depth analysis of the photoelectronic 

properties of MnTPP/PEDOT. In addition to elemental analysis, in order to determine 

the physical composition of the film, porphyrin was also extracted from the 

MnTPP/PEDOT samples with ethanol and analysed by MALDI spectrography and UV-

Vis spectroscopy. The central aim in this chapter was to establish the properties of the 

porphyrin in the composite and how it changed.  MnTPP/PEDOT, at higher loading 

levels than previously, was also studied in order to determine features that were specific 

to porphyrin concentration. In iterative tests the most likely state was determined by the 

overall closest fit between data from the porphyrin inside MnTPP/PEDOT and that of 

experimentally reproduced species. 

 

H2 

O2 

Ar 



 

125 

 

4.2 Experimental 

4.2.1 Synthesis of 5,10,15,20-tetraphenylporphyrinato manganese(III) chloride 

(MnTPP) 

The porphyrin was synthesised as described in section 3.2.1. The free base species 

5,10,15,20-tetraphenylporphyrin (TPP) was also used for analysis in this work. 

 

4.2.1 MnTPP reduction 

 

Figure 4.2 Reaction scheme for reduction of Mn(III)TPP to Mn(II)TPP. 

 

Mn(III)TPP was reduced to Mn(II)TPP following a method suggested in literature (see 

Figure 4.2) [3]. A solution of Mn(III)TPP (0.01 M) in ethanol was transferred to a UV-

Vis quartz cuvette . The cuvette was covered with Parafilm to avoid exposure to air, and 

a Pasteur pipette tip inserted to bubble Argon gas through the solution for 30 min. A 

small amount of NaBH4 (10 mg) and Na2S2O4 (10 mg) were added and the solution 

continuously bubbled with Ar gas. Care was taken not to expose the solution to air as 

oxygen readily oxidises the porphyrin back to the Mn(III) state. After 5 min the cuvette 

was quickly transferred to the UV-Vis spectrometer, whilst maintaining an inert 

atmosphere inside, and a spectrum taken. The spectrum displayed the characteristic 

Soret Band, shifted from 466 nm to 432 nm [3]. A small quantity of Milli-Q water (0.5 
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mL) was then added to the solution. This resulted in a shift of part of the Soret Band to 

420 nm, close to that of free TPP at 415 nm, as well as a partial restoration of the 

characteristic TPP Q-bands at 514, 550, 590 and 645 nm. 

 

4.2.2 Protonation of TPP 

 

Figure 4.3 Reaction scheme for the protonation of TPP 

 

A small amount of TPP (0.01 M) was dissolved in DCM and a few drops of TFA added 

to the mixture to protonate the porphyrin (see Figure 4.3). The solution was transferred 

to a quartz cuvette and the UV-Vis spectrum for the acidified species (H4TPP)
2+

 was 

obtained; this featured the Soret Band shifted to 436 nm from the normal 415 nm. There 

were also two instead of four Q Band peaks at 600 nm and 652 nm [4].  

 

4.2.3 Porphyrin/PEDOT films by VPP deposition 

Films of MnTPP/PEDOT and TPP/PEDOT were produced following the method 

outlined in section 3.2.4. The fabrication process involved cutting the FTO electrode in 

half after VPP deposition, thereby making two samples from one deposition. As an 

additional precaution a small amount of epoxy glue was applied to the side and bottom 

edges of the electrodes to avoid possible distortions in data brought on by edge effects. 

In each case the geometric surface area of active film was measured with a ruler and the 
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photocurrent converted to current density for accurate comparisons. The 

MnTPP/PEDOT samples that were prepared are shown in  

Table 4.2. 

 

MnTPP/PEDOT TPP/PEDOT 

1.5 mg/mL / 2.13 mM 1.5 mg/mL / 2.44 mM 

10 mg/mL / 14.18 mM  

23 mg/mL / 32.71 mM  

 

Table 4.2 Porphyrin/PEDOT samples prepared for this chapter. 

 

4.2.4 Electrochemical testing 

The porphyrin/PEDOT samples were subjected to electrochemical testing with the 

apparatus and methods described in sections 2.4.8 and 2.4.9. In a typical experiment the 

electrochemical cell was filled with Na2SO4 (0.1 M) that had been bubbled with N2 gas 

and stirred for 1 h. The sample was inserted into the test cell as the working electrode 

with a Ag/AgCl reference electrode and platinum mesh counter electrode in their 

respective places. 

 

Before the examination, CVs were performed on the film for 20 cycles at 10 mV/s in 

order to stabilise the film, over the range of 0.0 V - 0.7 V at a scan rate of 5 mV/sec. 

Voltages beyond 0.7 V (vs Ag/AgCl) could lead to irreversible oxidative damage to the 

film and were therefore avoided. In a typical experiment 5 sweeps were done in the dark 

and then 3 sweeps with illumination turned on. This ensured that the LSV spectrum 

remained constant over the course of data recording as it was otherwise affected by 

charge imbalances brought on by static electricity and low electrolyte mobility. The last 
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of the LSV sweeps with and without illumination were used as data. This method was 

applied to all of the films examined in this chapter. In all cases the resulting current (in 

µA) was converted into current density (in µA/cm
2
) by dividing by the geometric area 

of the film. The area was calculated from measuring the dimensions of the polymer film 

on the substrate with a ruler. Where necessary, electronic noise brought on by an 

unknown external interference was removed from the data by subtracting a sine wave 

function. 

 

Following the LSV measurement, each sample was tested by CA at constant potentials 

of 0.6 V, 0.65 V and 0.7 V (vs Ag/AgCl). In a typical experiment the chosen voltage 

was applied to the film for 1h without illumination in order to equilibrate the baseline 

current. The light was then switched on to measure the resulting photocurrent for 10 

minutes and then turned off. The data shown in the results presented below was taken 

from 1 min before illumination to 1 min after end of illumination. The data (in µA) was 

normalised by subtracting the baseline before illumination and the results converted to 

current density (in µA/cm
2
) by the same method as above. 

 

4.3 Results and Discussion 

4.3.1 Elemental analysis of MnTPP/PEDOT 

To determine the make-up of MnTPP/PEDOT, films were prepared by the method 

described in section 4.2.3 with a loading level of 1.5 mg/mL (2.13 mM) of MnTPP in 

the polymerisation reaction mixture. A total of 24 films had to be produced to prepare 

enough mass of composite (~10 mg) for elemental analysis.  The films were scratched 

off the glass surface with a scalpel and combined in an Eppendorf tube which was then 
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submitted for testing by the Microanalytical Unit at the Australian National University 

Research School of Chemistry and the University of Wollongong School of Chemistry.  

The elemental analysis was carried out using an EA 3000 instrument for CNH analysis, 

a Dionex for S and flame atomic absorption spectroscopy for Mn and Fe (see section 

2.4.4). 

Element % expected % found 

C 46.57 44.18 

H 2.56 3.20 

N 0.54 0.63 

S 18.46 18.06 

Fe 0 0.41 

Mn 0.53 <0.02 

 

Table 4.3 Elemental analysis results of MnTPP/PEDOT; found vs expected percentage 

by weight. 

 

The results of the elemental analysis were quite remarkable and entirely unprecedented 

in all of the previous work carried out at the University of Wollongong on composites 

of these types.  As shown in Table 4.3, the expected percentages, which were based on 

the ratio of oxidant to MnTPP in the polymerisation solutions (58.8:1), were not 

observed. Normally one would expect that all of the oxidant in the polymerisation 

solution would be used up to polymerise the EDOT monomer, meaning that the mole 

fraction of the oxidant should correspond to the mole fraction of individual monomer 

units of PEDOT. The dried coating would then be expected to contain 46.57% C, 2.56% 

H, 0.54% N, 18.46% S, and 0.53% Mn.   

 

Instead, the coating was found to contain 44.18% C, 3.20% H, 0.63% N, 18.06% S, and 

0.00% Mn. Fe was also detected at 0.41%, meaning that trace amounts of the oxidant or 
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its reduced form were trapped within the film and could not be removed by washing the 

films with Milli-Q water after polymerisation (see  

Table 4.3).  

 

The elemental analysis yielded a startling discovery, namely, that manganese was not 

present in the MnTPP/PEDOT film submitted for analysis. The manganese ion had 

somehow been ejected from the porphyrin during fabrication of the film. The porphyrin 

remained intact after the polymerisation. The loss of the Mn ion from the porphyrin 

must therefore have occurred during the PEDOT polymerisation process. Given that 

Mn(III) is very difficult to be removed from the complex, this could only have occurred 

if the Mn(III) was transformed or cycled through a Mn ion on a different oxidation 

level. Previous studies on the TPP complexes of Mn(II), Mn(III), Mn(IV) and Mn(V) 

have shown that only the Mn(II) variant is labile and capable of being removed from the 

porphyrin core.  However, under normal conditions, Mn(II)TPP rapidly and irreversibly 

forms the kinetically stable Mn(III)TPP when exposed to air oxygen [3, 5, 6]. 

 

In order to verify this hypothesis the remaining porphyrin in MnTPP/PEDOT was 

isolated and analysed separately. The Mn(III)TPP to Mn(II)TPP reaction and 

subsequent demetallation, was also experimentally reproduced in order to directly study 

the changes to the system by UV-Vis spectroscopy. 
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4.3.2 UV-Vis spectroscopy studies of porphyrin leached from MnTPP/PEDOT 

In light of the elemental analysis results indicating an absence of Mn in the samples, it 

was decided to analyse the porphyrin in the MnTPP samples separately from the film 

itself. MnTPP is highly soluble in ethanol, which was why the MnTPP/PEDOT films 

were washed with Milli-Q water after fabrication rather than ethanol in order to remove 

residual EDOT and oxidant.   

 

For this experiment films of MnTPP/PEDOT were prepared by the method described in 

section 4.2.3 with a loading of 1.5 mg/mL (2.13 mM) of MnTPP in the reaction 

mixture. A small amount of ethanol was thereafter poured on to the MnTPP/PEDOT 

film drop-wise and the run-off captured in a sample vial. The ethanol turned a green 

colour upon contacting the film, indicating ready leaching of the porphyrin from the 

film.  The ethanolic leachate was then analysed by UV-Vis spectroscopy.  

 

 

Figure 4.4 UV-Vis spectra of porphyrins in ethanol: (a) porphyrin leached from 

MnTPP/PEDOT film by washing with ethanol, (b) free base TPP, (c) MnTPP. 
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As can be seen in Figure 4.4, the Soret band of MnTPP in ethanol fell at 466 nm, while 

that of the free base TPP fell at 415 nm. The spectrum of the porphyrin rinsed out of 

MnTPP/PEDOT films using ethanol was identical to that of free TPP, including the Q-

bands in the 490-660 nm region. This ethanol rinse was also analysed by MALDI 

spectrography and showed a major peak at 613 m/z, which corresponded to the free 

base TPP.  These results confirmed the elemental analysis data that had been obtained. 

 

A second sample of MnTPP/PEDOT was prepared in the same way, without the final 

step of washing the MnTPP/PEDOT in Milli-Q water as is normally part of the 

fabrication process (see section 3.2.4). This was done in order to examine the state of 

the porphyrin inside MnTPP/PEDOT without it coming into contact with water at any 

stage. The porphyrin in that sample was thereafter again leached out with ethanol and 

analysed using UV-Vis spectroscopy. 

 

 

Figure 4.5 UV-Vis spectra of porphyrins in ethanol: (a) porphyrin leached from 

MnTPP/PEDOT film that had not been exposed to water showing (*) a new peak at 436 

nm, (b) free base TPP.  
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The UV-Vis spectrum of the porphyrin leached out of this sample using ethanol was 

identical to that of the previous MnTPP/PEDOT sample, except for the presence of an 

extra peak at 436 nm (Figure 4.5). Neither spectrum indicated that the porphyrin in the 

film was in the original Mn(III)TPP form; it had clearly already changed within the 

polymer matrix, even before electrochemical testing. 

 

The absorbance peak at 415 nm for the porphyrin leached out of MnTPP/PEDOT was 

unequivocally that of the free base porphyrin TPP (see Figure 4.4 and Figure 4.5), 

indicating that the porphyrin lost its Mn ion during the polymerisation process. To 

investigate the second peak at 436 nm further experimentation was necessary.  

 

One possible candidate for the peak at 436 nm was the Soret band of Mn(II)TPP [3]. 

The Q-bands of this particular species may be covered up by the more intense 

absorbance displayed by the free base TPP. As noted earlier, demetallation of 

Mn(II)TPP had been reported in literature [3, 5-7]. This suggested that the Mn(III) 

porphyrin was reduced to the Mn(II) analogue during the formation of the PEDOT 

conductive polymer, with the metal ion then expelled by interaction with a mildly acidic 

species. Such a reaction would be highly unusual as reduction of Mn(III) porphyrin 

normally requires a strong reducing agent and the absence of air oxygen. Given the 

abundant presence of the strongly oxidising Fe-pTS in the polymerisation mixture, one 

would expect the presence of an oxidised porphyrin and not a reduced porphyrin.  
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4.3.3 UV-Vis spectrum of Mn(II)TPP and subsequent demetallation. 

