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differentiation across the western part of the range in any of the molecular markers, and haplotype diversity
but not richness was lower than a common co-distributed species. Individuals within the panmictic
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Abstract

Assessment of genetic diversity and connectivity between regions can inform conservation

managers about risk of inbreeding, potential for adaptation and where population bound-

aries lie. The Gouldian finch (Erythrura gouldiae) is a threatened species in northern Austra-

lia, occupying the savannah woodlands of the biogeographically complex monsoon tropics.

We present the most comprehensive population genetic analysis of diversity and structure

the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389

SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three

related, co-distributed finches with different conservation threat-statuses. There was no evi-

dence of genetic differentiation across the western part of the range in any of the molecular

markers, and haplotype diversity but not richness was lower than a common co-distributed

species. Individuals within the panmictic population in the west may be highly dispersive

within this wide area, and we urge caution when interpreting anecdotal observations of

changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of

overall changes to the population size of this species.

Introduction

Robust estimates of population parameters, such as size and connectivity, are of vital impor-

tance to effective conservation and wildlife management. Connectivity describes the move-

ment of individuals, genes and behaviour between regions or groups of individuals, and the

degree of connectivity can be used to define populations in a genetic and demographic sense

[1]. There is a long history of directly assessing total population size, population growth rates

and regional connectivity using methods such as visual observation, mark-recapture and radio
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tracking [2,3]. These methods are not always logistically feasible or reliable in species that have

cryptic behaviour, inhabit remote areas, have large geographic distributions, or persist at low

densities [3]. Population size and connectivity estimates derived from these methods may be

additionally confounded when individuals or groups are highly mobile (e.g. nomadic or

migratory), or numbers fluctuate seasonally [4]. In these situations, population genetics may

fill knowledge gaps or improve estimates of population size and connectivity.

The Gouldian finch (Erythrura gouldiae) is one such species that could benefit from popula-

tion genetic investigation, because the absence of robust population estimates has hindered

conservation decision making. In the 1970s, Gouldian finch populations experienced strong

declines (up to 87%), and became restricted to a few small areas in Western Australia and

Northern Territory, and were virtually extirpated from Queensland [5,6]. First identified as

Threatened by IUCN Red List in 1988, the Gouldian finch was recently down-listed to Near

Threatened by the IUCN, based on population data compiled from largely ad hoc observations

[7]. Many of these observations come from resident or bird watcher observations that report

large flocks (400 and>1000) in geographically distant locations [7]. These observations are

unreliable for estimation of total population size because observations are not carried out sys-

tematically throughout the range, and occur mostly in the accessible dry season when birds

aggregate around the diminishing watering holes. Lack of systematic surveys means that the

same individuals or entire flocks may be counted more than once on different days and in dif-

ferent locations, and depending on vagility even geographically distant observations may be

pseudoreplicated. Furthermore, these observations of large flocks are largely juveniles, who

either die before breeding or never return to their natal area, and may not be representative of

the number of breeding pairs in the local area [8].

The Gouldian finch is distributed across the savannah woodlands of the wet-dry tropical

regions of Australia, and across a number of major biogeographic boundaries [9,10] including

the Ord Arid Intrusion, which has been previously identified as important in maintaining sub-

specific variation in the related long-tailed finch [11]. Therefore, we might expect there to be

population genetic structure corresponding to these barriers, depending on the species’ ability to

disperse. There are conflicting reports about the movement capacity of the Gouldian finch,

which may vary according to the season. Early reports suggest migrations within North Queens-

land in and out of breeding grounds [12,13], More recently, there have been anecdotal reports of

birds travelling long distances between localities and outside the breeding range [7]. In a banded

population of Gouldian finches studied at Australian Wildlife Conservancy’s Mornington Sanc-

tuary, in the Kimberley, Western Australia, the maximum distance between re-sightings and

recaptures was 20 km [14], and radio-tracking suggests birds can move within a 3 km radius

within a day [8]. Australian Bird and Bat Banding Scheme records show the average recovery

distance for banded birds within and between years is 1 km. Although the typical banding activ-

ity in remote areas in Australia tends to be highly focused on a particular area, and most birds

are re-trapped in that area, and very rarely re-trapped at other remote sites due to no, or very

low banding effort at other sites. At locations where Gouldian finches are regularly banded, the

return rates between years are low compared to co-distributed Estrildid finches (1%-17% in the

Gouldian finch, 15–60% in long-tailed finches), and show much variation in the total number of

individuals in any given year ([8,14,15], S1 Appendix). It is unknown whether low recapture

rates represent high mortality, long distance movement patterns or some combination of these.

Previous population genetics analyses on the Gouldian finch has suggested a lack of any

genetic structure and high gene-flow, but relatively limited sampling and the genetic markers

used have not allowed for robust conclusions [16,17]. The first population study on this species

found no significant differences in allele frequency in the Myoglobin intron from samples

taken across the geographic range (three sites in the west and a sample of seven birds from
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Georgetown in Queensland) [16]. However, a single coding locus may have reduced diversity

due to selection and does not provide adequate statistical power to draw conclusions about

population connectivity. More recently, data from six microsatellite loci and mitochondrial

control region sequences from samples collected at two geographically distant localities (one

in Western Australia and one in Northern Territory) indicated no evidence of structure [17].

It is possible that structure may not have been detected in this study due to poor geographic

coverage of the species’ distribution [18], and the relatively small number, and characteristics

of the loci employed may have lacked sufficient power to detect weak differentiation [19].

Additionally, while this study explored historical gene-flow, it is of greater use to management

to compare these estimates to those from methods capable of assessing current gene-flow [17].

In this paper, we perform a thorough investigation of Gouldian finch population genetics, to

determine whether population structure exists, particularly across the major biogeographic

boundary of the Ord Arid Intrusion and across the Kimberley Plateau. We used mitochondrial

control region sequences, sixteen microsatellite markers, and 3,839 SNP loci to infer levels of

genetic diversity and differentiation across the Gouldian finch range. From these data, we ask

whether locations that are reliable for catching and sighting Gouldian finches should be con-

sidered separate management units. Finally, we explore these results in the context of diversity

in a co-distributedAustralian finch, and the consequences of our results for conservation of

the Gouldian finch.

Methods

Sample collection

Samples were collected from six locations across the range of the Gouldian finch in Australia

between 2004 and 2013 (Fig 1). The sampling localities focus on areas of historical and con-

temporary high abundance in the Gouldian finch, reflected in the heat-map based on occur-

rence density in Fig 1 from Atlas of Living Australia data [20]. These data are from 1987

Fig 1. Map of the north of Australia, showing the locations blood samples were collected between 2004 and 2013. Heat map indicates the density of

Gouldian finch presence data from Atlas of Living Australia [20] since trapping became illegal in 1987, where darker blue indicates high occurrence density.

