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Abstract 1 

We present an assessment of the impact of future climate change on two key drivers of fire risk in 2 

Australia, fire weather and fuel load. Fire weather conditions are represented by the McArthur 3 

Forest Fire Danger Index (FFDI), calculated from a 12-member regional climate model ensemble. 4 

Fuel load is predicted from net primary production, simulated using a land surface model forced by 5 

the same regional climate model ensemble. Mean annual fine litter is projected to increase across all 6 

ensemble members, by 1.2 to 1.7 t ha
-1

 in temperate areas, 0.3 to 0.5 t ha
-1

 in grassland areas and 0.7 7 

to 1.1 t ha
-1

 in subtropical areas. Ensemble changes in annual cumulative FFDI vary widely, from 8 

57 to 550 in temperate areas, -186 to 1372 in grassland areas and -231 to 907 in subtropical areas. 9 

These results suggest that uncertainty in FFDI projections will be underestimated if only a single 10 

driving model is used. The largest increases in fuel load and fire weather are projected to occur in 11 

spring. Deriving fuel load from a land surface model may be possible in other regions, when this 12 

information is not directly available from climate model outputs.  13 

14 
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1 Introduction 1 

Wildfires occur with sufficient and continuous plant biomass (fuel), fuel dry enough to burn, 2 

weather conducive to fire spread and an ignition source (Archibald et al. 2009; Bradstock 2010). 3 

Climate change effects on fire weather are frequently examined using indices that relate surface 4 

weather conditions to wildfire risk, such as the Canadian Forest Fire Weather Index system (FWI; 5 

van Wagner 1987) and the Australian McArthur Forest Fire Danger Index (FFDI; McArthur 1967; 6 

Luke and McArthur 1978). Since both are widely used in fire management agencies worldwide and 7 

can be calculated from standard climate model output, numerous studies have projected changes in 8 

FWI and FFDI (e.g. Williams et al. 2001; Bedia et al. 2013; Fox-Hughes et al. 2014; Lehtonen et al. 9 

2014). Other fire weather elements that have been related to climate change include atmospheric 10 

stability (Luo et al. 2013), synoptic patterns (Hasson et al. 2009; Grose et al. 2014) and modes of 11 

climate variability (Cai et al. 2009). By relating observed weather patterns to fire incidence or 12 

burned area, projected changes in weather have also been used as a proxy for the presence of fire 13 

and its impacts (e.g. Mori and Johnson 2013).  14 

 15 

In contrast to the direct use of meteorological variables for fire weather, predicting changes in 16 

biomass growth or fuel load requires a significant transformation of climate model data. The task is 17 

complicated by the need to include the potential response of vegetation to not just climate change, 18 

but also increasing carbon dioxide (CO2; Donohue et al. 2013). Increasing CO2 is thought to 19 

directly promote plant growth by increasing photosynthesis and decreasing stomatal conductance, 20 

although verification of these effects in large scale natural vegetation communities requires further 21 

work (Norby and Zak, 2011). There are multiple approaches to examining how climate change 22 

affects wildfire fuel loads. Statistical relationships have been developed between current vegetation 23 

patterns and meteorological variables (Matthews et al. 2012; Thomas et al. 2014; Williamson et al. 24 

2014). These relationships allow vegetation changes to be derived from projected changes in 25 
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meteorological variables, but do not account for direct CO2 effects. Process-based approaches to 1 

fuel load and vegetation include dynamic global vegetation models (DGVMs), landscape fire 2 

succession models and biogeochemical models. These models may represent direct influences on 3 

fuel amount, such as litterfall, decomposition and fire incidence, as well as indirect causes like 4 

phenology, primary productivity, heat and moisture. Process-based models can incorporate direct 5 

effects of CO2 on plant growth and water use efficiency (e.g. Jiang et al. 2013).  6 