Mn(III)TPP in ethanol was reduced to Mn(II)TPP using sodium borohydride under inert 

atmosphere and subsequently demetallated following the method described in section 

4.2.1. The porphyrin species at each step along this pathway were characterised by UV-

Vis spectroscopy. 

 

 

Figure 4.6 UV-Vis spectra of porphyrins in ethanol: (a) Mn(III)TPP, (b) Mn(II)TPP 

(under inert atmosphere), (c) Mn(II)TPP after the addition of water under inert 

atmosphere. 

 

As can be seen in Figure 4.6, the Soret band in ethanol of Mn(III)TPP at 466 nm (Figure 

4.6(a)) shifted to 432 nm for Mn(II)TPP under inert atmosphere (Figure 4.6 (b)).  These 

data were in agreement with literature data [3]. Exposure of the Mn(II)TPP solution to 

air resulted in immediate regeneration of Mn(III)TPP.  When Milli-Q water was added 

to the Mn(II)TPP solution (under inert atmosphere), the Soret Band at 432 nm split into 

two bands at 420 nm (which was close to that of free TPP at 415 nm) and 466 nm 
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(which was characteristic of Mn(III)TPP) (Figure 4.6 (c)).  The characteristic Q-bands 

of free TPP were also observed at 514 nm, 550 nm, 590 nm and 645 nm. 

 

 

Figure 4.7 UV-Vis spectra of: (a) ethanol wash leached from MnTPP/PEDOT that had 

not been treated with water during its preparation, (b) free base TPP, (c) Mn(II)TPP. 

 

These spectra were then compared to those of an ethanol wash leached from 

MnTPP/PEDOT film samples that had not been treated with water at any stage (Figure 

4.7). The absorbance bands at 415 nm and 432 nm of the ethanol leachate (Figure 4.7 

(a)) could be attributed to the Soret Bands of free base TPP (Figure 4.7 (b)) and 

Mn(II)TPP (Figure 4.7 (c)). However, the Q Bands of the leached sample did not 

display any similarity to that of Mn(II)TPP, instead mirroring those of TPP. Mn(II)TPP 

displayed two distinct absorbance peaks at 567 nm and 606 nm, while the leachate had 

four absorbance peaks at 514 nm, 550 nm, 590 nm and 645 nm, which corresponded to 

those of free TPP. This indicated that the second species in the unwashed 
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MnTPP/PEDOT film may not be Mn(II) TPP. The question then remains, which species 

absorbed at 432 nm? 

 

4.3.4 UV-Vis spectroscopy of protonated TPP 

One more variant of the TPP porphyrin was explored by UV-Vis analysis, namely, that 

of the protonated free base, H4TPP
2+

. In the previous section the additional absorbance 

peak at 432 nm was compared to Mn(II)TPP and found to not be in full agreement. In a 

similar experiment, free base TPP was protonated as per the method described in 

section 4.2.2 and again compared to that of the above ethanol leachate (Figure 4.8). 

 

Figure 4.8 UV-Vis spectra in ethanol of: (a) porphyrin leached from MnTPP/PEDOT 

that had not been treated with water, (b) free base TPP, (c) protonated H4TPP
2+

. 

 

The UV-Vis spectrum of protonated H4TPP
2+

 (Figure 4.8 (c)) displayed a significant 

overlap with the spectrum of the leachate (Figure 4.8 (a)).  Indeed, the Soret Band 

position of the protonated H4TPP
2+

 species corresponded well with the absorbance of 
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the leachate at 436 nm. This was in agreement with literature data for UV-Vis analysis 

of H4TPP
2+

 [4]. Moreover, the protonated porphyrin featured two instead of four Q 

Band peaks at 600 nm and 652 nm. This was very close to two of the four TPP Q Band 

peaks at 588 and 646 nm. The Q Bands in the leachate spectrum additionally exhibited 

an unusually intense peak at 646 nm; more intense than the corresponding peak in a 

solution spectrum of free base TPP alone. The leachate spectrum was thereby shown to 

be a composite spectrum of free TPP mixed with protonated H4TPP
2+

, indicating that 

the porphyrin leached out of the MnTPP/PEDOT was likely a mixture of free TPP and 

protonated H4TPP
2+

. 

 

The common route for demetallation of Mn(III)TPP was identified in literature and 

consisted of reduction of Mn(III) to Mn(II) and subsequent protonation of the core, 

leading to loss of the metal ion from the porphyrin [3, 5-7]. The vapour phase 

polymerisation of PEDOT produces acid groups [8] that could be sufficient to protonate 

free base TPP, which has a pKa of 3.9 [9]. However it was unclear how the reduction to 

Mn(II) could have occurred in an environment containing an excess of oxidising agent.   

 

4.3.5 Effects of higher concentration of porphyrin in MnTPP/PEDOT 

To test the unusual relationship between porphyrin concentration and photocurrent, 

MnTPP/PEDOT samples were prepared with a higher loading of the porphyrin. The 

method described in section 4.2.3 was used to make films with porphyrin/oxidant 

mixtures containing 10 mg/mL (14.18 mM) and 23 mg/mL (32.27 mM) of MnTPP. 

These were assessed by CA as had been done with prior samples. Additionally, the 
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films were analysed by UV-Vis and compared to previous spectra, with the porphyrins 

contained in them washed out of the film using ethanol. 

 

 

Figure 4.9 CA at 0.7 V (vs Ag/AgCl) of (a) PEDOT, MnTPP/PEDOT at (b) 10 mg/mL 

and (b) and (c) 23 mg/mL. 

 

MnTPP/PEDOT Current Density (µA/cm
2
) 

1 mg/mL / 1.42 mM 4.01 

2 mg/mL / 2.84 mM 2.62 

3 mg/mL / 4.27 mM 1.47 

10 mg/mL / 14.18 mM 1.52 

23 mg/mL / 32.71 mM 0.40 

 

Table 4.4 Photocurrent density of MnTPP/PEDOT at 0.7 V (vs Ag/AgCl) after 10 min 

of illumination. 

 

Photocurrent density measurements for MnTPP/PEDOT at 10 mg/mL and 23 mg/mL 

demonstrated significantly lower photocurrents compared to films with lower porphyrin 

loadings (Figure 4.9). The recorded photocurrent densities after 10 min of illumination 
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were 1.52 µA/cm
2
 for 10 mg/mL and 0.40 µA/cm

2
 for 23 mg/mL MnTPP/PEDOT. The 

results of all MnTPP/PEDOT samples are summarised in  

Table 4.4. 

 

 

Figure 4.10 UV-Vis spectra of MnTPP/PEDOT with loadings: (a) 10 mg/mL and (b) 23 

mg/mL. 

 

The UV-Vis spectra of the two new films with higher concentrations of porphyrin, 

displayed an interesting phenomenon (Figure 4.10). The 10 mg/mL MnTPP/PEDOT 

sample exhibited the now familiar absorbance peaks at 425 nm and 447 nm 

corresponding to free base TPP and H4TPP
2+

, as well as a third absorbance peak at 477 

nm. The 477 nm peak corresponded to the Soret band of Mn(III)TPP, indicating that at 

least some of the Mn porphyrin remained in its initial metalloporphyrin state and had 

not undergone demetallation. The spectrum of the 23 mg/mL MnTPP/PEDOT changed 

dramatically, closely resembling a typical Mn(III)TPP solution spectrum; the Soret 
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Band at 477 nm was present as the dominant peak and for the first time the Q Bands at 

576 and 610 nm were clearly discernible. 

 

Figure 4.11 UV-Vis spectra of ethanol leachate from MnTPP/PEDOT having loadings 

of: (a) 1.5 mg/mL, (b) 10 mg/mL and (c) 23 mg/mL. 

 

UV-visible analysis of the ethanol rinse of the 10 mg/mL and 23 mg/mL 

MnTPP/PEDOT, compared to that of 1.5 mg/mL MnTPP/PEDOT, showed a gradual 

transition from predominantly H2TPP in the 1.5 mg/mL film (Figure 4.11 (a)) towards a 

mixed population of H2TPP and Mn(III)TPP in the 10 mg/mL film (Figure 4.11 (b)), 

and then to solely Mn(III)TPP in the 23 mg/mL film (Figure 4.11 (c)). It was thereby 

clear that the photocurrent activity of the composite MnTPP/PEDOT film was due to 

the free base form of TPP and, in fact, diminished with higher presence of Mn(III)TPP 

in the film. 
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4.3.6 Analysis of the free base porphyrin/PEDOT composite TPP/PEDOT 

Given the results of the above analysis, it was prudent to test a film containing free TPP 

for its photocurrent. Therefore, a TPP/PEDOT film was prepared by vapour phase 

polymerisation following the same procedure as described in section 4.2.3. This time, 

TPP (1.5 mg/ml / 2.44 mM TPP) was used in the porphyrin/oxidant mixture. The 

resulting TPP/PEDOT film was then tested electrochemically under light illumination 

as described in sections 4.2.4 and 3.2.6, as well as by UV-Vis spectroscopy. 

 

 

Figure 4.12 LSV of TPP/PEDOT, (a) dark, (b) with illumination. 
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Figure 4.13 CA of TPP/PEDOT at (a) 0.6 V, (b) 0.65 V, (c) 0.7 V (all vs Ag/AgCl) 

 

 

 

Sample Porphyrin Loading Photocurrent Density (µA/cm
2
) 

 
 0.6 V 0.65 V 0.7 V 

MnTPP/PEDOT 2 mg/mL / 2.84 mM 1.53 1.89 2.62 

TPP/PEDOT 1.5 mg/mL / 2.44 mM 1.07 1.9 3.14 

 

Table 4.5 Photocurrent density of MnTPP/PEDOT and TPP/PEDOT at different 

voltages (vs Ag/AgCl). 

 

The TPP/PEDOT sample was tested for photocurrent activity under the same conditions 

as previously applied to MnTPP/PEDOT and returned very similar results. The LSV of 

the sample revealed the same onset potential as the MnTPP/PEDOT sample of 

equivalent concentration examined earlier (Figure 3.9). In CA photocurrent testing after 

10 min of illumination, the TPP/PEDOT yielded current densities that were closely 

comparable (and within experimental error) to those of the equivalent MnTPP/PEDOT ( 

Table 4.5).  
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Figure 4.14 UV-Vis spectra of (a) 1.5 mg/mL TPP/PEDOT and (b) 2 mg/mL 

MnTPP/PEDOT. 

 

A UV-Vis absorbance analysis of the TPP/PEDOT revealed a spectrum similar to that 

of an earlier prepared 2 mg/mL MnTPP/PEDOT (Figure 4.14). Both featured the 

characteristic absorbance peaks at 424 and 447 nm, corresponding to the Soret Bands of 

the free base TPP and H4TPP
2+

. They also both showed the characteristic amplified 

intensity peak at ca. 660 nm that is characteristic of H4TPP
2+

.  From this comparison of 

UV-Vis spectra, it could be concluded that, during vapour phase polymerisation of the 

MnTPP/PEDOT films having low loadings of MnTPP, the Mn ion was ejected from the 

core of the porphyrin and the film converted to TPP/PEDOT.  This did not occur with 

MnTPP films having higher loading levels of >23 mg/mL MnTPP. 

 

4.4 Conclusions 

The underlying assumption in the previous chapter was that the changes in the Soret 

Band of the porphyrin inside PEDOT were due to close proximity and orientation of 
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individual molecules to one another, as was observed in cofacial porphyrin systems in 

the past [10-14]. In addition, more significant shifts in wavelength of the Soret Band 

peaks were thought of in terms of change in the oxidation state of the manganese ion, as 

was assessed by comparison with literature values (see section 3.3.16). The governing 

hypothesis was based on a Mn
III

-Mn
IV

 paradigm, as often found in studies concerning 

the makeup of natural and artificial photosynthesis systems [15-20]. 

 

What was found however was the opposite, namely, that the changes undergone by the 

metalloporphyrin at low loadings in the conducting polymer matrix were due to 

reduction of the manganese ion to the Mn(II) state and subsequent ejection from the 

core. This seemed paradoxical given the highly oxidative conditions in the 

polymerisation. Indeed, tests were conducted to assess the interaction between the 

MnTPP and the chemical oxidant species Fe-pTS hexahydrate. These tests showed no 

discernible chemical reaction between the species, such as oxidation or protonation of 

the porphyrin (see section 3.3.11). 

 

The findings from this chapter however point clearly to the porphyrin inside the 

polymer matrix being in its demetallated state when present in low loadings, generating 

the typical TPP Soret Band peak at 414 nm in solution and 425 nm inside the film. The 

shift in wavelength when inside the film is likely to arise from aggregation effects.  This 

was confirmed by a comparison of UV-Vis data of the ethanol leachate from MnTPP 

films with that of free base TPP in a similar solvent (see section 4.3.2). From the UV-

Vis data it is apparent that the Soret band peak at 447 nm arises from the acidified TPP 

in the film meaning that at the point of polymerisation, the MnTPP was converted to 

H4TPP
2+

. Subsequent tests of polymer samples containing free base TPP showed an 



 

145 

 

identical absorbance profile to that of samples containing MnTPP, indicating, without a 

doubt, that the porphyrin in the film was in its free, demetallated state. 

 

One possible explanation for the change in the oxidation state of the Mn ion exclusively 

in low loadings, is photoreduction of the starting Mn(III) to Mn(II) by light irradiation. 