Background map reprinted from [22] under a CC BY 4.0 license, with permission from the Australian Bureau of Statistics, Original Copyright 2011.

doi:10.1371/journal.pone.0167723.g001
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onwards, when Gouldian finch trapping was banned. We refer to these five sites (Mornington

through Yinberrie Hills) in this area as “the western range”. Considerably fewer individuals

were caught at Chidna because Gouldian finches appear to be less abundant in the east [7].

The majority of birds were caught in the breeding season (late wet season; January-August).

Birds at all sites except Wyndham were banded and bled next to waterholes. Birds were caught

using a mist-net over a few hours after dawn. Under Australian federal law, all birds must be

fit with a unique metal band supplied by the Australian Bird and Bat Banding Scheme

(ABBBS), and the handler must be certified by the ABBBS as a competent handler and bander.

Blood was drawn by puncturing the brachial vein with a 26-gauge needle and collecting a sam-

ple volume of<60μL with a capillary tube. Samples taken for the purposes of genetics and

were bled immediately after capture, those taken for hormone analysis were taken between 5

and 60 minutes after capture [21].The birds were restrained using ringers grip, no anaesthetics

were administered as the bleeding procedure takes less than two minutes per bird. Blood sam-

ples were stored in 95% ethanol or Queen’s Lysis Buffer.

As part of a larger study to compare breeding ecology of two sympatric hollow-nesting

finches, the site at Wyndham was supplemented with nest-boxes and the breeding of Gouldian

and long-tailed finches was monitored [15,23,24]. Birds were caught at nests with hand nets

when nestlings were more than 14 days old to avoid nest desertion. Birds were also caught at

nearby waterholes with mist-nets and provided with unique bands and bled as described

above. Under both scenarios birds were confined for less than ten minutes. For comparison

with long-tail finches at the same site [15], we provide recapture rates for different life-history

stages of the Gouldian finch across six years (S1 Appendix).

For different analyses and molecular techniques we used different subsets of samples, based

on quality and quantity of DNA extract. For each analysis, we aimed for similar sample sizes

across all five extensively sampled populations, because sample size differences can bias some

estimates of genetic differentiation [25].

Molecular methods and analysis of genetic data

Gouldian finch DNA was extracted from blood samples using a Qiagen PureGene Kit, and

subsequently used in microsatellite, mtDNA and genotyping-by-sequencing analyses.

Microsatellites. Because we had access to a large number of samples over a 10 year period,

microsatellite analyses were conducted with two different subsets of individuals to answer dif-

ferent questions about genetic structure. We used 93 breeding individuals from the Wyndham

population in 2008 and 2009 [23,24,26] to examine fine-scale genetic structure. All other anal-

yses are based on a random subset of individuals matched to the sample size of the smallest

locality (49 individuals), plus an additional six individuals from Chidna in Western Queens-

land. Twenty-two microsatellite loci were amplified across five multiplexes, according to pro-

tocols listed in S2 Appendix. These 22 loci were checked for amplification consistency, null

alleles, and conformity to Hardy-Weinberg Equilibrium (S2 Appendix) using ARLEQUIN

v.3.5.2.2 [27]. Linkage disequilibrium between loci was tested in GENEPOP v4.2 [28]. Hardy-

Weinberg and linkage disequilibrium were corrected for multiple testing using Bonferroni

correction. Loci that were inconsistent or violated assumptions were removed from down-

stream analyses.

We then used ARLEQUIN to tabulate the overall allelic richness (NA), observed and

expected heterozygosities (HO, HE), and GenAlex v6.502 to calculate private alleles [29]. Dif-

ferences in allelic richness and heterozygosity in each of the five major sampling localities was

conducted by pairwise Wilcoxon sign-rank tests, and Bonferroni corrected for multiple test-

ing. Measures of allelic richness are sensitive to differences in sample size, so allelic richness

No Population Genetic Structure in the Gouldian Finch
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per locus at the five major localities was rarefied to match the sample size at Chidna using

ADZE 1.0 [30]. The rarefied richness values were then compared using pairwise Wilcoxon

sign-rank tests with Bonferroni correction.

To obtain measures of global differentiation and inbreeding, we conducted an Analysis of

Molecular Variance (AMOVA) in ARLEQUIN [27] with 10,000 permutations. We calculated

the number of private alleles per population using GenAlex [29,31]. We used pairwise FST and

AMOVA (global FST) to estimate genetic structure between sampling localities in ARLEQUIN

[27], with 10000 permutations to identify statistical significance. Given that FST can under-esti-

mate differentiation at highly polymorphic loci [32–34], for all pairwise comparisons we also

calculated Jost’s D [35] using R package ‘DEMEtics’ with p-values calculated by 1000 bootstrap

resamples [33]. Continuous populations may not exhibit evidence of pairwise or global differ-

entiation, but may show a pattern of increased differentiation with distance—isolation by dis-

tance (IBD). We measured IBD in ARLEQUIN using a Mantel test against a matrix of pairwise

geographic distances between sampling localities, with 10000 permutations [27]. We also con-

ducted individual-based genetic clustering analyses because sampling localities may not reflect

actual populations [36]. These techniques are useful because they find genetic clusters without

a priori population definitions. We used STRUCTURE v 2.3.4 [37] to estimate the number of

genetic groups in our dataset. We compared the effect of the location as a prior (LOCPRIOR:

[38]) against the standard model with no location prior on the resulting genetic clusters. The

location prior does not define populations strictly a priori, but considers individuals that are

sampled together to be more likely from a genetic cluster [38]. This method is sensitive to sub-

tle population structure, but will not falsely detect structure [38]. We used admixture models

with correlated allele frequencies. The length of the burn-in was 100,000, followed by

1,000,000 MCMC, with K (number of clusters) set between 1–10 and 10 iterations per value of

K. K was determined by comparison of plots of Ln P(D) and ΔK [39] using STRUCTURE

HARVESTER v0.6.94 [40].

As an independent assessment of number of genetic clusters, we also ran a population

genetic model-free ordination clustering method in R-package ‘adegenet’ [41]. These ordina-

tion techniques have the advantage that it does not rely on any particular population genetic

model (such as minimising deviation from Hardy-Weinberg equilibrium as in STRUCTURE)

to discern the number of clusters [41,42]. We used the find.clusters function to select clusters,

which reduces the genetic data into Principal Components and runs a k-means clustering anal-

ysis (where k is the number of clusters) and weights results according to the Bayesian Informa-

tion Criterion (BIC), and we retained all principal components for this analysis. Subsequently,

we performed a Discriminant Analysis of Principal Components (dapc) using R-package ‘ade-
genet’ [41,42], which takes a priori clusters and maximises the distances between them. We

also ran dapc using the collection localities as prior groupings in an effort to explore geo-

graphic structuring by maximising the multivariate distances between sampling localities.

Using the selected clusters, we ran model validation on ability of the model to correctly assign

individuals to their clusters using optim.a.score and xvalDapc functions. For more information

please see S4 Appendix.

