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Distributed Optimisation for Traffic Management

Tran Viet Nhan Nghi

A Thesis for Master of Computer Science - Research

School of Computer Science and Software Engineering
University of Wollongong

ABSTRACT

This thesis reports on the development of a multi-agent approach to distributed traffic
optimisation. In particular, I propose a solution to the dynamic traffic assignment
problem in a decentralised manner and then I introduce the new infrastructurelessly
decentralised traffic information system. By using this system, each vehicle agent
is able to update the current traffic condition through vehicle-to-vehicle communica-
tion. For solving dynamic traffic assignment problem, I propose a novel completely
decentralised multi-agent coordination algorithm, which is a synergy between dynamic
distributed constraint optimisation problem (DynDCOP) algorithm and auction. Us-
ing this algorithm, vehicle agent is able to reduce its individual travel time as well
as total travel time of overall system. The simulation is carried out in order to eval-
uate different traffic planning algorithms that include decentralised uncoordination,
centralised coordination and decentralised coordination algorithms. Finally, the ex-
perimental results show that the performance of proposed decentralised coordination
algorithm is high in comparison to centralised coordination algorithm.

KEYWORDS: multi-agent system, dynamic traffic assignment, dynamic
distributed constraint optimisation problem, distributed traffic management
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Chapter 1

Introduction

Firstly, this chapter provides my motivation in conducting research on real-time traf-

fic management. Secondly, it gives a brief overview of the research work related to

my topic. Finally, it provides an outline of my thesis.

1.1 Motivation

The last two decades have witnessed a huge growth in global urban population. Ac-

cording to the urbanisation study of World Health Organization (WHO) [30], the

global population lived in an urban area increased from less than 40% in 1990 to more

than 50% in 2010. Moreover, by middle of the 21st century, it is predicted that the

urban population in 2050 will be 5.2 billion increasing by more then twice in 2009 (2.5

billion).

Rapid growth of urban population is the major cause for the dramatic increase

in traffic volume on road segments. Furthermore, the traffic demand generated by

commuters for everyday life activities typically greater than the available road capacity

(supply). Thus, it results in traffic congestion [2] that most likely occurs in major cities

with large population. According to the Asian Development Bank, the cost of traffic

congestion goes up to 2-5% of gross domestic product (GDP) of countries every year

1
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due to lost time and higher transport costs. Hence, the traffic congestion problem

has received much attention of different communities and organisations ranging from

academic researchers to industry practitioners and government authorities.

Traffic congestion can be reduced by either increasing supply, or by improving

traffic management. With first approach, creating new routes or adding more capacity

to existing road segments are feasible in practice. However, according to Braess’s

paradox [9], adding more roads to an existing transportation network might, in turn,

lead to longer travel times of individual travellers. Besides first approach, the second

approach can be realised using the current high technology developments for traffic

management.

For the past five years, there has been a rapid rise in the use of Intelligent Trans-

portation System (ITS) [3, 1, 17]. ITS is a general term for integrated applications

of communication and information technologies for alleviating traffic congestion. By

using a wide variety of traffic management strategies, ITS assists individual travellers

in making better, more coordinated and intelligent decisions.

Since 1970s, Dynamic Traffic Assignment (DTA) [32, 22, 12] has been used in-

tensively by transportation research community for studying the dynamic of trans-

portation system for transportation planning. The goal of DTA is assigning routes to

individual travellers at different time points of simulation in order to transform traffic

system state to approximate dynamic user equilibrium (DUE) state. At DUE state,

no individual travellers have any incentive to change their current routes and the traf-

fic system achieves social optimum (SO). SO means that the total travel time of all

individual travellers is minimised and their current route choices are optimal.

Simulation-based DTA model [10, 18] has become an efficient approach for solving

DTA problem by combining simulation and iteration algorithms for finding the opti-

mal routes converging approximately traffic system state to DUE state. In simulation-
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based DTA model, the process of computing the optimal routes for all individual

travellers takes place in a centralised manner. Because of centralisation characteristic

and the lack of optimisation techniques, simulation-based DTA approach is inappro-

priate for real-time application and large-scale transportation network. Obviously, the

equilibrium-searching algorithm may iterate indefinitely for finding the optimal routes

because of the lack of exploiting any optimisation technology. Moreover, when using

centralised processing system, the algorithm’s speed of converging to DUE state is rel-

atively slow especially for the transportation network with a extremely large number

of vehicles.