Photoreduction of Mn(III) to Mn(II) when illuminated by light is a well-documented 

phenomenon in the chemical literature and has been noted to be associated with 

demetallation as the Mn(II) ion is unstable in solution compared to its more robust 

Mn(III) counterpart [21]. In the above systems, this was readily evidenced by visible 

light absorbance analysis of the Soret Band, which shifted from 466 nm (in 

Mn(III)TPP) to 432 nm (in Mn(II)TPP) as was observed in the above experiments and 

supported by literature [3]. Considering the similarity between the chosen porphyrin 

types with regard to Soret Band, it is likely that all samples showing similar change in 

absorbance peaks due to PEDOT polymerisation underwent loss of Mn ions in that 

process. 

 

One should note that such a photoreduction did not appear to be observed during 

preparation of solutions for UV-Vis analysis with Mn(III)TPP and other porphyrins, 

done in normal laboratory conditions without excessive irradiation. Indeed previous 

studies of such reductions typically involved a carefully degassed solvent [7, 21, 22], as 

was also required in our experiments where the porphyrin was reduced in solution by 

the chemical reducing agent, sodium borohydride (see section 4.3.3). Without an inert 

atmosphere, the porphyrin would quickly oxidise back to its Mn(III) ion upon even 

minute exposure to air oxygen. The difficulty of obtaining a Mn(II) spectrum was 

initially grounds to rule out that kind of reaction, as it was evident that in the same 
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environmental conditions only a strong reducing agent would reduce the Mn(III) to 

Mn(II)porphyrin.  

 

It is possible that the PEDOT matrix facilitated enhanced photoreduction of the 

contained porphyrin by ambient light during fabrication after vapour phase 

polymerisation. This process seemed to go to completion very rapidly without a 

significant sensitivity to the presence of air oxygen. All of this however took place in 

the presence of a strong oxidising agent within the polymerisation solution, Fe-pTS, 

which seemed to have no effect in respect of halting or hindering this photoreduction 

process. Perhaps most remarkably, the apparent photoreduction process appeared to 

have dominated only at loadings below ca. 23 mg/mL MnTPP.  If the reduction was the 

facilitated by ambient light it may be possible that the process was hindered either by 

less transparency of the film due to higher loading, or a saturation effect by the excess 

of MnTPP. 

 

The simultaneous formation of oxygen and hydrogen when low-loaded MnTPP/PEDOT 

films were subjected to light illumination at constant potential of 0.7 V (vs Ag/AgCl) 

(Figure 3.18) and the inverse relationship between loading and photocurrent can 

potentially also be explained. Free base TPP is known to undergo ready photolytic 

degradation when illuminated with light at its Soret and Q band wavelengths [23]. It 

appears likely that the free base TPP generated in the PEDOT at low loadings may have 

undergone the photoelectrolytic degradation, releasing hydrogen and oxygen gases and 

creating a “photocurrent” that increased as the amount of free base TPP in the coating 

was increased.  Thus, at low loading levels, more of free base TPP was present, yielding 

higher apparent photocurrents. The origin of the photocurrent in the absence of a 
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catalytic metal species is unclear. One possibility is gradual light-assisted oxidation of 

the electron rich aromatic structure of the porphyrin when subjected to light and a 

positive electric bias. The higher photocurrent of samples containing TPP compared to 

others may be the result of different aggregation behaviour compared to the water 

soluble porphyrin counterparts. It is possible that the water / alcohol mixture did not 

fully dissolve the other Mn porphyrin species (MnTPPS, MnTPMPyP) or that they 

formed different types of aggregates during spin coating compared to a more even and 

accessible spread of TPP throughout the then forming PEDOT matrix. 
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5 Electrochemically polymerised Porphyrin/PEDOT 

5.1 Introduction and Aims 

While the focus of the previous chapters have been predominantly on monomeric 

porphyrin species and their interaction with vapour phase polymerised PEDOT, an 

additional option that was explored involved utilising a simple polymer as a means of 

covalently linking individual porphyrin molecules to each other and incorporating them 

into PEDOT. Tethering monomeric species to a polymer may induce close proximities 

between the individual porphyrin units within a small volume, in the same way that may 

be achieved by concentrating individual porphyrins within a PEDOT matrix.  As in the 

case in PEDOT, higher overall concentrations of porphyrin attached to the polymer may 

lead to the presence of localised collections of densely packed porphyrin units within 

the resulting film.   

 

This concept was inspired by the covalently-linked cofacial porphyrin systems 

discussed in sections 1.6.1 and 1.6.2 of Chapter 1. However, it differs from the cofacial 

porphyrins in that the polymer-linked porphyrins explored here are simpler in design 

with less demanding synthetic procedures than those of the cofacial porphyrins.  Rather 

than relying on carefully crafted covalent linkages between two porphyrin rings to 

create co-facial architectures, this approach utilised the combinatorial strategy of 

concentrating porphyrins in catalytically active assemblies inside a conducting polymer 

matrix. 
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In this chapter the integration of sulfonated porphyrins into PEDOT was attempted by 

electrochemical polymerisation of the EDOT monomer as opposed to vapour phase 

polymerisation. This approach allowed for a more targeted integration of the porphyrin 

as a counter-ion to the positively charged PEDOT backbone, rather than depending on 

the matrix-trapping effect of vapour phase polymerisation that is needed when adding 

porphyrins into PEDOT. 

 

  

Figure 5.1 Schematic of (a) poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) 

porphyrinato manganese(III) chloride sodium salt (MnPVTPPS) and (b) its monomeric 

counterpart 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) chloride 

sodium salt (MnTPPS). 

 

The porphyrin species poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) 

porphyrinato manganese(III) chloride sodium salt  (MnPVTPPS) (Figure 5.1) has been 

reported previously[1]. Because of its close similarity to poly(sodium 4-

styrenesulfonate) (PSS), which is a common counter-ion used in the highly conducting 

PEDOT:PSS [2-6], MnPVTPPS offered a potential counter-ion for electrochemically 

polymerised PEDOT [4, 7]. Samples of PEDOT with co-incorporated PSS and 

MnPVTPPS were prepared and studied. That concentration level was set to be 

(a) (b) 
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comparable to the low loading levels used in the previous two chapters in order to 

facilitate comparisons with the previous systems studied.   

 

The sodium salt of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) 

chloride (MnTPPS) (Figure 5.1) can be considered to be a monomeric counterpart to 

MnPVTPPS.  It was incorporated in electropolymerised PEDOT:PSS along with PSS to 

ensure proper functioning of the oxidised PEDOT backbone if the porphyrin species is 

insufficient as a counter-ion. As in the previous chapters, only a relatively low level of 

MnTPPS (2.25 mg/mL) was incorporated within the polymer in order to study the most 

fundamental interactions between the metallated porphyrin and PEDOT:PSS. 
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5.2 Experimental 

5.2.1 Synthesis of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato manganese(III) 

chloride sodium salt (MnTPPS) 

This porphyrin was synthesised as described in section 3.2.2. 

 

5.2.2 Synthesis of poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) 

porphyrinato manganese(III) chloride sodium salt (MnPVTPPS) 

 

Figure 5.2 Synthesis of poly(5-(4-vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)) 

porphyrinato manganese(III) chloride sodium salt)  (MnPVTPPS). 

 

The synthesis of poly(5-(4-vinylphenyl)10,15,20-tri(4-sulfonatophenyl)porphyrinato 

manganese(III) chloride sodium salt)  (MnPVTPPS) was conducted using a method 

established in literature (Figure 5.2) [1, 8, 9]. The synthesis required a number of 

successive steps, starting with the formation of 5-(4-bromophenyl)-10,15,20-

triphenylporphyrin, conversion to the formyl derivative by reaction with n-butyllithium 

and DMF, subsequent vinyl formation by Wittig condensation with 
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triphenylmethylphosphonium iodide, polymerisation of the vinyl group with 

azobisisobutyronitrile (AIBN), sulfonation, and finally manganese insertion. 

 

5-(4-bromophenyl)-10,15,20-triphenylporphyrin was synthesised following Adler‟s 

procedure [10]. 4-bromobenzaldehyde (9.88 g, 52.2 mmol) and benzaldehyde (16.98 g, 

160 mmol) were added to propionic acid (800 mL) in a 1:3 ratio at reflux under air 

atmosphere.  Pyrrole (14.22 g, 212 mmol) was then added to the mixture and stirred at 

reflux for 40 min. Air was bubbled through the mixture for 6 min after removing the 

vessel from the oil bath and then left to cool overnight. The mixture was filtered 

through a sintered glass funnel and the solid was then filtered through a silica column 

twice with DCM. A few drops of triethylamine were added to the mixture to neutralise 

the solution and the product was recrystallised in DCM with methanol, yielding a purple 

solid (7.29 g). The compound was analysed by MALDI and found to be a statistical 

mixture of TPP (612.03 MW), mono bromophenylporphyrin (691.87 MW) and 

dibromophenylporphyrin (770.21 MW), purification of the mono substituted species 

was performed in the next step.  

 

The porphyrin mixture (7.29 g) was suspended in diethyl ether (345 mL) in a three-neck 

flask. The flask was sealed, placed under a nitrogen atmosphere and cooled in a salt ice 

bath before adding n-butyllithium in cyclohexane (65 mL, 0.66 mol) slowly through a 

syringe. The mixture was stirred for 2.5 hours, whereafter DMF (20 mL, 0.26 mol) was 

added and the mixture stirred at room temperature overnight. Hydrochloric acid (5%, 50 

mL) was then added to the mixture with stirring. The solvent was evaporated off under 

vacuum and the product extracted with DCM and Milli-Q water. The mixture was then 

neutralised with NaOH (1 M, added dropwise). The product was dissolved in DCM and 
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then filtered through a silica column with 60% hexane/DCM as an eluent. Fractions 

were checked using TLC to isolate the mono formyl porphyrin product from the 

statistical mixture. TPP would move the fastest and the mono formyl porphyrin the 

second fastest, which made it possible to correctly isolate the compounds and identify 

by MALDI.  The mono formyl porphyrin structure was confirmed by MALDI as the 

desired 5-(4-formylphenyl)-10,15,20-tetraphenylporphyrin (MW: 642.76 g/mol 

calculated, 640.37 g/mol measured). The solvent was evaporated and the product dried 

in a vacuum oven at 60 °C (0.73 g, 1.14 mmol). 

 

In the next step, the formyl porphyrin (0.73 g, 1.14 mmol) was dissolved in dioxane (70 

mL) with K2CO3 (12.4 g, 89.72 mmol) and Milli-Q water (1 mL). The mixture was 

heated to reflux under nitrogen atmosphere. Triphenylmethylphosphonium iodide was 

separately synthesised by dissolving triphenylphosphine (2.62 g, 9.99 mmol) in toluene 

(100 mL) at room temperature and slowly adding iodomethane (1.42 g, 10.00 mmol). 

The formyl porphyrin mixture was stirred for 60 h at room temperature during which 

time a white precipitate formed. The solid was filtered through a glass sintered funnel 

and washed with toluene before drying in a vacuum oven at 60 °C (3.40 g, 8.36 mmol, 

84% yield).  The triphenylmethylphosphonium iodide (1 g, 2.46 mmol) was then added 

to the porphyrin mixture and stirred at reflux. The mixture was tested periodically by 

TLC to monitor the reaction and more triphenylmethylphosphonium iodide was added 

(up to the total 3.4 g, 8.37 mmol) over the course of 12 h. The reaction mixture was then 

filtered through silica in a sintered glass funnel with DCM and chloroform. The solvent 

was evaporated under vacuum at 60 °C and the product 5-(4-vinylphenyl)-10,15,20-

triphenyl porphyrin (VTPP) obtained (0.49 g, 0.76 mmol, 67% yield). This was 

confirmed by UV-Vis Analysis, which was in agreement with literature [8]. 
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The vinyl porphyrin VTPP (0.49 g, 0.76 mmol) was then dissolved in a small quantity 

of THF (0.7 mL) with AIBN (10-20 mg, in 12% acetone solution), which was degassed 

in an ampoule following the freeze pump thaw method; the mixture was submerged in 

liquid nitrogen until fully frozen, then a vacuum applied for 20 min. The pump was then 

disconnected with the flask sealed and the mixture gently thawed in a warm water bath. 

This procedure was repeated several times (3-5) after which the mixture was stirred at 

60 °C under argon atmosphere for 2.5 d. The product was precipitated with acetone and 

filtered through a sintered glass funnel under vacuum (43 mg, 0.07 mmol, 9% yield). 

The synthesis had to be repeated several times as TLC tests showed only partial 

polymerisation in successive steps. The final product poly(5-(4-vinylphenyl)-10,15,20-

triphenylporphyrin) (PVTPP) was characterised using gel permeation chromatography 

(GPC), which reported an average molecular weight of 47 kDa at a fraction of 55%. 

Smaller polymer chains at 3 kDa and single units at 1 kDa were found at respective 

fractions of 18% and 27%. 

