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Incorporating environmental evaluation and thermal properties of
concrete mix designs

Abstract
One of the main challenges in sustainable design of buildings is to improve the energy efficiency of the
building during its lifetime along with reducing the environmental impact of the design. Recent advances in
concrete technology offer lower embodied emission through the application of supplementary cementitious
materials and recycled aggregates. There are also improvements to thermal properties with the application of
admixtures. However, the relationships between the environmental impact (Cradle to Gate) and thermal
performance of concrete mix designs have not been researched adequately. The Green House Gas (GHG)
emissions associated with each individual concrete component and its production need to be considered with
greater refinement. This study correlates the impacts of selecting a concrete mix design in terms of CO2-e with
resulting thermal conductivity and density at the design stage of buildings. This paper examines 90 concrete
mix designs from published literature to identify their embodied emissions and thermal conductivity in order
to discuss the relationship between low embodied carbon dioxide equivalents (CO2-e) emission alternatives
and thermal conductivity. The embodied CO2-e of a variety concrete mix designs were quantified by
compiling embodied CO2-e coefficient for each individual component in the concrete. The results show the
variation in embodied CO2-e and thermal conductivity of concrete mixes. The application of readily available
supplementary cementitious material can reduce embodied CO2-e (kg CO2-e) by up to 16% in comparison
with general practice. Furthermore, the thermal conductivity of concrete mix is influenced by changing the
density of aggregates and the proportion of cementitious materials. In completing this work the results
obtained from the study are compared with six different inventory databases: ICE (Hammond et al., 2011),
Crawford (2011), Alcon (2003), eTool (2014), BPIC (2014) and AusLCI (2013). The comparison identifies
some inconsistencies in calculation of embodied CO2-e across the different databases. This is attributed to
variation in embodied CO2-e coefficients and lack of in-depth consideration of the detailed properties of each
individual concrete mix design.

Keywords
mix, concrete, designs, properties, environmental, evaluation, thermal, incorporating

Disciplines
Engineering | Science and Technology Studies

Publication Details
Robati, M., McCarthy, T. J. & Kokogiannakis, G. (2016). Incorporating environmental evaluation and thermal
properties of concrete mix designs. Construction and Building Materials, 128 422-435.

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/6302

http://ro.uow.edu.au/eispapers/6302


1 
 

Incorporating environmental evaluation and thermal properties of concrete mix designs 

Mehdi Robati 
*1, 2

, Timothy J McCarthy 
1
, Georgios Kokogiannakis 

2
 

1 
School of Civil, Mining and Environment, Faculty of Engineering and Information Sciences, University of 

Wollongong, Australia 

2 
Sustainable Buildings Research Centre (SBRC), University of Wollongong, Australia 

*Corresponding author. Tel.: +61 420 477 662. 

E-mail address: mr329@uowmail.edu.au (Mehdi Robati) 

Abstract 

One of the main challenges in sustainable design of buildings is to improve the energy efficiency of 

the building during its lifetime along with reducing the environmental impact of the design. Recent 

advances in concrete technology offer lower embodied emission through the application of 

supplementary cementitious materials and recycled aggregates.  There are also improvements to 

thermal properties with the application of admixtures. However, the relationships between the 

environmental impact (Cradle to Gate) and thermal performance of concrete mix designs have not 

been researched adequately. The Green House Gas (GHG) emissions associated with each individual 

concrete component and its production need to be considered with greater refinement. This study 

correlates the impacts of selecting a concrete mix design in terms of CO2-e with resulting thermal 

conductivity and density at the design stage of buildings. This paper examines 90 concrete mix 

designs from published literature to identify their embodied emissions and thermal conductivity in 

order to discuss the relationship between low embodied carbon dioxide equivalents (CO2-e) emission 

alternatives and thermal conductivity. The embodied CO2-e of a variety concrete mix designs were 

quantified by compiling embodied CO2-e coefficient for each individual component in the concrete. 

The results show the variation in embodied CO2-e and thermal conductivity of concrete mixes. The 

application of readily available supplementary cementitious material can reduce embodied CO2-e (kg 

CO2-e) by up to 16% in comparison with general practice. Furthermore, the thermal conductivity of 

concrete mix is influenced by changing the density of aggregates and the proportion of cementitious 

materials. In completing this work the results obtained from the study are compared with six different 

inventory databases: ICE [1], Crawford [2], Alcon [3], eTool [4], BPIC [5] and AusLCI [6]. The 

comparison identifies some inconsistencies in calculation of embodied CO2-e across the different 

databases. This is attributed to variation in embodied CO2-e coefficients and lack of in-depth 

consideration of the detailed properties of each individual concrete mix design. 

Keyword: Concrete mix design, Embodied emission, Thermal conductivity, GHG, CO2-e  
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1-Introduction 

 

Concrete is the most widely used construction material in the building industry and consumes the 

second highest amount of natural resources [7]. The main constituents of general purpose concrete are 

cement, water and aggregates. The most carbon intensive components in manufacturing concrete are 

cement and aggregates. A report released by the United States Geological Survey shows that global 

cement production  increased by 100 million tonnes in one year to a total of 4.18 billion tonne in 2014 

[8]. The American Portland Cement Association (PCA) has estimated this cement consumption trend 

will continue to increase into the future [9]. 

Concrete is a popular material because it has excellent mechanical and durability properties. It is 

adaptable, relatively fire resistant and generally available and affordable. Concrete has the ability to 

absorb and retain energy for a considerable period of time. This action reduces energy consumption 

by transferring heat in a natural daily cycle through the structural components (thermal mass) of the 

building. The mass components reduce the temperature fluctuations in building spaces and can 

therefore reduce the associated peak heating or cooling loads [10]. 

Through its high thermal mass, a concrete slab can often absorb heat during the day and release it 

back to the room at night.  The relatively high specific heat of solid concrete makes it attractive as a 

passive thermal store. An appropriate design of concrete mix can offer this thermal performance 

benefits, leading to a reduction in heating and cooling energy consumption in buildings [11, 12].  

This situation raises a question about how best to design a concrete mix with respect to strength, 

thermal properties, environmental impact and CO2-e intensity of concrete. The objective of this paper 

is to identify the environmental impact and thermal performance of different concrete mix designs by 

considering both the embodied CO2-e and the impact on the thermal properties of concrete.   