Inspired by the important applications of DTA and the aforementioned disadvan-

tages of simulation-based DTA models, I propose the solution to DTA problem in a

completely decentralised manner. The traffic system described in solution to DTA

problem is a multi-agent system, where vehicles are modelled as autonomous vehicle

agents. These agents are capable of making their own decisions on route selection in

order to cooperatively reduce total travel time by vehicle-to-vehicle (V2V) communi-

cation in a completely decentralised manner.

The research topic of this thesis is closely related to the work described in honours

thesis of Lee [25]. However, the work of this thesis significantly extends Lee’s work on

peer to peer coordinated traffic planning by making the followings contributions:

• Build the model of DTA problem as DynDCOP model,

• Designing the infrastructurelessly decentralised traffic information system,

• Proposing the completely decentralised multi-agent coordination algorithm for

solving DTA problem using SBDO algorithm and auction,

• Conducting experiments for evaluating proposed coordination algorithm with

different planning algorithms.
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1.2 Related Work

In [39], Yang and Recker modelled complete distributed traffic information system that

operates without any centralised control and allows dynamic vehicle online routing.

Vehicles in this system contribute to produce real-time traffic information by generat-

ing and exchanging local traffic information sensed by themselves through vehicle-to-

vehicle communication. Based on this real-time traffic information, vehicles make their

own in-trip rerouting decisions to alternative routes on the basis of rational-boundary

and binary-logit models. The result of simulation shows that vehicles with the dynamic

rerouting capability are able to reduce not only their own individual travel time, but

also total travel time of all vehicles within the system. However, the limitation of

this model is that the proposed in-trip rerouting strategy might cause the traffic jams

switch from one road to another. Every vehicle, which is in congested situation, will

behave in the same way based on its local view of overall system and therefore the

total travel time might not be improved.

Bazzan et al. [4] proposed centralised and decentralised approaches for computing

routes for vehicles. The decentralised approach allows vehicles to reroute when they

perceive that actual travel time is greater then expected time. Based on its own traffic

information, vehicle calculates new route and communicate it to another vehicles who

are on the links of new route in order to receive the cost for travelling these links. If the

cost of new route is appropriate, vehicle will change their current route to new route,

otherwise it will replan again and repeat this process. It is obvious from this approach

that the costs, which are requested by vehicles from another ones for evaluating their

new routes, become obsolete and inaccurate. Moreover, this approach has the same

above-mentioned limitation in [39] as the traffic jams will occur in another road that

many vehicles travel through after performing re-routing process.

For managing traffic in decentralised manner, DCOP techniques have been applied
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extensively in [31] [34] [14] [23]. Ottens and Faltings [31] have used Asynchronous

Open DPOP, a complete asynchronous DCOP algorithm developed on the basis of

DPOP [33], for solving truck task coordination problem (TTC). TTC is the multi-

agent planning problem that consists of set of trucks and a set of packages that need

to be picked up and delivered to customers. Truck agents need to coordinate their

plan in order to decide which truck agent will be responsible for packages that locate

in the overlapping areas between two or more truck agents.

In [34], hybrid method of coalition formation and DCOP algorithm OptAPO [27]

has been presented for resolving conflict between convoys travelling road network with

limited resources such as road capacity. The solution of convoy movement problem is

the set of routes that must be satisfied the condition that the number of convoys on a

link does not exceed its capacity. OptAPO algorithm also has been used in Bazzan’s

work for coordinating traffic lights in [14] and different DCOP algorithms [28] [27] [33]

have been evaluated in order to measure their performances for solving traffic light

coordination in [23].

Despite of the fact that there have been increasing concerns about the developments

of decentralised traffic management systems associated with technologies from control

engineering and computer science, all the existing approaches face the requirements

for efficiency, scalability (large-scale network of agents) and adaptivity to dynamically

changing environment.