 

The polymeric porphyrin PVTPP (43 mg, 0.07 mmol) was then sulfonated by dissolving 

in concentrated H2SO4 (2 mL) and stirring at 100 °C for 4 h, after which it was left to 

cool overnight. The mixture was poured into 25 mL of Milli-Q water and neutralised 

with a small quantity of NaOH. It was purified using dialysis tubing (12-14 kDa) Milli-

Q water over several days with frequent change of water and the product poly(5-(4-

vinylphenyl)-10,15,20-tris(4-sulfonatophenyl)porphyrin sodium salt) (PVTPPS) 

obtained by evaporating the solvent and drying in a vacuum oven at 60 °C (37 mg, 0.04 

mmol, 59% yield). 
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In the final step PVTPPS (37 mg, 0.04 mmol) was dissolved in Milli-Q water (20 mL) 

and MnCl2 (0.58 g, 4.61 mmol) added. This mixture was stirred at reflux for 25 h after 

which it was dialysed (12-14000 kDa tubing) and the solvent evaporated under vacuum, 

giving the desired product poly(5-(4-vinylphenyl)-10,15,20-tris(4-

sulfonatophenyl)porphyrinato manganese(III) chloride sodium salt)  (MnPVTPPS) (56 

mg, 0.05 mmol, 100% yield). UV-Vis analysis of the compound was found to be in 

agreement with literature findings [1, 8, 9]. 

 

5.2.3 Electrochemical polymerisation of porphyrin/PEDOT composite 

A method was developed following a literature procedure [4, 7] for electrochemical 

polymerisation (EP) of PEDOT:PSS in water. A reagent mixture was prepared 

containing 5 mM EDOT (0.71 mg/ml) and 2.5 mM PSS (by monomer mass 0.46 

mg/mL) in water. The EDOT solution was prepared first in 10 mL volume, carefully 

sonicated and vortex stirred until completely dissolved. Approximately 2 mL were 

transferred to a second sample vial containing the PSS. The solution was again 

sonicated and mixed to ensure proper dissolution of the reagents. For the samples 

containing porphyrin, an amount was weighed out before and the EDOT/PSS mixture 

added to dissolve into it. The porphyrins MnTPPS (2.5 mg/ml, 2.25 mM) as well as 

MnPVTPPS (0.86 mg/mL, 0.83 mM) were added to separate EDOT/PSS mixtures. The 

FTO glass electrode was sonicated in acetone, rinsed with water and allowed to dry 

before fitting a copper cable with silver paste and epoxy resin to it. Before 

polymerisation, the electrode was plasma-cleaned for 15 min. 
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The sample was electropolymerised in EV1 (see section 2.3.8), into which the reagent 

mixture (~0.9 mL) was injected. A BASi miniature Ag/AgCl reference electrode was 

inserted. The electrodes were connected to an EDAQ466 potentiostat and cyclic 

voltammetry (CV) was performed on the sample at -0.4 – +1.2 V (vs Ag/AgCl) for 50 

cycles at 50mV/s. The sample was submerged in water to wash out impurities, and then 

left to air dry. Samples were made in duplicate. The finished film was analysed by UV-

Vis spectroscopy and electrochemistry. 

 

5.2.4 Electrochemical testing 

The electropolymerised PEDOT:PSS and porphyrin/PEDOT:PSS samples were 

subjected to electrochemical testing using the apparatus and methods described in 

sections 2.4.8 and 2.4.9. In a typical experiment the electrochemical cell was filled with 

Na2SO4 (0.1 M) that had been bubbled with N2 gas and stirred for 1 h. The sample was 

inserted as the working electrode with an Ag/AgCl reference electrode and Pt mesh 

counter electrode also present. 

 

Before the examination, CV was performed on the film for 20 cycles at 10 mV/sec in 

order to stabilise the film. LSV sweeps were then performed over the range of 0-0.7 V 

at a scan rate of 5 mV/sec. Voltages beyond 0.7 V (vs Ag/AgCl) were not studied in 

order to avoid irreversible oxidative damage to the film. In a typical experiment, five 

sweeps were done in the dark and then three sweeps with light illumination turned on. 

This ensured that the LSV spectrum remained constant over the course of the data 

recording as it was otherwise affected by charge imbalances brought on by static 

electricity. The last of the LSV sweeps with and without illumination were used as data. 
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This method was applied to all of the films investigated in this chapter. In all cases the 

resulting current (in µA) was converted into current density (in µA/cm
2
). Where 

necessary, electronic noise brought about by an unknown external interference was 

removed from the data by subtracting a simple sine wave function. 

 

Following the LSV measurement, each sample was tested by CA at the set potential of 

0.65 V (vs Ag/AgCl). In a typical experiment the chosen voltage was applied to the film 

for 1 h without illumination to equilibrate the baseline current. The light was then 

switched on to measure the resulting photocurrent for 10 min and then turned off. The 

data shown in the results below were taken from 1 min before illumination to 1 min 

after the end of illumination. The data (in µA) was normalised by subtracting the 

baseline before illumination and the results converted to current density (in µA/cm
2
). 

 

5.3 Results and Discussion 

5.3.1 Electropolymerisation of PEDOT:PSS and porphyrin/PEDOT:PSS 

Electropolymerisation of PEDOT:PSS on FTO glass proceeded as described in section 

5.2.3 based on literature precedent [7]. In the first run, PEDOT:PSS was synthesised. 

Thereafter MnTPPS porphyrin or MnPVTPPS (as co-mixtures with PSS) were added at 

low concentrations, comparable to those employed in the previous two chapters.  Only 

one concentration of MnPVTPPS in PEDOT was studied due to a paucity of the 

MnPVTPPS. 
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Figure 5.3 Typical CV spectrum of PEDOT:PSS electrodeposition on FTO glass. 

 

The initial trial of PEDOT:PSS, without porphyrin, exhibited the characteristic CV 

spectrum of gradually increasing capacitive current, which indicated a progressive 

build-up of conducting polymer on the electrode (Figure 5.3). After this, the method 

was extended to include the porphyrins MnTPPS or MnPVTPPS (both with PSS), 

resulting in the samples PEDOT:PSS, MnTPPS/PEDOT:PSS and 

MnPVTPPS/PEDOT:PSS. The samples were now ready to be tested by 

electrochemistry. 

 

The films produced by this method exhibited the now familiar deep blue colour of 

PEDOT:PSS as well as green colour for MnTPPS/PEDOT:PSS and (c) 

MnPVTPPS/PEDOT:PSS (Figure 5.4).  
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Figure 5.4 (a) PEDOT:PSS, (b) MnTPPS/PEDOT:PSS and (c) 

MnPVTPPS/PEDOT:PSS.  

 

5.3.2 Photoelectrochemical testing of porphyrin-free, control PEDOT:PSS 

The EP PEDOT:PSS film was tested by LSV and CA using the methods described in 

section 3.2.6 to ascertain the photocurrent produced under illumination. 

 

 

Figure 5.5 LSV spectra of PEDOT:PSS (without MnTPPS), (a) in the dark, (b) with 

light illumination. 

 

The LSV spectrum of porphyrin-free PEDOT:PSS film featured a slow onset of 

photocurrent from ca. 0.5 V (vs Ag/AgCl) onwards toward more positive applied 

potentials. This was very similar to that observed for VPP PEDOT in Chapter 3 (see 

section 3.3.3). However, the overall baseline as well as the photocurrent increase was 
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higher than that of the equivalent VPP sample. While VPP PEDOT typically displayed 

a photocurrent of ca. 1 µA/cm
2
 at 0.65 V in LSV, EP PEDOT:PSS exhibited 

photocurrent densities up to as high as 8 µA/cm
2
. This indicated that the EP 

PEDOT:PSS was more light active, even without a porphyrin species present. 

 

 

Figure 5.6 CA at 0.65 V (vs Ag/AgCl) of PEDOT:PSS. 

 

The CA photocurrent density measurement of PEDOT:PSS reflected the increased 

photocurrents observed in the LSV experiment, reaching a level of 3.89 µA/cm
2
 after 10 

min of illumination at 0.65 V. This was far higher than the 0.75 µA/cm
2
 measured for 

VPP PEDOT in Chapter 3 (see section 3.3.3). 
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5.3.3 Photoelectrochemical testing of control MnTPPS/PEDOT:PSS 

The EP MnTPPS/PEDOT:PSS film was tested by LSV and CA following the methods 

described in section 3.2.6 to measure the photocurrent produced under illumination. 

 

 

Figure 5.7 LSV spectra of MnTPPS/PEDOT:PSS, (a) in the dark, (b) with light 

illumination. 

 

The LSV spectrum of MnTPPS/PEDOT:PSS was similar to that of PEDOT:PSS, also 

featuring an onset potential of photocurrent from ca. 0.5 V (vs Ag/AgCl) (Figure 5.7). 

This was also very similar to that of VPP MnTPPS/PEDOT in Chapter 3 (see section 

3.3.4). 
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Figure 5.8 CA at 0.65 V (vs Ag/AgCl) of (a) PEDOT:PSS and (b) 

MnTPPS/PEDOT:PSS. 

 

Sample 
Current Density at 0.65 V 

(µA/cm
2
) 

MnTPPS/PEDOT:PSS 3.29 

PEDOT:PSS 3.89 

 

Table 5.1 Photocurrent density of MnTPPS/PEDOT:PSS at 0.65 V (vs Ag/AgCl). 

 

The CA photocurrent density measurement for MnTPPS/PEDOT:PSS yielded 3.29 

µA/cm
2
 at 0.65 V (vs Ag/AgCl) (Figure 5.8), which was, in fact, marginally lower than 

that of PEDOT:PSS (see Table 5.1), but higher than that of the highest performing VPP 

MnTPPS/PEDOT (at 1.46 µA/cm
2
 - see section 3.3.4).  

 

5.3.4 Photoelectrochemical testing of MnPVTPPS/PEDOT:PSS 

The EP MnPVTPPS/PEDOT:PSS film was tested by LSV and CA following the 

methods described in section 3.2.6 to ascertain the photocurrent produced under 
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illumination. The LSV spectra of MnPVTPPS/PEDOT:PSS featured, in all cases 

studied, a photocurrent onset potential of ca. 0.5 V (vs Ag/AgCl) (Figure 5.9).   

 

During the CA testing of multiple MnPVTPPS/PEDOT:PSS samples, two distinctly 

different photocurrent profiles were detected. The samples have been distinguished here 

as MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2 for clarity. One set of 

samples (MnPVTPPS/PEDOT:PSS 1) displayed a notably larger photocurrent overall 

than the other set of samples (MnPVTPPS/PEDOT:PSS 2).   

 

  

Figure 5.9 LSV spectra of (I) MnPVTPPS/PEDOT:PSS 1 and (II) 

MnPVTPPS/PEDOT:PSS 2, (a) in the dark, (b) with light illumination. 
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Figure 5.10 CA at 0.65 V (vs Ag/AgCl) of (a) PEDOT:PSS, (b) 

MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2. 

 

Sample 
Current Density at 0.65 V 

(µA/cm
2
) 

MnPVTPPS/PEDOT:PSS 1 5.00 

MnPVTPPS/PEDOT:PSS 2 3.39 

PEDOT:PSS 3.89 

 

Table 5.2 Photocurrent density of MnPVTPPS/PEDOT:PSS at 0.65 V (vs Ag/AgCl). 

 

When tested by CA at 0.65 V (vs Ag/AgCl) with illumination, 

MnPVTPPS/PEDOT:PSS 1 displayed the highest photocurrent density measured so far 

in this class of material at 5.00 µA/cm
2
. Interestingly, the duplicate sample 

MnPVTPPS/PEDOT:PSS 2 made using exactly the same method yielded only 3.39 

µA/cm
2
, lower than that of PEDOT:PSS (Figure 5.10, Table 5.2).  Despite strenuous 

attempts to identify physical factors that were different in the preparative procedures for 

MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2, no clear distinction in this 

respect could be determined. This phenomenon was not observed when testing the 

MnTPPS/PEDOT:PSS samples. 
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5.3.5 UV-Vis analysis of PEDOT:PSS 

The EP PEDOT:PSS film was analysed using UV-Vis spectroscopy after fabrication. 

 

 

Figure 5.11 UV-Vis spectrum of PEDOT:PSS. 

 

The EP PEDOT:PSS film exhibited the characteristic spectrum of PEDOT in oxidised 

form (see Figure 5.11); this had also been observed before in VPP PEDOT samples and 

was in agreement with the literature [7, 11]. 
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5.3.6 UV-Vis analysis of MnTPPS/PEDOT:PSS 

The electropolymerised MnTPPS/PEDOT:PSS film was analysed by UV-Vis 

spectroscopy. 

 

 

Figure 5.12 UV-Vis spectrum of (a) PEDOT:PSS:MnTPPS and (b) MnTPPS in water. 

 

The UV-Vis spectrum of MnTPPS/PEDOT:PSS featured absorbance peaks at 425 nm, 

443 nm and 489 nm (Figure 5.12). These were consistent with the findings from the 

studies of the low-loading VPP MnTPPS/PEDOT described in Chapter 3, with the 

exception that the 489 nm absorbance peak fell at ca. 475 nm in that case. The 

absorbance peaks likely corresponded to the Soret Band of the porphyrin in its initial 

Mn(III)TPPS form (489 nm) as well as the free H2TPPS (425 nm) and a very small 

shoulder (443 nm) likely corresponding to the protonated species H4TPP
2+

 according to 

literature [12]. Compared to the spectrum of MnTPPS in water, which featured the 

Mn(III) Soret Band at 466 nm, the absorbance peak for the MnTPPS/PEDOT:PSS was 

significantly red shifted to 489 nm, whereas the Soret band of the H4TPP
2+

 from 
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literature [12] aligned perfectly with the small shoulder at 443 nm. The pronounced 

peak at 705 nm could only be due to the Q-Band of H4TPPS
2+

 [12], also significantly 

red shifted.  