1-1 Thermal performance of concrete 

 

Concrete is one of several building materials that possess high thermal properties. In cold seasons,  

high thermal mass building elements that contain concrete such as walls and floor slabs, absorb 
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radiant heat from the sun during the day and release it gradually back into the system (space) during 

night when outside temperatures drop [13]. The distinct benefit of high thermal mass is to moderate 

changes in peak load of energy requirements due to fluctuations between inside and outside 

temperatures. High thermal mass causes a time lag between internal and external temperatures (Figure 

1).  It also stores heat which dampens the fluctuation between peaks.  This often results in improved 

thermal comfort and less energy demand for heating and cooling[13]. Beside thermal mass, thermal 

properties of concrete mix design such as conductivity have a considerable influence on passive 

heating design strategy. An optimum design of concrete mix could either reduce escape of passive 

heating before being absorbed or re-released a stored heat before the colder night [14].  

 

Figure 1 Damping and lag effect of thermal mass [13] 

Thermal conductivity of concrete mix designs is influenced by the thermal properties of the 

ingredients such as cement, aggregates and the existing moisture [15]. Thermal conductivity of 

concrete is dependent on the type of aggregates used in the concrete mixture. Some published 

construction properties databases associate thermal conductivity to concrete density, for example 

ACI122R [15] and CIBSE [16]. Therefore, it is possible to take into the account some thermal 

properties of concrete mixes at the initial stage of the structural design of buildings. This study 

quantifies the thermal conductivity for different concrete mix designs.  
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1-2 Environmental aspects of Concrete 

 

The basic constituents of concrete are binder (cementitious materials), coarse and fine aggregates (or 

inactive mineral filler) and water. The properties of these materials, their combination, the effects of 

various admixtures and how it is handled during construction determine the properties of the in-situ 

concrete.  

The major source of greenhouse emissions during the production of concrete is the Portland cement. 

The cement sector was responsible for 2,823 million metric tons (Mt) of embodied CO2-e in 2010 

[17]. This related to almost 9% of global CO2-e emissions from burning of fossil fuels in 2010 [17]. 

Traditional methods to respond to this issue are the development of energy efficient cement 

production plants through improved technology, changes to energy sources used and the application 

of substitutes for clinker by using waste materials such as fly ash and ground granulated blast furnace 

slag [18-21].  

The concrete industry is addressing some of the worries about environmental issues by supplementing 

or replacing the use of cement and other components that are associated with high embodied CO2-e. 

Several researchers have studied the possibility of cement replacement in the concrete with recycled 

materials [22-24]. The use of alternative cementitious materials remains the main path to the  

reduction of embodied CO2-e in the concrete industry [25]. Wimpenny [26] conducted a study in low 

CO2-e alternatives to concrete by exploring strategies being adopted and developed in 12 countries 

around the world.  The results have been classified into seven groups as shown in Table 1. 

Table 1 embodied CO2-e for cementitious materials [26] 

Group Example 
Suggested 

quantities 

embodied 

CO2-e 
References 

Alternative 

cementitious 

materials 

Fly ash 

Slag 

Silica fume 

Metakaolin 

40% 

80% 

10% 

10% 

Medium 

Low 

Low 

Very high 
[26, 27] 

Municipal solid waste incinerator ash 

(MSWIA) 
----- Medium 

Non-Portland cement 

binders 

Geopolymer 

Calcium sulphate based 

Calcium sulfoaluminate 

Magnesite based 

----- 

Low 

Low 

High 

High 

[28, 29] 

Low cement concrete Lean Concrete ----- Medium [26] 

Ultra-high strength Fibre reinforced superplasticiser silica fume ----- Medium [26] 
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concrete concrete (FRSSFC) 

Changes in Portland 

cement manufacture 

Oxygen enrichment of kiln atmosphere to 

enhance burning 
----- Medium 

[28] Belite cements 

Alinite and Fluoralinite cement 

Portland limestone cement 

----- 

Very high 

--------- 

--------- 

Alternative binder 

types 
Bituminous based materials (Agent C) ----- Very low [26] 

Carbon capture 

Sequestering carbon from the kiln capturing 

carbon in the concrete, e.g. Hemp (Lime 

based binder and hemp) 

----- Very low [29] 

 

The most commonly used alternative cementitious materials are Ground Granulated Blast Furnace 

Slag (GGBFS) and coal combustion fly ash. GGBFS is obtained as a by-product of iron and steel 

making and fly ash is obtained as a by-product of burning coal mainly for electricity generation. 

These cementitious materials are used to replace a portion of the cement in the concrete mix design. 

The production process of fly ash and GGBFS involve less greenhouse gas emissions compared with 

ordinary Portland cement [30].   

Fly ash is a widely available material which, if not used in concrete, is an industrial waste with serious 

disposal problems. Worldwide, the majority of annual production of fly ash is disposed of as waste 

material in ash dams or in a landfill [31]. In Australia, about 20% of fly ash produced in coal-fired 

power stations is used in construction industry [32]. The Australian Standard, AS3582.1, sets specific 

requirements for fly ash and has classified it into three grades (fine, medium and coarse)[33]. If the 

physical properties of the fly ash do not comply with the AS3582.1 Standard requirements it cannot 

be used as a supplementary material in the cement and concrete industry [31]. The proportion of fly 

ash in blended cement typically changed from 15% to 30% and for some particular applications, this 

amount can be increased to 50% to 60% [34, 35]. The positive contribution of fly ash for reducing 

concrete embodied CO2-e has been quantified to be up to 44% when it substitutes 40% of Portland 

cement in a typical concrete mix design [36]. However, it should be noted that the decrease in the use 

of coal might also have a negative impact on supply of fly ash [37]. 

Other supplementary materials such as GGBFS can also be used to replace Portland cement in 

concrete. Substituting a portion of Portland cement with GGBFS can substantially reduce the negative 

environmental impact of concrete [38]. Fly ash and GGBFS can be added separately to the concrete 
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mix.  However, in comparison to the quantities of fly ash, the availability of GGBFS is limited. The 

worldwide production of GGBFS is only 25 million tonnes per year [39]. The proportion of GGFS in 

concrete typically varies from 40% to 60% of the overall amount of blended cement [40].  

Other supplementary cementitious materials are silica fume, rice husk ash, and recycled ground glass. 

The availability of these materials are limited compared with the fly ash so their costs are relatively 

higher [41]. 

Geopolymer concrete is another alternative concrete in which an alkali activated aluminosilicate 

material is used as a replacement of traditional cement binders[42].  Geopolymers generally have a 

lower embodied CO2-e than cement but are currently significantly more expensive to produce [43]. 