 7 

Quantitative, integrated assessments of the impact of climate change on multiple fire drivers are 8 

relatively rare (Pechony and Shindell 2010; Kloster et al. 2012; Loepfe et al. 2012; Eliseev et al. 9 

2014). In Australia, Bradstock (2010) provides a qualitative assessment based on case studies of 10 

five fire regimes drawing on quantitative and qualitative data. Bradstock concludes that increasing 11 

temperatures and dryness may lead to divergent impacts on fire activity across Australia, with 12 

potential increases in temperate forests, but decreases in areas where fires are currently limited by 13 

fuel amount rather than fire weather conditions. The impact of climate change on multiple wildfire 14 

drivers in forested and grassland regions of southeast Australia was estimated by King et al. (2011, 15 

2012). Both studies examined potential changes in fire weather and fuel load, but only the grassland 16 

study included fuel moisture (curing) as well as direct CO2 effects, via a process-based grassland 17 

and water-balance model.  Each study projected increases in fire weather conditions and overall 18 

decreases in fuel load, which translated to increases in fire incidence and area burned in forests, but 19 

minimal changes in fire risk in grasslands.  20 

 21 

Our study aims to provide the first quantitative, regional assessment of the impact of projected 22 

changes in climate and CO2 on fuel load and fire weather in Australia. Fire weather projections are 23 

derived from a regional climate model, which is then used to force a land surface model from which 24 

fuel load is estimated (Section 2.4), incorporating both direct and indirect effects of elevated 25 
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atmospheric CO2. Variation in Regional Climate Models (RCMs) and their forcing Global Climate 1 

Models (GCMs) is a major source of uncertainty in climate impact projections (Lung et al. 2013). 2 

We aim to explore the uncertainty of these projections by using a 12-member ensemble, selected for 3 

its skill in representing the regional climate and the independence of individual ensemble members 4 

(Evans et al. 2014). By accounting for uncertainty in climate models and including direct CO2 5 

effects on fuel load, we provide a more complete estimate of future changes in key aspects of 6 

wildfire risk.  7 

 8 

2 Materials and Methods 9 

Our study combines new and pre-existing regional climate and land surface model simulations 10 

(Figure 1).  11 

 12 

2.1 Regional climate model simulations 13 

We used the Weather Research and Forecasting (WRF) modelling system (Skamarock et al. 2008), 14 

which has been extensively evaluated and performs well in terms of regional Australian climate 15 

(Evans and McCabe 2010) and fire weather (Clarke et al. 2013). The simulations used in this study 16 

are drawn from the NSW and ACT Regional Climate Modelling (NARCliM) project (Evans et al. 17 

2014). 18 

 19 

NARCliM uses the Advanced Research WRF version 3.3. Four GCMs are downscaled using three 20 

configurations of WRF resulting in a 12 member ensemble (Figure 1). A three step GCM selection 21 

process was used. First, a large set drawn from the 3
rd

 Coupled Model Intercomparison Project 22 

(CMIP3; Meehl et al. 2007) was evaluated in order to remove the worst performing models. 23 

Second, better performing models were ranked according to their independence (Bishop and 24 

Abramowitz 2013). Last, GCMs were placed within the future change space for temperature and 25 
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precipitation and the most independent models spanning that space were chosen (Online Resource 1 

1). RCMs were selected similarly. A large set consisting of different physical parameterisations was 2 

evaluated in order to remove the worst performing RCMs (Evans et al. 2012). From the better 3 

performing models, a subset was chosen such that each chosen RCM is as independent as possible 4 

from the other RCMs. Although partial bias correction of FFDI is possible (Fox-Hughes et al. 5 

2014), we opted to maintain physical consistency in model dynamics by using direct model output. 6 

We address model bias via ensemble design and reporting of change values, rather than only 7 

absolute values. 8 

 9 

GCMs were downscaled at hourly resolution in two time slices, 1990–2008 (‘present’) and 2060–10 

2078 (‘future’). For future projections the SRES A2 emissions scenario is used (IPCC 2000), a 11 

reasonable choice given emissions continue to track the high end of emissions scenarios 12 