1.3 Thesis Structure

This thesis is organised as follows:

• Chapter 2 provides the background of research topic,

• Chapter 3 describes the distributed traffic management problem and the decen-
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tralised multi-agent coordination algorithm for solving it,

• Chapter 4 presents the experimental results of comparing different planners using

traffic simulation,

• Chapter 5 summarises the work of this thesis and discusses about future work.



Chapter 2

Background

This chapter provides a background on applications of agent technology in traffic man-

agement, dynamic traffic assignment and dynamic distributed constraint optimisation

problem.

2.1 Applications of Agent Technology in Traffic Man-

agement

Traffic congestion is not trivial problem for solving in modern society because of the

dynamics and uncertainty to predict in order to alleviate it. For reducing the traf-

fic congestion, road authority could increase the capacity of existing transportation

infrastructure by adding more roads, lanes. Thus, this requires a lot of money, time

for designing and evaluating the efficiency of the new designed transportation infras-

tructure. However, another potential method to avoid traffic congestion is increasing

the efficiency of existing transportation infrastructure by applying techniques from

computer science field to traffic management.

For the past five years there has been a rapid rise in the use of agent-based technol-

ogy in traffic management [5] [11] [15]. Autonomic, collaborative, mobile and reactive

features make intelligent agents prominent from the point of view of traffic and trans-

7
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portation. The automated traffic control and management system can be implemented

because the autonomy of intelligent agents in operating without the direct involvement

of humans.

Recently, the vehicular ad-hoc network (VANET) has been developed and stan-

dardised in order to support the vehicle-to-vehicle and vehicle-to-infrastructure com-

munication. Therefore, intelligent agents in transportation have the ability to collab-

orate and coordinate in order to optimise global utility, e.g. total travel time.

Moreover, intelligent agents are capable of adapting to dynamically changing en-

vironment by responding to these changes in a timely fashion. Therefore, intelligent

agents can be used in developing an agent-based transportation system based on real-

time traffic conditions. Multi-agent system provides techniques and methods that have

been utilised in many sides of traffic and transportation including the followings:

• Modeling and simulation,

• Intelligent traffic control and management,

• Dynamic routing and congestion management,

• Driver-infrastructure collaboration,

• Decision support.

Real-time traffic services including real-time traffic information and dynamic route

guidance have been used widely and become a fast-growing business in the last few

years. According to iSuppli Corp [26], the overall profit produced by real-time traffic

services will increase rapidly from $268 million in 2008 to $4.7 billion in 2014. More-

over, the number of worldwide customers using these services will rise to 184.9 million

in 2014 from 18.5 million in 2008. Companies providing such services include TomTom

with commercial TomTom HD Traffic service [35] and free Google Maps [19]. With
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the support of real-time traffic information, users utilising these services are advised

on selecting the best route through traffic jams among the set of alternative optimal

routes returned by central server on users’s queries.

For the accuracy of traffic information supplied to the users, probe data collected

from cell phones and navigation devices is used to calculate traffic density and to

predict traffic jams. According to TomTom HD Traffic’s description, probe data is

accumulated from 80 million anonymous travelling mobile phone users and 1 million

users of TomTom services and consequently more than 1 billion probe data is collected

every day. The more customers employ TomTom HD Traffic service, the higher the

quality of services they get. In other words, commuters on the road could be benefit

of reduction of 15% of total travel time by taking advantage of sending their routes to

a central server and receiving optimal route from it.

Despite the fact that current real-time traffic services provide realistic support for

drivers to make route decisions based on their local view of the overall system, the

efficiency and performance of route guidance systems that use these services have to

be thoroughly analysed and evaluated. The result of these analysis and evaluation

might be a valuable source of inspiration for us to propose a novel way of information

sharing, traffic congestion alleviating and travel time reduction.

First, the limitations and issues of current real-time traffic services using by real-

time traffic guidance systems are followings:

• The real-time traffic information received by worldwide users come from hetero-

geneous information sources that produced by variety of methods for collecting

probe data and calculating travel time. These sources with diverse qualities

could not ensure the standardised level of accuracy of real-time traffic infor-

mation. Moreover, it’s nearly impossible for real-time traffic services providers

to collaborate in order to improve the quality of traffic information and then
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services for their customers.