Meanwhile, it has to be mentioned that there are some barriers to implementation of the new type of 

materials to achieve lightweight and/or geopolymer concrete. These barriers include regulatory, 

technical, supply chain and cost of geopolymer concrete [44-46]. There are currently several research 

programs that aim to remove the existing barriers for a wider application of geopolymer and/or 

lightweight concretes.  

Aggregate characteristics have significant effects on physical properties of concrete (grade, moisture 

absorption, thermal conductivity, etc.). Aggregates have also potential to be reused as raw materials in 

the concrete at the end of life [47].  The choice of aggregates is very much related to a local supply 

chain. Quarries with adequate natural aggregates are being depleted in some regions and countries and 

the tendency to use of more crushed and manufactured aggregates is increasing [48]. From an 

emissions point of view, a distinction must be made between natural and crushed aggregate. Natural 

aggregates, such as sand and gravel, are the results of weathering and erosion and do not require any 

processing other than collection and transportation. Crushed aggregates, such as manufactured sand, 

are mined from quarries and require mechanical crushing. Flower and Sanjayan [49] showed that 

granite/hornfels as a crushed aggregate have GHG emissions of 45.9 kg CO2–e/tonne and basalt as a 

natural aggregates have GHG emissions of 35.7 kg CO2-e/tonne [49] .  
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The water demand for concrete depends on the type of mix design and use of plasticising additives. 

The use of water in concrete leads to minimal embodied CO2-e, which leaves cement, coarse and fine 

aggregates, GGBFS and fly ash as the main material contributors to the environmental impact. 

Previous studies into the environmental impact of the production of cementitious materials and 

aggregates have already yielded several estimates of the embodied CO2-e per tonne of concrete [25, 

39, 49, 50]. The embodied CO2-e are calculated by multiplying embodied CO2-e coefficients from 

proposed databases [1-4]  for each grade of concrete by the quantity of concrete. This method suffers 

from a lack of comprehensive attention into the individual concrete components.  The GHG emissions 

associated with each individual concrete component need to be sufficiently investigated [49]. 

Furthermore, the relationship between embodied CO2-e, thermal conductivity and alternative 

cementitious materials has not been sufficiently determined. The main objective of this study was to 

identify the relationship between low embodied CO2-e and low thermal conductivity for a large 

number of concrete mix designs. This paper analyses different concrete mix designs and compares the 

results when sourcing inputs from a number of available inventory databases. 

2-Methodology  

2-1 Materials and Mix designs 

 

This study investigates 90 different concrete mix designs. The two primary performance variables are 

the grade and density of the concrete. The concrete mix designs were collected from 8 published 

journal papers and databases [51-59]. These mix designs represent some conventional (normal 

weight) and some advanced methods of concrete admixture [52, 54, 56, 57] that gives lightweight and 

ultra-lightweight concrete. Table 2 summarizes the concrete grades and the 90 mix cases of the 

different batches of concrete that were analysed in this paper. The reason to include novel forms of 

concrete admixture (such as Mix 27-41) in the paper was to point out their thermal properties and 

environmental impacts which have not been covered in the mainstream of studies. The concrete 

grades range from 28 MPa to 87 MPa. The detailed concrete mix designs and ingredients are shown in 

Appendix 1.  
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Table 2 Summary of concrete batches 

Mix 

No. 

Concrete 

Grade 

(MPa) 

Composition of mix 

Source 
Binder Aggregates Admixture Water 

Mix 

1-3 
32,40 

Portland cement, 

GGBFS, fly ash 

natural aggregates, 

recycled aggregates, 

manufactured sand, fine 

natural river sand 

Water reducing 

Potable 

water, 

Reclaimed 

water 

CCAA [51] 

Mix 

4-9 
31.6-42.7 Portland cement  

natural aggregates, 

manufactured sand, 

Lightweight aggregate*, 

Furnace bottom ash 

Water reducing 
Potable 

water 

Zhang and Poon 

[52] 

Mix 

10-26 
32,35,40 

Portland cement, 

fly ash 

natural aggregates and 

manufactured sand 
------ 

Potable 

water 
Berndt [53] 

Mix 

27-41 
33-69.4 

Portland cement, 

cenosphere, silica 

fume 

natural aggregates and 

manufactured sand 

Superplasticiser

, shrinkage 

reduction, 

Viscosity  

modify agent, 

Polyethylene 

fibers, Silane 

Potable 

water 

Wu, Wang, 

Monteiro and 

Zhang [54] 

Mix 

42-57 
38-55 

Portland cement, 

GGBFS, fly ash, 

silica fume 

natural aggregates, 

recycled aggregates, 
------ 

Potable 

water 

Damdelen, 

Georgopoulos and 

Limbachiya [55] 

Mix 

58-69 
23-43.9 

Portland cement, 

fly ash 

natural aggregates, 

Lightweight aggregate*, 

Glass bubble  

------ 
Potable 

water 

Yun, Jeong, Han 

and Youm [56] 

Mix 

70-75 
33.6-48.6 Portland cement, natural aggregates ------ 

Potable 

water 

Marinkovic, 

Radonjanin, 

Malesev and 

Ignjatovic [57] 

Mix 

76-79 
41.5-44.2 Portland cement, 

natural aggregates, 

recycled aggregates, 
------ 

Potable 

water 

Tošić, Marinković, 

Dašić and Stanić 

[58] 

Mix 

80-90 
32 

Portland cement, 

GGBFS, fly ash, 
natural aggregates ------ 

Potable 

water 

O'Moore and 

O'Brien [59] 

*Lightweight aggregate consists of manufactured aggregate (shale, slate and clay) and Glass bubble. 

This study considers each individual concrete component in order to estimate the equivalent 

greenhouse emissions and thermal conductivity of the mixed design. The embodied CO2-e for a 

variety of concrete mix designs was quantified by collecting relative embodied CO2-e coefficients for 

each individual concrete component from existing studies [49, 60-62]. 
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The estimated emission coefficient for each material was multiplied by the respective quantity of the 

material, and the resulting embodied CO2-e was summed up for each mix design. The comparison 

includes the results obtained from this study against six different embodied CO2-e data inventories, 

namely; ICE [1], Crawford [2], Alcorn [3], eTool [4] and BPIC (an average industrial practice 

database) [5] and AusLCI [6]. As the study undertaken by Crawford covers embodied energy rather 

than embodied CO2-e, a conservative coefficient of 10% (based on the ratio used in eTool database) 

was used to convert data into embodied CO2-e (kg CO2-e). Linear interpolation was used for 

Crawford databases to estimate the coefficient for the embodied CO2-e of all grades of concrete that 

are proposed in the concrete mix data of this study. For the ICE database, linear interpolation was 

used to estimate the embodied CO2-e coefficient when different percentages of cement were replaced 

with slag and/or fly ash. Calculation of the thermal conductivity of each mix design follows the 

ACI122R [15] guideline. ACI122R proposes that the thermal conductivity of a concrete mixture is 

based on the individual material properties comprising the mixture (aggregate) and the oven dry 

density of the mixture (kg/m
3
). 

