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Abstract

The advancement of delivery techniques in external beam radiotherapy and ever-

increasing complexity of delivery modalities requires that quality assurance sys-

tems keep pace with smaller radiation fields, larger dose gradients and dynamic

dose profiles. This work describes the development of a novel pre-treatment and

in-vivo quality assurance devices for use in external beam radiotherapy, including

small-beam stereotactic radiotherapy.

The first part of this work aims to describe the architecture of the instrument,

the readout electronics, the development of the data acquisition software, and the

application of the system as a dual-verification device for intensity modulated ra-

diotherapy using the silicon epitaxial diode array MagicPlate-121. To eliminate

the angular dependence of the detector due to the planar structure of the pixels,

a cylindrical phantom accepts the insertion of the detector and tracks the motion

of the linear accelerator in order to maintain the plane of the detector orthogo-

nal to the incident radiation beam, providing the dose mapping continuously for

each gantry angle. The system demonstrated accurate tracking of the linac gantry

within ±1.5°. The performance of the device was verified against the expected

dose prescribed by the treatment planning software, and it demonstrated an agree-

ii



ABSTRACT iii

ment of better than 2% for field size of 5 × 5 cm2.

The second part of the study focuses on the characterisation of three monolithic

silicon detector arrays developed by the Centre for Medical Radiation Physics.

The detectors, named MagicPlate-512 (MP512), DUO and OCTA, are pixellated

silicon detectors with 512 pixels fabricated on a p-type substrate, arranged in dif-

ferent configurations, and total detector areas ranging from 40.2 × 40.2 mm2 to

52 × 52 mm2. The MagicPlate-512 detector pixels are 0.5 × 0.5 mm2 squares

arranged in a square array with an inter-pixel separation (pitch) of 2 mm, while

DUO and OCTA are strip detectors with pixel areas of 20 × 800 µm2 and 40 ×

800 µm2, respectively, pitch of 200 µm and 300 µm, respectively, arranged in or-

thogonal linear arrays, with a special square central pixel arrangement dedicated

to accurate determination of output factors for small beamlets. For a low p-stop

concentration sample, the MP512 detector demonstrated an unusual uniformity in

the form of a circular artifact of around 17 mm radius around the center of the

array due to thermal donor impurities present in the substrate. This was mitigated

by using a higher concentration of p-stop implantation. The DUO and OCTA low

resistivity silicon detectors operating in passive mode demonstrated high charge

collection efficiencies of 66% and 73% respectively when irradiated by alpha par-

ticles with energy 5.5 MeV and compared to a fully depleted Hamamatsu PIN

diode. Despite the small pitch, the DUO and OCTA detectors showed negligible

inter-pixel crosstalk.

The third part of this work focuses on the application of the MP512-based quality

assurance instrument to characterise a cobalt-60 low dose rate irradiator, for three

beam sizes of diameters 20 mm or less. The high spatial resolution of the instru-
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ment resulted in beam profile agreement with radiochromic film within <1 mm.

The speed of the irradiator shutter was determined to be 20 cm/s and 26 cm/s for

exposing and concealing the beam, respectively.

The fourth part of the study, the MP512 quality assurance device was used in

stereotactic motion adaptive radiotherapy to investigate the impact of motion cor-

rection for a simulated lung treatment. The MP512 agreed with radiocromic

film within 4% and less than 0.5 mm for profile full-width at half-maximum and

penumbra measurements.
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Chapter 1

Introduction

The World Health Organisation predicts that the number of cases of cancer will

increase by 70% in the next two decades, and cancer will be the cause of about 14

million deaths per year in 2030. Over 100 types of cancer have been discovered,

affecting any part of the body (WHO, 2016). If diagnosed early, some cancers can

be either completely cured or the quality of the patients life and chance of sur-

vival can be significantly increased. The most common cancer treatments include

chemotherapy, surgery and external beam radiotherapy (EBRT). More than half

of all cancer patients are prescribed radiotherapy as a form of treatment (WHO,

2016; Maj et al., 2012).

Radiotherapy treatment modalities are advancing in complexity and in ability to

spare healthy tissue around the tumor. Volumetric modulated arc therapy (VMAT)

minimises the total duration of treatment compared to step-and-shoot modalities

by maintaining beam-on during gantry rotation around the patient. Stereotactic

radiotherapy (SRT) utilises small beams and high doses to achieve a high confor-
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mation to the tumor volume but requires sub-millimeter accuracy to avoid critical

organs. The nature of SRT beamlets leads to a loss of lateral electronic equilib-

rium, which prevents the use of standard dosimetric methods to assess the quality

of treatment delivery, otherwise known as quality assurance.

Quality assurance (QA) is defined in ISO 9000:1994 as ”all those planned and

systematic actions necessary to provide adequate confidence that a product or ser-

vice will satisfy the given requirements for quality” (Podgorsak, 2005). In radio-

therapy, QA is achieved using point dosimeters such as ionisation chambers, as

well as two-dimensional (2D) and three-dimensional (3D) dosimeters, such as ra-

diochromic film, detector arrays and radiosensitive gels. The purpose of QA is to

ensure that the dose delivered by the ionising radiation source, usually a clinical

linear accelerator, corresponds within the smallest error margins to the specific pa-

tient generated treatment plan. As treatment modalities advance, QA for smaller,

moving fields must be achieved with accurate instrumentation capable of fast and

reliable measurements. This thesis focuses on the development of a quality assur-

ance device with high spatial resolution and high temporal resolution for use in

intensity modulated radiotherapy (IMRT), VMAT and SRT.

1.1 Project Aim

This thesis describes the design and implementation of a novel dual-detector qual-

ity assurance platform for intensity modulated radiotherapy and volumetric mod-

ulated arc therapy. The software development of a multi-threaded data acquisition

& control user interface is presented in Chapter 3. Three silicon array detectors
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named MagicPlate-512, DUO and OCTA are characterised in Chapter 4 by means

of clinical linear accelerator and He2+ heavy ion microprobe. Chapter 5 explores

the application of the dual-verification instrument, referred to as the MagicPlate

Dosimetry System, in a clinical quality assurance study, utilising the cylindrical

phantom and the pixellated epitaxial detector array MagicPlate-121, and explores

the application of the device for pre-treatment QA as well as real-time in-vivo

verification.

In Chapter 6, the high temporal resolution data acquisition system connected to

the MagicPlate-512 detector is utilised for the characterisation of a low dose rate

cobalt-60 irradiator equipped with three small field collimators. The study aims to

expand on the results obtained in a previous study and attempts to address the lim-

itations encountered in terms of volume averaging effects due to a comparatively

large volume point detector (ionisation chamber).

Chapter 7 explores the use of the MagicPlate-512 system to evaluate the perfor-

mance of real-time motion adaptive radiotherapy algorithms for multi-leaf colli-

mator tracking based on the Calypso tracking system. Finally, Chapter 8 outlines

the main findings of this thesis and explores the advantages, limitations and future

developments of the quality assurance device.



Chapter 2

Literature Review

2.1 Introduction

X-ray radiation was discovered in 1895 by Wilhelm Röntgen, who noted its imag-

ing and tissue penetration capabilities. About 1-2 months later, Leopold Freund

and Eduard Schiff proposed the use of x-rays for medical treatment of diseases.

Their experiments quickly prompted physicians around the world to commence

using x-rays patient treatment and publish their findings. While it was still un-

known how x-rays worked, they were being used to successfully treat superficial

diseases such as lupus, ulcers and epithelioma.

Today, clinicians use x-rays to treat a variety of diseases, both superficial and

deep in the body, using advanced delivery techniques that will be described in this

chapter. X-rays are defined as energetic electromagnetic radiation (photons) origi-

nating from electron de-excitations in atoms or from bremsstrahlung (decelerating
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or braking radiation) caused by high-speed electron deceleration when incident on

high density material.

Radiotherapy (RT) is used in about 60% of cancer treatment cases (TROG, 2013),

alongside non-radiation treatments such as surgical interventions and chemother-

apy. Radiotherapy is of three kinds: systemic, which involves ingestion or in-

jection of unsealed sources into the body, internal, known as brachytherapy, and

external, generally known as teletherapy or external beam radiotherapy (EBRT).

EBRT is the non-invasive form of available radiotherapy. It has evolved from basic

open or square field RT (early 1900s) to using collimators to obtain irregular fields

in the attempt to maximise dose conformation to the tumour volume. In 1965, a

collimator comprised of metal leaves parallel to the beam which could move indi-

vidually, was invented by S. Takahashi: the multi-leaf collimator (MLC). In 1971,

Sir Godfrey Hounsfield invented computed tomography (CT) which, together with

the MLC, revolutionised radiotherapy in terms of imaging of the tumour, treat-

ment planning and dose conformation and thus, modern conformal radiotherapy

(CRT) was born. About a decade later, Brahme et al. (1982) published a pa-

per which laid the foundation to the delivery technique now known as intensity

modulated radiotherapy (IMRT). The technique relies on modulating the radia-

tion beam shape and intensity at a number of angles around the target to conform

the dose to the tumor, all the while minimising dose to healty tissue and potential

organs at risk in the vicinity. Beam modulation was initially achieved by inserting

filters in front of the beam; it was later superceded by dynamic MLCs (Bortfeld,

2006). This chapter will outline briefly the various types of modern EBRT includ-

ing small-field stereotactic radiotherapy, and will describe commercially available
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dosimeters used for quality assurance (QA).

2.2 IMRT/VMAT

Intensity modulated radiotherapy is a delivery technique that makes use of a vol-

umetric image of the patient, MLC, and linac pulsed delivery to conform high

doses of radiation to the tumour volume, while maximising sparing of healthy

tissue. Typical IMRT plans deliver 70-80 Gy of dose in 15-30 fractions and are

comprised of segments of different intensities and MLC shapes, yielding irregular

field shapes at different linac gantry angles. The typical area of the fields used

ranges from 4 × 4 cm2 to 40 × 40 cm2. There are two types of IMRT: step-and-

shoot, where the MLC shape is kept constant throughout beam-on, and dynamic

sliding window, where the beam is kept on while collimator leaves move into the

required position. The latter can be affected by mechanical drag of the leaves, in

which case the beam has to be stopped until the MLC reaches the required position

(Wong, 2011).

Volumetric modulated arc therapy originates from a paper by Yu (1995) that sug-

gested a new technique named intensity modulated arc therapy (IMAT), in which

the beam is modulated by the MLC as the linac gantry rotates in an arc around the

patient. IMAT was further improved by varying the dose rate and gantry rotation

velocity during beam-on phase (Otto, 2008), thus minimizing treatment delivery

time and maximizing patient throughput (Matuszak et al., 2010). This is now

known as VMAT, Volumetric intensity Modulated Arc radiation Therapy.
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2.3 Introduction of Stereotactic Radiotherapy

2.3.1 Stereotactic Radiosurgery

Stereotactic radiosurgery (SRS) is a radiotherapy technique that involves the de-

livery of high dose of radiation in one single fraction, mostly to brain lesions,

head and neck or back spine. It is characterised by large dose drop-off gradients

to minimize dose to proximal organs at risk, high geometric accuracy of treatment

using three-dimensional coordinate system, and fields that are smaller than those

used in ‘traditional’ treatments fields ranging between 0.3 and 4 cm in diameter

(Das et al., 2008). Dose delivered by SRS varies from 8 – 24 Gy (Yamada et al.,

2008) in a single fraction. Typical size of tumors treated by SRS is no larger than

4 to 5 cm.

2.3.2 Stereotactic Body Radiotherapy (SBRT)

As with stereotactic radiosurgery, SBRT is a highly conformal RT technique util-

ising fields smaller than 4 × 4 cm2 to treat small tumors in lung, prostate, liver,

pancreas or spine. SBRT is used to spare organs-at-risk proximal to the lesions,

using large doses typically 10 – 35 Gy (Balagamwala et al., 2012). SBRT is a

hypo-fractionated modality, dividing the delivered dose in 2 – 5 fractions. High

spatial resolution detectors in the order of 2 mm or less (Aldosari et al., 2014) are

required to perform dose verification and quality assurance for SRS and SBRT.
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2.4 Small-field Dosimetry Quality Assurance

Small field dosimetry applies to radiation beams whose field size is “smaller than

the lateral range of the charged particles that contribute to the dose deposited at

a point along the central axis” (Charles et al., 2014). Generally for 6 MV beam,

this refers to fields smaller than 3× 3 cm2, however a more conservative field size

of 4 × 4 cm2 is suggested in the Institute of Physics and Engineers in Medicine

(IPEM) Report No. 103 to account for “confidence in measuring data” at field

sizes smaller than 4 cm at various clinics (Charles et al., 2014). The dosimetry of

such small fields becomes problematic due to the lateral electronic disequilibrium

(Das et al., 2008) and high doses of radiation delivered in hypo-fractionated plans.

The potential consequences when delivering such high doses with an error in the

position or the dosage can be damage to healthy tissue surrounding the tumour,

and underdosage of target volume, which can reduce tumor control. When using

detector arrays to perform QA, small field dosimetry necessitates detectors with

spatial resolution of 2 mm or less (Aldosari et al., 2014) to assess the dose drop-off

in the penumbra region with confidence. QA is generally performed using film,

although this method is time consuming and results are delayed due to develop-

ment time of the film, and if an ionisation chamber array detector is available as a

realtime detector, the spatial resolution of modern commercially available devices

is way too low for an accurate reconstruction of small field mapping.
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2.5 Radiation Detectors for Radiotherapy and Small-

field Dosimetry

In this section, a brief description of detectors which can be used in EBRT are

described and their advantages and limitations outlined.

2.5.1 Ionisation Chambers

The ionisation chamber (IC) is the gold-standard detector in radiation therapy,

due to the fact that it yields highly reproducible, reliable response. The principle

of operation of the IC is the collection of charge from a gas-filled cavity, usu-

ally air, under an electric potential of 100 to 500 V. Incident radiation ionises the

gas in the chamber and the ions generated – which are proportional to the en-

ergy absorbed by the gas – are collected at the anode. Ionisation chambers are

usually thimble-type or cylindrical in shape, with the collecting electrode (anode)

in the center and the outer wall being the second conductive electrode, however

parallel-plate ionisation chambers are also used, mostly for surface dose measure-

ments (Cross, 1992) or as liquid-filled ionisation chambers (Poppe et al., 2013;

González-Castaño et al., 2011). Open-air ionisation chambers require further tem-

perature and pressure correction compared to the sealed chambers, to account for

changes in the mass of the air present in the chamber (Podgorsak, 2005).

The main limitation of ion chambers is their relatively large volume (up to 1

cm3) which is subject to volume averaging effects in high dose gradient scenarios.

While ionisation chambers with volumes as low as 0.003 cm3 are commercially
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available, the decreasing volume of an ionisation chamber leads to very small

and unreliable measured signal. Thus, the necessity for higher detector volumes

can result in over-estimation of penumbra, and limitations in small fields where

lateral electronic equilibrium is not achieved (Bucciolini et al., 2003; Das et al.,

2008). This becomes a problem in small-field radiotherapy, such as SRS and

SBRT as the uncertainty in measurements increases with increasing dose gradi-

ents and with decreasing field size. Liquid-filled ionisation chambers try to ad-

dress this issue by replacing the gas in the chamber with tetramethylsilane, cyclo-

hexane or isooctane (González-Castaño et al., 2011), thus maximising the number

of radiation-generated ionisations by a factor of up to a few hundred, which al-

lows for a smaller sensitive volume, usually a few cubic mm (Wickman, 1974).

Liquid-filled ICs have long-term stability issues and in some circumstances, re-

quire a higher applied voltage up to 1000 V (Poppe et al., 2013; Wickman, 1974).

2.5.2 Silicon Diode

The silicon diode is a radiation detector, capable of high signal-to-noise ratio

(SNR) and a very small sensitive volume. Silicon based detectors are more sen-

sitive than an ionisation chamber of the same volume (Rikner and Grusell, 1987)

due to the higher atomic number (Z) of silicon, which leads to approximately

18000 times more sensitivity per unit volume when compared to air. Silicon

diodes can be arranged into arrays to cover larger areas and to be able to sample

most or all of the area of a radiation field. Due to the versatility and robustness of

silicon, the detector arrays can be arranged in many configurations, leading to the

capability of assessing large dose gradient regions with submillimeter accuracy.
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The principle of operation of the silicon diode is a p-n junction. Radiation detec-

tion is achieved by generation of electron-hole pairs due to ionising radiation, in

the sensitive volume of the detector, which is collected as a current at the elec-

trodes. Silicon, which is a group IV element, is a poor conductor when it is a pure

(intrinsic) crystal, because there are no free charge carriers within the silicon lat-

tice for electricity to flow. The conductivity can be modified by implanting group

III or group V impurities such as boron and phosphorus, respectively, within the

silicon, at a concentration of one impurity atom per 1011-1014 silicon atoms, for

high to low resistivity substrates, respectively. This process is known as silicon

doping. Lightly doped silicon is known as an extrinsic semiconductor, while heav-

ily doped silicon whose conductivity is similar to that of metal is referred to as a

degenerate semiconductor; this can be shown by referring to the semiconductor

as p+ or n+. Doping with boron produces p-type silicon (acceptor) whereby the

boron atom has three valence electrons which form covalent bonds with the silicon

atoms in its vicinity. This leaves one hole which is free to move within the lattice;

this hole can be referred to as a positive charge relative to its surroundings. Al-

ternatively, doping with phosphorus produces n-type silicon (donor) where four

valence electrons form covalent bonds while the fifth excess electron is free to

move within the crystal lattice. A junction is created when a bulk of a certain type

is implanted on the surface with high concentration of the opposite dopant. The

‘type’ of the junction is defined by the type of the bulk material.

At the region of the junction, the majority carriers (i.e. electrons and holes) diffuse

into the opposite type, creating an intrinsic area where there are no free charge

carriers (Fig. 2.1). The distribution of positive and negative charges at the opposite
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Figure 2.1: Schematic diagram of a p-n junction used as a detector, and subjected
to incident radiation (Shi et al., 2003)

sides of the depleted region results in an electric field due to the immobile impurity

atoms, which determines a differential of potential known as the built-in potential,

Ψ0. Equilibrium is reached whereby no more diffusion occurs due to the built-in

potential and is proportional to the difference of doping concentration between n+

and p+ regions. The length of this section, W, is known as the depletion region; its

length is also dependent on the impurity concentration. The sensitive volume (or

active volume) of the detector is defined as the product of the area of the junction

and the minority carrier diffusion length (Ln for electrons and Lp for holes, Fig.

2.1). The minority carrier diffusion length L is defined as:

Lp =
√
Dpτ ;Ln =

√
Dnτ , (2.1)

where Dn and Dp are the diffusion constants for electrons and holes, respectively,

and τ is the minority carrier lifetime. When operated in passive mode, there is

no external bias applied on the junction and no current flows due to the balance
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of drift and diffusion of carriers. If ionising radiation is incident on the junction,

electron-hole pairs are generated in the diode, with the average energy required

to ionise the silicon being 3.6 eV. The minority carriers generated within the dif-

fusion lengths Lp for n-type and Ln for p-type diodes will diffuse towards the

junction. This current flow is detectable and can be read externally by the elec-

trometer.

Applying an external bias across the diode affects the resulting signal. Under

forward bias, current flows through the diode, increasing exponentially with the

voltage, following the Shockley diode function (Shockley and Read, 1952). Under

reverse bias, the depletion region increases in width due to the majority carriers in

the silicon being attracted to the electrode and thus away from the junction. While

this results in a larger sensitive volume at the junction, it is also accompanied

by leakage current caused by lattice impurities, which is an undesired effect gen-

erating a baseline signal which varies with accumulated radiation damage (Moll

et al., 2000) and therefore requires frequent and time-consuming recalibrations

of the detector. Therefore for medical applications, silicon detectors are operated

with no bias applied (passive mode).

The ability of a diode to detect radiation is dependent on the minority carrier life-

time, which is inversely proportional to concentrations of defects in the silicon lat-

tice and, depending on the substrate type, trapped charge at the Si-SiO2 interface

due to radiation damage, in the case of MOSFET-type detectors. Carrier lifetime

is affected by photon beams if the energy of secondary electrons generated in the

silicon is at least 260 keV (Li, 2009); this creates generation and recombination

centers (GRCs) in the silicon with a cross-section of about 10-3 of that of 1 MeV
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Figure 2.2: Displacement damage in silicon normalized to 1 MeV neutrons for a
multitude of charged particles (Moll, 2006)

neutrons. There are two types of radiation damage that can affect the performance

of silicon detectors: bulk damage which refers to atomic displacements based on

non-ionising energy loss (NIEL) due to high energy-events that can be caused by

protons, neutrons, electrons and high-energy photons. A physical displacement of

a silicon atom to an interstitial place in the lattice can occur. The second type of

radiation damage that affects silicon detectors is surface damage which is based

on ionising energy loss (IEL) and is characterised by accumulation of trapped

positive charges in the SiO2-Si interface (Wunstorf et al., 1996).

Bulk damage is produced by inelastic collisions which occur when the incident

radiation particle has enough energy to displace a whole silicon atom from its

designated place in the lattice, causing a Frenkel defect (or Frenkel pair, referring

to the displaced atom and its associated vacancy). Fig. 2.2 shows the charged

particle bulk damage in silicon relative to 1 MeV neutrons. The energy required

to induce a Frenkel pair in silicon is 25 eV; if the recoil atom’s subsequent energy

is 70 keV or higher, it can result in a cascade of interactions, producing both point
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(a) (b)

Figure 2.3: NIEL bulk damage defects diagram (Li, 2009) by (a) 1 MeV neutrons;
(b) Co-60 gamma photons

defects and clusters (Li, 2009), as shown in Fig. 2.3. Gamma photons resulting

from Co-60 have energies of 1.17 MeV and 1.33 MeV; this is only enough to

produce Frenkel pair point (single) defects and the energy of the silicon atom is

not enough to produce cluster defects (Fig. 2.3).