 

Surprisingly some demetallation, with accompanying protonation of the resulting free 

porphyrin, appears to have also occurred even in this system under 

electropolymerisation conditions. That is, the demetallation reaction observed at low 

loading levels in the previous chapter using vapour phase polymerisation, appeared to 

also occur when electropolymerisation was employed, albeit to a lesser extent.  Clearly, 

the demetallation process was independent of the method of polymerisation. 

 

 

Figure 5.13 UV-Vis spectra in water of: (a) MnTPPS, (b) TPPS, and (c) the water rinse 

from MnTPPS/PEDOT:PSS after fabrication. 

 

An analysis was conducted on the water rinsed off the MnTPPS/PEDOT:PSS film after 

electrodeposition (as had been done in Chapter 4). The UV-Vis spectrum of that wash 

was compared to the spectra of MnTPPS and TPPS in water solution (Figure 5.13). The 
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comparison showed that the porphyrin species washed out of the film after 

polymerisation was indeed the free TPPS with a Soret Band peak at ca. 410 nm (Figure 

5.13 (b) & (c)), rather than MnTPPS (Figure 5.13 (a) & (c)).  A small portion of what 

was likely protonated TPPS was also identified in a band at ca. 440 nm along with an 

amplified Q-band peak at ca. 650 nm. However it should be noted that these washings 

represented only the loosely bound species that adhered to the film in excess after 

polymerisation, and were not characteristic of the entirety of the porphyrins in the 

sample. The previous UV-Vis spectrum of the MnTPPS/PEDOT:PSS film (Figure 5.12) 

had demonstrated unequivocally that large proportions of MnTPPS were still present in 

the film as evidenced by the significant absorbance peak corresponding to Mn(III)TPPS 

at 489 nm.  

 

5.3.7 UV-Vis analysis of MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2 

The samples containing the polymeric porphyrin MnPVTPPS was of great interest as 

one form of them displayed the highest photocurrent so far recorded in this study for 

this type of material. As mentioned previously, despite being made by an identical 

procedure using the same sample of MnPVTPPS, two types of composites were 

observed – MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2.  The former 

yielded high photocurrents, while the latter yielded photocurrents that were identical to 

the control PEDOT:PSS.  Samples were usually made in duplicate and, after each had 

been identified as belonging to one of the above groups, analysed separately for 

consistency.  To try to explain the difference in photocurrent performance for 

MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2, UV-Vis absorbance 

analysis was carried out in order to establish the state of the porphyrin. 
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Figure 5.14 Representative UV-Vis spectra of (a) MnPVTPPS/PEDOT:PSS 1, (b) 

MnPVTPPS/PEDOT:PSS 1 and (c) MnPVTPPS in water. 

 

The UV-Vis spectra of MnPVTPPS/PEDOT:PSS 1 and MnPVTPPS/PEDOT:PSS 2 

were compared to that of MnPVTPPS in water solution (Figure 5.14). The high 

performing material, MnPVTPPS/PEDOT:PSS 1, typically displayed a dominant 

absorbance peak at 431 nm with a small shoulder at 444 nm and a minor peak at 474 

nm. These could be attributed to the free base porphyrin H2PVTPPS (431 nm), its 

acidified form (444 nm), and Mn(III)PVTPPS (474 nm) based on the similar Soret 

Bands observed in the H2TPPS-H4TPPS system. As can be seen in Figure 5.14(a), the 

higher photocurrent of MnPVTPPS/PEDOT:PSS 1 appears to be associated with 

demetallated porphyrins and a Mn-free coating. 

 

By contrast, the low performing sample, MnPVTPPS/PEDOT:PSS 2, exhibited only 

one clear absorbance peak in the Soret Band region, at 474 nm. This indicated that the 

porphyrin in that sample had not been converted to the free porphyrin form.  That is, as 
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can be seen in Figure 5.14(b), the lower photocurrent of MnPVTPPS/PEDOT:PSS 2 

appears to be associated with a predominance of metallated porphyrins and the presence 

of Mn in the coating.  The fact that the photocurrent of MnPVTPPS/PEDOT:PSS 2 was 

the same or lower than that of PEDOT:PSS suggests that the observed photocurrent may 

have been due to the PEDOT:PSS alone, with the porphyrin in 

MnPVTPPS/PEDOT:PSS 2 being catalytically inactive. 

 

5.4 Conclusions 

The photocurrent density measured for MnPVTTPS/PEDOT:PSS was the highest so far 

recorded for porphyrin/PEDOT systems in this study. At 0.65 V (vs Ag/AgCl) the 

photocurrent density for MnPVTPPS/PEDOT:PSS was 5.00 µA/cm
2
 compared to the 

highest reading of MnTPP/PEDOT at 2.91 µA/cm
2
 at the same voltage (in chapter 3). 

The samples were examined by UV-Vis and found to conform with the results from 

chapter 4, suggesting that demetallation still occurred in this method of film fabrication. 

 

The phenomenon of demetallation of porphyrins at low concentrations and its 

connection to unusually high photocurrents was previously noted in the VPP PEDOT 

films studied in chapter 4.  Demetallation was thought, in that case, to be a result of the 

specific conditions of the vapour phase polymerisation process and the use of low 

loading levels of porphyrin. However, the above work confirms that it occurs even in 

electropolymerised composites.  Moreover, the phenomenon of smaller photocurrents 

associated with the presence of the Mn(III) species was also observed in the 

MnPVTPPS/PEDOT:PSS.   
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What makes these results remarkable is that the overall concentration of porphyrin 

present in the polymer coatings was maintained constant during fabrication. That is, 

whereas demetallation was observed to be dependent on the loading level in 

MnTPP/PEDOT (with low loading levels leading to demetallation and higher loading 

levels leading to Mn retention), in the MnPVTPPS/PEDOT:PSS coatings there seems to 

have been two, concentration-independent pathways, one of which led, almost 

exclusively, to demetallation and the other to Mn retention almost exclusively. The 

trigger that led to one pathway over the other remains unclear. What was clear however 

was that the amount of photocurrent depended on whether the porphyrin in the sample 

was in its Mn porphyrin or free base form. This further suggests that the origin of the 

photocurrent in this system was not from the interaction of Mn ions with water but due 

to a different, yet unconfirmed process. 
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6 Manganese oxide / graphene composites 

6.1 Introduction and aims 

In nature, catalytic water oxidation is facilitated by a Mn cluster inside the Oxygen 

Evolving Centre (OEC) of Photosystem II (PSII). This Mn cluster consists of a 

CaMn4O4-ligand assembly connected to the surrounding protein scaffold, which 

facilitates light absorbance and charge transfer [1, 2]. In mechanistic studies, the role of 

the Ca ion in the PSII-OEC was elucidated by Pace and Stranger as a critical component 

for directing water molecules toward the opening and closing face of the Mn cluster, 

leading to the highly efficient oxidation of water [3-8]. Mimicking this structure has 

been the subject of research for some time, resulting in the development of a class of 

compounds called cubanes [9]. These compounds mimic the cube-like structure of the 

OEC using crystalline assemblies based on Mn [10, 11], Co [12-18], and W [19]. What 

had not been explored in such detail was the extent of which the catalytic action could 

be enhanced by mimicking the role of the surrounding matrix within the PSII.  

 

In this chapter, the incorporation of Ca into synthetic MnxOy clusters was studied in an 

attempt to mimic the structure of the OEC. The second area of investigation was to 

mimic the role of the matrix surrounding the OEC, in particular the redox-active 

tyrosine Yz [9, 20]. Both of these aims were addressed using the same combinatorial 

approach as described the previous chapters, that is, by creating a composite material 

where statistically favoured local assembly. 

 

To this end, the organic conducting material graphene was selected as an electrode 

substrate, applied in a similar combinatorial fashion to PEDOT in previous chapters. 
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Graphene and graphene oxide have previously been explored as a carrier substrate for 

inorganic water splitting catalysts and related species [21], such as TiO2 [22-28] and 

CdS [29, 30]. Therefore, graphene was selected because of its stability at 

electrochemical potentials relevant to water oxidation under dark (non-illuminated) 

conditions [31, 32]. In the current work, a novel, liquid crystalline form of graphene 

oxide (LCGO) was chosen as it offered a more consistent and larger sheet size (of ~5 

µm), as well as a capacity to form reduced graphene oxide (RLCGO) [33-36]. The 

carboxylic functional groups on the surface of LCGO may further serve as a mimic of 

the same functional groups present on the co-factors of the OEC in order to facilitate 

efficient electron exchange between the catalyst and the substrate. 

 

In this chapter a bio-inspired route to replicating the PSII-OEC was explored through 

experimental synthesis of known MnxOy catalytic species and combination with liquid 

crystalline graphene / graphene oxide. An electrodeposition technique for synthesis of 

the manganese oxide, birnessite [37], was chosen as it allowed for in situ formation of 

the catalytic species on the graphene substrate. This method was found to be more likely 

to facilitate interaction between the residual surface functional groups on graphene 

during the formation of the MnxOy. A series of iterative experiments were conducted to 

examine the effect of Ca cations addition into the birnessite system.  These involved 

either: (i) attempted direct incorporation during synthesis of the MnxOy species and (ii) 

by addition to the substrate in a more indirect, combinatorial route, such as modifying 

the substrate with Ca ions beforehand. The central aim was to recreate the conditions of 

the OEC in a composite, to thereby maximise overall catalytic performance. To this end, 

a preliminary screening study was conducted in which different combinations of 

substrates and catalytic species were tested for their practical potential. The higher 
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performing variations were noted for future studies and the less performing types 

disregarded. The methods were guided by the work and findings of Prof. Rob Stranger 

and Prof. Ron Pace of the Australian National University (described in detail in Chapter 

1), with whom this chapter was done in close collaboration. 

 

6.2 Experimental 

6.2.1 Preparation of substrates 

6.2.1.1 FTO and Pt-coated FTO glass electrodes 

FTO glass was cut into ~2 x 3 cm rectangles, cleaned by sonication in acetone for 20 

min, rinsed with milli-Q water and then dried with pressurised air. A cladded copper 

wire was stripped at both ends and the oxide layer scratched off with a scalpel. The bare 

wire was attached to the FTO with conductive silver paint and epoxy glue. The resulting 

substrates were used for electrodeposition of MnxOy films, as well as control samples 

for electrochemical analysis. Prior to deposition, the glass was cleaned with plasma 

treatment for 10 min and used immediately. 

 

Platinum was sputter coated to a thickness of 100 nm on FTO glass that was cleaned in 

the same way, and a cable was subsequently attached. The resulting Pt-coated substrate 

was used as a benchmark for water splitting catalysis (for which Pt is considered an 

industry-standard), against which experimental samples were compared.  
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6.2.1.2 Spray-coating of graphene films 

Graphene oxide (GO) was synthesised following the modified Hummer‟s method [38]. 

GO was dispersed in Milli-Q water (2.2% wt) and used as is. Reduced graphene oxide 

(RGO) in Milli-Q water dispersion (0.05% wt) was obtained by chemically reducing 

graphene oxide with hydrazine and ammonia solution [35]. Both GO and RGO 

materials were synthesised and supplied by Dr Syed Ashraf from the Wollongong Node 

of the Australian National Fabrication Facility, and used as is. 

 

A GO dispersion (0.86 g; 2.2 wt% in water) was diluted in Milli-Q water (50 mL) by 

gentle sonication and vortex stirring. The mixture was then sprayed onto 5 x 10 cm FTO 

glass (cleaned by sonication in acetone for 20 min then plasma treated for 10 min) with 

a Sonotek spray coater. The glass was placed on a hotplate heated to 140 °C and the 

dispersion sprayed on at a flow rate of 0.25 mL/min for 100 or 50 cycles in a raster 

pattern. Afterwards the glass was kept at 140 °C for 1 h to fully dry and anneal the film 

to the substrate. The thickness of the two spray-coated films was measured with a 

Dektak profilometer and found to be 138 nm for the sample sprayed for 100 cycles and 

69 nm for the sample sprayed for 50 cycles 

 

6.2.1.3 Reduced liquid crystal graphene oxide (RLCGO) 

Liquid crystalline graphene oxide (LCGO) dispersion in water (11 mg/mL) was 

prepared following an established literature method [33-36]. LCGO (10 mL, 11 mg/mL) 

was transferred to a small sample bottle and hypophosphorous acid (1 mL, 50% wt) 

added as the reducing agent. The reagents were mixed using a vortex mixer with 

subsequent stirring using a magnetic stirrer for 30 min. The mixture was then subjected 
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to bath sonication to remove bubbles of trapped air in the viscous liquid. It was critical 

to achieve a homogenous mixture without trapped air bubbles for the subsequent casting 

step. 