• By making their own decisions based on the number of alternative routes received

from the central server of provider, travellers actually cause the traffic jams

switching from a set of roads to another. Because having the local views of

the overall system, self-interested commuters usually chooses the quickest routes

instead of collaborating their choices in order to avoid traffic congestion and

reduce the total travel time of all individuals.

• With likely millions of queries on optimal route plans from travellers, central

server might pay an expensive cost of processing these queries in right time

for travellers. Moreover, if some unexpected events happen on the roads e.g

incidents, road works, etc, the the set of alternative routes for each traveller

must be calculated from scratch and the time of completing this task might

delay the result that must be sent to travellers straight away. Therefore we need

a kind of proactive system that can handle every change in the traffic network

for providing the high quality solution to customer in permitted restrict amount

of time.

• Traffic network is essentially a geographically distributed multi-agent system.

In fact, the two-way communication between travellers and central server is not

always effective. Because of the low bandwidth of telecommunication network,

either the queries of travellers on optimal routes or data that is sent from central

server to traveller could be delayed. Additionally, the failure of central processing

system causes all subscribers to real-time traffic services their losses of navigat-

ing through the road network. For that reason, we must design an effective

communication mechanism between travellers in a decentralised manner.

• Privacy issue has been increasingly become an important aspect for evaluating



2.1. Applications of Agent Technology in Traffic Management 11

the security of a system. Users of TomTom HD Traffic, Google Maps are advised

to share their start, destination locations and maybe their route plans with

service providers. This data collected from these users could be analysed by the

same providers or sold to another companies for the purpose of doing research

on advertising strategy, recommendation system, etc. Therefore, real-time traffic

services provider is not be able to guarantee the personal identity of customers.

Yamashita and Kurumatani [38] have proposed the centralised approach using

route information sharing between drivers in order to avoid the traffic congestion. Each

driver searches the route with minimum travel time and broadcasts route information

to the route information server. The route information server then uses driver’s route

information to predict the possible traffic congestion and sends it back to driver. Driver

uses traffic congestion information to revise its route plan in order to find the best one.

Gratie and Florea [20] addressed the benefit of possible alternative routes when

the traffic became congested. Actually,in their approach , multi-agent system has

been used in centralised way by considering agents as driver, intersection and city.

Routing algorithm uses probability formula for selecting the alternative route, but

this algorithm can not work with the real-world traffic.

Moreover, challenging issue has been marked with their approach is that the rout-

ing algorithm needs to be changed in order to provide the best alternative routes

in a decentralised manner. However, the experimental results show that centralised

intelligent routing has proved itself to be an effective approach to avoid the traffic

congestion.

In [39], Yang and Recker modelled complete distributed traffic information sys-

tem that operates without any centralised control and allows dynamic vehicle online

routing. Vehicles in this system contribute to produce real-time traffic information

by generating and exchanging local traffic information sensed by themselves through
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vehicle-to-vehicle communication. Based on this real-time traffic information, vehi-

cles make their own in-trip rerouting decisions to alternative routes on the basis of

rational-boundary and binary-logit models.

The result of simulation shows that vehicles with the dynamic rerouting capability

are able to reduce not only their own individual travel time, but also total travel time

of all vehicles within the system. However, the limitation of this model is that the

proposed in-trip rerouting strategy might cause the traffic jams switch from one road

to another. Every vehicle, which is in congested situation, will behave in the same

way based on its local view of overall system and therefore the total travel time might

not be improved.

2.2 Traffic Assignment

2.2.1 Overview of Traffic Assignment

The aim of traffic assignment is trying to establish the network traffic flow and con-

dition as the result of commuters’s travelling. Based on the interaction between com-

muters, traffic assignment algorithms calculate route and link capacities and travel

times at equilibrium condition. At equilibrium state, no driver has any incentive to

change his current route.

Figure 2.1 illustrates the static traffic assignment in a one-shot simulation. In static

traffic assignment, route set and flows are pre-planed and remain indifferent during

simulation.

A more advanced approach has shortest routes frequently updated based on pre-

dominant traffic conditions and has these routes assigned to recently generated vehicles

at the start of the trip. This is referred to as dynamic traffic assignment as shown in

Figure 2.2.