The effects of bulk damage on detector properties include an increase in leakage

current, substrate type inversion (in n-type substrates) and a decrease in charge

collection efficiency. Leakage current increases due to formation of GRCs in the

mid-band gap (Li, 2009; Borchi and Bruzzi, 1994). One way to mitigate this effect

is to use the detector in passive mode (Bruzzi et al., 2007). Substrate type inver-

sion under irradiation refers to n-type silicon and the effect of the donor dopants

being suppressed by radiation-induced acceptor impurities (Moll, 2006). A solu-

tion to mitigate this effect is oxygen doping, which reduces the effect of donor

removal (Moll et al., 2000). The creation of GRCs also affects the charge collec-

tion efficiency (CCE) of the diode, which depends on the minority τ, volume of

detector, and distribution of the electric field. Increased carrier capture results in

a lowered CCE, thus a lower sensitivity of the silicon detector over time.
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Photoneutron damage may occur in silicon when the diodes are used in radiother-

apy photon fields with energies 10 MeV and larger. Photonuclear reactions occur

at these energies due to the energy of the incident photon being larger than the

(γ, n) threshold energy, which generates photoneutrons in contact with the linac

components such as jaws, MLC, target, flattening filter, etc., as well as generating

photoneutrons in the patient and in the bunker walls and floor as a result from

photon scattering. Typical mean photoneutron energies vary from 1 to 2 MeV

(Kim and Lee, 2007). While the generation of photoneutrons in the linac bunker

can affect the patient and personnel, it also can affect the radiation detectors by

inducing defects in the bulk silicon. It is thus important to characterise the effect

of photoneutrons have on silicon radiation detectors to obtain the lifetime of the

QA device, as well as the time interval necessary before recalibrating the detector.

Surface damage in silicon occurs from IEL and manifests as an overall build-

up of positive charge in the SiO2-Si interface. Electron-hole pairs are generated

in the dielectric material: electrons can escape the dielectric but the holes, hav-

ing a smaller mobility, are trapped at the interface generating an accumulation

of positive charges. Electron-hole pairs generated in the bulk silicon may inter-

act with the accumulation layer at the silicon-dioxide-silicon interface increasing

their probability of recombination with the trapped charges, thus reducing the sen-

sitivity of the junction (Borchi and Bruzzi, 1994).

Silicon diodes have a higher Z than tissue, which leads to an over-response com-

pared to tissue-equivalent detectors when the diodes are exposed to incident pho-

tons of energy below 200 keV. This is due to a higher ionisation rate per unit vol-

ume in silicon compared to tissue or water due to the photoelectric effect which is
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proportional to the fourth power of the atomic number of the material. Thus the in-

tensity of the silicon diode response changes as a function of photon energy in this

range. Furthermore, the response of the p-n junction varies as a function of radia-

tion angle of incidence due to the asymmetry nature of the junction, as all diodes

are planar devices (Wong et al., 2012). Therefore in summary, silicon diodes have

large sensitivity and linearity, and have very small sensitive volumes compared

to ionisation chambers; they can be used in arrays to achieve high spatial resolu-

tion detectors with submillimeter pitch, as well as very high temporal resolution.

However it is important to be aware of the limitations of silicon detectors when

using them in radiotherapy, such as angular dependence, energy dependence at

low energies and radiation damage effects in clinical radiation fields, and to char-

acterise the diodes in terms of radiation damage, collection efficiency and angular

dependence prior to their use as a medical radiation detector.

2.5.3 Diamond Detectors

Diamond is a radiation hard, tissue equivalent material (for photons) which changes

its resistance when irradiated and can be used as dosimeter with photon scattering

characteristics which mimic tissue. Diamond detectors usually have small sensi-

tive volumes, which proves advantageous in small-beam fields for SRS or SBRT,

they are waterproof and have good sensitivity, however the detectors present a

dose rate dependence and a difficulty in attaching the electrodes to the surface

of the crystal, as well as high manufacturing cost, low reproducibility (no di-

amond detector is identical to any other) and low fabrication yield (Heydarian

et al., 1996). Diamond detectors necessitate pre-irradiation to mitigate the electric
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polarisation effect (Podgorsak, 2005).

2.5.4 Fiber Optic Dosimetry

A scintillating fiber dosimeter is a type of detector comprised of a scintillator, an

optical fiber light guide and a photodetector. The chemical composition of the

scintillator can be organic, such as plastic polyvinyltoluene (PVT) mixed with a

small percentage of organic fluorescent material (Beddar et al., 1992); or inor-

ganic, such as NaI(Tl), CsI(Na), etc. Scintillators undergo prompt radiolumines-

cence (RL), but some can present optical stimulation luminescence (OSL) prop-

erties when subjected to green laser light (Aznar et al., 2004). The fiber guide is

made of polystyrene with PMMA cladding, to improve light transmission. The

photodetector can be a PMT, a CCD camera (Frelin et al., 2006) or solid state

photomultipliers such as Silicon PM (SiPM). Plastic scintillators are preferred for

use in radiotherapy because they are tissue equivalent and can be used in-vivo;

they are not affected by temperature or pressure and no dose conversions from

one medium to another need to be made to the response (Beddar et al., 1992).

The limitations of the dosimeter include loss of signal over time as a function of

radiation damage in the scintillating material, and generation of Čerenkov radi-

ation within the optical fiber, which contributes to the scintillating signal when

the kinetic energy of the electrons exceeds 146 keV. This contribution needs to be

subtracted from the scintillator signal. For every 7.4 cm of optical fiber exposed to

the radiation beam, the Čerenkov contribution from the fiber will be of the same

order of magnitude as the optical signal from a 1 mm long Bicron BCF-60 scin-
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tillator of 1 mm diameter (Frelin et al., 2006). One way to mitigate this effect

is through the use of an air core light guide which minimises the Čerenkov light

production but the air gap between the scintillator and the optical fiber reduces

the number of photons transmitted to the readout electronics due to a mismatch

of the refractive indices (Lambert et al., 2008; Beddar et al., 2004; Law et al.,

2007). Effective subtraction of Čerenkov noise by use of an adjacent background

fiber limits the use of the detector in-vivo due to increased thickness of optical

fiber. Furthermore, if the dosimeter readout is based on the classic PMT, the use

of the detector is limited to non-magnetic RT modalities, as PMTs are sensitive

to magnetic fields. Thus the detector would not be suitable for mixed modalities

such as CT-MRI or linac-MRI. If the readout electronics are based on SiPM, the

dosimeter becomes very sensitive to temperature variations, which affect the gain.

2.5.5 Thermoluminescent Detectors

Thermoluminescent dosimeters are a type of scintillating phosphors such as LiF

crystal doped with Mg and Ti, in which electrons and holes generated by incident

radiation can get trapped in the energy band gap between the valence and conduc-

tion bands. The traps in the band gap are created by the dopants. The trapped

charge can be forced to recombine and release visible light by thermally anneal-

ing the material up to 400 °C in an oven. The thermoluminescent light is detected

by a PMT. Advantages of TLDs include small and versatile crystal size, no need

for wires to connect the TLD to readout electronics, good reproducibility, and tis-

sue equivalence of some crystals (Miljanić et al., 2002; Un et al., 2014). Because

TLDs do not require wiring to be read out in real-time, they can be used in-vivo,
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however this is also the main limitation of the TLD because it is not a real-time

detector. TLDs necessitate pre- and post-irradiation thermal annealing, some crys-

tals necessitating as much as 24 hours annealing prior to use (Attix, 2004). The

readout of the crystals is sensitive to scratches and fingerprints on the surface of

the TLDs, therefore extra care must be taken to handle the crystals. Furthermore,

crystals with glow peaks around 100 °C are subject to trap leakage and must be

read out as quickly as possible after irradiation.

2.6 2D Detectors and Semiconductor Arrays

2.6.1 Radiochromic Film

Radiochromic film is a self-developing film with high operational dose range from

“less than 1 Gy up to many kGy” (Butson et al., 2003), comprised of a radio-

sensitive active polymeric layer material which changes colour when subjected to

irradiation. The radiochromic films active layer interacts with the incident radi-

ation to polymerise and change its chemical formula, with the resultant polymer

having a higher optical absorbance than prior to irradiation. This relationship

between the optical density and dose can be obtained using a calibration curve

(Butson et al., 2003) and the delivered dose corresponding to the films optical

density can be determined.

While radiochromic film presents excellent spatial resolution and good perfor-

mance in high dose gradient beams (Butson et al., 2003), the film is not real-

time, as polymerisation takes about 24 hours to fully develop after irradiation
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and 48 hours to be completely stable. Furthermore, radiochromic film does not

provide absolute dose measurements and can be dependent on scanner-induced

non-uniformities. Radiochromic film cannot be re-used after irradiation and is

sensitive to sunlight and some luminescent light sources, thus it must be stored in

dark envelopes. It must be handled carefully, as scratches or fingerprints on the

surface of the film will introduce artifacts in the optical density measured.

2.6.2 IBA I’mRT MatriXX

The I’mRT MatriXX detector is an IMRT dosimetry solution by IBA (Schwarzen-

bruck, Germany). The detector is a planar array of 1020 vented (open air) ionisa-

tion chambers arranged in a 32 × 32 square of total area 24.4 × 24.4 cm2. Pitch

of the detector is 7.62 mm. MatriXX has a 3 mm and 22 mm tissue equivalent

build-up and backscatter, respectively. The ionisation chambers are cylindrical in

shape, with diameter of 4.5 mm, height 5 mm and volume of 0.08 cm3.

The MatriXX shows good linearity between 9 and 800 cGy, good reproducibility

and is energy independent for 6 MV and 10 MV beams (Alashrah et al., 2010).

However due to the large volume of the ionisation chambers, the detector suffers

from volume averaging effects and overestimation of penumbra width by as much

as 30% to 50% compared to reference ionisation chamber (Alashrah et al., 2010,

2013). The shortest possible sampling time using the MatriXX is 20 ms; as such,

MatriXX cannot evaluate pulsed linac beams on a per-pulse basis. For warm-up,

the detector necessitates a long power-on time of 60 min and large dose of over

1500 cGy (Alashrah et al., 2010).
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2.6.3 Sun Nuclear MapCheck

The MapCheck device is a detector by Sun Nuclear (Melbourne, USA) comprised

of a planar array of 445 n-type diodes arranged in a square. Total area of the

detector is 22 × 22 cm2, with detector spacing of 7.07 mm in the central 10 × 10

cm2 area and 14.14 mm outside the center. The sensitive area of the diodes is 0.8

× 0.8 mm2. MapCheck has 2 cm buildup and 2.2 cm backscatter layers which are

tissue equivalent.

L’Étourneau et al. (2003) recognises the suitability of the MapCheck to perform

routine QA for IMRT. MapCheck is characterised by good linearity and repro-

ducibility with standard deviation of 0.15%. However, the detector is unsuitable

for QA in VMAT and SBRT due to non-uniformity limitations arising from the ge-

ometry of the detector as a function of beam angle, angular dependence of diodes,

and large pitch.

2.7 3D Detectors and Semiconductor Arrays

2.7.1 Gel Detectors

Gel dosimetry is a type of relative dosimetry which utilises gelatin placed in a

volume phantom and mixed with a radio-sensitive solution to obtain a true 3D

dosimetric image. The gels can be of two types: Fricke gel, named after Fricke

dosimetry, which utilises the transition of Fe2+ to Fe3+ from a ferrous sulphate

solution dispersed throughout the gelatin in order to obtain the dose distribution,
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and polymer gel, which is similar to radiochromic film. The active component of

polymer gels is the acrylamide monomer dispersed through the gel, which poly-

merises and changes its physical properties, a change that can be detected through

a multitude of ways such as x-ray CT, optical CT, NMR and ultrasound. Gels

are versatile detectors because they are tissue equivalent, they can be placed in

anthropomorphous phantoms, enabling accurate patient QA, and they can be read

out by a large variety of imaging modalities (Dosimetry, 2010).

The limitations of gels arise from the diffusion of ions following the irradiation of

the Fricke gel, which effectively dissipates the spatial dose information, as well as

the potential strengthening of the gel matrix over time and the continuous poly-

merisation in the polymer gel which could introduce image distortion (Schreiner,

2004; Podgorsak, 2005).

2.7.2 ScandiDos Delta4

The Delta4 is an array of silicon diodes within a cylindrical polymethylmethacry-

late (PMMA) phantom, by ScandiDos (Uppsala, Sweden). The dosimeter consists

of 1069 p-type silicon diodes arranged in two orthogonal planes inside the PMMA

cylinder of length 40 cm and diameter 22 cm. Diode pitch is 5 mm within the cen-

tral 6 × 6 cm2 area and 10 mm outside the center. Total covered area of diodes

is 20 × 20 cm2 per plane. The diodes have a sensitive area of 0.78 mm2. An

inclinometer can be placed on the gantry head to provide angular information for

VMAT treatments.

Advantages of the Delta4 dosimeter include good linearity and dose rate response
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(Bedford et al., 2009; Feygelman et al., 2011), the ability to produce 3D dose

maps, and ability of irradiation from any angle around the cylinder. However it is

not suitable for small-field dosimetry due to the large 5 mm pitch of the detector.

According to a study by Aldosari et al. (2014), a pitch of 2 mm or less is necessary

for dosimetry of small fields, as well as a fast readout mechanism. Furthermore,

computationally expensive angular dependence correction needs to be performed

post-treatment to account for the angular dependence of the diodes.

2.7.3 Sun Nuclear ArcCheck

The ArcCheck detector by Sun Nuclear (Melbourne, USA) is a 3D dose veri-

fication device designed for patient QA in rotational modalities such as helical

tomotherapy and VMAT. The device constitutes of 1386 diode detectors arranged

in a helical pattern inside an annular cylinder phantom made of PMMA. The phan-

tom has a central cavity of diameter 15.1 cm and an outer diameter of 26.6 cm.

The diodes are placed in the center of the annulus, at depth 2.9 cm and 1 cm sep-

aration (pitch), resulting in a helical array of diameter and length 21 cm. Each

diode has a sensitive area of 0.8 × 0.8 mm2 and a volume of 0.019 mm3. The

update frequency of the detectors is 50 ms.

Chapman et al. (2014) concluded that the ArcCheck can be used as a beam qual-

ity verification device for tomotherapy, replacing the combination of water tank

and MapCheck technique and reducing QA time by more than half. Yue et al.

(2014) have also reported very good accuracy of the ArcCheck system for use in

tomotherapy. ArcCheck has good agreement with reference ionisation chamber,
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and shows good reproducibility. Aristophanous et al. (2016) have reported that

the ArcCheck is a suitable detector system for use in IMRT/VMAT, however the

gamma passing rates can be affected by a field-size dependence of the system,

which can have an impact on the sensitivity of the device. The detector response

of the ArcCheck needs to undergo software angular corrections due to the geom-

etry of the detector array, which may be time consuming.

2.7.4 PTW Octavius 4D

The Octavius 4D (PTW, Freiburg, Germany) is a QA device designed for IMRT

and VMAT (Urso et al., 2016), comprised of a square array of ionisation chambers

placed in a motorised cylindrical phantom which can follow the rotation of the

linac head. The phantom has an electron density of 1.016 relative to water, a

diameter of 32 cm and length 34.3 cm, and has a square cavity for the insertion

of the detector. An inclinometer is placed on the linac head to provide angular

information to the motorised phantom. The detector array Octavius 729 has 729

vented ionisation chambers arranged in a square covering an area of 27 × 27

cm2 and detector spacing of 1 cm between the centers of the chambers. Each

chamber is a parallel plate of 5 × 5 × 5 mm3. Thickness of the array is 2.2 cm

and the effective depth of the chambers is 0.5 cm. An SRS version of the Octavius

2D array exists, the 1000SRS, which is comprised of 977 liquid filled ionisation

chambers covering 10× 10 cm2 and spatial resolution of 2.5 mm. The dimensions

of the liquid IC are 2.3 × 2.3 × 0.5 mm3. Sampling interval of the detectors is

200 ms.
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Octavius 4D follows the rotation of the linac head, so as to keep the position of

the array always orthogonal to the incident beam. Thus, dose reconstruction is

performed using PDD measurements, which have to be carried out to calibrate

the device. This way, dose reconstruction can be performed independently of the

treatment plan (Allgaier et al., 2013).

McGarry et al. (2013) reported a good linearity, dose rate response and output

factor correlation between Octavius, treatment plan and ionisation chamber. The

inclinometer accuracy was found to be ±0.5°. When performing clinical deliv-

eries, the gamma pass rate for head and neck plans was over 99% for global

3%/3mm gamma criterion for 6 MV and 10 MV flattening filter free (FFF), with

10% minimum threshold and 90% threshold. Discrepancies were found in high

dose gradient regions where 3mm-3% gamma evaluation yielded a pass rate of

about 90%. This was attributed to the poor spatial resolution of the 729 detector

array, and was not present when the 729 detector was replaced with the 1000SRS.

The pass rate when using the latter detector was found to be over 99%.

The limitations of the Octavius 4D include the necessity of warm-up for uniform

response of the detector (McGarry et al., 2013), and no dose-per-pulse capability

of the system. Furthermore, the large sensitive area of the ionisation chambers

can lead to averaging effects in high dose gradient regions, especially when using

the 729 detector array.
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2.8 Conclusion

In radiotherapy and radiation protection, there is a significant variety of commer-

cially available radiation detectors whose properties are known and have been

thoroughly described in the literature. The ionisation chamber is the gold stan-

dard detector, due to its reproducibility, stability and energy independence. The

most modern QA dosimetry solutions are comprised of detector arrays, which aim

to perform dose reconstruction in the body and to maximise spatial resolution in

treatment modalities such as IMRT, VMAT, tomotherapy and SBRT, although tra-

ditional detectors such as ionisation chambers still have a strong presence in con-

temporary QA. Current commercially available solutions have limitations such as

necessity for detector warm-up prior to irradiation, spatial resolution limitations,

temporal resolution limitations, and dose perturbation limitations (can only be

used for pre-treatment and not in-vivo).

To address these limitations, the solution proposed by Centre for Medical Radi-

ation Physics is a real-time multi-detector semiconductor QA device for use in

IMRT, VMAT and SBRT, capable of dose-per-pulse sampling of the radiation

beam, and for use in both pre-treatment quality assurance and as an in-vivo treat-

ment verification system. The device uses an inclinometer and a moving phantom

to follow the linac gantry in order to eliminate angular dependence of the silicon

detectors. The detectors used with this prototype are the silicon epitaxial array

MagicPlate-121 (Wong et al., 2012; Alashrah et al., 2010), and monolithic arrays

MagicPlate-512 (Aldosari et al., 2014; Petasecca et al., 2015; Wong, 2011), DUO

(Porumb et al., 2016) and OCTA (Porumb et al., 2016); they vary in detector area,

sensitive volume and spatial resolution, and the latter two detectors are capable
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of sub-millimeter accuracy. The properties of the MagicPlate-121 as a clinical

detector have been thoroughly characterised by , and the MagicPlate-512 partially

by.

In the following chapters, the CMRP QA device family MP512, DUO and OCTA

will be thoroughly described, the electrical and dosimetric properties of the de-

tectors DUO and OCTA will be investigated and the QA device will be used in

conjunction with MagicPlate-121 and MagicPlate-512 detectors to characterise a

multitude of treatment solutions and field sizes in a clinical environment, includ-

ing standard step-and-shoot IMRT, low dose rate cobalt-60 beam profiling, and an

adaptive motion radiotherapy case study using simulation of lung motion.
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Unified Platform Design

Architecture

Following the development of 1D and 2D silicon array detectors by Centre for

Medical Radiation Physics (CMRP) for use in radiotherapy, such as Dose Mag-

nifying Glass (Wong et al., 2010, 2011), MagicPlate-121 (Wong et al., 2012; Al-

rowaili et al., 2015, 2016), MagicPlate-512 (Aldosari et al., 2014), DUO, OCTA,

etc., a new data acquisition system was necessary to be built for 128-channel, 256-

channel and 512-channel array detectors to acquire data simultaneously from each

detector’s pixels. The structure of the DAQ system was chosen to be modular and

‘plug-and-play’ to make it easy to use a multitude of detectors without the need

to modify any hardware connection, or necessitate major electronic setup. The

commercially available package LabView which was used previously by Wong

et al. (2010, 2011) for DMG and MagicPlate-121 data acquisition has a number

of limitations such as the maximum sampling rate, lack of real-time data visuali-

29
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sation, maximum number of connected channels, and cost, which made LabView

unsuitable for our requirements for fast real-time 512-channel dosimetry. There-

fore CMRP has developed a specialised data acquisition package to address the

aforementioned shortcomings.

The CMRP DAQ system is comprised of four main functional blocks: detector,

readout electronics, firmware, and software. It features a high temporal resolution

(order of microseconds to resolve pulse by pulse linac radiation), high dynamic

range (in the order of 104-105) and a user-determined variable sensitivity to ac-

commodate for detectors with small sensitive volume (and thus small signal), as

well as radiation detectors exposed to high flux of x-ray beam (Fuduli et al., 2014).

The system must also acquire a large number of channels (variable between 128

and 512) with frame rates up to the order of kHz.

This chapter focuses on the description of the hardware components, including

radiation detectors, readout components and cylindrical phantom, and on the soft-

ware development of the GUI.