(Friedlingstein et al. 2014). RCMs were run at 50 km grid resolution.  13 

 14 

2.2 Land surface model simulations 15 

Fuel load projections are developed from the Community Atmosphere-Biosphere Land Exchange 16 

(CABLE, version 2.0) land surface model, which is designed to simulate fluxes of energy, water, 17 

and carbon at the land surface (Wang et al. 2011). CABLE has been extensively tested against 18 

observational data (Abramowitz et al. 2008; Wang et al. 2011). CABLE can be run with prescribed 19 

meteorology (e.g. Kala et al. 2014), or coupled in a global or regional climate model. CABLE is a 20 

key part of the Australian Community Climate Earth System Simulator (ACCESS), a fully coupled 21 

earth system science model and contributor to the Fifth Assessment Report of the 22 

Intergovernmental Panel on Climate Change (IPCC). CABLE uses a small set of fixed plant 23 

functional types to represent vegetation, such as evergreen needleleaf, deciduous broadleaf, savanna 24 

and grassland. 25 
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 1 

CABLE was used within the NASA Land Information System version 6.1 (LIS-6.1; Kumar et al. 2 

2008) at 25 km grid resolution. 12 offline simulations were run at half hourly time resolution, each 3 

forced with meteorological data from one of the 12 regional climate model ensemble members 4 

described above (Figure 1). The emissions scenarios used in WRF were also used with CABLE. 5 

Within CABLE Leaf Area Index (LAI) is prescribed from the mean of a monthly LAI ensemble 6 

based on the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product and weather 7 

observations (Kala et al. 2014).  8 

 9 

2.3 Fire weather estimation 10 

Following Noble et al. (1980), FFDI is computed as  11 

FFDI = 2 × exp(0.987 × ln(DF) − 0.0345 × H + 0.0338 × T + 0.0234 × V − 0.45) (1) 

 12 

where DF is the drought factor, T is the daily maximum temperature (°C), V the 3pm wind speed 13 

(km h
-1

) and H the 3pm relative humidity (%). The drought factor is an estimate of fuel dryness 14 

(Griffiths 1999) and is computed using the Keetch-Byram Drought Index (Keetch and Byram 1968) 15 

based on total daily rainfall. Daily FFDI was calculated from the 12 member regional climate model 16 

ensemble. We lack the curing data needed to calculate the related Grassland Fire Danger Index 17 

(Noble et al. 1980). Although the Forest and Grassland indices behave similarly, results in 18 

Australia’s extensive grasslands therefore remain more uncertain. 19 

 20 

2.4 Fuel load estimation 21 

Fuel load is calculated from net primary productivity (NPP), since NPP represents the rate of 22 

production of vegetation. NPP has been equated to litter production (Matthews 1997) and is 23 

strongly correlated with aboveground biomass (Kindermann et al. 2008).  24 
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 1 

The relationship between fuel load and NPP is derived from the BIOS2 modelling environment, 2 

which simulates both quantities (Figure 1; Haverd et al. 2013). BIOS2 simulates the energy, water 3 

and carbon balances of the Australian continent at fine spatial (0.05°, ~5 km) and temporal (hourly) 4 

resolution. Central to BIOS2 is the CABLE model, resulting in a similar representation of NPP by 5 

BIOS2 and CABLE v2.0. However, in BIOS2 the soil and carbon modules are replaced by the SLI 6 

soil model (Haverd and Cuntz 2010) and the CASA-CNP biogeochemical model (Wang et al. 7 