2.2. Traffic Assignment 13

Figure 2.1: Static assignment in a one-shot simulation, Chiu et al. [12]

Figure 2.2: Dynamic assignment in a one-shot simulation, Chiu et al. [12]

2.2.2 Static Traffic Assignment

The static traffic assignment problem was addressed by Beckmann [6], Nesterov, de

Palma [29] and recently Chudak [13]. In [13], the static traffic assignment problem is

defined formally as:

• A traffic newtwork G = (N,A), where N is the set of nodes (intersections), an

A is the set of arcs (roads).

• Each arc a ∈ A has a capacity, ca, which is the maximal number of cars that can

go through the road a during a given period of time. An arc a also has a free
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travel time t̄a, which is the minimum travel time needed to go through road a

at maximal allowed speed.

The goal of the static traffic assignment problem is to assign routes to drivers in

order to attain a Social Optimum (SO) state or an User Equilibrium (UE) state.

Definition 2.2.1 (Wardrop’s First Principle [36])

User equilibrium (UE) is the state, at which no driver has any incentive to change his

current route.

Definition 2.2.2 (Social Optimum)

Social Optimum (SO) is the state, at which the utilization of the transportation network

is maximum (e.g. minimum total travel time).

The current traffic pattern of a traffic network is specified by a flow, f (the places

of drivers in the network) and travel time t (total travel time of all drivers if they use

the assigned routes).

2.2.2.1 Nestrov and de Palma Model

In Nesterov and de Palma model [13], [29], the capacity ca of the road a in traffic

network can not be exceeded, i.e., the drivers are able to travel with free-flow speed.

Let (f, t) be a traffic assignment, then (f, t) satisfy the following conditions:

• The number of vehicles on arc a (fa) never exceeds the capacity of arc a, fa ≤ ca.

• Below capacity ca the travel time ta on arc a is equal to its free travel time t̄a.

At capacity limit, it can take any value larger or equal to the free travel time:

if fa < ca ⇒ ta = t̄a

if fa = ca ⇒ ta ≥ t̄a
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In Netsterov and de Palma model, calculating a traffic assignment at SO is equiv-

alent to solving the minimum linear cost multi-commodity problem, i.e., minimise the

total travel time:
∑

a∈A fata.

2.2.2.2 Price of Anarchy

The price of anarchy was first introduced by Koutsoupias and Papadimitriou [24] and

it is the ratio between the total utility at UE and at SO. The total utility is the

total travel time of a traffic pattern (f, t) and is denoted by U(f, t). Then U(f, t) is

calculated as:

U(f, t) =
∑
a∈A

fata

and the price of anarchy Pr is then formulated as follows:

Pr =
U(fUE, tUE)

U(fSO, tSO)
(2.1)

where (fUE, tUE) corresponds to a traffic assignment at UE and (fSO, tSO) corre-

sponds to a traffic assignment at SO.

2.2.2.3 Braess Paradox

The Braess paradox [9] occurs when adding more resources to a transportation network

as more resources create worse delays for the drivers. In [9], the Braess paradox is

stated as follows: ”If every driver takes the path that looks most favourable to him,

the resultant running times need not be minimal.”

Let me consider an example of Braess paradox from [16]. Fig. 2.3 illustrates a

road network, on which 4000 drivers desire to travel from point START to END.

The travel time (in minutes) on links START-A, B-END is the number of travelers

(T) divided by 100, and on links START-B, A-END is a constant 45 minutes.
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Figure 2.3: Example of Braess paradox

If there is not dashed road, the time needed to drive START-A-END route with

A (a number) drivers would be
A

100
+ 45. And the time needed to drive START-B-

END route with B (a number) drivers would be
B

100
+ 45.

If either route were shorter in terms of travel time, it would not be a Nash equi-

librium: a rational driver would switch its route from the longer to shorter route.

As there are 4000 drivers, the system is at user equilibrium state if A = B = 2000.

Consequently, the travel time for each route is
2000

100
+ 45 = 65 minutes.

Suppose the dashed line is a road with travel time of approximately 0 minutes.