2-2 Embodied Carbon Dioxide Equivalent Emissions 

 

The emission factors for binders, aggregates and admixtures were obtained from Flower and Sanjayan 

[49] and were based on the Australian Green house office factors and method workbook [63]. The 

emission factor for recycled aggregates was collected from ARRB Group report [61]. The embodied 

emission associated with manufactured aggregates was considered the same as the natural aggregates 

in regards to the upstream stage of the production process [64]. The emission associated with potable 

water and captured water was based on the results of Rouwette [60]. The boundary of the system for 

calculating the total embodied CO2-e is depicted in Figure 2. This study considered the embodied 

CO2-e associated with concrete and concrete materials from cradle to gate. This system includes all 

the steps from extraction of raw materials, transport to the concrete plant, mixing and production of 

concrete by considering relevant consumed energy (Diesel fuel, LPG fuel and electricity). The process 

of transportation and placement of concrete is excluded in this study. Table 3 summarizes the final 

embodied CO2-e coefficients that are related to individual concrete components. 
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Figure 2 Concrete embodied CO2-e system diagram 

 

Table 3 Final embodied CO2-e coefficients 

Activity Material Emissions coefficient References 

Binder 

(t CO2-e/ tonne) 

Type of Portland cement 0.820 

[49, 62] 

Ground Slag ; Ground Granulated blast 

furnace 
0.143 

Fly ash or pulverized fuel ash 0.027 

Furnace bottom ash 0.027 

cenosphere 0.027 

Aggregates 

(t CO2-e/ tonne) 

Natural aggregates 0.0459 

[49, 61] 
Recycled aggregates 0.004 

Manufactured Sand 0.0139 

Fine natural river sand 0.0139 

Admixture 

(t CO2-e/ L) 

Water reducing admixture 2.2 × 10−6 
[49] 

Superplasticiser 5.2 × 10−6 

Water 

(t CO2-e/ tonne) 

Potable water 7 × 10−4 
[60] 

Captured/ Reclaimed water 7 × 10−5 
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3-Results and discussion 

3-1 Embodied emissions 

 

The resulting cradle to gate life cycle embodied CO2-e of the 90 concrete mixtures are shown in 

Figure 3. The quantities of embodied CO2-e relate to 1 m
3
 of concrete. As the results in Figure 3 

show, the amount of embodied CO2-e was influenced by variations in the concrete mixture. 

 

Figure 3 Embodied CO2-e for different grades of Concrete 

Figure 4 illustrates the variation of embodied CO2-e per m
3
 of concrete for two selected groups of 

concrete (32-35 MPa and 38-42 MPa). The data was categorised into the common standardised grades 

of 32 and 40 MPa due to variability in the expected concrete strength [65] and also because these two 

categories are popular in the structural design of buildings. The graphically depicted embodied CO2-e 

results show the variation along with different mix designs for the two selected groups. The statistical 

distribution of data displays interquartile ranges between 72.9 and 103.1 Kg CO2-e/m
3
 for group 32-

35MPa and 38-42 MPa respectively (Figure 4).  
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Figure 4 Variation in embodied CO2-e for 32 MPa and 40 MPa concrete mixes 

 

For a grade of 32-35MPa concrete the embodied CO2-e range from 187.2 to 417.5 kg CO2-e/m
3
 by a 

central tendency of 277 kg CO2-e/m
3
. The detailed results in Figure 5 shows mix number 13 and mix 

number 32 achieved the lowest and highest embodied CO2-e respectively when compared with the 

other mixes. For mix design number 13, 65% of binder was blast furnace slag and 35% was general 

Portland cement. The resulted mix with the lowest emissions (mix design number 32) includes 58% 

general Portland cement, 37% cenosphere and 5% silica fume.  

For group 38-42 MPa, the embodied CO2-e was calculated to vary from 211 to 509 kg CO2-e/m
3
 by 

median value of 311 kg CO2-e/m
3
 as shown in Figure 6. Mix number 22 and 36 produced the lowest 

and highest amount of embodied CO2-e per m
3
 of concrete, respectively. Mix 22 binder contains 35% 

Portland cement and 65% blast furnace slag. Mix 36 consisted of 55% Portland cement, 40% 

cenosphere and 5% silica fume.  

 

 Figure 5 Embodied CO2-e for 32-35 MPa 

 

Figure 6 Embodied CO2-e for 38-42 MPa concrete 
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 Various methods have been proposed for reducing the embodied CO2-e of Portland cement [43, 66-

68]. For instance, the efficiency of making cement can be improved by reducing the proportion of 

clinker and replacing it by ground granulated blast furnace slag (GGBFS). Also, supplementary 

cementitious and pozzolanic materials, such as GGBFS, fly ash, silica fume, rice husk ash and 

metakaolin have been considered as a replacement of Portland cement [43, 69, 70]. This study 

quantifies the effect from replacing portions of Portland cement with fly ash and GGBFS. The results 

show that concrete mixes with fly ash have 8% to 30% less embodied CO2-e compared to the mix 

with 100% Portland cement (mix 80-85). GGBFS was found to be capable of reducing concrete 

embodied CO2-e by 15.5% in the concrete mixture (mix 86-90). It should also be mentioned that the 

emissions associated with the production of concrete are related to parameters such as the availability 

of raw materials in the region and as the amount of emissions produced during transportation. This 

study considered the embodied CO2-e associated with concrete and concrete materials from cradle to 

gate and such parameters (transportation, region, etc.) were not taken into account. 

3-2 Variations in embodied CO2-e coefficient 

 

The estimated embodied CO2-e emissions for the two selected concrete grade groups were compared 

between the Crawford, ICE, Alcorn, eTool, BPIC and AusLCI inventory embodied CO2-e databases. 

Figure 7 and Figure 8 illustrate the embodied CO2-e across mixture designs for grade 32-35 MPa and 

38-42 MPa.  