3.1 Hardware

3.1.1 MagicPlate-121 Detector

The MagicPlate-121 (MP121) detector is a silicon array detector developed by

Centre for Medical Radiation Physics (CMRP), University of Wollongong. The

detector is comprised of 121 single silicon epitaxial diodes mounted on a 0.6 mm

thick Kapton substrate using CMRP proprietary drop-in technology, arranged in
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an 11 × 11 square array with 10 mm diode pitch (separation) and total sensitive

area of 10 × 10 cm2. The diodes were fabricated at the SPA-BIT microelectron-

ics foundry in Ukraine. Each diode is comprised of a 50 µm thick p-type silicon

epitaxial layer of resistivity 100 Ω-cm, grown on a 375 µm p+ silicon substrate

of 0.001 Ω-cm. The sensitive area of each diode is 0.6 × 0.6 mm2 and the total

volume of each diode is 1.5 × 1.5 × 0.425 mm3 (Wong et al., 2011). The MP121

detector and diodes have been characterised by Wong et al. (2012) and Aldosari

et al. (2013) and have been found to have excellent reproducibility, linearity, per-

centage depth dose response, radiation hardness, and a long clinical life. The main

shortcoming of the detector is the large diode separation of 10 mm, which despite

excellent clinical performance, makes the detector unsuitable for small-beam ra-

diotherapy such as SBRT and SRS.

3.1.2 MagicPlate-512 Detector

The MagicPlate-512 (MP512) detector is a monolithic dosimeter array of 512 sub-

millimeter size ion implanted diodes on a p-type silicon substrate, designed by

CMRP and manufactured at SPA-BIT foundry, Ukraine. The area of the detector

array is 52 × 52 cm2, with pitch 2 mm between pixels. The pixel element is a

planar structure with a central n+ junction of 0.5 × 0.5 mm2 surrounded by a

uniform p+ implant for polarisation of the substrate and isolation of the pixels

(Fig. 3.1). The substrate is 470 µm thick and has a low resistivity.

The back side of the detector has a similar p+ implant to realize the ohmic back

contact and is polarised at the same potential of the front side diode. The detector
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(a) (b)

Figure 3.1: MagicPlate-512 detector (left); schematic diagram of the detector con-
struction (right)

array is covered by a thin layer of protective resin epoxy (approx. 100 µm) to

avoid accidental damage of the connections and is wire bonded to a thin printed

circuit board (PCB) of dimensions 31 × 21 cm2 and thickness 500 µm, which

provides the fan-out for connection of the sensor to the readout electronics. The

MP512 silicon detector is operating in passive mode, as there is no bias applied to

the diodes.

3.1.3 DUO & OCTA Detectors

DUO is a monolithic silicon detector comprised of 512 strips and pixels. The

detector is arranged in two orthogonal linear arrays, each with 256 pixels, inter-

secting at their center, implanted on a 470 µm thick p-type silicon substrate. A

schematic diagram of DUO’s strip-pixel configuration is shown in Fig. 3.2a The

array is manufactured on a low resistivity substrate and mounted on an identi-

cal circuit board as MP512 (31 × 21 cm2 500µm thick PCB). The pixel is an n+

microstrip 800 µm long and 20 µm wide, surrounded by a uniform Boron implan-
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(a) (b)

Figure 3.2: Schematic diagram of (a) DUO and (b) OCTA central structures show-
ing the arrangement of the strips and pixels in the center of the detectors (not to
scale)

tation. The microstrip pitch is 200 µm. Five central (non-strip) pixels create the

intersection of the orthogonal arrays; they have an area of 0.2 × 0.2 mm2 each

and realise a cross-shaped structure in the very center of the detector with pitch 50

µm. The back side of the detector has the same implant configuration as MP512.

OCTA is likewise a monolithic silicon strip detector with 512 pixels and central

non-strip detector structure of 3 × 3 square pixels (Fig. 3.2b). The detector has

four linear arrays that form two orthogonal crosses at 45° with respect to one

another, intersecting at the center. The total area of the detector is 40.2 × 40.2

mm2 and the area of the microstrip pixels is 40 × 800 µm2. The central square

pixels are 160 × 200 µm2 in size and make up a small 3 × 3 square array with

pitch 0.3 mm and total area of 920× 920 µm2. The pitch in between the microstrip

pixels is 0.3 mm.
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(a) (b)

Figure 3.3: DUO detector (left); schematic diagram of detector, showing pixels
and substrate (right)

(a) (b)

Figure 3.4: OCTA detector mounted on PCB (left); close-up of detectors sensitive
area (right)



CHAPTER 3. UNIFIED PLATFORM DESIGN ARCHITECTURE 35

3.1.4 Field-Programmable Gate Array

The interface between the DAQ electronics and computer (PC) software is estab-

lished using an Opal Kelly XEM3001 integration module, based on the Xilinx

Spartan 3 FPGA. The FPGA features an on-board electronically erasable pro-

grammable read-only memory (EEPROM) for device clock (PLL) configuration,

a first-in first-out (FIFO) memory of 32 kilobytes, and offers simple and conve-

nient connection to the PC via a standard USB2.0 communication protocol. A

firmware which configures the FPGA and defines the I/O addresses used for com-

munication with the PC has to be loaded into the FPGA every time it is powered

on; this is because the firmware is stored in RAM and is not saved on the device

when it is powered off. The communication achieved between the FPGA and the

computer via USB2.0 will be described in Section 3.2.5.

3.1.5 Inclinometer

The inclinometer used in this project is the 12-bit digital gyroscope ADIS16209

by ANALOG DEVICES (Norwood, MA). The inclinometer is capable of single

axis operation ±180° and double axis operation ±90°, has an accuracy of 0.1°,

sampling rate of 31.5 kHz and an operating temperature range from -40 to 125

°C. The physical dimensions of the inclinometer are 9.2 mm × 9.2 mm × 3.9

mm. The purpose of the inclinometer is to be fixed to the linac gantry head, to

read its angle and provide feedback to the phantom rotation system so that it can

update its position accordingly when tracking the linac head.
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3.1.6 Rotatable Phantom

The rotatable phantom has been designed and manufactured by CMRP and its pur-

pose is to maintain an orthogonal angle between the linac beam and the plane of

the detector array, thus eliminating the need for angular dependence corrections.

The phantom is a polymethyl metacralate (PMMA) cylinder of 30 cm diameter,

40 cm length and a total mass of approximately 35 kg. It has a rectangular cavity

of 20.5 cm × 17.5 cm × 5.1 cm for detector insertion. The detector is sand-

wiched between 2.5 cm thick SolidWater slabs to maximise water equivalence of

the material immediately surrounding the sensitive volumes and replicate electron

scattering conditions of water (Aldosari et al., 2014). The maximum range of

electrons in water at 6 MV and 18 MV is 2 cm and 2.4 cm respectively (Berger

et al., 2015). Thus, the SolidWater inserts ensure that the charged particle equilib-

rium (CPE) around the detector is not affected by the higher density (1.17 g/cm3)

PMMA bulk of the phantom, which could lead to an over-response compared to

water.

The rotatable phantom uses a SICK ATM 60 SSI absolute optical encoder for de-

termining the angle of the cylinder. The encoder has a measuring step size of

0.043° and accuracy of ±0.25°. The digital configuration interface used with the

encoder was RS422. The phantom rotates with the use of a NEMA 24 stepper mo-

tor with torque 2.74 Nm, powered by a high current power supply and a GECKO

stepper motor controller; the GECKO module is controlled by the FPGA through

a fully proprietary serial communication protocol. The motor is connected to the

cylindrical phantom via a timing belt of length 620-650 mm, which rests on a gear

with 18 teeth; to avoid misalignment of the belt, the gear has lateral phalanges.
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Figure 3.5: The rotatable phantom. The optical encoder can be seen connected to
the cable on the right hand side

The gear connected to the motor has 64 teeth. The phantom rotates to match

the angle read by the optical encoder to the angle reported by the inclinometer

attached to the linac head, with accuracy of ±0.25°.

3.1.7 Readout Systems

The electrical current as a result of electron-hole pairs generated in the silicon

from the incident irradiation is collected by a multichannel integrator. The ana-

logue front-end is then interfaced to an analog-to-digital converter which commu-

nicates with the FPGA via a serial interface. In this project, two main architectures

of analogue front-end have been adopted: the TERA6 from Instituto Nazionale di

Fisica Nucleare (INFN) in Turin (Italy) and the AFE0064 from Texas Instruments

(CA, USA).
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Figure 3.6: Schematic diagram of the TERA recycling integrator

3.1.7.1 TERA ASIC

The TERA application-specific integrated circuit (ASIC) is a 64-channel recycling

integrator initially designed by the University of Torino microelectronics group

for readout of pixelated ionisation chambers in hadron therapy (Bonazzola et al.,

1998). The latest version of the chip, TERA6, is used as the readout system for the

ImRT MatriXX detector by IBA. The chip is a 64-channel charge-to-frequency

converter. The recycling integrator operates by counting the number of times a

capacitor is charged by the input current from the detector and then discharged by

the electronics.

The current signal from the detector charges a small capacitor Cint of 600 fF.

This causes the output voltage, VA, of the OTA to increase (Fig. 3.6). VA is then

compared to a reference threshold voltage, Vth, by a voltage comparator. When

the threshold voltage is reached, the comparator sends a signal (VB) to the pulse

generator. The generator then outputs two pulses: one that is sent to the digital

counter to be registered as an event (count), and one pulse is sent to the subtraction

circuit. The subtraction capacitor is charged by the pulse from the generator, and
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a pulse which is opposite in polarity to the input current is generated; this pulse is

then added to the input current to subtract a charge quantum. The charge quantum

can be varied in magnitude by varying Vsub (this can be adjusted externally using

reference voltages) and it determines the unit charge needed for 1 count (Bonaz-

zola et al., 1998). The TERA chip has 16-bit resolution with a maximum number

of counts of 65535.

This approach of integrating charge and subtracting a known quantum charge from

the integrating capacitor has the advantage of continuously counting as long as

VA is above Vth. The alternative would be to completely reset Cint which would

introduce dead time and possibly lead to signal loss from the detector. The dis-

advantage of this approach is that if VA is above the threshold voltage then the

system will keep sending pulses to the counter until it is under the threshold; if

the dose rate or current from the detector is too large, it may saturate the readout

system.

Two TERA chips were used to provide a DAQ system with 128 useable channels

for parallel readout. This readout system was used for MagicPlate-121 device.

3.1.7.2 AFE0064 System

The readout system used for 512-channel detectors is based on the AFE0064 mul-

tichannel electrometer chip (Texas Instruments, USA) and has been developed

by CMRP. The chip, originally designed to read out Thin Film Transistor (TFT)

imaging panels of commercially available linac EPID (acronym) detectors, is a

64-channel current integrator with two analog differential outputs, which are pro-
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portional to the charge accumulated in a capacitor for each block of 32 integra-

tors. The sensitivity (gain) of the chip can be varied by electronically adjusting

the amount of charge stored by the capacitor, from 0.13 pC to 9.6 pC in 7 steps.

The AFE has been interfaced to a quad channel Delta-Sigma Analogue to Digital

converter (ADC) with resolution of 16-bit for each integrator. The AFE also pro-

vides a correlated double sampling of the analogue output in order to subtract the

low-frequency noise and baseline from the raw input signal, thus being capable of

high signal-to-noise ratio – a highly desired feature in medical instrumentation.

The FPGA (described above) is used to provide the clocks and sync circuits for

synchronisation between the AFE and the ADC but also to provide the synchro-

nization with the linac radiation pulses. A coaxial cable is used to receive the linac

sync signal, and the FPGA instructs the AFE chip when to sample the detector. A

total of 8 chips connected to 4 ADCs are used in this DAQ system to provide 512

channels for parallel readout of the detector. Asynchronous acquisition is possi-

ble by use of an internal trigger generator with a maximum frequency of 5 kHz.

Instantaneous dose-per-pulse measurements are possible with this architecture.

The AFE-based readout system was used in all experiments involving 512-channel

detectors. The readout can also be scaled down to only two AFE chips for a total

of 128-channel system for MagicPlate-121; this was performed early during the

work to validate the new front-end and verify its performance in comparison with

the TERA system.
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Figure 3.7: Schematic diagram of CMRP dual-verification QA device

3.2 Software

3.2.1 Introduction

The data acquisition software that was developed for this project has three main

goals:

• to establish communication with the detector system and acquire data in a
lossless manner;

• to save the raw binary to a file, as well as decode it and display it to the user
in real-time in a meaningful way; and

• be able to perform analysis on the data by loading it in post-processing mode
and displaying the results to the user with additional data handling tools.

In order to achieve these goals, the software had to satisfy a number requirements

including robustness, stability, ease of use, and reproducibility, especially under

high computational load, because the DAQ software was going to be used for

high-bandwidth multi-detector real-time acquisition. Cross-platform capability
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was possible within the chosen development environment, but it was not consid-

ered a priority, as 100% of data acquisition machines used by CMRP were running

Windows.

Through trial and error of preliminary software and a number of versions, the

optimum solution was determined to be a graphical user interface (GUI) software

application comprised of two threads, each assigned with a standalone task, and

each communicating with one another if necessary. The GUI software has been

named Romulus Radiation Tools.

The threads that comprise Romulus are the acquisition thread, and the graphical

interface thread. These threads are further comprised of specific tasks which will

be described below.

3.2.2 The Development Environment

The Romulus software was coded in C++ and utilised the Qt application develop-

ment network (version 2009.04) for the GUI and multi-threading modules. The

compiler used to generate the final executable was 32-bit MinGW (Minimalist

GNU for Windows) version 3.81.

3.2.3 The Qt Modules and Basic Structure

Qt integrated development environment (IDE) is a versatile framework for creat-

ing cross-platform projects which run regardless of the target machine’s operating

system (OS). Furthermore, the framework is based on object-oriented program-
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ming, with a powerful emphasis on communication between objects and data ex-

change between classes.

A software project compiled using the Qt framework will always have the Qt

backbone when it is instantiated (the int main() function), and the user code will

be loaded as an object within this core. This has the advantage of making avail-

able to the programmer all the functionality of Qt at any time. The programmer

then only needs to instruct the compiler to include the header of that module, for

example for network functionalities using QtNetwork module, for the drawing

functionality using QtOpenGL module, for the database functionality using QtSql

module, etc., in order to use it within the code. Thus, the Qt core manages the

whole application and most importantly, establishes the communication between

the classes and the objects which require it. This is the most powerful advan-

tage of the Qt framework, because it greatly simplifies the way information gets

transferred internally between objects. The programmer is not restricted by the

direction and flow of code, and multiple objects can access the same data at the

same time without the risk of overwriting or bottlenecking.

The two threads in Romulus are Qt “objects” and they communicate with one

another by the means of Qt’s signal-slot protocol. A Qt-defined object, called a

QObject, has the ability to emit a signal, such as a single number, a string, or

an array. If it does so, this signal can be detected internally by another object or

class, if that class was instructed to listen for the signal, which may perform an

instruction once it receives the signal, or it can process the signal itself.

For example, signal-slot connections are made between push-buttons in the GUI

and the class responsible for executing code associated with pressing the button.
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The push-button, when clicked by the user in the GUI, will emit a signal, named

clicked(). A function that listens for the clicked() signal of the push-button (which

was pre-determined in the instantiation, or constructor, of the software), is then

responsible to execute the code associated with the user pushing that button on

the GUI and will do so as soon as it can, that is, as soon as the CPU is available to

execute the code. Under general conditions when a program is idling, this occurs

instantaneously. There is no restriction on the number of functions that listen for

a signal. QObjects always emit signals when events occur, but it is up to the user

to act on those signals or not, and to connect them to the appropriate classes.

3.2.4 Communication between Threads

The GUI code from within the graphical interface thread (thread A) is the code that

is responsible for the visualisation of the program, and is the parent thread which

calls the acquisition class (ACQ) in thread B to perform a measurement. When the

user clicks the “Start” button, the GUI class emits initialisation parameters specific

to the particular measurement (such as duration, sampling time, integration width,

output file name etc.) which the ACQ class in thread B is configured to receive.

At the end of the configuration signals, the GUI emits a commence() signal which

instructs the ACQ class to start the measurement.

Once started, the ACQ will run as long as per the duration it received in the initial-

isation unless it is prematurely interrupted by the user. During the measurement,

every 100 ms the ACQ will emit a data frame which the GUI will receive, de-

code and display to the user as real-time feedback from the detector. Once the
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measurement is complete, the ACQ will confirm to the GUI the completion of the

measurement with a finished() signal.

3.2.5 Communication via USB2.0 and the Firmware

The USB (universal serial bus) protocol is a standard for connecting devices to a

host, usually a PC. Historically, the justification of the development of USB was to

create a universal interface for connecting external devices to a host, regardless of

their vendor. Work on USB commenced in 1994 as a joint collaboration between

IBM, Compaq, Intel, Microsoft, NEC, DEC, and Nortel; first version USB1.0 was

released in 1996; USB2.0 was released in 2000 (R. Murphy, 2016).

The USB interface is comprised of (a) the host controller, which is a hardware

chipset (Cypress) that detects attachments and removals of USB devices on the

computer, manages data flow, and provides power to devices; and (b) the root

hub, which provides the physical connection between the device and the controller

(R. Murphy, 2016). Each device is assigned an address by the host (7 bits, for a

maximum of 127 connected devices per host), and data flow between the host

and device endpoints is achieved through pipes (Fig. 3.8a). There are two types

of pipes: control pipe, used for sending commands, querying, and configuring

the device; and data pipe, used for data transfer to and from the device. Pipes

are discerned by use of different endpoints, with Endpoint 0 reserved as control

pipe for each device (Fig. 3.8a). Data is transferred as packets through the pipes.

Packets are comprised of:

• 8-bit packet ID (mandatory)
• 7-bit device address (optional)
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(a) (b)

Figure 3.8: (a) Diagram showing the pipe model communication between USB
host and device; (b) Diagram of logical steps taken by the host controller when a
new device is connected to PC

• 4-bit endpoint address (optional)
• Payload data up to 1024 bytes (optional)
• Cyclic redundancy check (CRC) for error detection (optional)

The packet IDs identify the type of each packet (eg. token, data, handshake pack-

ets etc.) and the controller can discern between packets from different devices

travelling via the hub by reading the packets device address.

Each device has a unique driver: a software interface (file with .SYS extension in

Windows) which acts as a ‘translator’ between software running on the PC and

the device. The details of the driver (such as name, version, location, registry

information etc.) are stored in an accompanying .INF file (R. Murphy, 2016). The

process of connecting and configuring a device is shown in Fig. 3.8b.

The FPGA’s device driver is supplied by the vendor, Opal Kelly. The communi-

cation between the application software (GUI) and the FPGA driver is dependent

on the programming language used to code the GUI software. An application pro-

grammer’s interface (API) which is language-dependent (C#, C++, Python, Java,

etc.) is also provided by Opal Kelly in order to allow the developer to communi-
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cate with the FPGA using his or her chosen programming language from within

the developed software.

In the case of the C++ programming language, the API is a set of libraries and

headers for the implementation of establishing communication from within a C++

software application with the device. It is comprised of one dynamic link library

(DLL) file, one C++ header file, and C++ code file. These files need to be included

in the Qt project. The API creates the handshake between the device driver and

Romulus, which allows communication between Romulus and the FPGA. By in-

cluding the API header, a new object named okCUsbFrontPanel can be declared,

which will have direct access to the FPGA via the USB2.0 communication proto-

col. Through the new object, the system can be queried for the number of FPGAs

connected, the serial ID of a particular device, and settings and data can be ex-

changed with the device. The following example code shows how to instruct the

system to check for the number of connected FPGA devices:
okCUsbFrontPanel *xem = new okCUsbFrontPanel;
xem -> GetDeviceCount();

When the electronic readout system is connected via USB and powered on, it fol-

lows the process outlined in Fig. 3.8b to be identified and configured by the host

PC. In order to control the readout system from the software GUI and for the data

to be sent from the readout system to the GUI, the onboard FPGA needs to be

configured using a firmware, developed in-house by CMRP. The firmware distin-

guishes itself from a device driver by the fact that it runs on the device (in this case

on the FPGA), and not on the host, and by the fact that the commands used to com-

municate with the DAQ software are arbitrarily defined by the firmware developer,

depending on the requirements and capabilities of the readout system. Thus the
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USB standard becomes an underlying carrier for the GUI-FPGA commands and

data flow. The firmware is a simple binary file with .bit extension and is loaded

on the FPGA by calling the ConfigureFPGA(path) function in Qt. It creates a vir-

tual circuit inside the FPGA and establishes the input and output addresses used

for communication with Romulus, thus controlling the detector electronics, the

inclinometer and the cylindrical phantom, and managing the data flow from the

readout system. The scope and development of the firmware is explained in depth

by Petasecca et al. (2012).

There are four types of instructions for communication with the readout system,

as defined in the API: uploading firmware, inputs (wire-ins), single outputs (wire-

outs), and datastream output (pipe-out). The structure for the API commands is as

follows:
//firmware upload
ConfigureFPGA(std::string PathToFirmware);

//parameter input
SetWireInValue(int endpointAddr, int value, int mask);
UpdateWireIns();

//variable output
UpdateWireOuts();
GetWireOutValue(int endpointAddr);

//datastream from FIFO
UpdateWireOuts();
ReadFromPipeOut(int endpointAddr, int length,

unsigned char *data);

The endpoint addresses used for these commands need to be agreed on by both

the firmware and software developers. It is worth noting that the “endpoints” here

should not be confused with the endpoints in the USB protocol; they are different.