2010). Further, BIOS2 simulations are constrained by observations of streamflow, 8 

evapotranspiration, net ecosystem production and litterfall. BIOS2 was run from 1990 to 2011 using 9 

meteorological forcing from the Bureau of Meteorology’s Australian Water Availability Project 10 

data set (AWAP) (Jones et al. 2009). The use of observational constraints along with the best 11 

available gridded weather observations for Australia means the simulations BIOS2 are likely the 12 

best available continental estimates of fuel load in the absence of high quality, long term, 13 

landscape-scale observations. 14 

 15 

The Pearson product-moment correlation coefficient was used to calculate the relationship between 16 

annual NPP and annual fuel load in BIOS2 for the period 1990 to 2011. CASA-CNP divides carbon 17 

into plant, litter and soil pools, and litter into metabolic, structural and coarse woody debris pools 18 

(Wang et al. 2010). Taken together, the metabolic and structural litter pools are referred to as fine 19 

litter, which we use to represent fuel load. Where the correlation between NPP and fine litter was 20 

significant (p < 0.05), fine litter was related to NPP using ordinary least squares linear regression. 21 

Although there is no physical reason why this relationship should be strictly linear, the correlation 22 

was generally high with no clear evidence for a non-linear relationship. Since the link between fine 23 

litter and NPP is statistical, this model cannot account for mechanistic changes in litterfall and litter 24 

decomposition (e.g. carbon:nitrogen ratio), which mediate the translation of primary productivity 25 
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into fuel load. However, the model of NPP in CABLE is mechanistic and is sensitive to changes in 1 

climate forcing and CO2 concentration (Wang et al. 2011). Our model does not include fire so fuel 2 

load values should be considered steady state (equilibrium), albeit an equilibrium that fluctuates in 3 

response to NPP.  4 

 5 

To understand regional variations, the same methods were applied to model grid cells averaged over 6 

a modified Köppen classification, which separates Australia into 6 mostly contiguous and 7 

climatically similar regions (Figure 2; Stern et al. 1999). The major Köppen zones are: equatorial, 8 

tropical, subtropical, desert, temperate and grassland. They capture general trends in vegetation 9 

across Australia, but necessarily omit important vegetation differences between fire regimes within 10 

each region. The lag-1 correlations between NPP and fine litter were significant (p < 0.05) for all 6 11 

climate zones with the highest correlations in the subtropical (r
2
 = 0.86), temperate (r

2
 = 0.80) and 12 

grassland (r
2
 = 0.78) climate zones (Online Resource 2).  13 

 14 

The linear models for each climate zone and model grid cell were then applied to the present study, 15 

allowing fuel load (g C m
-2

) to be calculated from NPP simulated by the 12 member land surface 16 

model ensemble (Figure 1). Load (t ha
-1

) is obtained by assuming a carbon fraction of 47% (Roberts 17 

et al. 2008). We focus on the temperate, grassland and subtropical zones because of the high 18 

correlation between NPP and load in these regions. Model grid cells without a significant lag-1 19 

correlation between NPP and fine litter are not shown (6% of all cells; 23% of equatorial and 20 

tropical climate zone cells). 21 

 22 

2.5 Fuel load evaluation 23 

For the purposes of model evaluation a separate CABLE simulation was run, forced by the MERRA 24 

reanalysis (Rienecke et al. 2011) instead of the NARCliM ensemble. The modelled fuel load values 25 
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were evaluated over 31 Interim Biogeographic Regions of Australia (bioregions) in southeast 1 

Australia (Figure 3a; Hutchinson et al., 2005). Bioregions define zones of similar geology, landform 2 

and biota. Given their spatial extent and variety of vegetation types, the bioregion-based 3 

observations from Price et al. (2015) likely represent the best available validation data for our 4 

model. A second evaluation was conducted using the empirical model of Thomas et al. (2014), 5 

which links fuel in four tree-dominated vegetation types in NSW with observed gradients of 6 

temperature and rainfall. 7 

 8 

3 Results 9 

Our model tends to underestimate fuel amount but fits the observations reasonably well (r
2
 = 0.75; 10 