 

The mixture was then coated on a Multapex 75 µm PET sheet of 12 x 30 cm in size with 

a PK K Control Coater doctor blade instrument at a gauge height of 0.6 mm. The film 

was left in an oven at 80 °C overnight in air to reduce the graphene oxide to graphene. . 

The resulting reduced liquid crystalline graphene oxide film on PET (RLCGO-PET) 

was then submerged in Milli-Q water to wash out all excess reagents and dried in air. 

Pieces of roughly 2.5 x 2 cm were cut from this film and a cladded copper wire attached 

with silver paint and epoxy glue. 

 

6.2.1.4 Post-reduction treatment of reduced liquid crystal graphene oxide film with Ca 

(RLCGO+Ca-PET) 

In one experiment, strips of RLCGO-PET were treated with a CaCl2 solution (1 M) in 

an attempt to bind calcium ions to the surface of the film after reduction and casting.  

The resulting film is termed here: RLCGO+Ca-PET.  

 

RLCGO strips were soaked in CaCl2 solution (1 M) overnight and dipped in water to 

remove the excess solution. The strips were then dried in air overnight and fabricated 

into electrodes by attaching copper wire with conductive silver paint and epoxy resin. 
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6.2.1.5 Ca-containing reduced liquid crystal graphene oxide film (CaRLCGO-FTO / 

CaRLCGO-PET) 

In an alternative procedure, the LCGO was modified by the addition of CaCl2, to 

modify the material with Ca
2+

 ions, as established in a literature procedure [39]. The 

LCGO was then reduced and cast in the same fashion as described previously.  

 

LCGO (10 mL, 11 mg/mL) was transferred to a sample bottle to which 0.2 mL of CaCl2 

(1 M) was added. This noticeably increased the viscosity of the dispersion. Milli-Q 

water (5 mL) was added to dilute the mixture to a less viscous state. The mixture was 

then gently stirred and hypophosphorous acid (0.5 mL) added. Once the reducing agent 

was added, the mixtures were gently mixed for a period of time (30 min). Challenges 

presented themselves by mixing the sample too vigorously which introduced bubbles in 

the liquid. This was to be avoided as these bubbles were difficult to eliminate due to the 

viscosity of the liquid, and would result in irregularities in the deposited films. The 

sample was sonicated in brief intervals to bring bubbles to the surface. 

 

The mixture was then coated on a Multapex 75 µm PET sheet of 12 x 30 cm size with a 

PK K Control Coater doctor blade instrument at a gauge height of 0.6 mm. The film 

was left in an oven at 80 °C overnight in air to reduce the graphene oxide. The resulting 

film was denoted Ca-modified reduced liquid crystal graphene oxide on PET 

(CaRLCGO-PET). It was submerged in Milli-Q water to wash out all excess reagents 

and dried in air. Pieces of 2.5 x 2.0 cm were cut from this film and a cladded copper 

wire attached with silver paste and epoxy glue. The edges of the film were sealed with 

clear nail polish to avoid detachment when exposed to water. 
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The coating was also done on FTO glass. FTO glass of dimensions ca. 4.5x7.5 cm was 

sonicated in acetone and then in water (20 min each), dried and treated with plasma for 

10 min before coating. Films were coated onto the glass using the same blade coater at a 

0.1 mm height gauge setting. The wet film was left to dry initially over 8 h before being 

heated to 80 °C in an oven in air overnight. After that it was submerged in water for 5 

min to wash out the excess CaCl2 and reducing agent. The film was found to adhere to 

the FTO glass substrate when in contact with water. It was then cut into pieces of 1.5 x 

1.3 cm and a copper wire attached to the edge with silver paste and epoxy resin. Nail 

polish was used to seal the edges to prevent water penetrating underneath the film in 

later experiments. The resulting films were denoted Ca-modified reduced liquid crystal 

graphene oxide on FTO (CaRLCGO-FTO). 

 

6.2.2 Electrodeposition of MnxOy films 

6.2.2.1 Basic electrodeposition procedure 

Electrodeposition of MnxOy films on substrates was carried out using a literature 

procedure [37]. Aqueous NaNO3 solution (20 mL, 1 M) was prepared, to which 

Mn(AcO)2 was added (10 mM). The solution was observed to darken and precipitate 

out of solution over the course of 1 day, due to MnO2 formation. It was therefore freshly 

prepared for every experiment and used within 2 h. 

 

The material was deposited onto the working electrode by applying a galvanostatic 

current density of 200 µA/cm
2
 for a set deposition time using the electrodeposition 

vessels specified previously (see section 2.3.8). After deposition, the substrate 

containing the MnxOy film was dipped in Milli-Q water to rinse off remaining reagents 
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and gently dried with N2 gas. The sample was then heat-treated at 90 °C for 30 mins in 

air on a hotplate and stored in a desiccator afterwards. 

 

6.2.2.2 Electrodeposition on FTO glass substrates 

The procedure was modified in an attempt to include Ca into the MnxOy film. Aqueous 

NaNO3 solution (20 mL, 1 M) was prepared, from which two separate solutions with 10 

mM Mn(AcO)2 and Ca(AcO)2 were made. From this, an series of coating solutions were 

prepared, each containing a mixture of the two reagents ranging from 100% Mn(AcO)2 : 

0% Ca(AcO)2H2O to 0% Mn(AcO)2: 100% Ca(AcO)2 in steps of 10%. 

 

Each mixture was used as the electrolyte during electrodeposition on ~2 x 3 cm 

rectangular pieces of FTO glass prepared as electrodes as described in section 6.2.1.1. 

The substrate was affixed to EV1 (see section 2.3.8) and the coating solution injected to 

fill the cavity. This electrodeposition vessel was found to facilitate uniformly sized 

films on the electrodes, thereby ensuring every sample had the same geometric surface 

area (2.25 cm
2
). A galvanostatic current density of 200 µA/cm

2
 was applied for 10 min 

for each coating solution. After deposition the sample was dipped in Milli-Q water to 

rinse out reagents and gently dried with N2 gas. The sample was then heat treated at 90 

°C for 30 mins in air on a hotplate and stored in a desiccator. 

 

Control experiments were done with the exclusion of Ca(AcO)2 and extended to 

deposition over a range of time periods (1 min, 2.5 min, 5 min, 10 min and 15 min) on 

FTO glass. An overview of MnxOy film samples created with this method is shown in  

Table 6.1 below. 
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Sample Type Substrate Deposition Parameters Sample Name 

Experimental 

coating 
FTO glass 

Mn(AcO)2 / Ca(AcO)2 

0:100% - 100:0% in 10% 

increments 

10 min deposition time 

CaMnxOy-FTO 

Mn/Ca ratio specified in 

text 

Control 

coating 
FTO glass 

Mn(AcO)2 

1 min, 2.5 min, 5 min, 10 min, 

15 min deposition time 

MnxOy-FTO X min 

 

Table 6.1 MnxOy films electro-coated on FTO glass 

 

6.2.2.3 Electrodeposition on graphene substrates 

The electrodeposition experiment was extended to the graphene substrates prepared 

using the parameters described in section 6.2.2.1 (for sprayed GO and RGO, RLCGO-

PET, RLCGO+Ca-PET, CaRLCGO-PET and CaRLCGO-FTO).  

 

Spray-coated graphene substrates were electrocoated in EV1 and the other graphene 

substrates were electrocoated in EV2 (see section 2.3.8). The design of EV2 allowed for 

the working electrode sample to be free standing in solution. This eliminated the 

possibility that the graphene film would be damaged by contact with other components. 

The electrocoating thereafter followed the standard method outlined in 6.2.2.1. The 

samples created with this method are listed in  

Table 6.2 below. 
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Substrate Deposition time Sample Name 

GO-FTO 138 nm 10 min MnxOy-GO-FTO 138 nm 

GO-FTO 69 nm 10 min MnxOy-GO-FTO 69 nm 

RLCGO-PET 2.5, 5, 10 min MnxOy-RLCGO-PET X min 

RLCGO+Ca-PET 2.5, 10 min MnxOy-RLCGO+Ca-PET X min 

CaRLCGO-PET 2.5, 5, 10 min MnxOy-CaRLCGO-PET X min 

CaRLCGO-FTO 2.5, 5, 10 min MnxOy-CaRLCGO-FTO X min 

 

Table 6.2 MnxOy films electrodeposited on graphene substrates 

 

6.2.3 Electrochemical testing of the samples 

All samples in this chapter were inserted into the box cell electrochemical apparatus 

described in section 2.4.8. The cell was filled with aqueous Na2SO4 electrolyte (0.1 M), 

which was stirred and bubbled with Ar gas for 1 h prior to testing. The full cell 

consisted of the sample as the working electrode, a Pt mesh counter electrode and an 

Ag/AgCl reference electrode. Unless stated otherwise, the voltage referred to in 

subsequent sections is against the Ag/AgCl reference electrode. 

 

The samples were tested using the method described in 2.4.9, but without illumination. 

Specifically, each sample was subjected to three LSV scans at 5 mV/sec over the 

voltage range of 0.0 – 1.6 V (vs Ag/AgCl), without illumination. The scan shown in the 

data presented below was the last scan of the three for each sample. Where shown, the 

LSV data was normalised for each sample and converted to current density by dividing 

by the area of each sample, which was estimated by measuring the dimensions of the 
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sample with a ruler (typically 2 – 3 cm
2
). The samples exhibiting high current density 

were then tested using a CA procedure, as described in section 2.4.9. 

6.3 Results and discussion 

6.3.1 MnxOy films on different substrates 

The MnxOy material studied in this chapter was electrodeposited following the method 

described in section 6.2.2 on the previously prepared substrates, as explained in section 

6.2.1. This yielded a variety of graphene substrates with MnxOy electrodeposited upon 

them for varying time periods ( 

Table 6.1,  

Table 6.2). 

 

In the first set of experiments, incrementally varying mixtures of Mn(AcO)2 / Ca(AcO)2 

were used as aqueous coating solutions to deposit films on FTO glass for 10 min, in 

order to determine whether Ca could be included in electrodeposited MnxOy-FTO.  In a 

following control experiment, MnxOy was deposited on FTO glass for 1 min, 2.5 min, 5 

min, 10 min and 15 min. This formed the initial testing of the MnxOy deposition method 

on a regular conducting substrate ( 

Table 6.1). 

 

In the following experiments, the MnxOy was deposited using Mn(AcO)2 on the 

graphene substrates explained in section 6.2.1. This included spray-coated GO on FTO 

glass at 138 and 69 nm thickness (GO-FTO 138 and GO-FTO 69), reduced liquid 

crystalline graphene oxide on PET (RLCGO-PET), reduced liquid crystalline graphene 
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oxide on PET soaked in CaCl2 (RLCGO+Ca-PET), Ca-modified reduced liquid 

crystalline graphene oxide on PET (CaRLCGO-PET) and FTO (CaRLCGO-FTO) (see  

Table 6.2). 

 

6.3.2 Electrochemical testing of control substrates 

The control electrodes in section 6.2.1 were tested electrochemically to establish the 

baseline water splitting catalytic performance for each. These included: (i) the FTO 

glass substrates, (ii) spray-coated GO on FTO glass at 138 nm and 69 nm thickness 

(GO-FTO 138 nm and GO-FTO 69 nm), (iii) reduced liquid crystalline graphene oxide 

on PET (RLCGO-PET), (iv) reduced liquid crystalline graphene oxide on PET soaked 

in CaCl2 (RLCGO+Ca-PET), (v) Ca-modified reduced liquid crystalline graphene oxide 

on PET (CaRLCGO-PET) and (vi) FTO (CaRLCGO-FTO). The Pt-FTO film was also 

tested as a catalytic benchmark to compare to experimental samples. 
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Figure 6.1 Normalised LSV spectra of control substrates: (a) Pt-FTO, (b) RLCGO-PET, 

(c) CaRLCGO-PET, (d) GO-FTO 69 nm, (e) GO-FTO 138 nm, (f) CaRLCGO-FTO, (g) 

uncoated FTO. 

 

 

The Pt-FTO control electrode produced the highest overall current response with very 

clear formation of gas bubbles on the electrode when subjected to voltages above 1.2 V; 

a clear onset of current was observed from 1.1 V (Figure 6.1). A current density of 2.52 

mA/cm
2
 at 1.6 V (vs Ag/AgCl) was observed for the Pt-FTO sample, and subsequently 

the data of this electrode served as a benchmark against which to compare experimental 

catalysts. 

 

The control substrates, that is, the substrates that were eventually used to deposit 

catalyst material on, overall showed a very negligible electrochemical response (<0.1 

mA/cm
2
) at voltages that were relevant for water oxidation above 1.1 V (vs Ag/AgCl) 

(Figure 6.1). The substrates RLCGO-PET and CaRLCGO-PET however featured 

significant electrochemical current which gradually increased from 0.8 V onwards. This 

was likely due to formation of electroactive oxygen species on the surface, which has 

been reported previously in literature [31, 32]. 

 

In the following oxidative electrochemical tests, the LSV current density data of the 

relevant substrate was included in each diagram for ready comparison between the 

experimental sample and the substrate. This allowed for determination as to whether the 

MnxOy deposited on the substrate had influenced oxidative current. 
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6.3.3 Electrochemical testing of MnxOy-FTO 

An array of samples of electrodeposited MnxOy-FTO were prepared from coating 

solutions with varying ratios of Mn(AcO)2 to Ca(AcO)2 (see section 6.2.2.2). In this 

experiment the possibility of inclusion by electrocoating, of Ca into a deposited MnxOy 

film was examined, and whether this affected the water oxidation performance of the 

catalytic material. 