The SetWireInValue command accepts 16-bit decimal or hexadecimal parameters

(up to 65535 or 0xFFFF for this DAQ system, although the FPGA is capable of

32-bit commands) and prepares the value to be sent to the endpoint on the FPGA.
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This command has the capability of updating individual bits in the endpoint using

the mask. Thus, multiple parameters, such as flags, can be configured using the

same address, by modifying individual bits in that address. For example, the

flag (boolean) for single or continuous acquisition can be the least significant bit

of address 0x02, while the flag for the use of internal or external sync trigger

can be the third last significant bit of the same address. These two bits can be

updated individually, or simultaneously using one SetWireInValue command with

the mask 0x03 (Table 3.1).



Table 3.1: Example of masks used for settings which share a common destination address on the firmware

Command bits Mask
Both flags 0101 0x05
Only flag 2 0100 0x04
Only flag 1 0001 0x01

Table 3.2: Structuring of serialised data for (a) TERA based readout; and (b) AFE based readout

Header Header
0xFFFF Ch0 Ch1 Ch2 ... Ch127 0xFFFF Inclin. Opt.Enc.
0xAAFF 0xBBFF

(a)
Header Ch63 Ch63 Header Ch31 Ch31 Header Ch62 Ch62 Header Ch30 Ch30 Header Ch0 ch0 Header
0xFFFF AFE00 AFE01 0xFFFF AFE00 AFE01 0xFFFF AFE00 AFE01 0xFFFF AFE00 AFE01 ... 0xFFFF AFE00 AFE01 0xFFFF Inclin. Opt.Enc.
0x003F 0x003E 0x003D 0x003C 0x0000 0xBBFF

(b)

Table 3.3: Logical sorting of data in the unmapped datafile

#ch date comments
AFE0 AFE1
Ch0 Ch1 ... Ch63 Ch0 Ch1 ... Ch63

frame 0
frame 1
frame 2

...
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The GetWireOutValue command requests the value from the FPGA at a particular

address. For example, if the value of the angle of the inclinometer is configured

to be accessible at address 0x19, then the command GetWireOutValue(0x19) will

return an integer which is directly proportional to the inclinometer angle, and

which can be converted to degrees by applying a simple coefficient.

The ReadFromPipeOut command requires multiple parameters for data output:

the pipe-out address pointing to where the data resides in the FPGA, the number

of bytes to read, and container in which to place the data. The data is in raw binary

and needs to be decoded before being displayed on the GUI; this will be covered

below.

For the AFE data format, the header index is within the range 0-63 and it repre-

sents the number of channels on the AFE chip. Depending on the number of chan-

nels the user wishes to use, which dictates how many AFE chips are enabled for

acquisition (2 for 128-channel, 4 for 256-channel, 8 for 512-channel), each header

is then followed by the channels with identical index from all the connected AFE

chips in consecutive order. Table 3.2 shows the example for 128-channel data for-

mat, where channel 63 from both chips follow the first header. For 512-channel

data, there would be 8 channels following each header. One container with com-

plete data from all the channels is referred to as one frame.

3.2.6 Data Decoding

To decode the data from each pixel, a simple operation for converting between

base 256 to base 10 must be performed with a deserialisation procedure for a
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correct mapping of the channel to its physical position on the detector array. For

example, if the value as unsigned chars for pixel 15 is ‘A0’, then this word can

be separated in the two bytes ‘A’ and ‘0’. These bytes correspond to the integers

65 and 48, respectively, when converted to a decimal number (type casting). The

final step to reach a decimal number is to multiply the most significant byte by

256 and add to the least significant byte. Thus, 65 multiplied by 256 and added to

48 yields 16688, which is the value of pixel 15 in decimal.

When the data is decoded from base 256 to base 10, it goes through a number of

steps. The data is converted from raw number to percentage of the dynamic range

pre-selected (gain) and then it is saved to a number of text files. The first line of all

files contains in tab-delimited format the number of channels, the date and time

of acquisition, and any comments associated with the measurement. The first text

file contains the default output from the AFE converted in percentage of dynamic

range. The arrangement of the pixels in this file is dependent on the routing of

the detector used; for example in the case of MP121 detector, pixel 1 connects

to channel 1 of the AFE, pixel 2 connects to channel 2, etc. (Fig. 3.9), while

for MP512, pixel 1 connects to an AFE channel corresponding with the shortest

possible physical wire between the two, due to detector wiring constraints on the

PCB. The pixels are tab-delimited in the file, where each column corresponds to

one pixel. Every row in the column corresponds to a frame at a particular time

after the measurement is commenced, which depends on the sampling frequency

of the detector. The columns are arranged with channel 0 from AFE0 on the first

column (left) and ending with channel 63 on AFE7 in the last column (right), for

a total of 512 channels (Table 3.3).
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(a) (b) (c)

Figure 3.9: Diagram of the data saving pattern on a 2D grid for (a) MagicPlate
121 & 512; (b) DUO; and (c) OCTA detectors. The color of the arrows shows the
direction of the pattern, starting from red; then blue; purple and yellow

The second text file is the detector-dependent output and contains the same columns

as the first; however they are rearranged to form a logical pattern which corre-

sponds to the detector used (Fig. 3.9). This is determined by the mapping mask

in Romulus file output and is dependent on the user choice of detector. A third

text file containing debug raw data is also outputted. Data is stored the same as in

the first text file, however the ADC response is left in raw differential format and

not converted to percentage of dynamic range. Two extra files can be created if

the user loads the equalisation factors into the GUI, corresponding to the default

configuration of the GUI, and mapped arrangement, with the equalisation factors

applied to the data.

3.2.7 Equalisation Factors

The semiconductor detector arrays used in this project are comprised of multi-

channel pixels whose responses are slightly different from one another due to local

substrate heterogeneities and parasitic capacitance associated with the connection
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routing. Moreover, each pre-amplifier channel has a variation of the gain which

can vary within 0.1% to 0.5% of the dynamic range (Texas Instruments, 2009). To

mitigate this issue, a protocol has been developed to obtain a per-pixel correction

factor which can be applied to ensure a smooth, uniform response of the detector.

These equalisation factors are then stored to a file and can be re-used if necessary.

This feature is available in the menu section of Romulus, under Tools. The pro-

cedure involves irradiating the detector with a large field using a clinical linac at

10 cm equivalent depth in water, where the radiation field is uniform. The typical

field used for this procedure is a 20 × 20 cm2 square field. This way, we can as-

sume that all the pixels will observe the same dose and any differences in response

are solely due to the electronics or intrinsic pixel properties. By taking an aver-

age of the pixels response <X>, the ratio between the average and the individual

response yields a per-pixel coefficient for the equalisation, Fi. This can then be

applied to each pixel to obtain its equalised response, (Yeq)i:

Fi =
Xi

< X >
; (Yeq)i =

Xi

Fi

(3.1)

The equalisation factors are stored in a tab-delimited file of extension .calib, start-

ing with channel 0, and depending on the detector used, the file will be populated

with 128, 256 or 512 coefficients. Loading the factors can be done from a .calib

file, but it can also be loaded from a previous acquisition measurement with the

.bin extension. The latter performs the data decoding and stores it in a temporary

file, determines the average response and outputs the equalisation factors in a final

.calib file.
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3.2.8 Mapping of Detectors

The 512-channel detectors MagicPlate-512, DUO and OCTA all have different

pixel positions on the detector plane and their PCB wiring is optimized to min-

imise distance from the pixels to the electronics. Unlike MagicPlate-121 and

DMG, which have a direct correlation between the pixel number and the asso-

ciated channel number, the wiring of the 512-channel detectors resulted in a very

complicated logical sorting of the pixels with respect to the corresponding elec-

tronic channel. The datasheets obtained from the CMRP microelectronics foundry

provided the pinout of the high-density connectors; these had to be correlated with

the female counterpart on the electronics and the sequence of preamp channels of

the AFE. This process was then verified experimentally using the setup shown in

Fig. 3.10.

The correlating procedure was performed in order to realise the mapping of the

detectors and to establish the software re-routing to visualise the data in 2D. The

GUI thread in Romulus receives the frame from the ACQ thread during measure-

ment, decodes it and passes it through a function which rearranges the pixels in

a new array, depending on the detector chosen. Each detector has its own corre-

sponding rearrangement mask. The new array is then passed to the plot, which

visualises the data accordingly.

Once the software mapping algorithm was completed, it was verified experimen-

tally using laser optical stimulation (Fig. 3.10). A green laser of beam diameter

0.5 mm and variable intensity was used to raster-scan in x-y across the pixels to

verify the software mapping.
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Figure 3.10: Experimental setup adopted for verification of the detector mapping
by the means of a focused laser. The green laser passes through a series of filters
before being guided using the reflecting mirrors onto the detector to allow for
scanning of the detector surface.

3.2.9 The ACQ Thread

In previous DAQ software before the Romulus release version, the class and func-

tions responsible for querying and retrieving detector data from the FPGA were

part of the GUI, which in turn was updating the graphs with the real-time data; this

single thread was responsible for all of the software’s functions. However, upon

investigating the raw data files from the detector, it was found that this approach

induced data losses due to the long processing time of the GUI data when decod-

ing and plotting, which was preventing the software from acquiring all the frames

from the FPGA’s FIFO. About 10% of frames were lost per measurement, and

it was unclear which section of the measurement they were missing from. Thus,

the data handling code was separated from the GUI code by the use of separate

threads. Since most modern computers and laptops have processors with two or

more cores, this approach ensured that data loss was completely prevented. The

data acquisition and storage code was moved in the ACQ thread and was sep-
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arated from the GUI code, making use of Qts signal-slot capability to establish

inter-thread communication.

In principle, the ACQ code is very simple. A class is used to contain all the

measurement parameters from the user input and received from the GUI; the com-

mence() signal triggers the execution of a function named process(). The process()

function configures the FPGA by passing the user preferences and signals to the

FPGA to start acquiring. Fig. 3.11 shows a flowchart of the core ACQ function

responsible for Romulus’ data acquisition.

When acquiring, an output file is created and opened for writing using the user-

specified filename, and a while loop is created which constantly queries the FPGA

if it has new data in the FIFO. If the flag is true, the data is requested from the

FPGA and stored to the open file. Every 100 milliseconds, a timer triggers a

signal to be sent to the GUI thread from the ACQ. This signal contains a data

frame which will be decoded and displayed to the user in real-time in the GUI.

Once the measurement duration set by the user has elapsed, the while loop termi-

nates, the output file is closed, the function exits with an emission of a finished()

signal and the measurement is concluded. If the user chose to automatically de-

code the data at the end of the acquisition, a signal relaying this information is

emitted and captured by the decoding function, which executes the task. Romu-

lus then resumes idling whereby accepting user input and waiting for the next

measurement.
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Figure 3.11: Flowchart diagram of the data handling function which comprises
the core of the acquisition thread
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3.2.10 The GUI Thread

The user interface thread, or GUI thread, is the code responsible for handling the

user inputs, real-time visual updates and post-processing. The GUI thread triggers

the ACQ to take a measurement, at the request of the user.

There are two main sections of the GUI, each contained in its own window: the

acquisition mode, and the off-line data analysis mode.

3.2.10.1 GUI: Acquisition Mode

The Romulus acquisition window is comprised of four main areas: Menu options

at the top of the window, the real-time data plots, the user input parameters and

the status notification, including the status bar at the bottom. The most common

measurement parameters such as file name used for saving the data, comments as-

sociated with the current measurement, duration of measurement and integration

width can be found on the bottom-right of the window. Additional advanced set-

tings can be accessed and set from the top menu. In the top-right, there is a visual

Status label which informs the user whether the device is powered on, connected,

or ready for measurement. Table 3.4 shows the colors associated with the vari-

ous statuses of the system. The status bar at the bottom of the window provides

short-term feedback for user actions, such as decoding status and confirmation if

equalisation factors have been applied successfully. Based on the detector con-

nected, the user can choose which graph layout to use from the top menu. The

graphs are available in two forms: the frame-by-frame response, and the integral

response. This applies to 1D and 2D graphs as well. Romulus saves a .cfg config-
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Figure 3.12: Screenshot of Romulus Radiation Tools software showing default
window

uration file in the folder of the executable to recall position, size and visibility of

GUI windows when it is restarted.

The parameters that the user can modify are:

• Number of channels to use (depends on detector but can be defined sepa-
rately in case the user would like to visualize only a section of the detector
connected.)

• Detector used (and thus graphing and 2D mapping)
• Loading of firmware
• Duration of acquisition
• Integration width
• Name of output file
• Comments associated with acquisition
• FIFO buffer size
• Sensitivity (gain) of ADC
• Choice between internal and external trigger
• Frequency of sampling
• Phantom motor power
• Zeroing of optical encoder
• Zeroing of inclinometer
• Inclinometer reset
• Loading of equalisation factors
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• Automatic or manual decoding of data
• Plot ranges
• Plot zooming/panning
• FPGA/acquisition reset

To acquire a measurement, the user connects the electronics to the computer and

powers on the system. When launching Romulus, it will inform the user using the

status label if the device is connected, and if it is, the device’s serial number will be

available for query, and it will prompt the user to load the firmware in the FPGA

(Table 3.4). The status label will turn green to show that the electronics is ready.

The user will then set the desired duration, sampling frequency, trigger mode,

integration window, file name and optionally comments, followed by pressing

Start button.

The status label will inform the user that the acquisition is in progress and will

display how many seconds are left. The user has the choice of terminating the

acquisition prematurely by pressing the Stop button or letting it finish. If the

auto-decode flag is enabled, Romulus will automatically perform the conversion

to decimal when the acquisition is complete; alternatively, the user can manually

decode the data at a later time.

3.2.10.2 GUI: Data Analysis Mode

The off-line post-processing tools component of the GUI is separate from the

DAQ. The post-processing mode, or data analysis mode, allows the user to analyse

the detector data on a per-pixel basis, or visually using 2D mapping of the detector

arrays, and has statistical analysis tools available for finding average response,
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Figure 3.13: Flowchart of real-time visualisation function in DAQ thread
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Table 3.4: Colors used by the GUI Status label to provide feedback to user of what
instruction the software is performing at that time

Status Color
Check USB cable/power Red
Device connected Light green
Load/Reload firmware Blue
Ready Green
Acquiring Yellow
Terminated Orange
Decoding Dark green
Obtaining corr. factors Yellow
Creating .calib file Light yellow
ATTENTION Red

standard deviations and integral dose. Each detector has its own dedicated 2D

map, based on the geometrical configuration of the pixels. For example, the 512

channels for the DUO are arranged in a cross shape, while for the MP512, they

are arranged in a square array.

The default graphs shown are the response versus channel number, unsorted, and

response versus time for a user-defined pixel number. 2D graphs showing the

frame-by-frame and integral response can be shown at the user’s request, using

the 2D maps checkbox on the right. A horizontal slider allows the user to cycle

through all the frames individually to analyse the pixel response and 2D maps

of the beam. A detailed analysis of the pixel response can be done using the

Statistical Analysis toolbox, which can be accessed from the bottom-right of the

window. The toolbox is the core feature of the statistical analysis performed by

Romulus, as it performs mathematical operations (summation, average, standard

deviation, baseline subtraction) on the data from the graph that displays the tem-
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Figure 3.14: Screenshot of Romulus Analysis Mode window and the pop-up 2D
mapping window showing MP512 response

poral response of the pixel, to quantitatively determine the dose received by the

detector. A region of interest can be selected on the graph using the Select ROI

button, which creates a “rubber band” using the mouse position, and the toolbox

automatically outputs the number of frames inside the ROI, the duration, charge

collected, average response, uncertainty based on two standard deviations, and in-

tegral response. The latter is directly proportional to the dose. If a ROI is defined

using a constant time difference between the two reference points, then a point of

interest feature exists, where the time window is pre-set to a certain value and a

single point is selected on the graph. The ROI can also be set using the preferred

time flags using the two Limit input boxes.

A baseline subtraction can be performed by choosing a ROI on the graph with

background counts and subtracting the average counts from every frame. This can

be undone by pressing the button again. The baseline subtraction ensures that any
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Figure 3.15: Screenshot of Romulus showing the response versus time for a cho-
sen pixel (background) and the statistical analysis window (foreground)

noise present in the pixel’s response can be removed. There is a batch function

which automates the procedure for all the pixels of the detector. Two input boxes

next to the batch checkbox allow the limits to be set, in milliseconds, for the region

of interest where to obtain the integral response for each pixel. Because the beam

is turned on across the detector at the same time, choosing one ROI is generally

acceptable for all pixels. The batch data gets saved in a tab-delimited text file,

with the integral response from each pixel, which can be further analysed.

3.3 Applications of the Unified DAQ System

3.3.1 MP121 and Dual Verification

The application of the MagicPlate-121 for use in IMRT/VMAT as a fluence de-

tector mounted on the linac head, and as a dose detector in a phantom, will be
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described in Chapter 4. The thin detector will be used for verification of the

transmitted beam shape and intensity, and a simultaneous verification of the dose

distribution from a second MP121 detector inserted in the central plane of a cylin-

drical phantom will be performed in comparison with treatment planning software

(TPS) distribution in that plane.

3.3.2 MP512, DUO, OCTA and SBRT/SRS

The characterisation of detectors MagicPlate-512, DUO and OCTA will be pre-

sented in Chapter 5. The characterisations described will include electrical I-V

and C-V traces, linearity, uniformity, spatial resolution, temporal resolution and

charge collection efficiency. The verification of dose distribution in a plane us-

ing MagicPlate-512 for small stereotactic low dose rate photon beams will be

described in Chapter 6, and the application of MagicPlate-512 detector for use

in stereotactic motion adaptive radiotherapy will be described in Chapter 7. The

latter will evaluate the performance of the MP512 detector in a case study per-

forming QA using a lung motion phantom.

3.4 Conclusion

In this chapter, the realisation of the data acquisition software for a prototype

dual-verification quality assurance device was presented and hardware elements

comprising the prototype were described. The two readout systems for the device

based on different ADCs were outlined and their differences described. The de-
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tectors used in this work were described in detail. The final assembled device was

shown in a clinical environment.

The QA device is intended to be used for quality assurance in IMRT and VMAT

modalities, as well as small-beam stereotactic radiotherapy. The device will be

utilised in a number of studies, as described in the following chapters. Future

work relating to the acquisition software includes the importing of treatment plan

data from the planning system into Romulus, and 3D dose reconstruction in the

phantom by back projection and forward projection using the response of the lin-

ear array in the center of the rotatable phantom.
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4.1 Introduction

Quality assurance in radiotherapy is performed using commercially available de-

tectors and dosimetry systems, such as ionisation chambers, film, gel, array de-

tectors such as MapCheck, Delta4, ArcCheck, etc. In light of the limitations of

the commercially available detectors as outlined in the literature review in Chap-

ter 2, a solution is proposed by CMRP which addresses these shortcomings by

developing a prototype dual-verification quality assurance device for IMRT and

VMAT which eliminates the angular dependency of dose measurements, and that

can also be used intra-operatively to verify the radiation treatment as it is being de-

livered by the linac. In this chapter, the novel QA approach named the MagicPlate

Dosimetry System (MPDS) is presented. MPDS is based on the semiconductor

array detector MagicPlate-121, and is capable of performing pre-treatment as well

as intra-operative QA as a transmission detector. This chapter describes the sys-

tem and presents results which validate the principle of operation of the system.

4.2 Materials & Methods

The purpose of this study is to perform pre-treatment QA with two detectors in

transmission mode (MPTM, mounted on gantry head) and dose mode (MPDM,

measuring the response inside the phantom) (Fig 4.1), and intra-operative real-

time QA with the transmission detector mounted on the linac head, while follow-

ing the gantry rotation to eliminate the angular dependence of the detector. The

expected differences in response operating the detector in transmission and dose
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mode are related to the type of material surrounding the detector and the presence

(or lack) of charged particle equilibrium. In the phantom, the MPDM array will

be detecting a response very similar to that of tissue, while the MPTM will show a

response which will be indicative of the fluence of the beam, less the dose. MPTM

can also be subject to gantry head scatter from collimators and shielding, which

is not covered in this study. The ability of the MP121 to determine the dose in the

phantom with respect to the treatment planning system (TPS) dose will be deter-

mined, as well as the ability of the system to detect errors in the real-time delivery

will be tested. The latter will be performed by introducing a known error in the

linac dose rate and observing the response of the transmission detector. Due to the

fact that the QA device does not have TPS importing capability at the time of per-

forming this study, the verification will be done by comparing the pre-treatment

QA result, which is verified against the TPS, with the in-vivo real-time data from

the detector.

4.2.1 MagicPlate-121 Detector

The 11 × 11 epitaxial array MagicPlate-121 has been described in Section 3.1.1.

Two copies of the detector are used in this study: one placed in the phantom for

dose acquisition, and one mounted on the linac head and used for transmission

mode measurements. The perturbation induced by the MP121 detector being in-

serted in the beam next to the linac exit window is less than 1% (Wong et al.,

2012; Alrowaili et al., 2015).
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(a) (b)

Figure 4.1: (a) The MagicPlate system, showing the MPDM inserted in the rotat-
able phantom on the patient couch (disengaged; not following the linac head), and
the shielded MPTM mounted on the linac head; (b) the system following the linac
head.

4.2.2 Readout System (TERA)

The readout system of the detector adopted for this experiment is based on the

TERA6 front-end and has been described in Section 3.1.7.

4.2.3 Rotatable Phantom System

The rotatable phantom designed by CMRP has been used to provide water equiva-

lent environment for the inserted MP121 detector which measures delivered dose.

It is comprised of the PMMA drum, SolidWater inserts surrounding the detector,

driver motor, optical encoder and inclinometer, and has been described in Section

3.1.6.
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(a) (b)

Figure 4.2: (a) Rotatable phantom placed on a Siemens CT couch to be imaged.
Optical encoder and motor were removed to avoid imaging artifacts in the CT scan
due to the high-Z materials; (b) the CT image of the phantom which was imported
into the TPS.