Figure 3b). For example, while observed maximum fuel loads in forested bioregions range from 11 11 

to 19 t ha
-1

, modelled values range from 5.8 to 10.3 t ha
-1

 (Table 1). Our model strongly 12 

underestimated empirically-derived fuel load estimates in wet sclerophyll forest but performed 13 

reasonably in dry sclerophyll forest, rainforest and grassy woodland (Online Resource 3). Overall 14 

the model performs acceptably given our aim of exploring broad spatiotemporal trends in fuel load. 15 

 16 

Based on this model, mean continental fine litter is projected to increase 0.35 to 0.56 t ha
-1

 (11% to 17 

20%) by 2060-2078 (Figure 4a), with more fine litter in the lowest future ensemble member (3.28 t 18 

ha
-1

) than the highest present ensemble member (3.22 t ha
-1

). The spread in continental mean annual 19 

fine litter depends strongly on choice of GCM and RCM. Those models simulating the lower 20 

(higher) values of fine litter in the present remain the lower (higher) models in the future. RCM3 21 

consistently simulates the highest litter amounts, illustrating the importance of RCM physics 22 

settings. 23 

 24 
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The sign and magnitude of changes in continental mean annual cumulative FFDI (Figure 4b) are 1 

strongly model dependent, in contrast to Figure 4a. Ensemble members driven by the ‘wetting’ 2 

CCCMA3.1 and MIROC3.2 (Online Resource 1) show little change and occasionally small 3 

decreases. Ensemble members driven by the drying ECHAM5 and CSIRO-Mk3.0 project large 4 

increases in FFDI. Overall ensemble mean FFDI increases from 5274 to 5816 (10%). Selecting only 5 

ECHAM5 and CSIRO-Mk3.0, the range of increases is 10 to 23%, while selecting only CCCMA3.1 6 

and MIROC3.2 gives a range of -2 to 15% (excluding outlier MIROC3.2/RCM3 gives a range of -2 7 

to 2%). These results highlight the dangers of using a single GCM for estimating future changes in 8 

FFDI. RCM3 is consistently at the lower end of ensemble simulated FFDI (in contrast to its 9 

placement at the upper end of simulated litter), again demonstrating the importance of RCM physics 10 

settings.  11 

 12 

The spatial patterns of projected changes in mean annual fine litter are very similar between 13 

models, regardless of the degree of change (Figure 5a-b; see Online Resource 4 for all 12 ensemble 14 

members). All models show increases in fine litter in the southeast and northeast of Australia, 15 

particularly along the coast. Overall, our results consistently show increasing equilibrium fuel loads 16 

(i.e. fine litter) in the future.  17 

 18 

In contrast, the overall pattern of change in annual cumulative FFDI is strongly divergent, with 19 

ensemble members forming two groups, some with substantial increases and others with modest 20 

decreases (Figure 5c-d). In the lowest ensemble member, little change in FFDI is projected across 21 

the continent. The highest ensemble member projects increases ranging from 200 to 600 in the 22 

southeast and extending along the coast to the northeast, to over 1800 over parts of northwest 23 

Australia. Again, this highlights the dangers of using single GCMs for estimating future FFDI since 24 

the choice of model determines the sign and magnitude of the overall change. The overall spatial 25 
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pattern of change in FFDI is most strongly dictated by GCM, with RCMs modulating the magnitude 1 

of these changes (Online Resource 5).  2 

 3 

There are strong seasonal patterns in projected changes in fine litter and FFDI. Increases in fine 4 

litter are projected every month in temperate, grassland and subtropical zones, with the highest 5 

increases in mid to late spring (Figure 6a-c; actual values in Online Resources 6). In contrast to the 6 

fuel load results, monthly values of mean daily FFDI show both decreases and increases in all three 7 

zones (Figure 6d-f; actual values in Online Resource 7). However, the magnitude of increases in 8 

FFDI is much greater than that of decreases. As with fine litter, in all three climate zones the largest 9 

projected increases in FFDI are projected to occur in mid to late spring (October and November). 10 