Some movement information we have on Gouldian finches, based on band recoveries and

radio-tracking, suggests that many individuals may be restricted to a 5km area, at least over

short periods. Low recovery rates in the banding data suggest very limited natal philopatry in

these birds, but we used genetic data as an independent test of this. If movement is limited,

and natal philopatry is high, we might expect to see some evidence of spatial structure on the

scale of a few kilometres. Spatial autocorrelation takes pairwise genetic distances and pairwise

geographic distances between individuals and provides a measure of autocorrelation (r)–and

by proxy genetic similarity—between them [43]. Under restricted dispersal, geographically

No Population Genetic Structure in the Gouldian Finch
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proximate individuals should have shorter genetic distances between them, and will show a

signature of positive autocorrelation at this spatial scale. We used this spatial autocorrelation

approach to investigate restricted movement at the local scale. Spatial autocorrelation was con-

ducted on individuals nesting in 2008 and 2009 over ~12km in our Wyndham study site

[24,26]. Significant autocorrelation (either positive or negative) was determined by 1,000 boot-

strap resamples against 1,000 permutations of a null hypothesis constituting no spatial struc-

ture [43]. All analyses were conducted in conducted in GenAlex v6.502 [29,31], and were

partitioned according to sex to investigate whether there was sex-biased dispersal [44].

mtDNA. For a subset of individuals (sample sizes in Table 1), we sequenced mitochon-

drial control region domain 1. We amplified a 330bp segment using primers and protocols

developed in the closely related long-tailed finch [11]. Final sequences were checked using

python programme SEQTRACE v 0.9.0 [45].

We examined the mitochondrial genetic diversity from a subset of individuals across the

five western populations, plus we explored the five individuals from Chidna in the east. Haplo-

type richness (H), haplotype diversity (h) and nucleotide diversity (π) was calculated using

Table 1. Summary of various measures of genetic diversity with (±) sampling standard deviation for microsatellite, mitochondrial and SNP

datasets.

Parameter Mornington Wyndham Bradshaw Delamere Yinberrie Hills Chidna Overall

Microsatellites

N 49 49 49 49 49 6 251

NA 13.88 14.13 14.31 14.31 14.63 5.69 21.81

NPA 1.06 0.88 1.31 1.06 1.12 0.18 NA

HO 0.77 (±0.12) 0.77 (±0.13) 0.76 (±0.15) 0.79 (±0.14) 0.77(±0.14) 0.80 (±0.15) 0.77 (±0.12)

HE 0.81 (±0.12) 0.81 (±0.11) 0.81 (±0.12) 0.81 (±0.11) 0.81 (±0.11) 0.80 (±0.14) 0.81 (±0.11)

FIS 0.04* 0.04** 0.06*** 0.02 0.05** 0.04* 0.04**

Mitochondrial control region

N 32 35 25 32 23 5 152

S 6 9 10 5 6 4 14

H 8 10 12 5 8 3 20

HR 6.8 (± 0.96) 7.8 (± 1.11) 11.4 (± 0.66) 4.7 (± 0.46) NA NA NA

HP 1 2 6 0 2 0 NA

h 0.68 (± 0.07) 0.80 (± 0.04) 0.83 (± 0.07) 0.71 (± 0.06) 0.71 (± 0.09) 0.70 (± 0.22) 0.76 (± 0.07)

π x102 0.37 (± 0.07) 0.50 (± 0.07) 0.59 (± 0.10) 0.39 (± 0.07) 0.51 (± 0.08) 0.61 (± 0.21) 0.47 (± 0.03)

Genotyping-By-Sequencing SNPs

N 52 47 48 53 48 3 251

NS 3817.7 (±18.9) 3816.0 (±20.9) 3826.9 (±10.2) 3818.4 (±20.5) 3823.3 (±17.9) 3827.7 (±4.0) 3820.3 (±18.3)

S 3838 3836 3837 3835 3837 2497 3839

HO 0.30 (±0.17) 0.30 (± 0.17) 0.30 (±0.17) 0.30 (± 0.17) 0.30 (±0.17) 0.48 (± 0.26) 0.30 (± 0.16)

HE 0.30 (± 0.15) 0.30 (±0.15) 0.30 (± 0.14) 0.30 (± (0.15) 0.30 (± 0.14) 0.47 (± 0.11) 0.30 (± 0.14)

The table describes each population, the number of individuals used in the analysis (N), and the observed heterozygosity (HO), expected heterozygosity

(HE), number polymorphic sites (S). Diversity measures specific to the microsatellites are: the average no alleles per locus (richness) (NA), number of

private alleles per locus (NPA), and Inbreeding Coefficient (FIS), with degree of significance indicated by number of asterisk. Diversity measures specific to

the mitochondrial data are: raw number of haplotypes (H), rarefied number of haplotypes to n = 23 (HR), private haplotypes (HP), haplotype diversity (h), and

nucleotide diversity (π). Measures specific to SNPs are the average number of sites across individuals in a population (NS). NA indicates the parameter was

not calculated for that population, either due to sample size constraints, or it was not a relevant parameter.

* is p<0.05

** is p<0.005

*** is p<0.0005

doi:10.1371/journal.pone.0167723.t001
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DnaSP v5.10.1 [46]. We calculated the rarefied haplotype richness (HR) based on the smallest

sensible sample size (at Yinberrie Hills, n = 23) was calculated in Analytic Rarefaction 2.0 [47].

We conducted an AMOVA and population pairwise genetic differentiation measures in

ARLEQUIN. We calculated differentiation between sampling localities using haplotype fre-

quencies (FST) and nucleotide diversity ϕST calculated with the Kimura 2-parameter model.

All significance tests were run with 10,000 permutations. In addition, we examined the evolu-

tionary relationships between haplotypes using a median-joining network (ε = 0, [48]) using

the programme PopART (http://popart.otago.ac.nz).

Genotyping-by-sequencing. We also used a reduced-representation next generation

sequencing approach to obtain SNPs from across the genome. We sequenced 285 individuals

that included a subset of individuals from our six populations (Mornington = 56, Wynd-

ham = 57, Bradshaw = 57, Delamere = 56, Yinberrie Hills = 55, Chidna = 4). Populations were

randomised across three plates, and 12 individuals were duplicated across all three plates, to

ensure there were no lane or library effects, which can cause artificial substructure in the data.

We sent DNA extracts to Cornell Institute of Genomic Diversity for library preparation

and sequencing according to their in-house Genotyping-by-Sequencing (GBS) methodology

[49]. This is a reduced representation approach, similar to RADseq [50], that sequences short

sections of the genome downstream from restriction enzyme cut-sites. We used restriction

enzyme Pst1; in silico digests using ‘SimRAD’ suggested this enzyme yields 952,644 cut-sites

across the genome of the related Zebra finch Taeniopygia guttata [51,52]. Each plate was multi-

plexed into three lanes on an Illumina HiSeq 2500 (100bp single-end reads).