14 
 

 

Figure 7 Embodied CO2-e across inventory databases for 32 MPa concrete  

  

Figure 8 Embodied CO2-e across inventory databases for 40 MPa concrete  

 

The comparison shows that the amount of embodied CO2-e for grade 32 MPa can vary significantly 

from 62.8 to 495.9 kg CO2-e/m
3
 of concrete depending on the type of mix design and inventory 

database. Similarly, significantly different embodied CO2-e for grade 40MPa concrete were obtained 

(from 70.3 to 616.3 kg CO2-e/m
3
 of concrete) across the different mix designs and databases. The 

resulting embodied CO2-e based on Crawford, eTool and BPIC databases have treated concrete as one 

specific product and have proposed an individual coefficient for each grade of concrete regardless of 

the mix of ingredients. The minor changes (less than 4%) in the results of each database including 

BPIC, eTool and Crawford is due to the changes in density of concrete mix designs and the embodied 

CO2-e coefficients that are a function of concrete density. On the other hand, the concrete mix 
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comparison results from the ICE database and this study (using the coefficients of Table 3) show that 

mix designs 13 for 32 MPa concrete and 22 for 40 MPa concrete have the lowest embodied CO2-e. 

This stems from replacing 65% of cement with blast furnace slag. As expected, the maximum 

embodied CO2-e was recorded for mix 32 and mix 36 for group 32 and 40 MPa, respectively in which 

no supplementary cementitious materials were used (i.e. 100% Portland cement was used). 

From the data in Figure 7 and 8, it is apparent that the results based on AusLCI and Alcorn analysis 

represent less than 4% difference and both databases are capable to illustrate variations between mix 

designs. Similar to the results of this study, the highest embodied energy was recorded for the mix 

designs 36 and 32 for a grade of 32 and 40 MPa, respectively. The lowest embodied emission was 

archived through the mix designs 13 and 22.  

The current databases are unable to adequately address the effect of silica fume and cenosphere as 

alternative cementitious materials used in the concrete mix designs 32, 36 and 49 (as shown in Figure 

7 and 8). However, it is reasonable to assume that there is no environmental impact associated to 

silica fume as it is a by-product of the production of metallurgical grade silicon [71]. In addition, the 

embodied CO2-e associated with cenosphere is similar to CO2-e of fly ash and was therefore assumed 

to be the same as fly ash in the paper, as both materials are by-products from the production of power 

within coal fired power stations [62]. 

The resulting embodied CO2-e when using different inventory databases are summarised in Figures 9 

and 10. The embodied CO2-e values across Alcorn, Crawford and eTool databases vary from 255 to 

540 kg CO2-e/m
3
 for group 32-35 MPa and from 290 to 590 kg CO2-e/m

3
 for group 38-42 MPa. The 

differences could be explained by the variations in the method of analysis used in each database, the 

different system boundaries, source of data and quality of input in the calculation of the upstream 

process [72]. 

The embodied CO2-e factor from ICE database varies for each different mix design with exception of 

mix design 32, 36, 39 which includes silica fume and cenosphere. This database considers different 

proportions of cement and cementitious material such a slag and fly ash in the concrete. In terms of 

the maximum proportion of the slag in mix designs 13 and 25, the ICE embodied CO2-e coefficients 
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are 62.8 and 70.3 kg CO2-e/m
3
. For specific mix designs, the ICE results match closely with those 

obtained from Crawford (mix 1, 3, 68, 79) and Alcorn (mix 43, 47,61). For mix designs 6 and 9 the 

ICE results are the same as the results from BPIC.  

A comparison analysis between AusLCI, Alcorn and the current study demonstrates considerable 

variation in embodied CO2-e of the concrete mix designs. The average differences are 16 % and 7% 

for grade 32 and 40 MPa, respectively. These differences in results are due to variations in the 

embodied CO2-e coefficients for cement (general purpose), GGBFS, fly ash and type of aggregates 

(natural and manufactured) in concrete mix designs. For instance, AusLCI proposes the factor of 

0.994 (tonne CO2-e) for producing the average of 1 tonne GP cement in Australian, while this number 

18% higher than the coefficients proposed in Crossin [71] and Flower [49] studies (used in this study). 

Similarly, AusLCI proposes a higher emission factor for manufacturing GGBFS and recycled 

aggregates and lower embodied CO2-e for producing fly ash than this study (based on [49]). The 

embodied CO2-e associated with the production of natural aggregates is not directly reported in a 

transparent way in AusLCI, while ARRB gives a value of 3.97 kg CO2-e per tonne of materials [61]. 

Also, Alcorn’s database does not adequately address the embodied CO2-e associated with alternative 

cementitious materials such as fly ash and GGBFS. 

 

Figure 9 Variation in embodied CO2-e for different databases (32-35 MPa) 
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Figure 10 Variation in embodied CO2-e for different databases (38-42 MPa) 

 

In summary, it can be seen these variations in the embodied CO2-e of different concrete mix designs 
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proposed ACI values were taken from Table 3.a of ACI122R-2014 and are based on practical thermal 

conductivity design values for normal weight (2240 to 2400 kg/m³), light and ultra-lightweight 

concrete (less than 1840 kg/m³). Figure 11 illustrates both theoretical and experimental thermal 

conductivity values for all 90 concrete mix designs. This paper used the data obtained from ACI122R 

method to ensure consistency comparisons across all mix designs. As expected, it can be seen that the 

thermal conductivity is influenced by the variation in the concrete mixture.  

 

Figure 11 Thermal conductivity of concrete mix designs 
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in the proportion of normal and lightweight aggregates in the concrete mixture. For example, mix 

designs 32 and 36 have the lowest thermal conductivity while having a lower density than all other 

mix designs in groups 32-35 MPa and 38-42 MPa, respectively. 

 

Figure 12 Variation in thermal conductivity between concrete mix designs 

 

With a brief review of previously published values, it can be seen that the estimated thermal 

conductivity for grade 32-35 MPa and 38-42 MPa concrete mixes could vary from as high as 3.1 

W/(m.K) to as low as 0.36 W/(m.K). For a grade of 32-35 MPa, the lowest and highest thermal 

conductivity is found for a mix design 32 and 82, respectively. For 38-42 MPa, the lowest thermal 

conductivity (0.31 W/(m.K)) can be achieved by through mix design 36. 

 The comparison of all embodied CO2-e obtained from Table 3 and thermal conductivity of mix 

designs show different correlations between two variables. Figure 13 plots changes of the embodied 

CO2-e results against thermal conductivity of concrete mix designs and also shown in Appendix 1.  