Where decreases in FFDI are projected, they are greatest from late summer to early autumn. While 11 

our focus is on mean FFDI, the strongly divergent projections also apply to extreme values. For 12 

instance, the projected change to the number of days each year where FFDI exceeds 50 varies 13 

widely in temperate (0.2-1.9), grassland (0.5-10.0) and subtropical (0.0 to 1.8) areas.  14 

 15 

4 Discussion 16 

Our results suggest that projected changes in climate and atmospheric CO2 will increase fuel load in 17 

both forested and grassland areas of Australia by the latter part of the 21
st
 century, independent of 18 

model choice. In contrast, changes in fire weather are more model-dependent. The high end of 19 

ensemble projections represents substantial increases in fire weather conditions, while the lower end 20 

represents little change. These results suggest that FFDI projections are strongly dependent on the 21 

choice of GCM, with RCM choice modulating these effects. Across all ensemble members, the 22 

biggest increases in fire weather conditions are projected to occur in late spring, suggesting a longer 23 

(stronger) fire season in areas where spring is shoulder (peak) season. However, the impact of these 24 

changes will strongly depend on the relative importance of fuel and weather in regional fire 25 
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regimes. Projections of increasing fuel load are potentially more significant in grassland regions, 1 

where fire incidence tends to be load-limited, while increases in fire weather conditions may be 2 

more significant in forested areas, where fire incidence is limited more by weather conditions that 3 

dry fuel out enough for it to burn (Bradstock 2010; King et al. 2013). Where both fire weather and 4 

fuel load increase, rate of fire spread can also be expected to increase (McArthur 1967). 5 

 6 

These fire weather projections, particular in temperate areas, are in broad agreement with a range of 7 

previous studies which have projected increased wildfire risk from weather, particularly in spring 8 

(Cai et al. 2009; Hasson et al. 2009; Matthews et al. 2012; Fox-Hughes et al. 2014). While our 9 

study focuses on average conditions, similar changes occur at the upper end of the FFDI 10 

distribution, when fires that occur are most difficult to control (Clarke et al. 2012). Perhaps 11 

surprisingly, fire weather is often projected to remain stable or increase modestly in a subset of 12 

regions, seasons and models (Flannigan et al. 2009) – even in temperate areas (Clarke et al. 2011; 13 

Lucas et al. 2007). Unlike most studies, we intentionally maximised the range of plausible future 14 

changes in temperature and precipitation, hence our spread of FFDI values is not unexpected. One 15 

exception is CSIRO & Bureau of Meteorology (2015), which used three GCMs but found virtually 16 

no decreases in FFDI, possibly because none of these GCMs showed substantial increases in 17 

precipitation.  18 

 19 

Our projections of uniform and widespread increases in fuel load differ from previous assessments 20 

for Australia. King et al. (2012) projected mostly decreases in grassy fuel load in southeast 21 

Australia, with CO2 fertilisation insufficient to compensate for changing temperature and rainfall. 22 

Matthews et al. (2012) and Penman and York (2010) projected decreases in forest fuel load at two 23 

forested sites in southeast Australia, although the decreases reported by Penman and York (2010) 24 

were not significantly different to present values. Neither of these studies factored in CO2 25 
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fertilization. However, all three studies used GCMs projecting an overall decrease in rainfall, in 1 

contrast to our ensemble of GCMs spanning both increases and decreases in rainfall.  2 

 3 

Improving certainty in regional rainfall projections may not clarify all vegetation trends, due to 4 

differences in the response of major vegetation types to precipitation (Thomas et al. 2014; Gibson et 5 

al. 2014). The complex relationships observed between climate and vegetation type contrast with 6 

the near uniform changes in vegetation amount projected in our study. A possible reason is the CO2 7 

fertilisation effect in land surface models, which has elsewhere been found to be the major cause of 8 

modelled increases in gross primary productivity (NPP plus autotrophic respiration), strongly above 9 

rainfall or temperature and regardless of climate zone (Raupach et al. 2013). However, modelled 10 