Raw reads were processed into SNP genotypes using the reference-free bioinformatics pipe-

line designed for this particular methodology: Universal Network Enabled Analysis Kit

(UNEAK) [53] in TASSEL 3.0 [54]. Reads must have been recorded at least five times to be

included as a tag for further analysis, and an error tolerance rate of 0.03 was used to identify

reciprocal tag pairs for SNP calling [53]. SNPs with a minimum minor allele frequency

(mnMAF) of 0.00, 0.01 and 0.05 were called across the entire dataset using TASSEL. We com-

pared the results of the three mnMAFs, and they did not affect the interpretation so we chose

the most conservative dataset (mnMAF = 0.05). All resulting SNPs were subsequently filtered

using VCFtools [55] according to the following quality criteria: a) minimum read depth of five

reads per genotype; b) sites with an outlying number of reads, as these can represent gene

duplications or repetitive regions. An arbitrary threshold of>28X was chosen based on the

frequency histogram of the number of reads; c) removing individuals with outlying high and

low average sequencing depths, and overall heterozygosity by removing the bottom and top

ten percent of individuals in these categories. Then the data were filtered for missingness

according to site and individual criteria: a) sites not represented in>80% of individuals [56];

b) individuals with>50% or>30% missing genotypes. Filtering individuals by >30% or

>50% missing genotypes did not affect the results, so we present the data based on those with

more individuals (>50%).

We measured heterozygosity, number of polymorphic sites per population using ARLE-

QUIN v.3.5.2.2 [27]. We conducted an AMOVA and pairwise FST between sampling localities

using pairwise distance for the underlying distance matrix in ARLEQUIN [27], and 10,000

permutations.

Genetic clustering analysis was conducted in a Bayesian clustering programme FAS-

TSTRUCTURE v1.0 designed to process large SNP datasets quickly [57]. This programme is

based on a variational Bayesian inference framework, which does not necessitate user set sam-

pling of parameter space (e.g. MCMC reps). As a preliminary step to detect strong genetic

structure in the SNP data, we ran models with 1 to 10 genetic clusters (K), using a ‘simple’ or

flat prior of population specific allele frequencies. This method reports two new measures of K
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that explain the data in different ways, and can provide a range of K values to run further tests

with more sensitive priors [57]. As in the microsatellite dataset, we also ran a discriminant

analysis on this data to infer genetic clusters.

Mitochondrial richness in co-distributed Australian finches

Genetic diversity is reduced in threatened taxa, relative to non-threatened taxa reflecting popula-

tion bottlenecks and small population sizes [58–61]. We used data from the same section in the

mitochondrial control region from a related and co-distributed finches to provide context for

the measures of genetic diversity. We compared genetic diversity in the co-distributed, but

‘Least Concern’ status long-tailed finch (Poephila acuticauda) using previous data from the mito-

chondrial control region [11]. Measures of allelic richness are more sensitive to population size

changes than diversity or heterozygosity [62], but must be corrected for sample size [63]. We rar-

efied haplotype richness of the long-tailed finch (n = 274) to match the smaller sample of the

Gouldian finch (n = 152) in the program Analytic Rarefaction 2.0 [47]. Point estimates of rare-

faction cannot be directly compared statistically, but we used the rarefaction sampling variance

and 95% confidence intervals as a guide for whether mitochondrial control region haplotype

richness was different between the different species. Estimates of diversity are much less sensitive

to sample size, and therefore we directly compared uncorrected haplotype and nucleotide diver-

sity estimates. Providing a sufficiently large sample size, central limit theorem predicts that the

nucleotide diversity and haplotype diversity sampling variance derived from theory will approxi-

mate a normal distribution [64], which allowed us to use a t-test to compare diversity indices.

Results

After quality filtering of the microsatellite dataset (S2 Appendix), we retained 16 of 22 loci that

were in Hardy-Weinberg Equilibrium (after Bonferroni correction p<0.000625) (Table B in

S2 Appendix). No pairs of loci were in linkage disequilibrium after Bonferroni correction

(Table C in S2 Appendix).

Summary diversity statistics for the microsatellite data are presented in Table 1. Within col-

lection localities, the microsatellite allelic richness was between 13.8 and 14.6 in the five major

populations, and pairwise Wilcoxon sign-rank tests found no significant differences in rich-

ness at our five major sampling localities (Bonferroni corrected p-values = 0.36–1). Pairwise

tests on rarefied richness to include the smallest sample at Chidna also found no significant

difference (all Bonferroni corrected pairwise p-values = 1). Similarly, there was no significant

difference in observed or expected heterozygosity between any of the localities (all Bonferroni

corrected pairwise p-values = 1). For the uncorrected pairwise p-values please see Tables A

and B in S3 Appendix.

The sample sizes for populations using mtDNA were smaller than those employed in the

microsatellite analysis. Of the 330bp fragment amplified, 14bp were polymorphic and we iden-

tified 20 haplotypes (KX858950-KX585969). There was considerable variation in levels of

mitochondrial richness between the collection localities (Table 1). Bradshaw locality had the

highest private haplotype count and contained 60% of the total observed haplotypes, and had

higher haplotype richness than the site with next highest richness (Wyndham rarefied to

n = 25, HR = 8.2, 6.14–10.0 95% CI, Bradshaw raw H = 12). The haplotype diversity was not

significantly higher (t1.93, df = 35.15,p = 0.062), but nucleotide diversity was significantly

higher in Bradshaw than Wyndham (t3.87, df = 40.26, p = 0.00039).

Genotyping-by-sequencing (GBS) yielded 735,164,326 raw reads across three Illumina

lanes containing 96 samples each, with an average of 2,552,653.91 reads per individual or 1.6X

reads per predicted site. After stringent filtering, we retained 3839 SNPs with a minimum site
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depth of 5X and average 13.5X across 251 individuals. Like the microsatellites, measures of

genetic diversity were consistent across the five main sampling localities (Table 1). No sam-

pling localities had private alleles, but this is expected due to the high minimum minor allele

frequency filtering.

Population structure

Analysis of molecular variance (AMOVA) on the microsatellite data showed that most genetic

variation was contained within individuals, with less than 1% of variation attributed to

between population differences, and 4.2% among individuals within populations. Inbreeding

coefficients (FIS and FIT) were low but statistically significant (FIS = 0.042, p = 0.00; FIT =

0.043, p = 0.00) based on permutation tests, and individual population inbreeding coefficients

(FIS) are not consistent across populations (Table 1). SNP results showed similarly low varia-

tion between populations, but there was no indication of inbreeding (FIS) using these markers

(FST = -0.0001,p = 1; FIT = -0.093, p = 1; FIS = -0.093, p = 1). AMOVA based on mtDNA nucle-

otide diversity and haplotype frequency yielded slightly higher between population differentia-

tion, but still with only 1.9% of genetic variation explained among sampling localities.

All measures of pairwise genetic differentiation between the collection localities was negligi-

ble and statistically non-significant after Bonferroni correction (Tables C-E in S3 Appendix).