 

Figure 13 Embodied CO2-e versus thermal conductivity across all concrete mix designs 
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For mix designs 27-41, the results represent a positive gradient between changes of thermal 

conductivity and embodied CO2-e. In the other words, the amount of embodied CO2-e was increased 

by increasing the thermal conductivity of concrete. It was noted that the rate of changes embodied 

CO2-e and thermal conductivity for mixes 27-41 are much higher than the other mixes. These changes 

are due to the presence of high proportion of Portland cement and low-density aggregates in the mixes 

27-41. On the other hand, the results from several other mix designs demonstrate considerable scatter 

in thermal conductivity without changing embodied CO2-e values and vice versa. This can be seen, 

for example, in mix designs 4 to 9, where the changes in thermal conductivities ranged up to 41% 

while there was just 17% change in embodied CO2-e value.  

Figure 14 Embodied CO2-e against the thermal conductivity for Grade 32-35 MPa and 38-42 MPa 
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The lower thermal conductivity suppresses the energy charging/discharging rates [74]. This may have 

a positive potential effect on the overall energy performance of buildings in compare to the traditional 

concrete. Concrete with the low thermal conductivity results in higher thermal resistance than 

conventional concrete, which can slow down heat gain and energy losses for periods of time [75, 76]. 

However, the optimal range for thermal conductivity of a concrete mix has to be considered to reduce 

either escape of passive heating before being absorbed or re-released a stored heat before the colder 

night [14]. It is, therefore, essential to consider the environmental impacts of concrete mix designs 

during the structural design of buildings in a more holistic way and include estimated impacts on 

energy performance during the operational phase and end of life (life cycle) of a building. Future 

research will quantify the potential effects of conventional and novel concrete materials on thermal 

performance of buildings. 
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Conclusion 

There are presently many efforts on compiling reliable methodologies for quantifying the 

environmental impacts of concrete production. Some of the available embodied emissions databases 

(eTool, Crawford, BPIC) propose an individual embodied CO2-e coefficient for each grade of concrete 

without considering variations across different mix designs. The findings from this study are 

consistent with the common literature and confirm that significant reductions in embodied CO2-e can 

be achieved by using supplementary cementitious materials such as fly ash, and GGBFS. Depending 

on the percentage of cement replacement, fly ash can typically contribute to reducing the embodied 

CO2-e of concrete by 10 to 15% when compared with Portland cement. GGBFS was also found to be 

capable of reducing concrete embodied CO2-e by 15.5% in comparison with common Portland cement.  

The embodied CO2-e analyses have shown variations across the different inventory databases. These 

recorded variations in embodied CO2-e are due to the different methods of analysis used in the different 

databases, the source of data and quality of input data (related to upstream process) in calculation.  

This highlights the need for transparency within existing and future databases and imposes a 

requirement for extending their capabilities to be able to model concrete mix design based on 

individual components.  

When using the ICE database, the results for the embodied CO2-e were sensitive to the concrete mix 

design because the embodied CO2-e coefficients in ICE varied in accordance with the different 

percentages of cement, fly ash and GGBFS. From the analysis, it was shown that the embodied CO2-e 

of a mix design decreases by increasing the proportion of fly ash and GGBFS in the concrete binder. 

The slight limitation of the ICE database is that it does not take into account the effects of silica fume 

and cenosphere in concrete admixture mix, though these can be accounted for by including the 

cenosphere as additional fly ash and considering silica fume as a zero contribution. 

The inventory databases from Crawford and eTool use the same embodied CO2-es coefficients for each 

grade of concrete without accounting for the effects of each different concrete component. The 

calculated embodied CO2-e from BPIC database which uses average industry values results in lower 

embodied CO2-e than those calculated with Crawford and eTool databases.  
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However, the analysis based on the AusLCI, Alcorn’s analysis and embodied CO2-e coefficients (Table 

3) that were compiled for the purposes of this study considered the detailed effects of the materials in 

the concrete mix design. A considerable variation in embodied CO2-e of concrete mix designs was 

found. Meanwhile, there are some discrepancies between the results of this study and the AusLCI 

analysis. The discrepancies are due to differences in embodied CO2-e factor for Portland cement, fly 

ash, GGBFS and type of aggregates (recycled, natural and manufactured).   

This study also demonstrates that the thermal conductivity of concrete is strongly related to the 

properties of the concrete mixes and the proportions of its constituents. In general, the thermal 

conductivity of a mix design increases with increasing density. The replacement of normal aggregates 

with lightweight aggregates significantly decreases the thermal conductivity of concrete. The lower 

density concrete mixes by having low thermal conductivity could be beneficial in terms of energy 

saving during the operational phase of buildings. On the other hand, it was found that lower density 

concrete mix designs could have high embodied CO2-e. Hence, it is crucial to understand and 

considered the thermal and environmental impacts associated with the concrete mix designs in an 

integrated way and at the design stage of building.  

The results of this study can be used as guidance for considering reductions on the environmental 

impact and improving the thermal conductivity of concrete while maintaining the desired concrete 

strength during the early stages of building projects. Further studies will need to consider the potential 

impact of concrete mix design on specific heat and thermal mass and hence on the energy 

performance of a building over its operation phase and its entire life cycle. 
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Appendix 1- Mix properties of different batches of concrete 
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1 

[5
1
] 

32 175 120 80 ... ... ... 546 455 270 532 ... 1.3 ... ... ... ... ... ... 141 2320.3 1.84 200.9 

2 32 255 85 35 ... ... ... 549 445 245 589 ... 1.3 ... ... ... ... ... 68 70 2342.3 1.88 260.8 

3 40 260 80 125 ... ... ... 1067 ... 90 580 ... 1.6 ... ... ... ... ... 76 70 2349.6 1.89 286.3 

4 

[5
2
] 

39.4 325 ... ... ... ... ... 828 ... 1041 ... ... 3.6 ... ... ... ... ... 195 ... 2392.6 1.97 319.0 

5 46.8 450 ... ... ... ... ... ... ... 755 ... 477 1.5 ... ... ... ... ... 175 ... 1858.5 1.35 401.4 

6 42.7 450 ... ... ... 156 ... ... ... 566 ... 477 2 ... ... ... ... ... 175 ... 1826.0 1.30 403.0 

7 40.9 450 ... ... ... 312 ... ... ... 377 ... 477 1.4 ... ... ... ... ... 175 ... 1792.4 1.25 404.6 

8 34.1 450 ... ... ... 468 ... ... ... 189 ... 477 1.9 ... ... ... ... ... 175 ... 1760.9 1.20 406.2 