4.2.4 Rotatable Phantom Electron Density Map

In order to perform treatment planning (TPS) with the CMRP phantom, it had to

be scanned by a Computer Tomography (CT) simulator and its volume, with as-

sociated densities, imported in the TPS. The rotatable phantom has been scanned

using a Siemens SOMATOM Sensation CT scanner, in order to obtain the CT

numbers of each voxel required for treatment planning. The voxel volume used

was 2 × 2 × 2 mm3. The data was exported in DICOM files of dimension 512 ×

512 pixels, which corresponded to 1.024 px/mm.

4.2.5 Treatment Planning

The Pinnacle3 by Philips was the TPS used to perform the treatment planning.

CT data for the rotatable phantom was imported and a treatment plan consisting
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of a 5 × 5 cm2 photon beam of 6 MV, 600 MU/min and delivering 100 MU

was created. The gantry angle for the beam is 0° and the isocenter of the beam

corresponds with the center of the phantom, and thus, the center of the detector.

The plan was delivered using a Varian 2100EX clinac at Illawarra Cancer Care

Centre, Wollongong, Australia.

4.2.6 Experimental Setup

The calibration factor (counts/cGy) was obtained for MPDM, by irradiating the

detector at standard conditions using the linac. The standard conditions represent

the set of parameters that are chosen to have, in a specific point in a solid water

phantom, 1 MU/cGy. For a 6 MV linac with the detector placed on top of 10 cm

SolidWater backscatter and depth 1.5 cm (dmax for 6 MV), source to surface dis-

tance of 100 cm (SSD), and irradiated with a 10 × 10 cm2 field at 600 MU/min.

We delivered a total dose of 100 MU or 100 cGy in such conditions. The calibra-

tion factor recorded corresponds to the amount of charge collected by the detector,

which is directly proportional to the dose delivered at that depth.

The equalisation factor of the detector, as described in Section 3.2.7, was obtained

by keeping all of the irradiation parameters the same, except for moving the de-

tector at 10 cm depth and using a 20 × 20 cm2 field. At these conditions, the dose

distribution can be considered flat within 1% variation across the entire field. The

equalisation factors were used to eliminate any variations in the response due to

different intrinsic properties of the individual pixels.

The rotatable phantom was placed underneath the linac head with the center of ro-
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(a) (b)

(c)

Figure 4.3: (a) (b) Screenshots of Pinnacle treatment planning software showing a
5 × 5 cm2 6 MV photon beam incident on, and traversing through, the cylindrical
phantom; (c) isodose curves at the depth of the MP121 detector inside the phan-
tom. The points along the horizontal and vertical plane of the profile are 1 cm
apart and denote the sample points for the TPS and MP121 profile comparison.
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tation correspondent to the isocenter of the linac. The phantom was set to follow

the linac gantry and its “home” position set to be 0 degrees when the linac head is

perpendicular to the patient couch. The detector is then horizontal and parallel to

the patient couch guarranteeing the beam perpendicular to the beam. This func-

tion has been implemented within the firmware of the system in order to maintain

a normal angle of incidence between the photon beam and the 2D detector at all

times. The ability of the phantom to follow the linac head has been investigated

by rotating the gantry from 0° to 45° and back to evaluate the effects of the back-

slash of the belt driving system. The differences between the gantry head angle

(inclinometer) and phantom angle (optical encoder) were recorded and compared.

When performing radiotherapy at the hospital, prior to irradiation of the patient,

the pre-treatment quality assurance routine is performed. The MPDM obtains a

dose map of the beam, while in parallel the detector mounted on the linac head

records the ‘fluence’ of the beam as a function of time, as the treatment is being

delivered (Alrowaili et al., 2015). The response of the detector in the phantom is

then compared to the TPS and if it agrees, the data from the transmission detector

is stored in Romulus, where it acts as the reference “fluence” map for the real-time

in-vivo measurement. A threshold of 10% is placed on the difference between the

planned and delivered fluence per frame, and if the latter exceeds the threshold, the

system will warn the user and recommend shutting down the beam. The threshold

can be varied on a per-treatment basis by the user.

A 50 MU plan has been generated in the TPS and two versions of the plan were

delivered to the phantom. The first ‘treatment’ was according to the reference TPS

plan and its purpose was to verify the reproducibility of the system. The second
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treatment had a known error introduced, which was a 20% decrease in linac dose

rate after the first 20 MU, to observe if the MPDS responds to the discrepancy. The

result was plotted and compared. The response from the central pixel is presented

in this study as a proof of concept, despite data being available from the entire

array, in order to simplify the presentation of results. In a real QA scenario, the

response of all the pixels would be compared to the verified pre-treatment data.

4.3 Results

The data showing the phantom tracking the linac is presented in Fig 4.4. The

agreement between the inclinometer and the optical encoder as a function of time

is within ±1.5° except for two outlying sections. This demonstrates that the rotat-

able phantom successfully tracks the linac gantry as it rotates to deliver radiation.

There are two regions on the curve at around 25° for both gradients, occurring at 6

s and 16 s into the measurement, where the encoder lags in one position for about

400 ms. This might be due to an irregularity on the transmission belt which is

causing the phantom to stagnate shortly before catching up with the gantry. This

uncertainty is not compounded to the surrounding points; it is localized to those

regions around 25 degrees and does not affect the rest of the dataset.

The expected dose at the detector level inside the phantom is between 50 cGy and

53 cGy, according to the TPS, as shown in Fig. 4.3. Using the TERA readout

system, the calibration factor was found to be 2350 ± 250 counts/cGy by mea-

suring the response of the detector at ‘standard’ conditions prior to inserting it in

the phantom. The MPDM was found to have a very uniform response after the
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Figure 4.4: The angle of the linac gantry (inclinometer) and phantom (optical
encoder) as a function of time. The difference in the positions is less than 3° at all
times.

equalisation factors were applied, as shown in Fig. 4.6. The response of the pix-

els in the 5 × 5 central region was in the range of 124000 ± 2000 counts, which

corresponds to 52.8 ± 0.5 cGy. The dose drops off to about 9 cGy to 10 cGy in

the out-of-field region close to the penumbra, which is in good agreement with

the TPS. The response across the profile of the MP121 compared with the TPS

agrees within 1.3% for the lateral (horizontal) profile, and 3% in the penumbra

region. The sup-inf profile (vertical) agrees within 1.3% in the interumbra region,

and within 1% for all other points. The profiles are shown in Fig. 4.5. Errors

are shown by the size of the points, and are due to statistical uncertainty between

repeated measurements (two standard deviations).

The response of MPDM and MPTM as a function of time are shown in Fig. 4.7.

The response of the detector in the phantom is larger compared to MPTM, as

expected, due to the charged particle equilibrium which is reached in the Solid
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(a) (b)

Figure 4.5: Comparison of profiles of planned dose by TPS and delivered dose by
linac, for horizontal profile or right-left profile (a) and vertical profile (superior-
inferior) (b). The response is normalized to the central pixel.

(a) (b)

Figure 4.6: Response in counts of MP121 in transmission mode (a) and dose mode
(b) for 50 MU delivered dose by 5 × 5 cm2 beam, as displayed in Romulus. The
color scale is identical for the two plots.
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Figure 4.7: Response of the central pixel for both transmission and phantom de-
tectors as a function of time. The response in the phantom is clearly higher due to
the charged particle equilibrium. When the transmission response is normalized
to the dose response in phantom, the differences in the curves are less than 2% per
frame.

Water phantom. This equilibrium is not present above MPTM because the detector

is surrounded by air, which has a much smaller cross-section of interaction of the

x-ray photons in comparison with the phantom.

4.3.1 Error Evaluation

Fig. 4.8 shows the response of the MPTM as a function of time for the pre-

treatment (control) phantom measurement and the two test measurements. There

is a slightly larger difference at 0.6 to 0.7 seconds between the control and the

test measurements in the transient build-up region of the curve; this is due to

the integration time of 100 ms used in these measurements which is very large

compared to the pulse repetition rate of 360 Hz for Varian machines. Thus when
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Figure 4.8: Response as a function of time showing the agreement between the
MPTM pre-treatment measurement and two cases of real-time intra-operative
measurements, one with error and one without error.

the sampling point with respect to beam-on varies by a few milliseconds between

different measurements, it can induce large discrepancy in the high dose gradient

transient region of the curve.

The response of the treatment plan without an error agrees within 2% to the con-

trol. The response of the plan with the introduced error clearly shows the 20%

difference between the control and the linac real-time beam after the first 20 MU

(3 seconds beam-on). The real-time response monitoring of Romulus success-

fully alerted the user of the unusually low dose rate observed during the delivery

of the plan with the error, by means of visual warning using the status label, and a

warning sound being played. The user was able to abort the treatment – manually

or automatically, depending on the configuration in Romulus – before it contin-

ued to irradiate the target in an unexpected manner compared to the pre-treatment

control. Thus the QA device was successful in identifying the deviation from the
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pre-treatment QA using real-time response from MPTM that can be used during

the patient treatment.

4.4 Conclusion

In this study, two MP121 detectors in conjunction with the rotatable phantom

were used to validate the concept of a prototype dual-verification quality assurance

device for intensity modulated radiotherapy, named MPDS. The device was able

to perform pre-treatment QA to compare the delivered dose with the TPS, and

also real-time intra-operative verification using one MP121 detector as a beam

fluence monitor, configuration which is possible only thanks to the transparency

of MP121 to the beam which is not perturbed by its presence (deviation inferior

to 0.2% from nominal intensity (Wong et al., 2012; Alrowaili et al., 2015, 2016).

The MPDM agreed with the TPS within 1% to 2% across the profiles, and the

real-time intra-operative monitoring successfully warned the user of a 20% drop

in dose rate during a measurement, which led to the user successfully shutting

down the beam prematurely due to the unexpected and undesired quality of the

beam with respect to the planned TPS dose. The system successfully tracks the

movement of the linac gantry using the inclinometer and optical encoder within

3° at all times.

While one of the obvious limitations of the system is the low spatial resolution

of the MP121 arrays (1 cm pitch), the study does demonstrate the proof of con-

cept. Improvements to this study include the real-time verification of the beam for

varying field size and delivered dose, introduction of rotation in a VMAT study



CHAPTER 4. APPLICATION OF THE MAGICPLATE SYSTEM 82

to assess the ability of the system to verify the treatment as a function of gantry

angle, importing of the TPS data directly into the Romulus data acquisition soft-

ware in DICOM format, and performing the QA with a detector that has a higher

spatial resolution than MP121 with also a higher temporal resolution to improve

the capability of detecting errors timely.
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5.1 Introduction

The Centre of Medical Radiation Physics has developed three novel monolithic

silicon array detectors with different pixel configurations, high spatial resolution

and small sensitive volumes. The detectors, coupled with the DAQ system de-

veloped by CMRP, attempt to address the limitations present in quality assurance

of small-beam radiotherapy, such as the necessity for high spatial resolution and

real-time feedback for multi-channel detectors. In this chapter, the characteristics

of the detectors MP512, DUO and OCTA are investigated, to determine the per-

formance and application of these detectors for use in SBRT. The chapter focuses

on detectors MP512 and DUO for clinical characterisation, while for OCTA, the

Charge Collection Efficiency (CCE) and charge sharing study has been performed.

The clinical characterisation of OCTA has not been performed in this study due to

a technical difficulty with the detectors high-density connectors at the time, which

prevented the acquisition from the whole detector and thus, only test structure

measurements have been performed.

5.2 Materials and Methods

5.2.1 Detectors

This study was performed using detectors of the family MagicPlate (three detec-

tors with varying pixel-to-pixel pitch and arrangement of the pixel arrays). The

detectors have been described in sections 3.1.2 and 3.1.3.
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5.2.2 Readout System

The AFE-based readout system in conjunction with Romulus Radiation Tools was

used to record the measurements of the detectors. The full description can be

found in section 3.1.7.

5.2.3 Test Structures

In order to obtain the electrical characterisation and CCE of the individual silicon

pixels, test structures of the central intersection of the detectors DUO and OCTA

have been supplied by the CMRP microelectronics foundry. The test structures

were manufactured from the same wafer from which the whole detector array

has been produced. A p+ back junction establishes a common back contact. The

test structures were placed in a dual in-line (DIL) ceramic package, containing

13 pixels each, while the MP512 test structure contained 8 pixels. Two samples

for each detector were available in this study. Two test structure samples with

identical properties were used for each detector, for statistical purposes.

5.2.4 Pre-Irradiation Characterisation

In order the determine the variation of the properties of the detector as a function

of the accumulated dose, a pre-irradiation characterisation has been performed in

terms of I-V, C-V, and CCE.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: (a) DUO and OCTA test structures; (b) MP512 test structure (top
right); DUO structure enlarged (c)(d); OCTA structure enlarged (e)(f)
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Figure 5.2: Circuit used for IV characterisation

5.2.4.1 I-V Characteristics

The current-voltage characteristics have been measured for DUO and OCTA test

structures using a Keithley Semiconductor Measurement Unit (SMU) 237 at con-

stant laboratory temperature of 24 °C. The I-V curves have been investigated in

the reverse bias range of 0 V to -50 V in 1 V increments. A 1000 ms pause was

introduced between varying the voltage and the readout of the pixels to ensure sta-

bilisation of the pixel response. The test structures were placed in a dark Faraday

cage made of aluminium to prevent electromagnetic interference and photocurrent

generation due to ambient light.

A custom LabView interface was used to control the parameters of the measure-

ments and to save the data. Uncertainties of the current-voltage data were depen-

dent on the 5.5 digit accuracy scale of the instrument.
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Figure 5.3: Circuit used for CV characterisation

5.2.4.2 C-V Characteristics

The capacitance-voltage characteristics were measured using a Boonton 7200 ca-

pacitance meter for DUO and OCTA test structures. The voltage range was 0 V to

-45 V in steps of 1 V. To ensure full stabilisation of the pixel capacitance, a 2000

ms delay time was added between applying the bias and reading the response. The

test structures were placed in a dark aluminium cavity which acted as a Faraday

cage against electromagnetic interference and prevented ambient light from gen-

erating photocurrent electron-hole pairs. The capacitance meter was zeroed prior

to each pixel readout. The measurements were performed at a constant laboratory

temperature of 24 °C to replicate standard clinical operating conditions, and were

controlled using a custom LabView interface which set the acquisition parameters

and saved the data. Uncertainties were dependent on the 3.5 digit scale of the

instrument.

5.2.5 Linearity

The ability of a radiation detector’s response to be directly proportional to the inci-

dent dose is defined as linearity. An ideal detector is linear with respect to incident
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dose (Bocci et al., 2012). The linearity of MP512 and DUO was investigated in

this study in the range 50 MU to 500 MU in increments of 50 MU. The detectors

were tested in ‘standard conditions’ in a Solid Water phantom. A Varian 2100 EX

clinac was used to irradiate the detectors with a 6 MV beam. The readout system

was synchronised to the linac pulses using the external trigger from the linac. The

integration time used was 52 µs for MP512 and 100 µs for DUO, to maximise the

detectors’ SNR.

5.2.6 Uniformity

The detectors MagicPlate-512, OCTA and DUO consist of 512 pixels each; sub-

sequently, the response from each pixel is different due to local substrate defects

and pre-amplifier gain variation, as discussed in section 3.2.7. The uniformity of

the detectors MP512 and DUO was investigated in this study by irradiating the

detectors using a flat field and analysing the deviation of the pixels response. The

detectors were placed in Solid Water at 10 cm depth and 10 cm backscatter and

irradiated by clinical linac. A 20 × 20 cm2 field was used to deliver 100 MU

of radiation at 600 MU/min dose rate. In these conditions, the radiation field is

completely flat and we are expecting that each pixel should read out the same re-

sponse. The average response was computed and the result was presented as a

statistical distribution of the differential response.
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5.2.7 Radiation Damage

It is a requirement of medical radiation detectors to be as stable as possible during

their life to avoid frequent and time consuming recalibration procedures. Change

in response with respect to delivered dose by photon or electron MV energy ra-

diotherapy beams is generally a problem that can be mitigated by delivering a

pre-irradiation dose to the detector. Radiation damage studies were performed for

MP512 and DUO using photons and photoneutrons generated by photon beams

with energy higher than 10 MV. It is important to understand the amount of pho-

ton irradiation required to stabilise the response of the detectors. Due to the fact

that silicon detectors are prone to radiation damage as described in Chapter 2,

incident radiation such as photons and charged particles will induce damages in

the silicon substrate in the form of atomic displacements in the lattice and cluster

damage leading to electron-hole recombination centers and generation of trapped

charge carriers in the SiO2 dielectric. In the case of linac radiation with energy

lower than 10 MV, point defects and positive charge accumulation in the silicon

dioxide are the dominating types of radiation damage. Cluster defects may occur

when operating the linac at high accelerating energies above 10 MV, when dam-

age due to photoneutrons may occur. Sensitivity of the diodes drops dramatically

as a function of radiation dose, and eventually stabilises after a several kGy.

Prior to commencing radiation damage study, the response of the MP512 test

structures, as well as the MP512 and DUO arrays, were irradiated at ‘standard

conditions’ and measured using Romulus DAQ software. To induce photon radia-

tion damage, each device was irradiated by a Co-60 gamma source at the Gamma

Technology Research Irradiator (GATRI) facility, at the Australian Nuclear Sci-
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ence and Technology Organisation (ANSTO, Lucas Heights, Australia). MP512

test structures were irradiated up to 40 kGy water equivalent absorbed dose, in

steps of 10 kGy. The best manufacturing combination of substrate type and p-

stop implantation concentration was chosen based on results obtained with the

test structures. Subsequently, the whole MP512 array has been tested for radia-

tion hardness and results compared with the test structures for validation. DUO

array was irradiated up to 140 kGy in steps of 20 kGy. During irradiation, tem-

perature was kept constant at 30 °C and no bias applied, respectively.

The effect of photoneutron radiation was investigated using an 18 MV medical

Clinac (Varian, USA) at St. George Cancer Centre (Sydney, Australia). Aver-

age neutron energies generated by linacs above 10 MV are in the order of 1 to 2

MeV and equivalent dose of 4.5 mSv per 1 Gy of photon dose at surface of water

phantom (dErrico et al., 1998). The detector was placed in a 20 × 20 cm2 field at

90 cm SSD at the surface of 10 cm thick solid water backscattering material. To

maximise the exposure to neutrons and prevent thermalisation, no buildup mate-

rial was placed on top of the detector. After each irradiation step of approximately

3000 MU at 18 MV, up to a maximum irradiation of 9795 MU corresponding to

approximately 2 × 1010 n/cm2 (1 MeV equivalent) photoneutrons, the detector

response was tested in standard conditions by a 6 MV photon beam.

5.2.8 Charge Collection Efficiency and Charge Sharing

The charge collection efficiency (CCE) and charge sharing study was performed

by means of ion beam induced charge collection (IBICC) for DUO and OCTA,
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using their associated test structures. IBICC is a spectroscopy technique based on

the stimulation of a charge pulse generated by the interaction of charged particles

inside the semiconductor detector substrate. The particles are focused on a area

of approximately 1 µm and the system records the position of the pencil beam and

the corresponding amplitude of the response of the detector when the beam is at

that position. The co-registration of position and amplitude of the response allows

for the creation of a charge collection efficiency map of the detector. Please refer

to Cornelius et al. (2013) for further information. The study was performed at the

ANTARES linear accelerator at ANSTO. A He2+ microbeam of energy 5.5 MeV

and diameter 1 µm was used to perform the study. The beam was raster-scanned in

x-y across the test structures, covering a total area of 1 × 1 mm2 with a resolution

of 2 µm. The bias across the pixels was varied from 0V to -40V in increments of

10 V. For each test structure, four pixels were investigated and the response of two

of the pixels – one square pixel and one strip – is presented. The response of each

pixel and its amplification channel was calibrated against a Hamamatsu PIN diode

which acted as the reference detector for evaluation of the full charge collection

efficiency. The IBICC procedure is the same as used by Tran et al. (2015).

5.2.9 Spatial Resolution

The spatial resolution of detectors MP512 and DUO was evaluated against ra-

diochromic film. The detectors were irradiated by a 6 MV linac beam of size 3

× 3 cm2, at depth 1.5 cm dmax, dose rate of 600 MU/min and 10 cm SolidWa-

ter backscatter. The film was scanned using a Microtek ScanMaker i800 48-bit

flatbed scanner in transmission mode. Six scans were performed prior to irradiat-
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ing the film, with the first three being discarded to account for scanner warm-up.

The last three scans were split into their RGB components and the red component

was averaged across 2 × 2 pixels to obtain the average optical density of a 0.5 ×

0.5 mm2 equivalent area. The profiles were then normalised to the center of the

interumbra and compared. The FWHM and penumbra studies were performed

using a shape-preserving fitting tool in MATLAB by MathWorks (Natick, MA) to

qualitatively assess the spatial resolution of the MP512 and DUO detectors.

5.2.10 Timing Study

An investigation of the ramp-up of four Varian iX Clinac machines at ICCC (Wol-

longong, Australia) and Peter MacCallum Cancer Centre (Melbourne, Australia)

was performed using the MagicPlate-512 detector and Romulus software. The

study was performed to observe the behavior of the linacs in the transient period

of the dose ramp-up, to qualitatively assess if there would be any discrepancy

between the planned dose and delivered dose when delivering small doses in the

order of a few MU. The duration of the ramp-up was investigated as well by look-

ing at the time it took the dose rate to reach equilibrium with respect to time. The

MP512 detector was irradiated at ‘standard conditions’ in SolidWater and a pixel

was chosen from the centre of the detector to plot the response versus time. The

integration width was 52 µs and the duration of the beam-on time was 10 seconds,

for a total dose of 100 MU. The same measurement was delivered using a gated

treatment, where a pause of 750 ms was introduced in the beam-on time to ef-

fectively split the 100 MU dose in four parts, in order to simulate the delivery of

short-MU dose. The impact of the start-up transient on the short-MU delivery was
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discussed.