Haplotype frequencies between Chidna and all other populations were moderately differenti-

ated (average Chidna Pairwise FST = 0.20, standard deviation = 0.046), and nucleotide diversity

was significantly differentiated (average ϕST = 0.25, standard deviation = 0.085) except with

closest neighbour Yinberrie Hills, but none of these comparisons were significant after Bonfer-

roni correction (Table D in S3 Appendix). The lack of population structure at mtDNA can be

visualised in the median-joining network (Fig 2), which shows no pattern of unique haplotypes

shared between different regions.

Mantel tests showed evidence of Isolation-by-Distance (IBD) in the mitochondrial dataset

(ϕST, β = 0.00034, p = 0.026; FST β = 0.00027, p = 0.039), and a significant effect in the micro-

satellite dataset (β = 9x10-6, p = 0.0064) and SNP datasets (β = 1x10-5, p = 0.04), but the regres-

sion coefficients in both analyses was small. When the poorly sampled and distant Chidna

locality was removed from the analysis there was no significant effect in the microsatellite data-

set (β = 0, p = 0.53), SNP dataset (β = 0, p = 0.43), or mitochondrial dataset (ϕST, β = 0.000021,

p = 0.27; FST β = -0.000004, p = 0.43).

There was no evidence of spatial genetic clustering from the STRUCTURE analysis. The

results did not differ meaningfully with or without the use of the LOCPRIOR model [38], so

we only present the latter results here. In the LOCPRIOR model, if the parameter r is less than

one, it suggests that the location information is informative to the ancestry of the location [38].

Across all our repetitions, the mean r inferred was well above 1 (mean r = 11.94, standard devi-

ation r = 1.26). The log probability of the data (genotypes given K clusters, LnP(D)) indicates

the best model fit is for a single cluster (Fig 3C). If the rate of change in LnP(D) is used to infer

number of clusters [39], then we find that the optimal number of clusters (ΔK) is two (Fig 3B),

but this method is only able to make inferences about clusters greater than or equal to two.

Indeed, the LnP(D) plot only shows a strong drop off in model fit after K = 2. Therefore, we

plotted the ancestry proportions for each individual given two clusters. All individuals are

equally admixed (Fig 3A) across the range, supporting a single genetic cluster. Furthermore,

the fastSTRUCTURE method on the SNP dataset found the optimal number of clusters was

one at both measures of K (Fig 3D).

In the microsatellite and SNP dataset, the k-means clustering method find.clusters in ‘ade-

genet’[41] found that the lowest BIC was for one cluster (K = 1)(Figs A and D in S4 Appendix).
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When running Discriminant Analysis of Principal Components (DAPC) using collection

locality as the grouping factor, we found no evidence of separation between all six localities in

the microsatellite dataset. Yet, in the SNP data DAPC was able to distinguish the three samples

from Chidna (Fig 4). For more details on the procedures and model validation see the S4

Appendix.

The spatial autocorrelation also revealed no pattern of fine scale genetic structure (Fig A in

S3 Appendix). When the sexes were considered separately in the spatial autocorrelation there

was also no evidence of sex-bias in spatial genetic structure patterns (results not shown).

Mitochondrial richness in co-distributed Australian finches

The haplotype richness observed in the Gouldian finch fell within the confidence intervals of

the rarefied long-tailed finch estimate (n = 152, HR = 21.2, 17.19–25.23% CI). Conversely, hap-

lotype diversity and nucleotide diversity were significantly higher in the long-tailed finch (h, t-

9.04, df = 321.68, p<2.2x10-16; π, t-24.01, df = 212.64, p<2.2x10-16).

Discussion

Genetic diversity is an important indicator of future adaptive potential and risk of inbreeding

[65]. In the Gouldian finch, there was no evidence in SNP and microsatellite markers for dif-

ferences in genetic diversity between populations, but the population at Bradshaw had higher

mitochondrial richness and diversity than the other populations. This is not the result of a con-

fluence between haplotypes that are abundant or private to localities to the east and west, as

most haplotypes are found throughout the range, and appears to be driven mostly by a higher

number of private haplotypes. This pattern in allelic richness may represent a gradient of

genetic diversity between range core (Bradshaw) and toward the range edge populations (See

Fig 1 observations from Atlas of Living Australia) [20,66]. Across the sampled range, mito-

chondrial haplotype richness does not appear to be different between the Gouldian finch and

related and ‘Least Concern’ long-tailed finch (Poephila acuticauda), but mitochondrial diver-

sity estimates are significantly lower in the Gouldian finch than the long-tailed finch (P. acuti-
cauda). Indeed, the widespread zebra-finch (Taeniopygia guttata) has similarly high estimates

of diversity at mtDNA locus ND2 as those observed the long-tailed finch [11,67]. Broadly, the

lower haplotype diversity in Gouldian finches supports a “Threatened” conservation status.

However, measures of nucleotide diversity do not correlate well with population size or bottle-

neck intensity [68–70], therefore lineage specific processes (such as mutation rate or life-his-

tory) might be more important in determining mitochondrial diversity between these two

species. Therefore, we caution against conclusions about the population status of the Gouldian

finch until formal analyses of effective population size have been conducted.

We found evidence of heterozygote reduction (FIS and FIT = 0.04) in the microsatellite data-

set, but not the SNP dataset. This discrepancy is potentially because of large sampling variances

associated with these highly polymorphic markers, in conjunction with our modest number of

markers and population sampled, and therefore expected heterozygosities from SNP data may

be more accurate [71,72]. Further, small microsatellite marker sets are not good predictors of

pedigree inbreeding except in highly structured populations with high levels of consanguine-

ous matings, and therefore may not correlate well with inbreeding depression ([72,73] but see

[74]). That we find no evidence of increased FIS & FIT inbreeding coefficients in the more

Fig 2. Median-joining network for mitochondrial control region haplotypes in the Gouldian finch. Colours represent sampling localities,

and node circle size represents the number of individuals with that haplotype. Number of strokes joining nodes indicates then number of

mutations between two haplotypes.

doi:10.1371/journal.pone.0167723.g002
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representative and statistically powerful SNP dataset suggests that inbreeding may not occur at

significant levels in the wild Gouldian finch. Indeed, field observations suggest consanguine-

ous matings may be rare, due to very low numbers of recaptured individuals between years,

suggesting high levels of dispersal ([8,14], S1 Appendix). Further, although banding data indi-

cate that individual movements occur over small spatial scales, our spatial autocorrelation data

indicate that relatedness is not spatially structured within the Wyndham sampling site.

Together, the genetics and banding data suggest that birds become more mobile after the

breeding season, or that adult mortality is high and juveniles are highly dispersive.

We found no evidence of genetic differentiation in the western range of the Gouldian finch

from Mornington to Yinberrie Hills, a distance of 730 km, despite the bio-geographic com-

plexity and vast distances involved in this part of Australia [10]. Indeed, we find no fine-scale

genetic structure at the landscape scale in Wyndham, nor evidence of Isolation-by-Distance

across the five major sampling localities (spanning 730km) across our three marker types.