9 31.6 450 ... ... ... 624 ... ... ... ... ... 477 1.8 ... ... ... ... ... 175 ... 1727.8 1.16 407.7 

10 

[5
3

] 

32 330 ... ... ... ... ... 1093 ... 778 ... ... ... ... ... ... ... ... 160 ... 2361.0 1.91 331.6 

11 32 254 ... 84.5 ... ... ... 1090 ... 787 ... ... ... ... ... ... ... ... 170 ... 2385.2 1.95 271.7 

12 32 168 ... ... ... ... ... 1089 ... 774 ... ... ... ... ... ... ... ... 164 ... 2362.2 1.91 222.0 

13 32 116 ... ... ... ... ... 1095 ... 780 ... ... ... ... ... ... ... ... 159 ... 2366.4 1.92 187.2 

14 35 370 ... ... ... ... ... 1035 ... 801 ... ... ... ... ... ... ... ... 157 ... 2362.7 1.91 362.0 

15 35 280 ... 93 ... ... ... 1054 ... 797 ... ... ... ... ... ... ... ... 158 ... 2382.0 1.95 291.6 

16 35 188 ... ... ... ... ... 1039 ... 784 ... ... ... ... ... ... ... ... 158 ... 2357.0 1.90 239.6 

17 35 196 ... ... ... ... ... ... 1053 743.4 ... ... ... ... ... ... ... ... 157 ... 2345.3 1.88 203.4 

18 35 131 ... ... ... ... ... 1061 ... 780 ... ... ... ... ... ... ... ... 158 ... 2373.5 1.93 202.1 

19 40 400 ... ... ... ... ... 1080 ... 710 ... ... ... ... ... ... ... ... 168 ... 2358.0 1.90 387.4 

20 40 300 ... 100 ... ... ... 1095 ... 719 ... ... ... ... ... ... ... ... 164 ... 2378.0 1.94 309.0 

21 40 200 ... ... ... ... ... 1082 ... 715 ... ... ... ... ... ... ... ... 166 ... 2363.0 1.91 252.2 

22 40 140 ... ... ... ... ... 1075 ... 712 ... ... ... ... ... ... ... ... 167 ... 2353.8 1.90 211.2 

23 40 420 ... ... ... ... ... 1030 ... 715 ... ... ... ... ... ... ... ... 168 ... 2333.0 1.86 401.6 

24 40 315 ... 105 ... ... ... 1020 ... 718 ... ... ... ... ... ... ... ... 172 ... 2330.2 1.85 317.9 

25 40 210 ... ... ... ... ... 1040 ... 740 ... ... ... ... ... ... ... ... 164 ... 2363.8 1.91 260.3 

26 40 151 ... ... ... ... ... 1048 ... 720 ... ... ... ... ... ... ... ... 168 ... 2365.7 1.92 221.5 

27 

[5
4
] 

67.6 377 ... ... 33 ... ... 946 ... 810 ... ... ... 5.4 ... ... ... ... 172 ... 2343.4 1.98 364.9 

28 69.4 836 ... ... 73 ... 348 ... ... ... ... ... ... 4.9 10.5 ... ... ... 302 ... 1574.4 0.40 697.1 

29 56.9 732 ... ... 64 ... 402 ... ... ... ... ... ... 5.2 9.8 ... ... ... 282 ... 1495.0 0.36 613.1 

30 55.9 731 ... ... 64 ... 268 ... ... ... ... ... ... 5.9 8.9 0.2 ... ... 287 ... 1365.0 0.35 608.7 

31 48.8 607 ... ... 53 ... 442 ... ... ... ... ... ... 5.6 9.8 ... ... ... 282 ... 1399.4 0.33 511.3 

32 33 499 ... ... 43 ... 317 ... ... ... ... ... ... 6.6 9.1 0.2 ... ... 290 ... 1164.9 0.28 418.6 

33 66.1 846 ... ... 74 ... 352 ... ... ... ... ... ... 5.2 ... ... ... ... 305 ... 1582.2 0.39 705.6 

34 69.4 836 ... ... 73 ... 348 ... ... ... ... ... ... 4.9 10.5 ... ... ... 302 ... 1574.4 0.40 697.1 

35 49.8 607 ... ... 53 ... 442 ... ... ... ... ... ... 5.6 9.8 ... ... ... 282 ... 1399.4 0.33 511.3 

36 40.9 606 ... ... 53 ... 442 ... ... ... ... ... ... 6.7 9.7 0.18 ... ... 282 ... 1399.6 0.31 510.5 

37 66.1 846 ... ... 74 ... 352 ... ... ... ... ... ... 5.2 ... ... ... ... 305 ... 1582.2 0.39 705.6 

38 66.5 775 ... ... 67 ... 350 ... ... ... ... ... ... 3.6 ... ... 5.3 4.2 304 ... 1509.1 0.43 646.5 

39 54.4 832 ... ... 72 ... 346 ... ... ... ... ... ... 4.3 ... ... 5.7 ... 301 ... 1561.0 0.39 693.3 

40 63.1 1355 ... ... 118 ... ... ... ... ... ... ... ... 1.3 14.9 ... ... ... 499 ... 1988.2 0.84 1114.4 

41 51.3 1179 ... ... 103 ... ... ... ... ... ... ... ... ... 16.9 0.91 ... ... 561 ... 1860.8 0.80 969.9 

42 

[5
5
] 

45 345 ... ... ... ... ... 1826 ... ... ... ... ... ... ... ... ... ... 195 ... 2366.0 0.92 366.7 

43 42 190 155 ... ... ... ... 1826 ... ... ... ... ... ... ... ... ... ... 195 ... 2366.0 0.88 261.8 

44 41 295 ... 60 ... ... ... 1802 ... ... ... ... ... ... ... ... ... ... 185 ... 2342.0 0.82 326.2 

45 43 275 ... ... 70 ... ... 1826 ... ... ... ... ... ... ... ... ... ... 195 ... 2366.0 0.84 311.2 

46 39 345 ... ... ... ... ... 1447 ... ... ... ... ... ... ... ... ... ... 204 ... 2361.0 0.72 350.8 

47 42 190 155 ... ... ... ... 1447 ... ... ... ... ... ... ... ... ... ... 204 ... 2361.0 0.67 245.8 

48 41 295 ... 60 ... ... ... 1438 ... ... ... ... ... ... ... ... ... ... 189 ... 2342.0 0.61 311.0 