CO2 fertilisation effects still require validation in mature Australian native vegetation and the 11 

degree to which plant growth is nutrient-limited, rather than CO2 limited, is a major question 12 

(Norby and Zak 2011). A further caveat is that plant functional type distribution in our model 13 

cannot respond to climate change (e.g. Gibson et al., 2014). Nevertheless, the model captures 14 

observed variation across multiple fuel types and climatic zones, albeit with consistent 15 

underestimates. This may relate to biases in BIOS2, which we used to link NPP with fine litter and 16 

which underpredicts fine litter in cool temperate and several forested ecosystems (Haverd et al., 17 

2013).  18 

 19 

In conclusion, we have provided the first regional assessment of the combined effects of climate 20 

change and increasing CO2 on fuel load levels and fire weather conditions in Australia. In the 21 

forests of temperate and subtropical climate zones, where fuel moisture is a greater limit of overall 22 

fire activity, our results suggest the possibility of both little change and strong increases in wildfire 23 

risk, due to the wide spread in fire weather projections. In contrast, fuel load is consistently 24 

projected to increase, which could increase wildfire risk in grasslands and other areas where fuel 25 
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amount tends to limit fire incidence. Refining this simple model to better reflect the complexities of 1 

Australian vegetation types, particularly in northern Australia, and improving regional-scale rainfall 2 

predictions will lead to a better understanding of long-term changes in Australian fuel load and fire 3 

weather.  4 

 5 
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Figure captions 14 

Fig 1 Summary of methodology. FFDI is calculated from a regional climate model ensemble 15 

spanning present (1990-2008) and future (2060-2078) periods. The same ensemble supplies the 16 

meteorological forcing to CABLE, yielding NPP. Based on the relationship between fine litter and 17 

NPP in BIOS2, fine litter is calculated from NPP in CABLE. 18 

Fig 2 Köppen classification major climate zones 19 

Fig 3 a) Southeast Australian bioregions b) Modelled fuel load compared to observations in 31 20 

bioregions shown in 3a. 21 

Fig 4 Ensemble mean annual continental (a) fine litter and (b) cumulative FFDI for present and 22 

future periods. Whiskers show the ensemble range, box shows the quartiles. Individual GCM/RCM 23 

combinations are represented by marker (GCM) and colour (RCM).  24 
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Fig 5 Change in mean annual (a) fine litter and (b) cumulative FFDI from the lowest and highest 1 

ensemble members, calculated from the average of all grid cell changes  2 

Fig 6 Change in mean monthly (a) fine litter load and (b) FFDI in temperate, grassland and 3 

subtropical climate zones. Unbroken line shows multimodel mean, dotted lines show ensemble 4 

minimum and maximum values. 5 

 6 

Electronic supplementary material (ESM) captions 7 

ESM 1 Change from 1990-2009 to 2060-2079 for the GCMs considered, numbered by 8 

independence rank (from Evans et al. 2014). Models selected are MIROC3.2-medres (1), ECHAM5 9 

(5), CCCM3.1 (9) and CSIRO-Mk3.0 (12). 10 

ESM 2 Scatterplots of BIOS2 mean annual NPP and mean annual fine litter from the same year 11 

(left) and the next year (right), in each climate zone. 12 

ESM 3 Modelled fuel load compared to empirical estimates for tree-dominated vegetation types in 13 

NSW. 14 

ESM 4 Change in mean annual fine litter from each ensemble member 15 

ESM 5 Change in mean annual cumulative FFDI from each ensemble member 16 

ESM 6 Present and future mean monthly fine litter (a-c) and FFDI (d-f) in temperate, grassland and 17 

subtropical climate zones. Unbroken line shows multimodel mean, dotted lines show ensemble 18 

minimum and maximum values. 19 
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Table 1 Modelled load statistics compared to southeast Australian bioregions.  