Notably, our sampling spans a number of biogeographic breaks including the Ord Arid Intru-

sion (Wyndham area) and the Victoria Gap, which have been associated with genetic disconti-

nuities within a number of species with different dispersal capacities [10,75,76]. However, we

found no evidence of a genetic discontinuity in the Gouldian finch across these barriers. The

Ord Arid Intrusion is associated with separate mtDNA lineages roughly in line with the sub-

Fig 3. Results from Bayesian clustering analysis using STRUCTURE (a-c) [37] and d) fastSTRUCTURE [57]. Part a) shows

equal membership probability plot for each individual plotted for two clusters; b) log probability of data (LnP(D)) showing K = 1; c) the

optimal number of genetic clusters according to the Evanno et al method; d) output of marginal likelihoods from fastSTRUCTURE

showing optimal K = 1.

doi:10.1371/journal.pone.0167723.g003

Fig 4. Scatterplot from discriminant analysis of principal components on the Genotyping-by-Sequencing SNP dataset. Points represent individual

genotypes, and colours are the sampling localities surrounded by a 95% confidence ellipse. DA eigenvalues represent the amount of genetic variation

captured by the discriminant factors plotted as the x- and y- axis.

doi:10.1371/journal.pone.0167723.g004
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species of the long-tailed finch (P. a. acuticauda and hecki) [11]. This is congruent with our

understanding of movement based on mark recapture studies of both species, where long-

tailed finches show more site-fidelity than the Gouldian finch ([8,15], S1 Appendix). Further,

no genetic structure has been previously detected in the nomadic continental zebra finch, and

therefore it is plausible that Gouldian finches are similarly dispersive [77], but equally plausible

is an expansion from a single ice-age refugium as seen in many Palaearctic and Nearctic faunas

[78].

Genetic differentiation between the western range and our sampling locality in Queensland,

Chidna, remains unclear. The Chidna locality was responsible for significant results in Mantel

tests for IBD, despite Chidna showing no evidence of significant pairwise differentiation after

Bonferroni correction. Discriminant Analysis of Principal Components on the SNP dataset

identified Chidna as a distinct cluster, but our validations suggest model instability. However,

clustering analyses found no evidence that there was more than one genetic cluster, suggesting

Chidna is part of the same population. Because of the small sample size at Chidna it is unlikely

that we have captured the true allele frequencies at the location, and any signal of differentia-

tion (or lack-thereof) may be spurious [25,71]. However, anecdotal reports suggest Gouldian

finch densities are lower in Queensland [7], which differs in land-management and fire-

regimes which are determinants of Gouldian finch abundance [5,14,79,80]. These tracts of

unsuitable or poor quality habitat may restrict movement between the western range and

Queensland, and within Queensland, which may be severe enough to restrict gene-flow.

Therefore, we urge that results of high genetic connectivity in the western range are not extrap-

olated into Queensland.

The putative decline and fragmentation of the Gouldian finch (the 1960s-1970s) is relatively

recent (30–50 years and Gouldian finch generations), and there may not have been sufficient

time to detect a reduction in gene-flow [78,81]. The time it takes for a reduction in gene-flow

to affect allele frequencies will depend on the migration rate, effective population size of the

subpopulations, generation time and overlap and population growth [82,83]. However, model-

ling has shown a complete cessation of gene-flow can be statistically detectable within two gen-

erations using equilibrium estimators (e.g. FST) for microsatellite sampling schemes equivalent

to ours and census population sizes of less than 500 individuals [19]. To our knowledge, there

is no equivalent modelling done on high-throughput technology SNP data, but studies suggest

that the number of SNPs employed here ought to be sufficient to distinguish very low levels of

differentiation (e.g FST <0.05) [19,84–86]. Compared with previous attempts to measure pop-

ulation structure in the Gouldian finch [16,17], we are confident of our finding of the absence

of genetic structure across the western range of the Gouldian finch because we included more

sampling localities, analyses with different underlying assumptions, and more powerful genetic

markers (SNPs) for detecting subtle differentiation [1,19,84,86].

Populations across the western range of the Gouldian finch are genetically interconnected,

and exchange more than sufficient effective migrants to maintain the genetic diversity in each

region (irrespective of stringency of Nem) [1,87,88]. But this does not usefully inform the

demographic connectivity between regions, as this depends on the subpopulation size and the

migration rate between them (m<0.1) [1,89,90]. Unless there is detectable differentiation

between subpopulations, assignment-test methods such as BayesAss will not be able to mea-

sure migration rate between populations [91]. Therefore, ecological data is still useful to infer

management units and demographic connectivity between populations [89]. Banding data

from Mornington, Wyndham, Newry and Yinberrie Hills indicate very low return rates

between years at collection localities ([8,14], S1 Appendix), which suggests that local recruit-

ment (on the scale of the sampling localities) may not be important for maintaining popula-

tions. Limited spatial and temporal banding data do not allow inference about Gouldian finch
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populations beyond what is possible with the genetic data. Until there is an extremely substan-

tial banding effort (both spatially and temporally), or satellite telemetry is used to monitor

Gouldian populations across the range (for which tags are currently not available due to the

size of the bird), it will remain uncertain whether Gouldian finches are regularly dispersing

long distances, or the lack of population genetic structure comes from a high volume of local

migrant exchange [3].

All three molecular markers employed in this study provided congruent evidence about

moderately high genetic diversity across the western range of the Gouldian finch, with no evi-

dence of genetic differentiation despite biogeographic barriers. Although these data make it

impossible to infer demographic connectivity (migration rate, m) between populations, we

urge caution in the interpretation of spatially and temporally unsystematic estimates of popu-

lation from anecdotal reports by bird-watchers. Our findings do not exclude the possibility

that individual Gouldian finches may be capable of moving quite long distances. The genetic

connectivity between the west and the populations in Queensland remain unresolved, but due

to differences in land management practices and Gouldian finch density, movement patterns

may be drastically different from what we have observed in the western range. Establishing

patterns of genetic connectivity in Queensland remains a priority for adequately assessing the

population status of the Gouldian finch in Queensland.
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48. Bandelt HJ, Forster P, Röhl a. Median-joining networks for inferring intraspecific phylogenies. Mol Biol

Evol. 1999; 16: 37–48. PMID: 10331250

49. Elshire RJ, Glaubitz JC, Sun Q, Poland J a, Kawamoto K, Buckler ES, et al. A robust, simple genotyp-

ing-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011; 6: e19379. doi: 10.

1371/journal.pone.0019379 PMID: 21573248

50. Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis Z a, et al. Rapid SNP discovery and

genetic mapping using sequenced RAD markers. PLoS One. 2008; 3: e3376. doi: 10.1371/journal.

pone.0003376 PMID: 18852878

51. Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, et al. The genome of a song-

bird. Nature. 2010; 464: 757–762. doi: 10.1038/nature08819 PMID: 20360741

52. Lepais O, Weir JT. SimRAD: a R package for simulation-based prediction of the number of loci expected

in RADseq and similar genotyping by sequencing approaches. Mol Ecol Resour. 2014; 33: 1314–1321.

53. Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, et al. Switchgrass genomic diversity,

ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet. 2013;

9: e1003215. doi: 10.1371/journal.pgen.1003215 PMID: 23349638

54. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES. TASSEL: software for

association mapping of complex traits in diverse samples. Bioinformatics. 2007; 23: 2633–2635. doi:

10.1093/bioinformatics/btm308 PMID: 17586829

55. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, Depristo MA, et al. The variant call format and

VCFtools. Bioinformatics. 2011; 27: 2156–2158. doi: 10.1093/bioinformatics/btr330 PMID: 21653522

56. White TA, Perkins SE, Heckel G, Searle JB. Adaptive evolution during an ongoing range expansion:

The invasive bank vole (Myodes glareolus) in Ireland. Mol Ecol. 2013; 22: 2971–2985. doi: 10.1111/

mec.12343 PMID: 23701376

57. Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: Variational inference of population structure in large

SNP datasets. Genetics. 2014; 197: 573–589. doi: 10.1534/genetics.114.164350 PMID: 24700103

58. Spielman D, Brook BW, Frankham R. Most species are not driven to extinction before genetic factors impact

them. Proc Natl Acad Sci USA. 2004; 101: 15261–4. doi: 10.1073/pnas.0403809101 PMID: 15477597

59. Rivers MC, Brummitt NA, Nic Lughadha E, Meagher TR. Do species conservation assessments capture

genetic diversity? Glob Ecol Conserv. 2014; 2: 81–87.

60. Hague MTJ, Routman EJ. Does population size affect genetic diversity? A test with sympatric lizard

species. Heredity. 2015; 116: 92–98. doi: 10.1038/hdy.2015.76 PMID: 26306730

61. Willoughby JR, Sundaram M, Wijayawardena BK, Kimble SJ a., Ji Y, Fernandez NB, et al. The reduc-

tion of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conserva-

tion rankings. Biol Conserv.; 2015; 191: 495–503.

62. Allendorf FW. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 1986; 5: 181–190.

63. Leberg PL. Estimating allelic richness: Effects of sample size and bottlenecks. Mol Ecol. 2002; 11:

2445–2449. PMID: 12406254

64. Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press; 1987.

65. Ellegren H, Galtier N. Determinants of genetic diversity. Nat Rev Genet. 2016; 17: 422–433. doi: 10.

1038/nrg.2016.58 PMID: 27265362

66. Kawecki TJ. Adaptation to marginal habitats. Annu Rev Ecol Evol Syst. 2008; 39: 321–342.

67. Newhouse DJ, Balakrishnan CN. High major histocompatibility complex class I polymorphism despite

bottlenecks in wild and domesticated populations of the zebra finch (Taeniopygia guttata). BMC Evol

Biol. 2015; 15: 265. doi: 10.1186/s12862-015-0546-3 PMID: 26627847

68. Jackson H, Morgan BJT, Groombridge JJ. How closely do measures of mitochondrial DNA control

region diversity reflect recent trajectories of population decline in birds? Conserv Genet. 2013; 14:

1291–1296.

No Population Genetic Structure in the Gouldian Finch

PLOS ONE | DOI:10.1371/journal.pone.0167723 December 9, 2016 18 / 19

http://www.ncbi.nlm.nih.gov/pubmed/10383677
http://dx.doi.org/10.1111/j.1365-294X.2012.05485.x
http://www.ncbi.nlm.nih.gov/pubmed/22335562
http://dx.doi.org/10.7171/jbt.12-2303-004
http://www.ncbi.nlm.nih.gov/pubmed/22942788
http://dx.doi.org/10.1093/bioinformatics/btp187
http://www.ncbi.nlm.nih.gov/pubmed/19346325
http://strata.uga.edu/software/anRareReadme.html
http://strata.uga.edu/software/anRareReadme.html
http://www.ncbi.nlm.nih.gov/pubmed/10331250
http://dx.doi.org/10.1371/journal.pone.0019379
http://dx.doi.org/10.1371/journal.pone.0019379
http://www.ncbi.nlm.nih.gov/pubmed/21573248
http://dx.doi.org/10.1371/journal.pone.0003376
http://dx.doi.org/10.1371/journal.pone.0003376
http://www.ncbi.nlm.nih.gov/pubmed/18852878
http://dx.doi.org/10.1038/nature08819
http://www.ncbi.nlm.nih.gov/pubmed/20360741
http://dx.doi.org/10.1371/journal.pgen.1003215
http://www.ncbi.nlm.nih.gov/pubmed/23349638
http://dx.doi.org/10.1093/bioinformatics/btm308
http://www.ncbi.nlm.nih.gov/pubmed/17586829
http://dx.doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/pubmed/21653522
http://dx.doi.org/10.1111/mec.12343
http://dx.doi.org/10.1111/mec.12343
http://www.ncbi.nlm.nih.gov/pubmed/23701376
http://dx.doi.org/10.1534/genetics.114.164350
http://www.ncbi.nlm.nih.gov/pubmed/24700103
http://dx.doi.org/10.1073/pnas.0403809101
http://www.ncbi.nlm.nih.gov/pubmed/15477597
http://dx.doi.org/10.1038/hdy.2015.76
http://www.ncbi.nlm.nih.gov/pubmed/26306730
http://www.ncbi.nlm.nih.gov/pubmed/12406254
http://dx.doi.org/10.1038/nrg.2016.58
http://dx.doi.org/10.1038/nrg.2016.58
http://www.ncbi.nlm.nih.gov/pubmed/27265362
http://dx.doi.org/10.1186/s12862-015-0546-3
http://www.ncbi.nlm.nih.gov/pubmed/26627847


69. Bazin E, Glemin S, Galtier N. Population size does not influence mitochondrial genetic diversity in ani-

mals. Science. 2006; 312: 570–572. doi: 10.1126/science.1122033 PMID: 16645093

70. Nabholz B, Glemin S, Galtier N. The erratic mitochondrial clock: variations of mutation rate, not popula-

tion size, affect mtDNA diversity across birds and mammals. BMC Evol Biol. 2009; 9: 54. doi: 10.1186/

1471-2148-9-54 PMID: 19284537

71. Fung T, Keenan K. Confidence intervals for population allele frequencies: the general case of sampling

from a finite diploid population of any size. PLoS One. 2014; 9: e85925. doi: 10.1371/journal.pone.