49 38 275 ... ... 70 ... ... 1447 ... ... ... ... ... ... ... ... ... ... 204 ... 2361.0 0.65 295.3 

50 55 557 ... ... ... ... ... 1610 ... ... ... ... ... ... ... ... ... ... 195 ... 2362.0 0.99 530.6 

51 51 251 306 ... ... ... ... 1610 ... ... ... ... ... ... ... ... ... ... 195 ... 2362.0 0.93 323.5 

52 53 478 ... 120 ... ... ... 1583 ... ... ... ... ... ... ... ... ... ... 180 ... 2361.0 0.89 467.9 

53 54 501 ... ... 111 ... ... 1610 ... ... ... ... ... ... ... ... ... ... 195 ... 2417.0 0.90 487.7 

54 54 583 ... ... ... ... ... 1234 ... ... ... ... ... ... ... ... ... ... 204 ... 2358.0 0.77 536.0 

55 

 

49 321 262 ... ... ... ... 1234 337 ... ... ... ... ... ... ... ... ... 204 ... 2358.0 0.73 358.7 

56 48 502 ... 126 ... ... ... 1212 331 ... ... ... ... ... ... ... ... ... 190 ... 2361.0 0.70 472.0 

57 52 466 ... ... 117 ... ... 1234 337 ... ... ... ... ... ... ... ... ... 204 ... 2358.0 0.75 443.3 
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58 
[5

6
] 

43.9 288 ... 32 ... ... ... 1756 ... ... ... ... ... ... ... ... ... ... 175 ... 2251.0 1.93 317.6 

59 NA 288 ... 32 ... ... 6 1730 ... ... ... ... ... ... ... ... ... ... 175 ... 2231.0 1.67 316.6 

60 35.3 288 ... 32 ... ... 12 1602 ... ... ... ... ... ... ... ... ... ... 175 ... 2109.0 1.71 310.9 

61 32.1 288 ... 32 ... ... 24 1364 ... ... ... ... ... ... ... ... ... ... 175 ... 1883.0 1.56 300.3 

62 24.6 288 ... 32 ... ... 37 1097 ... ... ... ... ... ... ... ... ... ... 175 ... 1629.0 1.44 288.4 

63 37.5 288 ... 32 ... ... ... 826 ... ... ... 552 ... ... ... ... ... ... 175 ... 1873.0 1.32 300.3 

64 36.2 288 ... 32 ... ... 12 826 ... ... ... 409 ... ... ... ... ... ... 175 ... 1742.0 1.28 294.0 

65 28.1 288 ... 32 ... ... 23 826 ... ... ... 276 ... ... ... ... ... ... 175 ... 1620.0 1.25 288.2 

66 23 288 ... 32 ... ... 35 826 ... ... ... 127 ... ... ... ... ... ... 175 ... 1483.0 1.18 281.7 

67 37.7 288 ... 32 ... ... ... 834 ... ... ... 583 ... ... ... ... ... ... 175 ... 1912.0 1.33 302.1 

68 33 288 ... 32 ... ... 23 826 ... ... ... 289 ... ... ... ... ... ... 175 ... 1633.0 1.30 288.8 

69 36 288 ... 32 ... ... ... 834 ... ... ... 510 ... ... ... ... ... ... 175 ... 1839.0 1.29 298.7 

70 

[7
7
] 

36.6 300 ... ... ... ... ... 1902 ... ... ... ... ... ... ... ... ... ... 179 ... 2381.0 1.95 333.3 

71 41.8 353 ... ... ... ... ... 1854 ... ... ... ... ... ... ... ... ... ... 182 ... 2389.0 1.96 374.6 

72 48.6 402 ... ... ... ... ... 1798 ... ... ... ... ... ... ... ... ... ... 188 ... 2388.0 1.96 412.2 

73 33.6 300 ... ... ... ... ... 611 ... ... ... ... ... ... ... ... ... ... 179 40 1130.0 1.73 274.0 

74 41.1 351 ... ... ... ... ... 596 ... ... ... ... ... ... ... ... ... ... 183 39 1169.0 1.76 315.2 

75 48.1 402 ... ... ... ... ... 579 ... ... ... ... ... ... ... ... ... ... 189 29 1199.0 1.75 356.2 

76 

[5
8
] 

43.7 354 ... ... ... ... ... 1164 ... ... ... ... ... ... ... ... ... ... 185 ... 1703.0 1.98 343.7 

77 41.5 384 ... ... ... ... ... 1165 ... ... ... ... ... ... ... ... ... ... 201 ... 1750.0 1.90 368.4 

78 44.2 354 ... ... ... ... ... 555 555 ... ... ... ... ... ... ... ... ... 185 20 1669.0 1.87 318.0 

79 42.5 365 ... ... ... ... ... ... 1071 ... ... ... ... ... ... ... ... ... 180 38 1654.0 1.82 303.6 

80 

[5
9

] 

32 324 ... ... ... ... ... 1929 ... ... ... ... ... ... ... ... ... ... 184 ... 2437.0 2.05 354.2 

81 32 273 ... 510 ... ... ... 1931 ... ... ... ... ... ... ... ... ... ... 181 ... 2895.0 2.88 326.3 

82 32 258 ... 660 ... ... ... 1921 ... ... ... ... ... ... ... ... ... ... 183 ... 3022.1 3.11 317.6 

83 32 243 ... 81 ... ... ... 1923 ... ... ... ... ... ... ... ... ... ... 180 ... 2427.0 2.03 289.7 

84 32 227 ... 96 ... ... ... 1924 ... ... ... ... ... ... ... ... ... ... 185 ... 2432.0 2.04 277.0 

85 32 192 ... 128 ... ... ... 1910 ... ... ... ... ... ... ... ... ... ... 177 ... 2407.0 1.99 248.6 

86 32 240 80 ... ... ... ... 1910 ... ... ... ... ... ... ... ... ... ... 240 ... 2470.0 2.11 295.9 

87 32 220 100 ... ... ... ... 1910 ... ... ... ... ... ... ... ... ... ... 220 ... 2450.0 2.07 282.4 

88 32 210 110 ... ... ... ... 1910 ... ... ... ... ... ... ... ... ... ... 210 ... 2440.0 2.05 275.6 

89 32 190 130 ... ... ... ... 1910 ... ... ... ... ... ... ... ... ... ... 190 ... 2420.0 2.02 262.1 

90 32 180 100 ... ... ... ... 1910 ... ... ... ... ... ... ... ... ... ... 180 ... 2370.0 1.93 249.6 
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