 

 

Figure 6.2 Electrodeposited films in order of decreasing Mn/Ca ratio on FTO: (a) 1/0 

mL Mn/Ca, (b) 0.9/0.1 mL Mn/Ca, (c) 0.8/0.2 mL Mn/Ca, (d) 0.7/0.3 Mn/Ca, (e) 

0.6/0.4 mL Mn/Ca, (f) 0.5/0.5 mL Mn/Ca, (g) 0.4/0.6 mL Mn/Ca, (h) 0.3/0.7 mL 

Mn/Ca, (i) 0.2/0.8 mL Mn/Ca, (j) 0.1/0.9 mL Mn/Ca, (k) 0/1 mL Mn/Ca. 

 

The electrodeposition resulted in brown-orange films on the FTO glass surface. As the 

concentration of Mn(AcO)2 decreased and Ca(AcO)2 increased, the films gradually 

diminished in colour towards almost clear FTO glass at the 100% Ca(AcO)2 setting (see 

Figure 6.2). 

 

 

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) 
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Figure 6.3 Normalised, dark, LSV spectra of electrodeposited films with varying Mn/Ca 

ratio on FTO: (a) Pt-FTO, (b) 1/0 mL Mn/Ca, (c) 0.8/0.2 mL Mn/Ca, (d) 0.9/0.1 Mn/Ca, 

(e) 0.6/0.4 mL Mn/Ca, (f) 0.7/0.3 mL Mn/Ca, (g) uncoated FTO. 

 

  

Figure 6.4 Normalised, dark, LSV spectra of MnxOy-FTO with varying Mn/Ca ratio on 

FTO: (a) Pt-FTO, (b) 0.4/0.6 mL Mn/Ca, (c) 0.5/0.5 mL Mn/Ca, (d) 0.3/0.7 mL Mn/Ca, 

(e) 0.2/0.8 mL Mn/Ca, (f) 0.1/0.9 mL Mn/Ca, (g) 0/1 mL Mn/Ca, (h) uncoated FTO. 
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The samples were then each tested by LSV (in the dark, without light illumination), 

allowing for direct comparison of their electrocatalytic performance (Figure 6.3 and 

Figure 6.4). All Mn-containing samples displayed similar overall electrochemical 

behaviour, differing only in their current density. The sample made from the solution 

containing Mn(AcO)2 only displayed the highest current density overall in the water 

oxidation region, with an onset potential at 1.25 V, rivalling that of the Pt benchmark. 

The maximum current density measured was 2.02 mA/cm
2
 at 1.6 V. The other samples 

showed incrementally decreasing current densities with increasing concentration of 

Ca(AcO)2 used in the reaction mixture,  ultimately falling to as low as that of the FTO 

substrate by itself. The current peak observed in the region 0.8 – 1.1 V is likely due to 

partial oxidation of water and adsorbance of oxygen species on the substrate. This 

demonstrated that the addition of Ca(AcO)2 did not lead to beneficial effects on the 

water oxidation performance of this catalyst. Therefore, inclusion of Ca by this method 

was not studied further in later experiments. 

 

 

Figure 6.5 Photographs of MnxOy-FTO electrodeposited for (a) 1 min, (b) 2.5 min, (c) 5 

min, (d) 10 min, (e) 15 min. 

 

The experiment was then extended to test the effect of varying deposition time on the 

resulting water oxidation performance. Samples of MnxOy on FTO were prepared with 

deposition times of 1 min, 2.5 min, 5 min, 10 min and 15 min (see Figure 6.5). An 

(a) (b) (c) (d) (e) 
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increasing intensity in colour was observed with increasing deposition time, likely due 

to increasing thickness of the film. 

 

 

Figure 6.6 Normalised, dark, LSV of MnxOy-FTO at varying deposition time: (a) Pt-

FTO, (b) MnxOy-FTO 10 min, (c) MnxOy-FTO 5 min, (d) MnxOy-FTO 15 min, (e) 

MnxOy-FTO 2.5 min, (f) MnxOy-FTO 1 min, (g) FTO. 

 

The samples were tested by LSV (without illumination) and shown to display current 

densities that depended on the deposition time (Figure 6.6). The sample deposited for 10 

min showed the highest current density, with the others featuring diminishing water 

oxidation current. Interestingly, both longer and shorter deposition times delivered a 

lower result, indicating 10 min as a stable optimum in deposition time for this substrate. 
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Figure 6.7 CA of MnxOy-FTO and Pt at 1.6 V (vs Ag/AgCl) full view (top) and zoomed 

in (bottom): (a) Pt-FTO, (b) MnxOy-FTO 5 min, (c) MnxOy-FTO 15 min, (d) MnxOy-

FTO 10 min, (e) MnxOy-FTO 2.5 min. 

 

These samples were then tested by CA at a set potential of 1.6 V over 30 min (Figure 

6.7). This elucidated the long-term catalytic performance of the films. Pt-FTO was also 

tested and the spectrum kept for benchmarking. From the data it is clear that the current 

densities of the MnxOy-FTO samples decayed much faster than that of Pt-FTO, 
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indicating a lower activity and probable degradation of the film during water oxidation. 

Pt-FTO achieved a current density of 0.95 mA/cm
2
 after 30 min while most MnxOy 

samples dropped to ca. 0.1 mA/cm
2
 around the 12 min mark. The 5 min deposition 

sample lasted the longest at 15 min before losing its activity. Whilst capable of 

delivering high current densities with some gas bubble formation, the long term 

performance of this catalyst was still limited, at least in its current form.  

 

6.3.4 Electrochemical testing of MnxOy-GO-FTO 

MnxOy was deposited on spray-coated GO-FTO (see section 6.2.2.3) to test the effect of 

GO substrate on the water oxidation performance of the catalyst. The resulting films 

exhibited the familiar orange-brown colour of MnxOy on top of the light brown GO-

FTO substrates (Figure 6.8). 

 

 

Figure 6.8 Photograph of GO-FTO at thickness of (a) 138 nm and (b) 69 nm. MnxOy on 

GO-FTO of substrate thickness (a) 138 nm and (b) 69 nm. 

 

(a) (b) (c) (d) 
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Figure 6.9 Normalised, dark, LSV of MnxOy-GO-FTO samples in comparison with 

reference data: (a) Pt-FTO, (b) MnxOy-FTO 10 min, (c) MnxOy-GO(69 nm)-FTO, (d) 

MnxOy-GO(138 nm)-FTO, (e) GO(69 nm)-FTO, (f) GO(138 nm)-FTO.  All of this data 

is not corrected for internal resistance of the substrate. 

 

The samples were then tested by LSV without light illumination, which showed that the 

addition of GO to the electrodeposited MnxOy system overall did not increase the water 

splitting performance relative to Pt-FTO and best performing MnxOy–FTO (although 

this was raw data that did not take account of the higher internal electrical resistance of 

the GO relative to FTO and Pt) (Figure 6.9). 

 

6.3.5 Electrochemical testing of MnxOy-RLCGO-PET 

MnxOy was electrodeposited on RLCGO-PET as per the method explained in section 

6.2.2.3. RLCGO-PET was previously synthesised and cast by blade-coating on the PET 

by Dr Rouhollah Jalili, using the method explained in section 6.2.1.3.  The MnxOy films 

were deposited for 2.5 min, 5 min and 10 min. 
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Figure 6.10 Photograph of MnxOy-RLCGO-PET, where the MnxOy layer had been 

electrodeposited for (a) 2.5 min, (b) 5 min, (c) 10 min. 

 

The electrodeposition of MnxOy on the graphene-PET substrate RLCGO-PET was 

successful as could be evidenced by visible colouration of the surface. ( 

Figure 6.10). The different patterns likely come about through subtle variations on the 

surface and thickness of deposition across the sample.  

 

 

Figure 6.11 Normalised, dark, LSV of MnxOy-RLCGO-PET compared to reference 

spectra: (a) Pt-FTO, (b) MnxOy-RLCGO-PET 5 min, (c) MnxOy-RLCGO-PET 2.5 min, 

(d) MnxOy-FTO 10 min, (e) MnxOy-RLCGO-PET 10 min, (f) RLCGO-PET. 
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The samples were tested by LSV without light illumination (Figure 6.11).  The MnxOy-

RLCGO-PET with 5 min deposition time exhibited the highest current density so far 

recorded for the experimental samples, yielding 2.23 mA/cm
2
 at 1.6 V.  The highest was 

MnxOy-FTO at 2.02 mA/cm
2
. An interesting point to note was the higher current density 

in the region of 1.2 – 1.6 V for the MnxOy-RLCGO-PET compared to MnxOy-FTO and 

even Pt-FTO. 

 

The prior LSVs did not take account of the higher internal electrical resistance of the 

RLCGO substrate relative to the more highly conducting FTO or Pt substrates in the 

control samples.  In samples with such a substrate, a significant ohmic potential drop 

occurs in the plane of the electrode when operating, since the current is collected at the 

edge.  The effect of this ohmic drop can be corrected for as follows: 

 

If Sheet Resistance is Rs (Ω /□), then total linear resistance RL, of sheet area L (length) x 

W (width) (along L direction) is: 

RL  = Rs x L/W  (Ω) 

 

In the tested samples, L = W ( ~ 1.4 cm) and RL equals Rs  = 30 Ω . The average 

resistance of the active area along the L direction is therefore half of this, namely, RL /2 

= 20 Ω. The sheet resistance-corrected electrochemical voltage, V (corrected), 

corresponding to an operating current density of I (mA/cm
2
) is therefore: 

 

V (corrected) = V (measured) – I ·L·W·15·10
-3

  (Volts) 
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Figure 6.12 Normalised, IR-corrected LSV of MnxOy-RLCGO-PET: (a) Pt-FTO, (b) 

MnxOy-RLCGO-PET 5 min, (c) MnxOy-RLCGO-PET 2.5 min, (d) MnxOy-RLCGO-

PET 10 min 

 

This was applied to the MnxOy-RLCGO-PET LSV data (Figure 6.12). Perhaps the most 

remarkable results of this thesis was observed when using this approach to take into 

account the much higher internal resistance of the RLCGO substrate relative to FTO or 

Pt. Under those circumstances, the MnxOy-RLCGO-PET at 5 min deposition time 

exhibited a higher current density than the Pt-FTO control over the entire region 0.8 – 

1.6 V (vs Ag/AgCl). In this respect, the above data testifies to a notable catalytic power 

in water oxidation catalysis by the combination of a MnxOy (birnessite) layer on a 

reduced, liquid crystalline graphene oxide layer.  
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The films were further tested by CA to examine their performance over longer periods 

of time. CA experiments of this type cannot be adjusted to take into account the internal 

resistance because the constantly changing current density means that the internal 

resistance also changes constantly.   

 

 

Figure 6.13 CA, without iR-correction, of (a) Pt-FTO, (b) MnxOy-RLCGO-PET 5 min 

at 1.1 V (vs Ag/AgCl). 

 

The first CA experiment involved maintaining a fresh MnxOy-RLCGO-PET 5 min 

sample at a voltage of 1.1 V (vs Ag/AgCl) (Figure 6.13). Even without correction for 

the internal resistance of the RLCGO substrate, the current density displayed by MnxOy-

RLCGO-PET consistently stayed above that of Pt for the full 60 min measurement time. 

The MnxOy-RLCGO-PET therefore provides a sustained, powerful catalytic effect in 

water oxidation. This effect clearly exceeded the activity of Pt at low applied voltages. 
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Figure 6.14 CA of MnxOy-RLCGO-PET and reference samples at 1.6 V (vs Ag/AgCl), 

full view (top) and zoomed in (bottom): (a) Pt-FTO, (b) MnxOy-RLCGO-PET 5 min, (c) 

MnxOy-RLCGO-PET 2.5 min, (d) MnxOy-RLCGO-PET 10 min, (e) RLCGO-PET. 

 

The films were also tested by CA at 1.6 V to examine their performance at higher 

applied voltages over longer periods of time (Figure 6.14). The testing had again to be 

done without correction for the internal resistance of the RLCGO substrate.  Pt-FTO 

achieved around 1 mA/cm
2
 after 30 min under these conditions. All MnxOy-RLCGO 
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samples however displayed a gradual decrease over time, towards a current density of 

ca. 0.2 - 0.4 mA/cm
2
 after 30 min. Furthermore two distinctive declines were observed 

in the 0 – 7 min and 10 – 20 min regions. It is unclear what caused these decreases. 

 

6.3.6 Electrochemical testing of MnxOy-RLCGO+Ca-PET 

MnxOy was electrodeposited on RLCGO-PET modified by soaking in CaCl2 solution (1 

M) prior to deposition (see section 6.2.1.5), resulting in MnxOy-RLCGO+Ca-PET, as 

per the method outlined in section 6.2.2.3. The sample was electrodeposited with 

MnxOy for 2.5 min or 10 min. The modification to the substrate was done in an attempt 

to incorporate Ca into the RLCGO with the MnxOy film deposited on top. 