5.3 Results

5.3.1 Pre-Irradiation Characterisation

The I-V and C-V traces have been performed using the test structures for DUO

and OCTA. The I-V trace in Fig. 5.4 shows that the majority of pixels from both

detectors have a leakage current in the order of 10-9 A and undergo breakdown

after 45 V. Fig. 5.5 shows the C-V trace of the DUO and OCTA test structures.

The capacitance drops with a high rate at low applied bias and begins to reach a

stabilisation after about 30 V.

5.3.2 Linearity

The detector arrays demonstrate a good linearity response as a function of dose, as

shown in Fig. 5.6. The MP512 and DUO demonstrated linear responses with sen-

sitivity 1.88 nC/cGy and 1.43 nC/cGy, respectively. Higher sensitivity of MP512

was expected due to the larger sensitive volume of the pixels.

5.3.3 Uniformity

MP512 has been fabricated using three different p-stop concentrations (boron

doped implant under the field silicon oxide) identified by low, medium and high

concentration. The p-stop implantation concentration plays a main role not only in
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(a)

(b)

Figure 5.4: I-V traces for (a) DUO and (b) OCTA. Each curve represents the
response of a pixel from the test structures.
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(a)

(b)

Figure 5.5: C-V traces for (a) DUO and (b) OCTA. Each curve represents the
response of a pixel from the test structures.
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Figure 5.6: Linearity response of MP512 and DUO. A higher gradient is present
in the MP512 data due to the larger sensitive volume of the pixels compared to
DUO

the pixel isolation but also in compensating the superficial defects of the substrate,

affecting the array response uniformity particularly when the device is operated

in passive mode. When the detector is irradiated by a flat x-ray beam with size

of 20 × 20 cm2 within a water equivalent plastic phantom at depth of 10 cm, the

sample fabricated with Low concentration (Fig. 5.7a) shows a pronounced non-

uniform response across the pixels, in the shape of a ring. Fig. 5.7b shows, on the

same color scale, that a higher p-stop concentration mitigates the non-uniformity.

Fig. 5.8a shows the comparison of the profiles extracted from the flat response of

three samples with different p-stop implantation concentration without any equal-

ization.

The variation of the flat field response of the Low p-stop concentration samples

is approximately 500% along the ring, and represents a discrepancy which cannot

be compensated by an equalization procedure. The variation for the Medium and
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High concentration samples is approximately 9% and can be compensated by the

equalization procedure with a final uniformity of the detector response which is

within 0.5% for 98% of the pixels as demonstrated in Fig. 5.8b.

The distribution of the defects across the wafer is normally distributed with cylin-

drical symmetry (Sze and Ng, 2007). Impurities in the substrate in the form of

thermal donors may increase the effective doping concentration locally and conse-

quently increase the weak electric field, present in passive mode due to the built-in

potential, in proximity of the pixel junction, thus increasing the depletion region

and the amount of charge collected by the pixels. A low concentration p-stop im-

plant is not able to compensate for such substrate defects which generate the rings

on the detector response map when it is irradiated by a uniform photon beam.

Fig. 5.9 shows that also DUO, when manufactured with High concentration p-

stop has a good response’s uniformity with 95% of DUOs pixels within 1% of

the mean, while over 68% deviate within approximately 0.5%. The detector thus

shows very good uniformity across its pixel response.

5.3.4 Radiation Damage

In order to obtain a stable response independent of the amount of accumulated

dose (Rikner and Grusell, 1987), a pre-irradiation is carried out of DUO and

MP512 detectors (samples with High p-stop). Detectors’ sensitivity and response,

as a function of delivered dose, is shown in Fig. 5.10. DUO stabilises its response

within ±1.5% after irradiation with 80 kGy (dose in water) and above, by a Co-60

gamma photon source, although it is evident that the variation becomes even less
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(a)

(b)

(c)

Figure 5.7: MP512 pixel response map of the samples fabricated with (a) Low p-
stop concentration, (b) Medium concentration, and (c) High concentration. Colour
scale is normalised to the same value in all maps.
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(a) (b)

Figure 5.8: (a) MP512 vertical profile of the response to a flat field. The artifacts
are clearly visible on samples with Low p-stop concentration, but less pronounced
when Medium and High p-stop is adopted; (b) Statistical distribution of pixel
response for MP512 manufactured on Cz wafer with High p-stop and equalized

Figure 5.9: Statistical distribution of pixel response for DUO manufactured on Cz
wafer with High p-stop after equalization
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(a) (b)

Figure 5.10: Variation of the response of DUO (a) and MP512 (b) as a function of
the accumulated dose by irradiation with a Co-60 gamma source

at doses over 100 kGy. The MP512 (High p-stop) shows stabilisation of response

at doses as low as 20 kGy with a variation of approximately ±5%. Fig. 5.11 shows

the expected linear increase of the leakage current density as a function of the ac-

cumulated dose (Kraner, 1984) for both DUO and MP512 after normalisation in

respect to the detector volume.

Fig. 5.12 shows the relationship between detector response and equivalent neutron

dose; it is clear that the response of the MP512 detector decreases with photoneu-

tron dose with a rate which is approximately 1% per 33 Gy of 18 MV photon

dose delivered. The direct implication of this result is that when subjected to pho-

toneutron fields, the MP512 detector requires recalibration after about 65 Gy of

delivered dose, due to the response of the detector nearing 2% variation as it is

subjected to radiation damage.
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Figure 5.11: Variation of the leakage current as a function of the irradiation dose
of MP512 and DUO (High p-stop) after normalisation to the detector volume.
Error bars are calculated as one standard deviation from the mean value of the
current measured in both the detectors for several pixels. The radiation damage
factor alpha is calculated from the slope. Its value is (9.83 ± 0.4)×10−5A · cm−3 ·
kGy−1 and it represents the variation per kGy of the leakage current density. The
regression coefficient R2 is 0.991. The value is comparable with values measured
in literature (Moll, 2006)

Figure 5.12: MagicPlate-512 detector response as a function of 18 MV photon
irradiation dose
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(a) (b)

Figure 5.13: Spectra of charge collection response for DUO pixel (a) and OCTA
pixel (b) at negative bias voltages varying from 0 V to 40 V. The energy of incident
alpha particles is 5.5 MeV

5.3.5 Charge Collection Efficiency and Charge Sharing

The charge collection efficiency and crosstalk of the inner part of the DUO and

OCTA test structures has been also investigated by using a 5.5 MeV He2+ pencil

beam. Alpha particles of this energy have a maximum range in silicon of approx-

imately 28 µm (SRIM, 2015). Fig. 5.13 shows the energy spectra collected by

DUO and OCTA central test structure pixels for 5.5 MeV alpha particles at five

different operating reverse bias: 0 V (passive mode), 20 V and 40 V. Energy axis

is calibrated by using a PIN diode HAMAMATSU (Japan). The spectra symbol-

ise the histogram of the energies collected for the detectors central pixels, with

the low energy tail of the graph being attributed to the area around the pixel where

only very low residual energy is collected by events occurring at a large distance

from the junction.

For the DUO test structure response, approximately full CCE (96%) is obtained

with the reverse bias of 40V, while for passive mode 66% of the signal is collected,
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 5.14: 2D map of charge collection for DUO pixels for applied bias of 0 V
(a,b), 10 V (c, d), 20 V (e, f), 30 V (g, h), and 40 V (i, j).
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corresponding to a range in silicon of approximately 16 µm (Ziegler, 2015). The

result confirms that the size of the depletion region in the semiconductor varies

with applied bias as expected by the theory; in the case of 40 V, the depletion re-

gion in the detector is within 5% of the range of 5.5 MeV alpha particles, meaning

that nearly all the electron-hole pairs generated by the alpha ionisations are col-

lected as signal and only 5% of the carriers recombine along their path toward the

electrodes. In the case of 0 V bias, the depletion region reaches a depth of only

few microns but the diffusion length combined with the depleted region reaches a

value of approximately (15 ± 0.5) µm.

The OCTA spectra for the different voltages is much less spread out compared to

DUO; the peaks from all three biases are within a range of only 300 keV, corre-

sponding to a CCE of 73% in passive mode; 76% at 20 V bias; and 78% at 40

V. In comparison, the DUO energy range is 1800 keV for the three peaks. This

is clear from both the median maps in Figs. 5.14 and 5.15 and from the spectra

in Fig. 5.13, where OCTA is obviously suffering of larger recombination effects.

The significance of this result is that OCTA has a higher CCE (and thus a higher

SNR) in passive mode compared to DUO. The depletion region does not seem to

vary in size much with applied bias compared to DUO. The reason for this is pos-

sibly due to two combined effects: first of all, the size of the junctions in OCTA

is slightly larger than in DUO with a larger area per pixel, extending the depleted

region in passive mode to a larger area, and secondly, crosstalk between OCTA’s

pixels is higher than in DUO, enhancing the charge collection efficiency.

Fig. 5.14 shows that the crosstalk between the pixels for DUO is minimal with no

charge collected and recorded in adjacent pixels for the central pixel response, and
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 5.15: 2D map of charge collection for OCTA pixels for applied bias of 0 V
(a,b), 10 V (c, d), 20 V (e, f), 30 V (g, h), and 40 V (i, j).
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approximately less than 20% charge collected around the n+ junction. This con-

firms that the DUO detector’s spatial resolution is not affected by charge sharing

or crosstalk, even with the small pitch of 200 µm. Fig. 5.15 shows the OCTA test

structure response. The central pixel of the OCTA test structure shows a good re-

sponse with no crosstalk with adjacent pixels. There is a slight crosstalk between

the strip pixel and the adjacent square pixel, about 10% of the charge collection

occurring in the strip. However this could not lead to an over-response of the strip

because it is related only to events with very low energy which are not counted

in the charge collection efficiency. The crosstalk could instead lead to a reduc-

tion of the effective spatial resolution when subjected to steep dose gradient x-ray

radiation fields.

5.3.6 Spatial Resolution

In a monolithic silicon pixelated detector, spatial resolution is not only defined by

the pixel pitch and sensitive volume size, but can also be affected by the crosstalk

of adjacent pixels, particularly when exposed to a continuous energy spectrum

of photons such as the one generated by Bremsstrahlung in medical linacs. To

investigate the DUO‘s and MP512‘s effective spatial resolution, we compared

their response to that of radiochromic film, which is widely used for dosimetry

profiling in hospitals and has the advantage to have a spatial resolution limited by

the capabilities of the optical scanner used to read out the film.

Fig.5.16 shows the response of MP512 and DUO in comparison with EBT3 film

for the 2 × 2 cm2, 1 × 1 cm2 and 0.5 × 0.5 cm2 fields with a variation of the
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(a) (b)

Figure 5.16: Profiles reconstructed by MP512 (a), and DUO (b) in comparison
with EBT3 film for three stereotactic field sizes

FWHM of the dose profile of less than 0.35 mm for DUO and 0.6 mm for MP512,

while the discrepancy for the measurement of the penumbra width (20%-80%)

is up to 0.58 mm and 0.57 mm for DUO and MP512, respectively. The results,

expressed in mm, are tabulated in Table 5.1. The irregularity in the film profile is

due to irregularities of the surface of the film which leads to a perceived change

in the optical density.

5.3.7 Timing Study

The timing study has been investigated for four identical Varian Clinac machines

at ICCC, Wollongong, and Peter MacCallum Cancer Centre, Melbourne. The

ramp-up of the linacs LA1 and LA2 is shown in Fig. 5.17. The linacs are identi-

cal models from the same vendor, however the ramp-up transient is different due

to the calibration of the machine. The transient of LA2 (Fig. 5.17b) shows a

negative gradient for a few milliseconds in the build-up curve before the dose per

pulse continues to increase. An oscillation in the dose rate is further present up
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Table 5.1: Comparison of FWHM and penumbra width (20%-80%)

Penumbra Difference Difference

FWHM (20%-80%) FWHM Penumbra

(mm) (mm) (mm) (mm)

FS (cm) 0.5 1 2 0.5 1 2 0.5 1 2 0.5 1 2

EBT3 4.73 10.16 20.04 1.85 2.1 2.46

MP512 5.32 9.88 19.86 2.13 2.67 2.91 -0.6 0.28 0.18 -0.29 -0.57 -0.45

DUO 4.85 9.9 19.87 1.98 2.85 3.38 -0.19 0.35 0.35 -0.37 -0.26 -0.58

The comparison is for MP512 and DUO detectors with respect to EBT3 film. Statistical
uncertainties for the FWHM are less than 2% for DUO and 3.6% for MP512. The un-
certainties in the data points are calculated as two standard deviations of the mean of five
repetitions. The average uncertainty in film measurements is 1.9% and the procedure for
obtaining the film uncertainty is outlined in (Aldosari et al., 2014).

to three seconds from beam-on time, with a period of about 1 second. The over-

all statistical variation between the individual dose transient maxima and minima

is about ±10% of the dynamic range. LA1 shown in Fig. 5.17a has a build-up

which presents no special behaviour of the dose rate. LA1 from Peter Mac has an

elevated dose rate for the first 750 ms of beam-on time, before it stabilises for the

remainder of the measurement. LA2 (Fig. 5.17d) has an interesting oscillation of

the instantaneous dose rate for the first three seconds of beam-on time before also

stabilising within ±2% of the dynamic range.

Despite these different transient characteristics, the overall total delivered dose of

100 MU is within ±0.5% for the four linacs, which means that despite the different

beam quality of the linacs, the dose delivered is as expected, at least for relatively

long beam-on irradiations where the total duration of beam on is much higher than

the ramp-up of the dose rate.
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(a) (b)

(c) (d)

Figure 5.17: Response of identical Varian Clinac iX accelerators at Illawarra Can-
cer Care Centre, Wollongong (a), (b); and Peter MacCallum Cancer Centre, Mel-
bourne (c), (d), delivering 100 MU of dose. The ramp-up transient is clearly
different for each linac
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Figure 5.18: Response of ICCC Varian linac when using gating

However in the case of short-MU due to the gating, it is clear that the first beam-

on segment is affected by the stabilisation issue of the current flowing through the

electron gun, but the subsequent segments do not suffer of the same issue and the

dose delivered is properly shaped as a function of time, reducing the impact of

the dose fluctuation (Fig. 5.18). This feature may have a potential impact of dose

delivery by linac for short MU treatments.

5.4 Conclusion

In this chapter, the characterisation of detectors MagicPlate-512, DUO and OCTA

has been performed using a clinical linac for the arrays and a He2+ microbeam and

electrometers for the test structures. The DUO detector presents excellent dose

linearity and small statistical variation of pixel response. The pre-irradiation dose

required for the stabilization of the response is 120 kGy. DUO spatial resolution

and crosstalk has been evaluated by the measurement of a 6 MV photon beam of 3
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× 3 cm2 field size and compared to EBT3 film. It has been found that FWHM of

the reconstructed profile is within 0.6 mm and the penumbra (20%-80%) is within

0.1 mm. Crosstalk between the DUO’s pixels is minimal and charge collection

efficiency for 5.5 MeV He2+ ions is over 60% even when no bias is applied. The

leakage current when under reverse bias is in the order of 10-9 A and capacitance

is in the order of 10-12 F. The MP512 detector also showed excellent linearity

and stabilisation of response after pre-irradiation with total dose of 20 kGy. Beam

profile reconstruction comparison with EBT3 film shows a discrepancy in FWHM

within 1.1 mm and 20%-80% penumbra within 0.3 mm due to a larger detector

pitch. Three different boron implantation doses have been also evaluated to opti-

mise the response of the detector in terms of uniformity and isolation between the

pixels. A low p-stop concentration generates a ring artifact with a radius of ~17

mm around the center of the detector due to the silicon wafer manufacturing and

residual impurities in the monolithic substrate affecting the rate of recombination

of generated electron-hole pairs. This effect can be mitigated by using the largest

dose of boron implantation. Stability with radiation damage has been also evalu-

ated in a photoneutron field by irradiation by an 18 MV medical linac, where the

MP512 detector shows a pronounced decrease of the response as a function of the

total irradiation dose. The device requires a recalibration every 65 Gy delivered

dose when using beam energies of 10 MV and higher, to account for decrease

in response due to cluster defects in the silicon lattice caused by non-thermalised

photo-neutrons (commercial p-Si diodes have similar degradation sensitivity at 18

MV). The OCTA detector has a charge collection efficiency of 72% when in pas-

sive mode, ranging very little to 78% at 40 V reverse bias. The central pixel does

not show any crosstalk, while the strip pixel shows a crosstalk of about 10% with
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one of the adjacent square pixels.
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6.1 Introduction

Animal treatments involving external beam radiotherapy are performed to max-

imize the life expectancy for animals with tumors. Further, the treatment of

artificially-induced tumors in small animals such as mice or rats may help de-

velop our understanding of the behavior of certain cancers in humans, and how to

control them more efficiently. Often, irradiation of small animals is performed us-

ing low dose rate irradiators which are less expensive than medical linacs and their

very low dose rate can be tolerated because animals are typically immobilised and

they can be irradiated for longer time than humans.

In this chapter, the characterisation of an irradiator THERATRON cobalt-60 lo-

cated at ANSTO (Lucas Heights, Australia) and adopted for cell and small animal

low dose rate irradiation with three pencil beams is presented. The irradiator is

equipped with three lead collimators to shape the gamma-ray beam to circles of

approximately 5, 10 and 20 mm in diameter. The irradiator is also provided with

a fast mechanical shutter. The pencil beams are intended for the irradiation of

the head of an animal (mouse or rat) whilst collimator is shielding the remaining

of its body, with the intention to study the effect of ionising radiation on nervous

system function. Due to the size of the target volume, it is important to estimate

the shape of the delivered dose accurately and identify the irregularities in the

profiles, if any. There was a need to substantially improve the characterisation

of the radiation fields previously performed with an ionisation chamber, as the

volume averaging effect of the ionisation chamber sensitive volume prevented the

accurate determination of high dose gradient profiles realised by the means of the

small radius collimators. Use of radiochromic film is recommendable for their
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Figure 6.1: Schematic diagram of experimental setup. The source-to-axis (SAD)
distance is labeled as D

intrinsic spatial resolution for the profiles but cannot characterise the performance

of the mechanical beam shutter and the percentage of dose delivered during the

beam-on/beam-off transient.

The percentage depth dose, beam output factors, and beam profiles are presented,

as well as the timing study for the source’s shutter using a real-time semiconductor

detector array.

6.2 Materials and Methods

In this study, the MagicPlate-512 detector system developed by CMRP was used

for the real-time acquisition, alongside a calibrated Farmer ionisation chamber

and EBT3 radiochromic film, to characterise a Theratron, 6 TBq, Co-60 gamma

irradiator equipped with three collimators of diameter approximately 5, 10 and 20

mm.
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6.2.1 Readout System

The AFE-based readout system in conjunction with Romulus Radiation Tools was

used to record the measurements of the detector response. The full description

can be found in Section 3.1.7. For this study, an accompanying software named

3DdataView was written to display the beam profiles in 3D to allow for a better

understanding of beam irregularities or asymmetry encountered.

6.2.2 Ionisation Chamber and Film Dosimetry

The ionisation chamber that was used in this study is a thimble type PTW Farmer

ion chamber (Freiburg, Germany) of volume 0.6 cm3 and energy detection range

of 30 kV to 50 MV. The chamber has an accompanying Solid Water phantom

block of 30 × 30 × 2 cm3 with a specifically machined cavity for the chamber’s

sensitive volume to be inserted in the center of the phantom, which eliminates any

air gap between the Solid Water and the detector. The ionisation chamber was used

as the benchmark reference detector for the percentage depth dose measurements.

The high-resolution mapping of the profiles was achieved with Ashland Gafchromic

EBT3 film (Wayne, NJ). The film is self-developing, it is nearly tissue equivalent,

it presents no orientation dependence and it has high spatial resolution. The film

needs at least 24 hours developing time to ensure a stable polymerisation has oc-

curred. The change in optical density (absorbance) of the film with respect to dose

is not a linear relationship; thus it is necessary to obtain a calibration curve in or-

der to correctly reconstruct the measured dose as read by the film. The film was

scanned with a Microtek ScanMaker i800 48-bit flatbed scanner, in transmission
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mode.

Prior to any measurements, the dose rate of the gamma source was calculated us-

ing the ionisation chamber. The calculation accounted for temperature and pres-

sure in the room and its purpose was to determine the length of irradiation to

obtain a suitable signal-to-noise ratio for all the detectors, in other words, to place

the dose delivered to the films in the center of the optical density calibration curve.

The measurement of the ionisation chamber was converted from exposure (X) to

dose rate (Dw) in cGy/min using the equation

DW =
x× kTP × kDK ×NW

t
× 60, (6.1)

where kTP is the temperature and pressure correction factor, kDK is the decay

compensation factor, NW is the conversion factor from Roentgen to Gray (0.967

cGy/R), and t is the duration of the acquisition in seconds.

A SolidWater backscatter of 6.5 cm was used; 24 cm source-to-axis distance

(SAD), as depicted by the length D in Fig. 6.1. The detector depth was 15 mm.

Irradiation of the MP512 detector was performed under the same conditions prior

to conducting this study, to determine the optimum acquisition parameters in-

cluding duration of measurement, width of integration window and measurement

frequency.

The MP512 consists of 512 pixels and the response of each pixel is different from

its adjacent neighbors due to local substrate defects and parasitic capacitance as-

sociated with the connections’ routing. The equalisation procedure described in

Section 3.2.7 has been applied to the data. The equalisation factors were applied
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to all of the MP512 detector datasets. The calibration factor of the MP512 was

calculated using the highlighted central pixels of interest in Fig. 6.2a.