Therefore, the shortest route now is START-A-B-END because the link START-

A will take at most 40 minutes to drive in comparison to constant 44 minutes for link

START-B. Consequently, 4000 drivers switch their routes to START-A-B-END

route and their travel time for arriving to destination location is
4000

100
+

4000

100
= 80

minutes, an increase from 65 minutes when the A-B road does not exist.

Finally, no drive has an incentive to switch because two original routes START-

A-END and START-B-END now require 85 minutes to drive. The traffic system

now is at user equilibrium but is far from system optimum. Moreover, when adding

the dashed link AB, the performance of overall system, which is the total travel time

of all drivers, decreased according to Braess paradox.
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Figure 2.4: General DTA algorithmic procedure, Chiu et al. [12]

2.2.3 Dynamic Traffic Assignment

2.2.3.1 Overview of Dynamic Traffic Assignment

As shown in 2.4, the general method of finding an dynamic user equilibrium in DTA

is apply three algorithmic steps in sequence iteratively, until traffic system state con-

verged to DUE state:

• Network Loading: What are the resulting route travel times given a set of

route choices?

• Path Set Update: What are the new shortest routes given the current route

travel times?

• Path Assignment Adjustment: , how to assign routes to vehicles to better

approximate a dynamic user equilibrium given the updated route sets?
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2.2.3.2 Instantaneous and Experienced Travel-Times

Figure 2.5 and figure 2.6 illustrate an example that demonstrates the difference be-

tween instantaneous and experienced travel-times.

2.3 Distributed Constraint Programming

2.3.1 Definitions

Definition 2.3.1 (Constraint Optimisation Problem)

A Constraint Optimisation Problem (COP) is a tuple 〈X ,D, C,F〉 where:

• X is a set {x1, x2, . . . , xn} of variables,

• D is a set {d1, d2, . . . , dn} of domains,

• C is a set {c1, c2, . . . , cm} of constraints defined over a setR of relations {r1, r2, . . . , rm}

where ri is the relation between {x1i, x2i, . . . , xni},

• F is a set {f ′1, f ′2, . . . , f ′q} of cost functions defined over R.

A constraint ci is a pair 〈ti, ri〉, where ti ⊂ X is a subset of k variables and ri is

an k-ary relation on the corresponding subset of domains di.

A cost function is a function f ′i(ri) → <. A value ui returns by a cost function f ′i

is called an utility and an objective function is defined as:

O(X ) =

q∑
i=1

ui

A solution to COP is the set of all assignments to xi ∈ X that satisfies ∀ci ∈ C

and minimise objective function O as:

arg min
X

O(X )
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Definition 2.3.2 (Distributed Constraint Optimisation Problem)

A Distributed Constraint Optimisation Problem (DCOP) is a tuple 〈A, COP , C ′,F ′′〉

where:

• A is a set {a1, a2, . . . , ak} of agents,

• COP is a set {COP1, COP2, . . . , COP l} of COPs such that X COPi
i ∩X COPj

j = ∅

and each agent ai controls exactly one COP i.

• C ′ is a set {c′1, c′2, . . . , c′g} of shared constraints. Each shared constraint c′g defines

over a subset {COP1, COP2, . . . , COP l} of l COPs, where l ≥ 2,

• F ′′ is a set {f ′′1 , f ′′2 , . . . , f ′′h} of cost functions defined over subsets of COP that

shares constraints between them.

The objective function for DCOP is defined as:

O′(X ′) =
h∑
i=1

u′i,

where X ′ = {X COP1
1 ,X COP2

2 , . . . ,X COPl
l } and shared utility u′i is a cost returned from

f ′′i

A solution to DCOP is the set of assignments to all variables of X COPi
i , i ∈

{1, 2, . . . , l} that satisfy ∀c′i ∈ C ′ and minimise the objective function O′ as:

arg min
X ′

O′(X ′)

Definition 2.3.3 (Dynamic Distributed Constraint Optimisation Problem)

A Dynamic Distributed Constraint Optimisation Problems (DynDCOP) is a sequence

that consists of DCOPs as:

〈DCOP1, DCOP2, . . . , DCOPn〉
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, where X ′DCOPi
4 X ′DCOPj

6= ∅, C ′DCOPi
4 C ′DCOPj

6= ∅ and F ′′DCOPi
4 F ′′DCOPj

6= ∅.