 

 

Figure 6.15 Photograph of MnxOy-RLCGO+Ca-PET electrodeposited for (a) 2.5 min, 

(b) 10 min 

 

(a) (b) 
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Figure 6.16 Normalised, dark, LSV without iR-correction of MnxOy-RLCGO+Ca-PET 

compared to reference spectra: (a) Pt-FTO, (b) MnxOy-RLCGO+Ca-PET 2.5 min, (c) 

MnxOy-RLCGO-PET 5 min, (d) MnxOy-RLCGO+Ca-PET 10 min, (e) RLCGO-PET. 

 

The resulting samples produced less visible films than on RLCGO–PET though still 

noticeably coloured (Figure 6.15). The samples were then tested by LSV without taking 

into account the internal resistance of the RLCGO+Ca substrate (Figure 6.15). The 

MnxOy-RLCGO+Ca-PET having 2.5 min deposition time, exhibited a current density 

comparable to that of the previous high performing sample MnxOy-RLCGO-PET 

without Ca. The current density maximum was nonetheless slightly above that with 2.35 

mA/cm
2
 at 1.6 V. 
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Figure 6.17 CA of MnxOy-RLCGO+Ca-PET films at 1.6 V (vs Ag/AgCl), full view 

(top) and zoomed in (bottom): (a) Pt-FTO, (b) MnxOy-RLCGO+Ca-PET 2.5 min, (c) 

MnxOy-RLCGO+Ca-PET 10 min, (d) RLCGO-PET. 

 

The films were then tested by CA at 1.6 V, without correction for internal resistance, to 

examine their performance over longer periods of time (Figure 6.17). All samples 

showed a gradual decrease over time towards a current density of ca, 0.2 – 0.4 mA/cm
2
. 

The two distinct declines in the regions 0 – 7 min and 10 – 20 min that were seen 
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previously, were also observed in these experiments. It was unclear at this point what 

caused this stepwise decrease. It was possible that there was a stepwise degradation of 

the MnOx-RLCGO system due to overoxidation. 

 

6.3.7 Electrochemical testing of MnxOy-CaRLCGO-FTO 

In this experiment, MnxOy was deposited onto RLCGO that had been previously 

modified by the addition of CaCl2 during the chemical reduction step and casting onto 

FTO glass (see sections 6.2.1.5 and 6.2.2.3). 

 

 

Figure 6.18 Photograph of MnxOy-CaRLCGO-FTO, from left to right: CaRLCGO-FTO 

substrate, 2.5 min, 5 min and 10 min deposition of MnxOy. 

 

The electrodeposition of MnxOy was carried out on the CaRLCGO substrate for 2.5 min, 

5 min and 10 min, resulting in a more obvious, deposited orange layer on the 

CaRLCGO surface (Figure 6.18). 
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Figure 6.19 Normalised,dark, LSV of MnxOy-CaRLCGO-FTO compared to reference 

spectra: (a) Pt-FTO, (b) MnxOy-RLCGO-PET 5 min, (c) MnxOy-CaRLCGO-FTO 10 

min, (d) MnxOy-CaRLCGO-FTO 5 min, (e) MnxOy-CaRLCGO-FTO 2.5 min, (f) 

CaRLCGO-FTO. 

 

The MnxOy-CaRLCGO-FTO films were then tested by LSV without correction for the 

internal resistance of the CaRLCGO substrate (Figure 6.19) and returned lower current 

densities than the earlier-studied MnxOy-RLCGO-PET film (Figure 6.19(b)).  The 

MnxOy-CaRLCGO-FTO films additionally exhibited clear signs of crumpling and 

detachment of the MnxOy film from the CaRLCGO substrate, which explains their 

irregular LSV spectra at voltages positive of ca. 1 V (Figure 6.19(c)-(e)). 
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6.3.8 Electrochemical testing of MnxOy-CaRLCGO-PET 

Following from the CaRLCGO casting on FTO glass, the same material was prepared 

and cast on Multapex PET as in the initial RLCGO-PET experiment (see 6.2.1.5). A 

layer of MnxOy was then electrodeposited on these electrodes for 2.5 min, 5 min and 10 

min. 

 

Figure 6.20 Photograph of (a) CaRLCGO-PET substrate, and MnxOy-CaRLCGO-PET 

electrodeposited for (b) 2.5 min, (c) 5 min, (d) 10 min. 

 

The electrodeposition experiment resulted in colourful films atop the substrate (Figure 

6.20). Interestingly, the CaRLCGO-PET featured large dark speckles on the substrate 

surface that were not observed before on either RLCGO-PET or CaRLCGO-FTO. This 

could indicate a degree of inhomogeneity in the film, which could make results difficult 

to reproduce.  

 

 

 

(a) (b) (c) (d) 
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Figure 6.21 Normalised, dark, LSV of MnxOy-CaRLCGO-PET compared to reference 

spectra: (a) Pt-FTO, (b) MnxOy-RLCGO-PET 5 min, (c) MnxOy-CaRLCGO-PET 2.5 

min, (d) MnxOy-CaRLCGO-PET 10 min, (e) MnxOy-CaRLCGO-PET 5 min, (f) 

CaRLCGO-PET. 

 

The MnxOy-CaRLCGO-PET films were tested by LSV without correction for internal 

resistance (Figure 6.21), and exhibited lower raw current densities than the MnxOy-

RLCGO-PET (Figure 6.21(b)). Indeed the substrate without MnxOy seemed to deliver 

current densities higher than that of the electrodeposited samples. 
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6.4 Conclusions 

In this chapter the addition of Ca to the MnxOy birnessite system was attempted by 

means of either during the electrodeposition step or by modifying the substrate material 

to contain Ca ions. When Ca(AcO)2 was added to the Mn(AcO)2 reagent mixture used 

for electrodeposition the resulting samples featured a clearly diminished catalytic 

current, therefore this method of addition was discontinued. Because of time constraints 

the more promising of these composites were studied in greater detail while those 

underperforming were ruled out after initial testing. As the samples were made 

following a literature procedure [37] the resulting material was assumed to contain 

birnessite given the similar water oxidation behaviour, however the precise 

crystallographic properties of the material were not studied due to time constraints. 

 

The MnxOy-RLCGO-PET samples delivered the highest current densities in this 

chapter, rivalling the performance of the control Pt sample and demonstrating an 

improvement over MnxOy on FTO. Additionally, after 60 minutes of electrolysis at a 

constant potential of 1.1 V (vs Ag/AgCl) the material featured a higher catalytic current 

than that of Pt, with 0.184 mA/cm
2
 vs 0.148 mA/cm

2
 for Pt. Though not optimised, this 

presents a benefit for water oxidation at near-neutral pH. 

 

The subsequent attempts at improving that performance through the addition of Ca in 

the substrate did not deliver an increase in current density. The Ca modified RLCGO, 

whether deposited on FTO or PET, did not lead to an increase in electrochemical 

activity of the MnxOy-graphene composite material. The role of Ca in the OEC could 

not be replicated by this process as it was likely not incorporated into the MnxOy crystal 

structure. The notable difference between the CaMn4O4 cluster in nature and this 
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artificial structure is that the biological catalyst consists of a single metal oxide 

molecule rather than a continuous crystal lattice with localised active sites. This limits 

the viability of the combinatorial approach used in this study as opposed to a more 

precise assembly method. 
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7 Summary and conclusions 

7.1 Porphyrin/PEDOT 

The matrix-assisted effect of PEDOT on photocatalytic species of Mn porphyrins was 

explored in greater detail in a systematic study. MnTPPS was identified as a efficient 

photocatalyst when embedded in VPP PEDOT [1] and used in this study as a starting 

point. This was expanded on by testing the species MnTMPyP, ion-paired 

MnTMPyP+MnTPPS and MnTPP at varying concentrations in VPP PEDOT in order to 

study critical parameters to the photoelectrochemical activity of the material in water. In 

a following experiment the inclusion of MnTPPS as well as MnPVTPPS in 

PEDOT:PSS by electrochemical polymerisation was successfully demonstrated. The 

composite materials were tested in a voltage range of 0-0.7 V (vs Ag/AgCl) where the 

photocurrent was correlated to water oxidation in the absence of any other species that 

could be oxidised at that potential. The materials were then examined by UV-Vis 

spectroscopy to investigate the nature of the metalloporphyrins in the composite film 

samples. 

 

Of the VPP PEDOT based composites, MnTPP/PEDOT has shown to feature the 

highest photocurrent density, 4.01 μA/cm
2
 for a porphyrin concentration of 1 mg/mL at 

0.7 V (vs Ag/AgCl) and was singled out for further study. The material was tested in a 

combined photoelectrochemical and gas chromatography apparatus confirming the 

evolution of oxygen gas. The material was then studied in greater detail by elemental 

analysis. UV-Vis analysis of the porphyrin that leached out of the material was also 

carried out. It was found that the porphyrin had become free base during vapour phase 

polymerisation and no longer contained the Mn ion in the core. The resulting material 
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was then shown to be identical to the free base TPP/PEDOT. At higher concentrations 

of MnTPP this phenomenon did not occur and the presence of Mn(III)TPP was 

confirmed by UV-Vis analysis. 

 

The demetallation process undergoes through reductive step from Mn
3+

 to Mn
2+

 what 

was demonstrated experimentally and is in agreement with the published studies [2, 3]. 

However, how the reduction process occurs in highly oxidative environment is not 

obvious. The exact mechanism of this reaction remains unclear and will require further 

studies which are not the scope of this thesis. It was therefore shown that the 

combination of Mn porphyrins with PEDOT at lower concentration did not leave the 

metalloporphyrin intact. The mentioned above composite resulted in the simultaneous 

production of H2 and O2 in photoelectrochemical experiments, which was confirmed by 

gas chromatography (GC). However, the source of the gases is, likely, the 

photoelectrochemical decomposition of the TPP inside the PEDOT matrix.  

 

The electrochemically polymerised species MnPVTPPS/PEDOT:PSS also featured a 

high photocurrent of 5.00 μA/cm
2
 at the lower voltage of 0.65 V (vs Ag/AgCl). Further 

analysis of the material revealed a similar phenomenon to that found in the 

MnTPP/PEDOT system, that the Mn ion was lost from the porphyrin during the 

fabrication of the composite material.  
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7.2 MnxOy-graphene 

In subsequent studies a cubane-like birnessite MnxOy catalyst made by electrodeposition 

[4] was investigated. In this case the effect of reduced liquid crystalline graphene on the 

Mn oxide and the effect of Ca ions in close proximity were examined. The MnxOy 

species were electrodeposited on the substrates, namely, (i) FTO glass, (ii) graphene 

oxide (GO) sprayed on FTO glass, (iii) reduced liquid crystalline graphene oxide 

(RLCGO) blade-coated onto PET. Furthermore, reduced liquid crystalline graphene was 

modified with Ca ions prior to the reduction step, resulting in CaRLCGO on PET and 

FTO glass. 

 

It has been proven that Ca addition to the Mn oxides was not beneficial to the 

electrochemical activity of the catalyst in an aqueous electrolyte. The MnxOy-RLCGO-

PET composite featured high current densities in the region 1.1 – 1.6 V (vs Ag/AgCl), 

were performing better than those of a comparative Pt film. Those results indicate the 

high performance of this type of material in a near-neutral aqueous electrolyte, in 

contrast to the high pH environments typically used in water oxidation catalysis. The 

low overpotential necessary for the efficient catalytic water oxidation by this system is 

an important advantage as the composite is made of Earth abundant, inexpensive 

reagents and would function under relatively benign operating conditions that do not 

require a high pH. This makes the material a prime contender for future studies in order 

to deeper investigate the critical factors for optimal performance. A more thorough 

investigation and optimisation of this composite system is currently scheduled pending 

patent approval. 
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7.3 Conclusions and future work 

The investigation of porphyrin/PEDOT and MnxOy-graphene composite materials in 

this work has yielded the following conclusions: 

 

Low concentrations of Mn porphyrin added to PEDOT during polymerisation, 

regardless of the method, leads to demetallation of the complex. This is an unusual 

finding as the ion is labile only in the Mn(II) oxidation state of the Mn porphyrins tested 

[2, 3] whereas in Mn(III) and Mn(IV) remains stable. This would imply that reduction 

of the porphyrin has occurred in the fabrication of the composite which seems counter-

intuitive considering the oxidative chemical environment in the process of fabrication. 

This might be the result of light-driven reaction and a possible other catalytic effect with 

a small turnover number. In order to retain the Mn in the porphyrin core a higher 

concentration of Mn porphyrin in PEDOT is needed. Further research would be 

necessary to fully explain this phenomenon. 

 

Reduced liquid crystalline graphene oxide offers a novel substrate material for water 

oxidation catalysis. In this study it was shown that RLCGO enhances the catalytic 

activity of MnxOy. It is likely that further optimisation could lead to a very efficient 

catalytic species that operates reliably in water conditions that are more similar to 

natural water systems than what is currently employed for water electrolysis. This new, 

innovative material will be approached by more detailed study of the formation of the 

catalytic species on the substrate. Furthermore it is likely that the graphene substrate can 

be chemically altered to facilitate a better integration of and interaction with catalyst. 

The follow-up of this important finding will be done in collaboration with Dr Ron Pace 

at the Australian National University. 
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