0085925 PMID: 24465792

72. Balloux F, Amos W, Coulson T. Does heterozygosity estimate inbreeding in real populations? Mol Ecol.

2004; 13: 3021–3031. doi: 10.1111/j.1365-294X.2004.02318.x PMID: 15367117

73. Santure AW, Stapley J, Ball AD, Birkhead TR, Burke T, Slate J. On the use of large marker panels to

estimate inbreeding and relatedness: empirical and simulation studies of a pedigreed zebra finch popu-

lation typed at 771 SNPs. Mol Ecol. 2010; 19: 1439–51. doi: 10.1111/j.1365-294X.2010.04554.x PMID:

20149098

74. Forstmeier W, Schielzeth H, Mueller JC, Ellegren H, Kempenaers B. Heterozygosity-fitness correlations

in zebra finches: microsatellite markers can be better than their reputation. Mol Ecol. 2012; 21: 3237–

49. doi: 10.1111/j.1365-294X.2012.05593.x PMID: 22554318

75. Potter S, Eldridge MDB, Taggart DA, Cooper SJB. Multiple biogeographical barriers identified across

the monsoon tropics of northern Australia: Phylogeographic analysis of the brachyotis group of rock-

wallabies. Mol Ecol. 2012; 21: 2254–2269. doi: 10.1111/j.1365-294X.2012.05523.x PMID: 22417115

76. Kearns AM, Joseph L, Toon A, Cook LG. Australia’s arid-adapted butcherbirds experienced range

expansions during Pleistocene glacial maxima. Nat Commun. 2014; 5: 1–11.

77. Balakrishnan CN, Edwards S V. Nucleotide variation, linkage disequilibrium and founder-facilitated spe-

ciation in wild populations of the zebra finch (Taeniopygia guttata). Genetics. 2009; 181: 645–60. doi:

10.1534/genetics.108.094250 PMID: 19047416

78. Zink RM, Barrowclough GF. Mitochondrial DNA under siege in avian phylogeography. Mol Ecol. 2008;

17: 2107–2121. doi: 10.1111/j.1365-294X.2008.03737.x PMID: 18397219

79. Russell-Smith J, Yates C, Edwards A, Allan GE, Cook GD, Cooke P, et al. Contemporary fire regimes

of northern Australia, 1997–2001: change since Aboriginal occupancy, challenges for sustainable man-

agement. Int J Wildl Fire. 2003; 12: 283.

80. Franklin DC. Evidence of disarray amongst granivorous bird assemblages in the savannas of northern

Australia, a region of sparse human settlement. Biol Conserv. 1999; 90: 53–68.

81. Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G. Quantifying the lag time

to detect barriers in landscape genetics. Mol Ecol. 2010; 19: 4179–4191. doi: 10.1111/j.1365-294X.

2010.04808.x PMID: 20819159

82. Epps CW, Keyghobadi N. Landscape genetics in a changing world: disentangling historical and contem-

porary influences and inferring change. Mol Ecol. 2015

83. Wright S. Evolution in Mendelian populations. Genetics. 1931; 16: 97–158. PMID: 17246615

84. Morin PA, Martien KK, Taylor BL. Assessing statistical power of SNPs for population structure and con-

servation studies. Mol Ecol Resour. 2009; 9: 66–73. doi: 10.1111/j.1755-0998.2008.02392.x PMID:

21564568

85. Krück NC, Innes DI, Ovenden JR. New SNPs for population genetic analysis reveal possible cryptic

speciation of eastern Australian sea mullet (Mugil cephalus). Mol Ecol Resour. 2013; 13: 715–725. doi:

10.1111/1755-0998.12112 PMID: 23634816

86. Willing E-M, Dreyer C, van Oosterhout C. Estimates of genetic differentiation measured by FST do not

necessarily require large sample sizes when using many SNP markers. PLoS One. 2012; 7: e42649.

doi: 10.1371/journal.pone.0042649 PMID: 22905157

87. Mills LS, Allendorf FW. The one-migrant-per-generation rule in conservation and management. Con-

serv Biol. 1996; 10: 1509–1518.

88. Wang J. Application of the one-migrant-per-generation rule to conservation and management. Conserv

Biol. 2004; 18: 332–343.

89. Lowe WH, Allendorf FW. What can genetics tell us about population connectivity? Mol Ecol. 2010; 19:

3038–51. doi: 10.1111/j.1365-294X.2010.04688.x PMID: 20618697

90. Hastings A. Complex interactions between dispersal and dynamics: lessons from coupled logistic equa-

tions. Ecology. 1993; 74: 1362–1372.

91. Wilson GA, Rannala B. Bayesian inference of recent migration rates using multilocus genotypes.

Genetics. 2003; 163: 1177–1191. PMID: 12663554

No Population Genetic Structure in the Gouldian Finch

PLOS ONE | DOI:10.1371/journal.pone.0167723 December 9, 2016 19 / 19

http://dx.doi.org/10.1126/science.1122033
http://www.ncbi.nlm.nih.gov/pubmed/16645093
http://dx.doi.org/10.1186/1471-2148-9-54
http://dx.doi.org/10.1186/1471-2148-9-54
http://www.ncbi.nlm.nih.gov/pubmed/19284537
http://dx.doi.org/10.1371/journal.pone.0085925
http://dx.doi.org/10.1371/journal.pone.0085925
http://www.ncbi.nlm.nih.gov/pubmed/24465792
http://dx.doi.org/10.1111/j.1365-294X.2004.02318.x
http://www.ncbi.nlm.nih.gov/pubmed/15367117
http://dx.doi.org/10.1111/j.1365-294X.2010.04554.x
http://www.ncbi.nlm.nih.gov/pubmed/20149098
http://dx.doi.org/10.1111/j.1365-294X.2012.05593.x
http://www.ncbi.nlm.nih.gov/pubmed/22554318
http://dx.doi.org/10.1111/j.1365-294X.2012.05523.x
http://www.ncbi.nlm.nih.gov/pubmed/22417115
http://dx.doi.org/10.1534/genetics.108.094250
http://www.ncbi.nlm.nih.gov/pubmed/19047416
http://dx.doi.org/10.1111/j.1365-294X.2008.03737.x
http://www.ncbi.nlm.nih.gov/pubmed/18397219
http://dx.doi.org/10.1111/j.1365-294X.2010.04808.x
http://dx.doi.org/10.1111/j.1365-294X.2010.04808.x
http://www.ncbi.nlm.nih.gov/pubmed/20819159
http://www.ncbi.nlm.nih.gov/pubmed/17246615
http://dx.doi.org/10.1111/j.1755-0998.2008.02392.x
http://www.ncbi.nlm.nih.gov/pubmed/21564568
http://dx.doi.org/10.1111/1755-0998.12112
http://www.ncbi.nlm.nih.gov/pubmed/23634816
http://dx.doi.org/10.1371/journal.pone.0042649
http://www.ncbi.nlm.nih.gov/pubmed/22905157
http://dx.doi.org/10.1111/j.1365-294X.2010.04688.x
http://www.ncbi.nlm.nih.gov/pubmed/20618697
http://www.ncbi.nlm.nih.gov/pubmed/12663554

	University of Wollongong
	Research Online
	2016

	Three molecular markers show no evidence of population genetic structure in the Gouldian finch (Erythrura gouldiae)
	Peri Bolton
	Andrea West
	Adam Cardilini
	Jennalee Clark
	Kimberly L. Maute
	See next page for additional authors
	Publication Details

	Three molecular markers show no evidence of population genetic structure in the Gouldian finch (Erythrura gouldiae)
	Abstract
	Publication Details
	Authors


	Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae)