The calibration curve for EBT3 film was obtained using eight square samples of

3 × 3 cm2. Each sample was irradiated with a different dose, as determined using

the ionisation chamber, ranging from 50 cGy to 500 cGy in increments of 50 cGy,

except for samples 7 and 8 where increments of 100 cGy we used. All squares

were cut from one sheet of film to ensure sample uniformity due to identical batch

used; they were numbered in the corner using black pen, arranged in order of

increasing number and placed in a clear template receptacle, to fix position of

each sample and eliminate any scanner-induced irregularities. The films were

pre-scanned six times using the Microtek scanner, to ensure proper scanner warm-

up and only the last three scans were used for analysis. The parameters of the

scan were 48-bit RGB color transmission mode, 72 dpi (0.35278 mm/px), no

applied filters. The last three scans were split in their RGB channels using ImageJ

(v.1.4.3.67) and only the red component of the scanned images was used. The

scans were averaged and a region of interest within each film was used to obtain

the optical density prior to irradiation. The same process was applied to the larger

profile film sheets. Once the samples underwent irradiation, they were allowed

to develop for 48 hours, after which the scanning procedure was repeated, again

discarding the first three images to allow for scanner warm-up. The OD was then

plotted against dose and a 3rd order polynomial fitting curve was obtained.
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6.2.3 Percentage Depth Dose

The PDD measurements were obtained using the IC and MP512 detectors. The

SAD was set to be 24 cm (Fig. 6.1). This distance was arbitrarily chosen to

be the typical distance where the animals will be placed for treatment, and was

kept constant throughout the measurements. The IC was placed in the 2 cm thick

Solid Water insert; 6.5 cm of backscatter was used. The measurements were per-

formed at depth varying in increments of 5 and 10 mm, from 10 mm up to 50

mm with the shortest possible pauses between measurements, to minimise the de-

tectors’ temperature dependence and the IC’s atmospheric pressure dependence.

The measurements were taken using an open field without any collimators in the

beam, to maximise lateral electronic equilibrium; equivalent field size when using

no collimators is 10 × 10 cm2. Duration of IC measurements was 100 seconds

each. MP512 parameters were chosen to maximise the response of the detector

due to the low dose rate of the source. The beam-on duration of the MP512 mea-

surements was 20 seconds, with a 2000 µs integration window, 200 Hz repetition

rate. Two datasets were acquired using dynamic range 0.5 and 1.2 pC per frame.

The depth dose was sampled at each point twice with the IC and three times with

the MP512, to establish a statistical fluctuation uncertainty.

6.2.4 Beam Output Factors

The output factor of a photon beam (OF) is a parameter that “increases with an in-

crease in collimator opening or field size” (Podgorsak, 2005). Especially in small

beams where lateral electronic equilibrium is not fully established, it is important
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to determine the output factor of the beams to quantify the dose ratio between the

open beam dose and the collimated beams. The output factors of the beams were

obtained using EBT3 film and MP512. A region of interest in the center of each

beam was used to determine the average dose. Areas of 5 × 5 mm2, 4 × 4 mm2,

and 2.5× 2.5 mm2 were chosen as regions of interest in the film dose maps for the

20 mm, 10 mm and 5 mm beams respectively. In the case of MP512, four central

pixels were used for the two larger beams, while two pixels were used in the case

of the 5 mm beam. The response of the pixels was averaged, then normalised to

the 10x10 cm2 open beam and plotted. Film factors were corrected for the vary-

ing beam-on time using a normalising time coefficient, to compare the dose for

the same beam-on time.

6.2.5 Beam Profiles

The measurement of the beam profiles was performed using the MP512 detector

and radiochromic film for each collimator, at depth 1.5 cm and SAD 24 cm. The

MP512 parameters were a 40 second beam-on time, 200 Hz repetition rate, 2000

µs window and 0.5 pC dynamic range per pixel. Three measurements were per-

formed for each profile and averaged. A 2D map of the beams was produced and

horizontal & vertical profiles were generated from the center of each beam.

Film measurements were performed using 6 × 6 cm2 film samples. A pre-scan

and was performed prior to receiving dose for each film sample, as described in

Section 6.2.5. Depth, SAD and backscatter were unchanged from MP512 mea-

surements. Based on the output factors, each film sample was irradiated for a
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period of time corresponding to a 200-300 cGy dose, in order to obtain good SNR

and to ensure a relatively central placement on the OD calibration curve. Samples

were then left to develop and scanned after 48 hours. Horizontal and vertical pro-

files were extracted from the center of the maps and compared with the MP512

profiles using MATLAB curve fitting tool (shape-preserving). Penumbra study

(20%-80%) and FWHM study was also performed using the profiles and com-

pared for the two dosimeters.

The time it takes for the shutter to fully open (ramp-up) and close (ramp-down) has

been investigated to evaluate the effect of the transient on the total dose delivered.

The SAD was 24 cm, depth of detector 1.5 cm, and 10 × 10 cm2 equivalent

field (no collimator) was used. Fig. 6.2 shows the schematic diagram of the

normalized response of pixels as a function of time. A raising edge is defined

as the time interval between 5% and 95% of the normalised transient, depicted

as ∆t1. A falling edge is defined as the interval between 95% and 5% of the

response, depicted as ∆t2. Knowing the average dose rate from the cobalt-60

source, the delivered dose during the transients can be calculated; in this study,

the doses associated with the raising edge and falling edge are defined as Dt1 and

Dt2, respectively. The seven pixels from each edge and four pixels from the center

(Fig. 6.2a) were chosen to analyse the timing of the shutter. Beam-on duration

was set to 20 seconds.
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(a)

(b)

Figure 6.2: (a) Diagram showing, in beams eye view (BEV), the pixels of the
MP512 (in dark grey) used for the timing study, and the shutter (blue) sweeping
across the detector in the open sequence; (b) Diagram outlying the ramp-up and
ramp-down transients in the response of the pixels, as a function of time
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6.3 Results and Discussion

The radiation source of the Co-60 irradiator emits gamma rays continuously with

an average dose rate which was determined to be (10.65 ± 0.03) cGy/min at 1.5 cm

depth in Solid Water, using the ionisation chamber. Compared to the instantaneous

dose rate of a clinical linac that ranges from 0.5 to 6 Gy/min at the same depth,

it is clear that the dose rate of the Theratron source is very low. While the usual

application of the MP512 detector and readout system is optimized for use in

clinical linac quality assurance, in order to maximise the SNR in this specific

application, MP512 has been set with the third highest sensitivity available (0.5

pC full dynamic range) and the longest integration time available (2 ms) assessing

the uncertainty associated with MP512 measurements within a maximum of ±3%

(two standard deviations) for repeated measurements. The calibration factor of

the MP512 was calculated to be 242.5 ± 0.03 pC/cGy.

6.3.1 Percentage Depth Dose

The comparison between IC and MP512 percentage depth dose response is shown

in Fig. 6.3. Ion chamber measurements had negligible statistical fluctuation be-

tween the two measurements for each depth, with the remaining uncertainty being

only the limitation of the electrometer’s smallest increment of 0.2%. In contrast,

the MP512 experienced a statistical fluctuation of 1% on average in the response

of the repetition of the measurements for each depth, with the extremes ranging

from 0.36% to 2.4% difference between repeated measurements. This discrepancy

is due to the fact that the DAQ system was operating in high stress conditions to
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Figure 6.3: Percentage depth dose response for ionization chamber and
MagicPlate-512 detector. The percentage difference is shown between the two
dosimeters.

maximise the SNR due to the low activity of the source, as mentioned in Sec-

tion 6.3. Typical operation parameters for the system in a MV linac measurement

range from 50-100 µs integration window, 360-400 Hz repetition rate, and 9.6 pC

maximum dynamic range. In this study, the window was set to 2000 µs, the rep-

etition to 200 Hz, and maximum dynamic range was set to 0.5 and 1.2 pC. The

extremely low dynamic range makes the fluctuation of the signal collected from

the detector through the connecting cables very significant and the DAQ becomes

very sensitive to radiofrequency fluctuation and external noise sources such as mi-

crophonic interference and light. To minimise these effects, a special care have

been taken for designing a proper RF shielding of the cables and a dark plas-

tic envelope to keep the detector light-tight without compromising the dosimetric

measurements. Under these conditions, the response of MP512, after normaliza-
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Figure 6.4: Calibration curve for EBT3 film. The equation of the polynomial fit
is D = 1273x3 + 1548x2 + 761.6x+ 1.415;R2 = 0.9999

tion at dmax, agrees with the ionisation chamber measurements within one standard

deviation.

6.3.2 Beam Profiles

The approximation for the estimated delivered dose resulted in the EBT films

receiving a dose ranging from 230 cGy to 300 cGy. The beam profiles in the

horizontal and vertical axis of the BEV are shown in Fig. 6.5, and the FWHM

and 20%-80% penumbra values are summarised in Table 6.1. The horizontal and

vertical profiles taken from the 2D dose maps show a symmetric dose buildup and

drop-off for the 20 mm and 10 mm collimators. Of particular interest is the 5 mm

beam profiles and the evident asymmetry of the dose distribution. A 3D repre-
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Table 6.1: Comparison of FWHM and 20%-80% penumbra for EBT3 film and
MagicPlate-512

Beam

Diameter Horizontal Difference Vertical Difference

(mm) Film MP512 (mm) Film MP512 (mm)

20 23.172 22.282 0.89 23.333 22.405 0.928

FWHM 10 12.05 12.035 0.015 11.98 12.02 -0.04

5 5.218 5.637 -0.419 6.062 5.751 0.311

20 2.017 2.655 -0.638 1.954 2.365 -0.411

Penumbra 10 2.527 1.763 0.764 2.13 2.775 -0.645

5 1.606 0.862 0.744 2.358 1.507 0.851

sentation of the 5 mm beam profile measured by film is presented in Fig. 6.5g to

better visualise the asymmetry. Besides the reduced lateral electronic equilibrium,

this small beam is also affected by irregularities present in the collimator due to

its machining, and is thus asymmetric. The differences in penumbra and FWHM

between film and MagicPlate detector are lower than 0.9 mm showing the suit-

ability of MP512 to perform the quality check of the beam profiles in real-time

prior to animal or cell samples irradiations. Spatial resolution of the EBT3 film is

limited by the capabilities of the optical scanner and the uncertainty in the optical

density curve fitting.

6.3.3 Beam Output Factors

The output factors for the different pencil beams are shown in Fig. 6.6. The un-

certainties in the graph are due to the statistical variation in the film response and
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 6.5: Dose profile measurements for (a)(b) 20 mm; (c)(d) 10 mm; and (e)(f)
5 mm beams using EBT3 film (blue) and MP512 (yellow). Error bars are due
to the uncertainties in film response and alignment; (g) asymmetry of the 5 mm
profile shown in 3D.
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low SNR due to the very low dose rate delivered by the Co-60 irradiator. The

error bars in the 5 mm data point are larger due to the asymmetry of the dose

profile which affects the average dose calculated across the region of interest. The

MP512 and film results agree within one standard deviation. The relatively large

discrepancy between the ionisation chamber and MP512 results is due to the effect

of the air gap on the response of the detector. Generally, silicon detectors over-

respond to small-field dose with diameters of 20 mm or less (Underwood et al.,

2013; Charles et al., 2012). The fact that the MP512 under-responds indicates that

the perspex build-up envelope used to encase the detector is too thick and the sec-

ondary electrons generated inside the PMMA are filtered out without reaching the

detector and reducing its response with respect to larger field size beams. Indeed

the output factor of small beams can be modulated by the thickness of the air gap

between the detector and the build-up material (Charles et al., 2012). Thus, the

discrepancy in the MP512 output factor with respect to ionisation chamber can be

mitigated by increasing the air gap above the detector array.

6.3.4 Shutter Timing Study

The irradiator is equipped with a pneumatic electronically controlled shutter to

control the source exposure time. The shutter generates a ramp-up (and a ramp-

down) dose distribution with respect to time because of its aperture mechanism

which can potentially affect the accuracy of delivered dose if it is not taken into

account.

The ramp-up and ramp-down transient study has been performed with the Romu-
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Figure 6.6: Output factors for EBT3 film and MagicPlate-512

lus data analysis toolkit. When the shutter is opened, the pixels on the left started

‘seeing’ the source before the pixels on the right (Fig. 6.2a). The duration of the

shutter reaching the right quadrant was about (250 ± 10) ms. There was no delay

between the top and bottom quadrants ‘seeing’ the source, as the pixels were ex-

posed to the beam at the same time in the vertical direction. For the central pixels

of interest, ∆t1 was found to be (151 ± 15) ms, and ∆t2 was (165 ± 15) ms. The

dose (Dt1) associated with the interval ∆t1 was calculated to be (1.23 × 10-2 ±

0.05 × 10-2) cGy, and Dt2 was calculated to be (1.37 × 10-2 ± 0.05 × 10-2) cGy,

corresponding to a total transient dose of (2.60 × 10-2 ± 0.0007) cGy. The tran-

sient dose becomes non-negligible for small-dose irradiations (less than 1 cGy)

and should be taken into account.

When the beam is turned on, the shutter exposes the cobalt source at a constant

speed of about 20 ± 2 cm/s. It was observed that there was a variation of the ∆t2

parameter across the pixels in the horizontal direction, in the form of a residual tail
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response as a function of time for the pixels in the left quadrant, when compared

to pixels in the right quadrant, indicating that the shutter’s speed is not constant

when closing and concealing the source. It was found that in the first 50 ± 5

ms of the shutter beginning to close, the shutter covers about 50% of the MP512

detector’s pixels, from right to left, corresponding to a shutter speed of around

55 cm/s. About 75% of the detector is covered in 250 ± 20 ms; at this stage,

the shutter slows down to 16.5 cm/s. The remaining 25% in the far left quadrant

of the detector takes up to 750 ms to be fully shielded by the shutter from the

moment it begins to close. The average shutter closing speed was calculated to

be (26 ± 4) cm/s. Thus, the shutter will traverse the 20 mm pencil beam in about

77 ms, and the 5 mm beam in 19 ms. Uncertainties in these results were due

to the statistical fluctuations of the detector response. These were minimised by

removing the noise baseline of the pixels of interest, if present.

The variation in the shutter speed as it closes is due to the shutter’s transport mech-

anism. By default, the shutter is kept closed by a spring. When opening, a motor

drives the shutter towards the spring, leading to a constant speed as observed by

the MP512 detector; the motor actively keeps the shutter in the open position.

To close the shutter, the power to the motor is temporarily cut off, leading to

the spring relaxing and moving the shutter to conceal the source. About halfway

through the movement, the motor re-engages to prevent the shutter from slamming

and induce damage to the mechanical transport system. This ‘active open’ system

ensures that even in the event of power loss, the source is automatically shielded

by the spring-acted shutter.
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(a)

(b) (c)

Figure 6.7: (a) Response of one pixel of interest from the center of MP512, chosen
arbitrarily out of the four. The response is shown as a percentage of the dynamic
range (0.5 pC); (b)(c) expanded view of the transients
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6.4 Conclusion

In this study, the characteristics of a Theratron Co-60 source were investigated

using an ionisation chamber, radiochromic EBT3 film and a silicon detector ar-

ray system by CMRP, named MagicPlate-512. Dose rate of the Co-60 source

was found to be (10.65 ± 0.03) cGy/min at 1.5 cm depth in SolidWater. Percent-

age depth dose measurements taken with IC and MP512 agree within 1% up to a

depth of 50 mm in SolidWater. It was found that the 20 mm and 10 mm diame-

ter beams have uniform penumbra regions. The 5 mm beam showed a significant

asymmetric dose profile due to irregular machining of the lead collimator, which

was visualised in 3D by the use of a plugin software of Romulus developed for

this study. Full-width at half-maximum studies and 20%-80% penumbra evalua-

tions performed with EBT3 film and MP512 agree within less than 1 mm. The

uncertainties are due mainly to the very low level of current generated by the beam

in the detector, of the order of few pA and the critical effect of radio-frequency

interferences on the signal integrity. Output factors obtained with film and Magic-

Plate detector agree within one standard deviation for all three pencil beams, and

the MP512 system under-responds compared to ionisation chamber at small field

sizes, due to airgap thickness. MagicPlate-512 has been used to characterise the

radiation source’s shutter opening using a high temporal resolution and its high

sensitivity. The shutter speed of the container was found to be around 20 cm/s

when opening and 26 cm/s when closing, and the charge collected by the pix-

els for each acquisition was in the order of hundreds of picocoulombs. Despite

the low source activity, the MagicPlate-512 dosimetry system has agreed within

small uncertainties in comparison with ionisation chamber and EBT3 film proving
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it is suitable for real-time verification of very low dose rate irradiators, providing

high spatial and temporal resolution. A future study suggestion would be to use

the OCTA detector to characterise the pencil beam profiles using sub-millimeter

accuracy.
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7.1 Introduction

Stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT) are

external beam modalities which use small beams to deliver high doses in small

number of fractions. The modalities are used in treatment of brain tumors or sites

where critical organ sparing is paramount to ensuring comfortable life for the

patient post-treatment. The quality assurance for these types of treatment is chal-

lenging due to the necessity for detectors with high spatial resolution, high tempo-

ral resolution and zero energy dependence, to ensure accurate verification of the

hypo-fractionated treatments delivered. In this chapter, the detector MagicPlate-

512 with spatial resolution of 2 mm has been used to perform QA on a planned

SBRT lung treatment with fields of 1 × 1 cm2 up to 3 × 3 cm2, and with induced

motion of the target. The performance of the MP512 to resolve the beam profiles

in comparison with EBT3 film is evaluated, as well as the temporal performance

of the QA system is assessed.

7.2 Materials and Methods

The performance of the MP512 system in this study was assessed by observing the

response of the detector for three square fields of 1 × 1 cm2, 2 × 2 cm2 and 3 ×

3 cm2, in three cases: no motion, motion, and motion with tracking. The FWHM

and 20%-80% penumbra studies were performed in comparison with EBT3 film.

The motion of the detector system was provided by the Scandidos HexaMotion

motion platform, and the tracking of the system was performed with a Varian
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Figure 7.1: Schematic diagram of MP512 buildup (not to scale)

Calypso localisation system.

7.2.1 MagicPlate-512 Detector

The MP512 detector developed by CMRP is a monolithic silicon square array of

diodes with pitch 2 mm and sensitive area of 0.5 × 0.5 mm2. The detector has

been described in Section 3.1.2.

7.2.2 Readout System

The readout system used in this study is the AFE-based electrometer and Romulus

Radiation Tools software platform. Equalisation functionality of the software has

been used to eliminate the variations in the response of individual pixels due to

slight differences in the intrinsic properties of the p-n junctions, as described in

Section 3.2.7.
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7.2.3 Organ Motion Simulation

To simulate the organ movement, the MP512 detector was placed on 6 cm of

SolidWater backscatter and placed on a modified HexaMotion platform by Scan-

didos (Uppsala, Sweden). The HexaMotion is a 6D motion platform designed

as an accessory to the Delta4 detector by the same company, in order to provide

movement functionality for the commercial cylindrical QA device. The motion

platform accepts the movement parameters from a text file and can be controlled

from the linac bunker in the adjacent room. In this study, the motion system was

modified using a wooden plate to accept the MP512 detector, readout system and

SolidWater backscatter. The accuracy of the movement is greater than 0.5 mm.

The lung motion simulated in this study was obtained from the 4D CT scan of a

real patient and imported into HexaMotion. The movement plan had a temporal

resolution of 25 ms and was simplified by only importing the× and y components

of the patient’s lung movement (Fig. 7.2). The z component of the lung movement

was discarded in order to eliminate the dose rate and inverse square dependencies

of the detector if it were to move away and towards the linac, as those parameters

were out of the scope of this study.

7.2.4 Motion Tracking System

The tracking of the MP512 detector, which acted as the organ in motion in this

study, was performed using the Calypso system by Varian (Palo Alto, CA). The

purpose of the detector tracking was to feed in real-time the position of the target

area (the MP512), which was varying due to the HexaMotion lung plan, to the
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Figure 7.2: Diagram of imported patient lung motion simulated by the HexaMo-
tion platform. The inset shows a 30 second section of the plan.

dynamic MLC (DMLC) so that the linac could compensate for the patient motion

and conform the dose to the target volume within smaller tolerances. Calypso is a

tracking system comprised of transceiver coils and RF transponder implant seeds

known as ‘beacons’. The array of transceiver coils is placed above the patient and

emits a signal of 300-500 kHz, which excites the beacons and causes them to emit

a resonant frequency unique to each beacon. Each signal is then recorded by the

transponder coils as the relative distance to the beacons. A minimum number of

three beacons must be used to successfully determine the center of mass of the

target organ. The relative position of the Calypso system is made available to the

linac by the use of infra-red cameras in the bunker room. Thus by knowing the

relative position of the beacons with respect to the Calypso system, and the relative

position of Calypso with respect to the IR cameras, the DMLC can account for

organ movement and conform the small fields to the target volume. The feedback

algorithm which drives the DMLC as a function of positioning data provided by
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Figure 7.3: Experimental setup showing the MP512 system placed on the Hex-
aMotion platform, on top of 6 cm SolidWater backscatter, and the direction of the
axes. The Calypso motion system is visible between the detector and linac head.

Calypso has been developed by Keall et al. and successfully implemented in

clinical practice (Keall et al., 2011, 2014).

7.2.5 Detector Packaging

For the successful use of the MP512 system in conjunction with Calypso, a cus-

tom RF shielding was necessary to be constructed for the detector and readout

electronics, to avoid induced current in the detector wiring and analog front-end.