Bioregion Vegetation Type Observed fuel  

max (t/ha)* 

Modelled fuel 

mean (t/ha) 

Bias RMSE 

Australian Alps Eucalypt Forest 19 9.6 ± 0.2 9.4 9.5 

Brigalow Belt South Eucalypt Woodland 4.7 4.0 ± 0.1 0.7 1.7 

Broken Hill Complex Chenopod 2.4 0.7 ± 0.0 1.7 1.7 

Central Ranges Acacia Woodland 4.7 1.1 ± 0.0 3.6 3.7 

Channel Country Chenopod 2.4 0.7 ± 0.0 1.7 1.7 

Cobar Peneplain Eucalypt Woodland 10 2.0 ± 0.1 8.0 8.0 

Darling Riverine Plains Eucalypt Woodland 10 2.6 ± 0.1 7.4 7.5 

Eyre Yorke Block Mallee 8.7 3.2 ± 0.1 5.5 5.7 

Flinders Lofty Block Chenopod 2.38 1.8 ± 0.1 0.6 2.0 

Furneaux Eucalypt Forest 16.4 11.0 ± 0.7 5.4 5.8 

Gawler Acacia Woodland 4.5 0.6 ± 0.0 3.9 3.9 

Great Victoria Desert Acacia Woodland 0 1.0 ± 0.0 -1.0 1.1 

Kanmantoo Eucalypt Woodland 10 7.4 ± 0.3 2.6 2.8 

Mulga Lands Acacia Woodland 4.5 1.0 ± 0.0 3.5 3.5 

Murray Darling Depression Mallee 5.8 2.4 ± 0.1 3.4 3.9 

Nandewar Eucalypt Forest 16.4 5.8 ± 0.2 10.6 10.7 

Naracoorte Coastal Plain Eucalypt Woodland 10 8.0 ± 0.3 2.0 3.3 

New England Tablelands Eucalypt Forest 16.4 10.3 ± 0.3 6.1 6.5 

NSW North Coast Eucalypt Forest 19 10.1 ± 0.2 8.9 9.1 

NSW South Western Slopes Eucalypt Woodland 4.7 6.9 ± 0.1 -2.2 2.7 

Nullarbor Chenopod 2.4 0.6 ± 0.0 1.8 1.8 

Riverina Chenopod 2.4 3.8 ± 0.1 -1.4 2.3 

Simpson Strzelecki Dunefields Hummock Grassland 10 1.0 ± 0.0 9.0 9.0 

South East Coastal Plain Eucalypt Forest 16.4 9.1 ± 0.3 7.3 7.6 

South East Corner Eucalypt Forest 16.4 9.6 ± 0.2 6.8 7.0 

South Eastern Highlands Eucalypt Forest 19 9.4 ± 0.1 9.6 9.8 

South Eastern Queensland Eucalypt Forest 11 7.8 ± 0.2 3.2 3.8 

Southern Volcanic Plain Wetlands 19 9.1 ± 0.2 9.9 10.0 

Stony Plains Chenopod 2.4 0.4 ± 0.0 2.0 2.0 

Sydney Basin Eucalypt Forest 16.4 9.7 ±  0.2 6.7 7.1 

Victorian Midlands Eucalypt Forest 16.4 8.1 ± 0.2 8.3 8.5 

 

* values are from Price et al. (2015)  



Supplementary Table 1 Modelled load statistics compared to tree-dominated vegetation types in NSW.  

Vegetation type (Keith 2004) Empirically modelled 

fuel max (t/ha)* 

Modelled fuel 

mean (t/ha) 

Bias RMSE 

Dry Sclerophyll Forest 10.8 8.2 ± 0.0 2.6 3.8 

Wet Sclerophyll Forest 20.2 10.0 ± 0.0 10.2 10.4 

Rainforest 8.1 10.0 ± 0.0 -2.0 3.0 

Grassy Woodland 8.6 8.5 ± 0.0 0.1 3.0 

* values are from Thomas et al. (2014) and are based on statistical models relating site-based observations to temperature and rainfall 
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