The shielding was chosen to be constructed out of aluminium, and a calculation

was performed to determine the thickness of aluminium required to attenuate the

RF to 0.1% of the initial intensity. By approximating a 300 kHz plane wave trav-

eling from the Calypso coils towards the detector with a normal angle of incidence

on the aluminium, the Maxwell equation takes the form

δ2E

δz2
= µ0µrσ

δE

δt
+ iµ0µrε0εrω

δE

δt
, (7.1)
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where ε0 is the permittivity of free space (8.854× 10-12 F/m); µ0 is the permeabil-

ity of free space (4π × 10-7 H/m); ω is the angular frequency (2π × 300 × 103

Hz); σ is the conductivity of aluminium (3.54 × 104 Ω-1cm-1); and µr is the rela-

tive permeability of aluminium, which is equal to 1 (Yamazaki et al., 2002). Due

to the fact that σ >> ωεrε0, an approximation can be made and the imaginary

term can be ignored, leading to equation (7.1) being expressed as

δ2E

δz2
= µ0µrσ

δE

δt
(7.2)

The solution to equation (7.2) is in the form of

E = E0exp(−αz)expi(ωt− βz), (7.3)

where

α = β =

√
µ0µrσω

2
(7.4)

The skin depth, δ, for the 300 kHz Calypso RF wave is the inverse of αand β, and

its value is

δ =

√
2

µ0µrσω
= 234µm (7.5)

For an attenuation of 99.9% of the RF wave, the calculation becomes

E0exp(
−z

2.34×10−4 )

E0

= 0.0018→ z ≈ 2mm (7.6)

Thus, the required thickness of aluminium to reduce the RF to 0.1% of its initial

intensity is around 2 mm. Petasecca et al. (2015) performed the Monte Carlo

simulations with the aluminium shielding and found that using the 2 mm Al sheet
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together with 5 mm SolidWater and 5 mm PMMA as buildup, the effective depth

of the MP512 detector in this configuration corresponds to 1.5 cm dmax for a 6 MV

beam. The results were verified using IC and agreement was within 1% between

Geant4 and experimental results.

7.2.6 Beam Profiles

The profiles for 1 × 1, 2 × 2 and 3 × 3 cm2 square fields were measured along

horizontal and vertical axes using radiochromic film and MP512 detector. 1000

MU was delivered at 600 MU/min and 6 MV beam for three cases: no motion,

motion, and motion with tracking. The fields were collimated by the MLC and the

jaws were retracted in all directions by 1 cm to minimise leakage dose around the

MLC leaves and to allow for the movement of the DMLC of 8 mm and 2 mm in Y-

and X-direction, respectively. The MP512 detector was placed in the HexaMotion

device above 6 cm SolidWater backscatter at 100 cm SAD and buildup as shown

in Fig. 7.3. Three beacons were used for the organ tracking; they were fixed on

a thin sheet of plastic 10 cm apart from one another. The sheet was then fixed on

top of the Al shielding.

In the case of no motion, the movement platform was in the home position and the

detector center was aligned to the isocenter of the beam, with the lasers crossing

the central X- and Y- axes of MP512; Calypso RF field was enabled, but DMLC

tracking was disabled.

In the case of motion with no tracking, the lung motion was imported into the

HexaMotion platform and manually enabled, Calypso RF field was enabled, the
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detector is aligned and the DMLC is disabled.

In the case of motion with tracking, the DMLC is following the motion of the

lung pattern provided by the HexaMotion platform, using Calypso feedback, and

according to the University of Sydney tracking software driver. Prediction was

not used in this study.

The beam profiles were then repeated by removing the Al shielding, replacing

MP512 with EBT3 film and adding SolidWater to effectively place the film at 1.5

cm dmax. Film scanning procedure was described in Section 6.2.5. The MP512

profiles were normalised to the central pixel and aligned to the position on the

penumbra corresponding to 50% response of the central pixel. Film profiles were

normalised to a central 2× 2 mm2 area surrounding the central axis. Comparisons

of the FWHM and 20%-80% penumbra were performed using MATLAB curve

fitting tool (shape-preserving). The results were tabulated in Table 7.1.

7.2.7 Temporal Performance of the System

The timing performance of the MP512 system was evaluated using the delivery of

a dynamic wedge plan in the three modes described above. The advantage of being

capable of resolving dose-per-pulse from the linac can be used to further improve

the tracking algorithm of the DMLC and maximise healthy tissue sparing. 1000

MU was delivered using a 6 MV beam at 600 MU/min. The MP512 was placed

at 1.5 cm equivalent depth and the angle of the linac gantry was kept constant to

eliminate angular dependency of the detector. The motion of the phantom was in

the same axis (Y) as the wedge delivered by the linac. The integral dose response
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of the MP512 was compared with EBT3 film and an agreement evaluation was

performed. Two MP512 pixels at positions (11, 13) and (8, 13) were chosen

from the center of the wedge and closer to the penumbra region, respectively,

which recorded about 50% of the integral dose compared to other detectors which

received dose during the treatment plan. The response of the pixels in the case

of no motion, motion, and motion with tracking was compared as the dynamic

wedge traversed across the pixels.

7.3 Results

7.3.1 Detector Packaging

Fig. 7.4 shows, in the form of a histogram, the comparison between the baseline

noise, the impact of Calypso’s RF field and the effect of the aluminium shielding

on the response of the MP512 detector. When unshielded, the detector measures

stochastic fluctuations up to 9-10% of the dynamic range which are indistinguish-

able from the response of the detector when subjected to a real photon beam. This

degrades the SNR of the system and increases the error bars of measurements,

introducing inaccuracies in the total dose delivered and the dose-per-pulse evalu-

ation of the beam. The latter is most affected, as it is less obvious when the beam

is on and off.
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Figure 7.4: Comparison of the baseline distribution for the MP512 response for
Calypso system off (green) and on (black and red). The positive effect of the
aluminium shielding is clearly evident.

7.3.2 Beam Profiles

The profiles across the three beams in the case of no motion, motion, and motion

with tracking are presented in Fig. 7.5 for Y-axis and in Fig. 7.6 for X-axis.

Dose smearing in the case of organ motion is clearly evident by the asymmetry

of the profiles, especially in the Y-axis, and the mitigation of this effect by the

compensation of tracking is also clear by increasing the symmetry. Quantitatively,

the comparison in the effect of motion is obvious in the difference of the size of the

20%-80% penumbra, which was evaluated on the right hand side of the profiles

where the effect of the motion is most pronounced (Table 7.1). A difference of

2.4 mm average increase in penumbra is observed when the organ is in motion

compared to no motion. This difference is reduced to 0.7 mm when tracking is

activated; this corresponds to an effective reduction in motion effects of 70%. The

profiles were taken with both MP512 and EBT3 film; agreement between the two
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Table 7.1: Summary of FWHM and penumbra for MP512 and EBT3 film profiles

EBT3 MP512

Square Field FWHM RHS penumbra FWHM RHS penumbra

Modality size (cm) (cm) ±0.01 (cm) ±0.01 (cm) ±0.01 (cm) ±0.01

1 1.14 0.26 1.17 0.25

No motion 2 2.04 0.27 2.1 0.3

3 3.06 0.3 3.16 0.29

1 1.16 0.5 1.21 0.51

Motion 2 2.07 0.54 2.15 0.56

3 3.1 0.53 3.15 0.57

1 1.1 0.35 1.14 0.37

Motion + tracking 2 2.1 0.34 2.1 0.38

3 3.1 0.35 3.12 0.39

detectors is within 3% and 0.4 mm for FWHM and penumbra, respectively.

The lung motion simulated in this study is less pronounced in the × axis, with

a maximum displacement of ±0.5 mm compared to ±5 mm in the Y axis (Fig.

7.6). The minimum displacement which triggers a movement of the DMLC to

compensate for the new organ position is 2 mm. Thus the difference in the ×

profiles is negligible.

7.3.3 Temporal Performance of the System

The timing performance of the MP512 detector system has been evaluated by

irradiating the detector with a dynamic wedge plan (Fig. 7.7). Fig. 7.8 shows

the integral dose deposition profiles for the three cases of no motion, motion, and

motion with tracking, and the associated differences with respect to no motion.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.5: Profiles taken in the Y-axis using EBT3 film and MP512 for no motion
(left), motion (center) and motion with tracking (right) for beam sizes 1 × 1 cm2

(a) (b) (c), 2 × 2 cm2 (d) (e) (f) and 3 × 3 cm2 (g) (h) (i)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.6: Profiles taken in the X-axis using EBT3 film and MP512 for no motion
(left), motion (center) and motion with tracking (right) for beam sizes 1 × 1 cm2

(a) (b) (c), 2 × 2 cm2 (d) (e) (f) and 3 × 3 cm2 (g) (h) (i)
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(a) (b)

Figure 7.7: (a) Response of the MP512 subjected to the dynamic wedge plan with
no motion as visible in the Romulus off-line analysis mode; (b) raw response of
the MP512 central pixel as a function of dynamic range for the same plan.

In the case of motion with no tracking, the difference along the integral dose

distribution profile is -18% along the wedge, with a maximum deviation of +75%

in the penumbra region. This corresponds to a displacement of 8 mm to 10 mm. In

the case of motion correction, the difference is mitigated to -3% along the wedge

and to a maximum of +15% in the penumbra region, which is in the range of

1.6 mm to 2 mm difference. The MP512 agrees well with the film profile, with

variation of -18% along the wedge and +70% in the penumbra region in the case

of motion with no tracking. Fig. 7.9 shows the comparison of the MP512 response

and EBT3 film. Very good agreement is observed between the two detectors.

The temporal study of pixels (11, 13) and (8, 13) is shown in Fig. 7.10. Two pixels

are presented in this study to show the difference in the temporal response of the

pixels for a total delivered dose which is approximately the same. The black curve

in the figure shows the response of pixel (11, 13) solely due to the scanning of the

MLC which provides the dynamic wedge. In the first 20-25 seconds of beam-on,
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(a) (b)

Figure 7.8: Integral dose across the dynamic wedge profiles for no motion, motion
and motion with tracking, depicting the percentage difference with respect to no
motion, using MP512 (a) and EBT3 film (b)

the pixel is fully exposed to the beam. The response of the pixel slowly starts to

decrease as it becomes collimated by the MLC, until complete shielding of the

pixel occurs.

When the lung motion pattern is introduced, there are large spikes in the temporal

response of the pixels which correspond with the pixels’ maximum displacements

entering and exiting the unshielded and shielded field of view of the beam. The

spikes are most accentuated when the movement of the pixels traverses between

the shielded and unshielded areas of the wedge, as shown by pixel (8, 13) in the

range 25 s to 55 s. Small negative spikes in the response of pixel (11, 13) with

motion in the first 20 seconds of beam-on coincide with the fastest motion of the

respiratory pattern of the lung. The variation in the temporal response of the pixels

is less for (11, 13) with motion and tracking, compared with pixel (8, 13) which,

in this study, is not subject to tracking. This improvement is most evident in the

region between 35 s and 45 s.

The latency between the tracking algorithm and the implementation of the correc-
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(a)

(b)

(c)

Figure 7.9: Comparison between EBT3 film and MP512 profiles of the dynamic
wedge in the case of no motion (a), motion (b) and motion with tracking (c)
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Figure 7.10: Temporal response of two MP512 pixels subjected to the dynamic
wedge, for no motion, motion, and motion with tracking. The calibration factor is
5.81 nC/cGy.

tions has a latency of approximately 230 ms (Keall et al., 2014). An improvement

to the tracking system would be to use a prediction algorithm which could take

advantage of the high temporal resolution of MP512 to minimise the oscillations

of the pixels’ response due to the patient specific motion pattern.

7.4 Conclusion

In this work, the MagicPlate-512 system in conjunction with radiochromic EBT3

film has been used to evaluate the dose profiles of three stereotactic small beams,

to quantify the performance of the MP512 for use as a quality assurance device

in patient-specific SBRT plans involving organ motion. Excellent agreement has

been found between MP512 and EBT3 film in the case of simulated lung motion

experiments, with no motion, motion, and motion with tracking studies being per-

formed. Agreement of 4% and less than 0.5 mm for FWHM and penumbra has
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been found between MP512 and EBT3 film, respectively. Discrepancies as large

as 10 mm can arise in the treatment of movable targets, which increase the plan-

ning target volume, and consequently the dose to healthy tissue surrounding the

tumor. By utilising the high temporal resolution MP512 detector, which can syn-

chronise to the linac and perform dose-per-pulse quality assurance, it is possible

to reduce the irradiated volume and spare more healthy tissue by combining the

use of MP512 with an organ tracking system such as Calypso, and DMLC motion

tracking to compensate for organ movement. Predictive algorithms can further

improve dose conformation to the tumor volume.



Chapter 8

Conclusion

This thesis was focused on the development of a data acquisition software for a

novel EBRT quality assurance system, and the clinical and electrical characterisa-

tion of three monolithic detector arrays developed by Centre for Medical Radia-

tion Physics. Furthermore, the application of the QA instrument was performed in

quality assurance of in-vivo clinical IMRT, animal treatment using small cobalt-60

pencil beams, and QA of stereotactic motion adaptive radiotherapy. This chapter

outlines the main findings of the thesis and discusses the future direction of the

project.

8.1 Platform Design Architecture

The architecture of the CMRP QA device was described in this study. The de-

sign and development of a graphical user interface was thoroughly outlined, and

the creation of software mapping algorithms for three silicon detector arrays with

156
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different pixel configurations was presented. The structure of the DAQ software,

named Romulus Radiation Tools, has been designed to be a multi-threaded ap-

proach comprised of two threads: one for the data acquisition and one for the

graphical user interface. The DAQ thread was responsible solely with retrieving

of binary encrypted data from the detector readout system. The GUI thread man-

aged the real-time data decoding for prompt 2D visualisation of the detectors’

response, 2D detector mapping using the generated pixel masks, and provided

the functionality for the user to interact with the collected data. The GUI thread

also provided the user with the off-line data analysis toolkit, which included per-

pixel and batch analysis features such as obtaining the number of frames for a

user-defined region of interest, integral pixel response, average response, charge

collected, and uncertainty to within 95% confidence limits.

A 3D graphing add-on has been developed for Romulus, which enables the user to

clearly visualise the shape of small stereotactic beam profiles and their associated

penumbra regions using the response of the 2D detector arrays.

8.2 Evaluation of the Magicplate-121 System as a

Dual Verification Device

The MagicPlate Dosimetry System using the MagicPlate-121 planar detector ar-

ray was evaluated as a solution for pre-treatment and in-vivo dual verification

quality assurance for IMRT. Two detectors were used in this study: the transmis-

sion detector which was mounted on the linac gantry and the dosimetry detector
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which was placed in a cylindrical phantom. The setup allowed for pre-treatment

QA using both detectors, and in-vivo QA using the radio-transparent detector in

transmission mode. The performance of the rotatable phantom to follow the rota-

tion of the gantry was evaluated. It was found that the phantom optical encoder

was within ±1.5° of the nominal gantry angle for more than 95% of the time the

tracking was enabled. A delay of about 400 ms between gantry and phantom

was observed around the 22° position; this could be due to an irregularity on the

transmission belt. Dose profiles at the depth of the dosimetry detector inside the

cylindrical phantom agreed with the expected treatment plan dose within 1.3%.

The MPDS successfully identified an introduced error in the dose rate for the in-

vivo verification compared to the pre-treatment QA, and notified the user of the

change.

Future studies include the use of the MP512 detector, or a larger area variant of

the MP512, as the dose mode detector within the cylindrical phantom. This will

greatly increase the spatial resolution of the measurements and will determine

high dose gradient regions with increased accuracy.

8.3 Characterisation of Monolithic Silicon Detectors

The silicon detectors MagicPlate-512 and DUO have been characterised using a

clinical linac to assess the detectors’ linearity, uniformity, radiation damage and

spatial resolution, and test structures of DUO and OCTA detectors’ central pixels

have been electrically characterised in terms of I-V and C-V, and charge collection

efficiency and charge sharing properties have been investigated using a He2+ heavy
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ion microprobe.

The MagicPlate-512 is a monolithic array of 0.5 × 0.5 mm2 pixels arranged in

a square. The detector demonstrated good linearity response up to 500 cGy and

stabilisation of pixel response after 40 kGy irradiation with cobalt-60 gamma pho-

tons. The MP512 agrees with radiochromic film within 0.6 mm for FWHM and

20%-80% penumbra studies of stereotactic fields of size 2 cm, 1 cm and 0.5 cm.

It was found that the uniformity of the MP512 was affected by thermal donors in

the detector substrate distributed with cylindrical symmetry, affecting pixels at 17

mm around the center of the detector. This defect subsequently increased the rela-

tive response of the affected pixels for the Low p-stop concentration detector, and

decreased the response for the High concentration p-stop detector. The artifact,

present in all the MP512 detectors available in this study, is due to the Czochral-

ski manufacturing technology of the silicon substrate. The effect of the “ring”

of over-response can be mitigated with the use of a detector equalisation proce-

dure applied to all pixels, in the case of Medium and High p-stop concentration

detectors.

When subjected to high energy photon beams of 10 MV and above, the response

of the MP512 detector decreases linearly at a rate of approximately 1% per every

33 Gy of delivered photon dose, due to photoneutron-induced defects in the sil-

icon. The detector requires recalibration every 65 Gy of delivered dose in these

conditions.

The DUO detector is an array of strips with size of 20 × 800 µm2 and central

pixellated structure dedicated to obtaining output factors for small stereotactic

beamlets. The test structure pixels underwent breakdown in the range of 45-50 V
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reverse bias. Leakage current was found to be in the order of 10-9 A at 40 V and

capacitance of pixels was in the order of 10 pF at 10 V reverse bias. The detector

demonstrated very good linearity response up to 500 cGy, with 95% of pixels lying

within 1% of the mean after equalisation procedure. Stabilisation of response

is achieved after pre-irradiating the detector with 140 cGy Co-60 photons. The

detector agrees with radiochromic film within 0.35 mm for FWHM study, and

within 0.58 mm for for 20%-80% penumbra for stereotactic fields of 2 cm and

less. Charge collection efficiency is 66% in passive mode and crosstalk between

pixels was found to be negligible.

The OCTA detector is a 512-channel silicon strip detector arranged in eight arrays

at 45° to one another, around a common center. The sensitive area of each pixel

is 40 × 800 µm2. The central intersection of the arrays is comprised of nine

square pixels of area 160 × 200 µm2 each. In this study, the basic electrical

characterisation, and charge collection efficiency and charge sharing study has

been performed using the OCTA test structures. It was found that as with the

DUO test structures, the OCTA pixels undergo breakdown at around 50 V reverse

bias, and the leakage current is in the order of 10-9 A. The capacitance of the

pixels is in the order of 10-12 F for all the pixels. Charge collection efficiency

of the OCTA pixels is 73% in passive mode, due to a larger sensitive area of the

pixels. There was a 10% low-energy crosstalk observed when sampling a strip

pixel from an adjacent central (square) pixel.

Future work includes a comprehensive clinical characterisation of the OCTA de-

tector, including percentage depth dose, linearity, uniformity, dose-per-pulse de-

pendence and spatial resolution study. This will enable to determine the feasibility



CHAPTER 8. CONCLUSION 161

of the OCTA for use in stereotactic radiotherapy quality assurance.

8.4 Characterisation of Cobalt-60 Pencil Beam Ir-

radiator

The MagicPlate-512 data acquisition system was used in conjunction to radiochromic

film and ionisation chamber to characterise a cobalt-60 pencil beam irradiator for

use in animal radiotherapy, specifically for treatment of mice or rats. The irradia-

tor, equipped with three collimators with machined holes of diameter 20 mm, 10

mm and 5 mm, was characterised in terms of percentage depth dose, output factor

and shutter timing, and the beams were characterised in terms of profile shape,

FWHM and penumbra.

Dose rate of the cobalt-60 source was calculated to be (10.65 ± 0.03) cGy/min and

the percentage depth dose measurements using ionisation chamber and MP512

agreed within 2.4% up to a 50 mm depth in solid water. FWHM obtained with

radiochromic film and MP512 agreed within 0.93 mm, and 20%/80% penumbra

agreed within 0.85 mm. The 5 mm beam was found to have a non-uniform asym-

metric profile shape due to the machining of the cavity. The shutter, operated by

a motor and spring, was found to have a speed of 20 cm/s when opening and an

average of 26 cm/s when closing. The total duration to fully open and close the

shutter was calculated to be (250 ± 10) ms and (750 ± 10) ms, respectively.

A suggestion for a future study would be a characterisation of the pencil beam

profiles with the OCTA detector. The higher spatial resolution of the detector



CHAPTER 8. CONCLUSION 162

would provide a more detailed insight in the shape of the profiles, especially for

the small 5 mm profile.

8.5 Application of the Magicplate-512 System for Stereo-

tactic Motion Adaptive Radiotherapy

The MagicPlate-512 system was used in conjunction with radiochromic film to

evaulate the dose profiles for three stereotactic beams, to assess the performance

of the MagicPlate-512 system as a patient-specific SBRT quality assurance device

involving organ motion. The study was performed using a simulated lung mo-

tion experiment. The MP512 and radiochromic film agreed within 4% and less

than 0.5 mm for FWHM and penumbra, respectively. The dynamic MLC tracking

functionality in conjunction with the Calypso tracking system and the high tem-

poral resolution MagicPlate-512 system can help reduce the target volume of the

tumor and movable target discrepancies, which could reduce the dose delivered

to healthy tissue around the target and could help spare critical organs at risk. A

suggestion for further work is to use the high temporal resolution of the MP512

system to minimise the latency between the tracking algorithm and the implemen-

tation of corrections by developing a prediction algorithm.
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