Note that given two sets A,B then A4B = (A ∪B) \ (A ∩B).

Solving DynDCOP is maintaining solutions for all DCOPs that all constraints C ′i

must be satisfied and the objective function O′i is minimised for every DCOPi.

2.3.2 Support-Based Distributed Optimisation Algorithm

SBDO algorithm [8] is designed for solving Dynamic Distributed Optimisation Prob-

lems based on complete asynchronous Support-Based Distributed Search [21]. SBDO

employs argumentation as its mechanism. Agent sends a proposal to neighbour agents

in order to influence these agents to accept it. Proposal is composed of assignments

to variables controlled by itself and neighbour agents that satisfy local and shared

constraints. This proposal is also associated with the total utility which is the sum

of local and shared utilities. After receiving proposal from sending agent, neighbour

agents check the consistency of assignments to variables in received proposal with

assignments to their current variables. If consistent, then neighbour agent put the

received proposal to the list of all received proposals associated with sending agents

for considering who will be its supporter. Neighbour agent then choose an agent with

maximum total utility as its supporter and compute the local solution based on sup-

porter’s proposal as its local view to global system. Therefore, neighbour agent sends

proposal expressed its local view to all neighbour agents. This process will make the

dynamic variable ordering of all agents.

In SBDO algorithm, each agent greedily selects what agent to be as its support and

the values to assign to its own variables. Because an agent may have many variables,

this agent requires its own centralised Dynamic COP solver. Agent that has chosen

sub-optimal assignments may changes its assignment because of collection of agents

when support is selected.
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Each agent takes simple basic steps as followings. First in agent’s message queue it

processes all the messages. Then it chooses what values to assign to its own variables.

Last it broadcasts all of its neighbours a message to tell them what values it has chosen

for its variables.

All of the nogoods received should be taken when starting to work with processing

messages. At the beginning, nogoods are processed if they are later become obsolete

by a message from the environment and because one of them might invalidate one of

the isgoods in the message queue. When receiving a nogood, it is added to the set

of all known nogoods. When all nogoods are processed the received isgoods must be

rechecked to detect if they are inconsistent with this agents assignment. If so, the

isgoods sender must be informed by sending a nogood. This will compel the sender

into changing their value in the next iteration. Next all environment messages are

processed. The order within this group is not important, but they may affect how the

isgoods are processed. Finally, the received isgoods are processed. First, recv(A) is

updated with this most recent isgood, then it checks if there is a valid assignment to

its own variable. If there isnt, a nogood is created and sent back to the agent that

sent the isgood. This will force the sender to change their value in the next iteration.
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Figure 2.5: Different shortest routes obtained by instantaneous travel-time and expe-
rienced travel-time approaches with departure time 1, Chiu et al. [12]
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Figure 2.6: Different shortest routes obtained by instantaneous travel-time and expe-
rienced travel-time approaches with departure time 2, Chiu et al. [12]



Chapter 3

Distributed Traffic Management

In this chapter, firstly I propose the distributed traffic management problem and its

dynamic distributed constraint optimisation problem model. Secondly, I introduce an

infrastructurelessly decentralised traffic information system, which is an alternative to

the centralised traffic information system. Finally, I describe the decentralised multi-

agent coordination algorithm for solving the proposed problem based on support-based

distributed optimisation algorithm combined with auction theory.

3.1 Distributed Dynamic Traffic Assignment Prob-

lem

Essentially, the Distributed Dynamic Traffic Assignment (DDTA) Problem is a multi-

agent optimisation problem, where the travellers in the road network are modelled as

autonomous vehicle agents that are capable of making decision based on local view of

global traffic system. In particular, such vehicle agents must coordinate their route

plans in order to minimise the total travel time, which is the sum of travel times that

all vehicle agents experienced during their trips.

Formally, the distributed traffic management problem is defined as follows:

24
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• A road network is represented by a directed graph G = (V,E), where V is a

set of nodes, V = {v1, v2, . . . , vp}, that represents the intersections in the road

network, E is a set of edges, E = {e1, e2, . . . , eq}, that represents the roads, which

are referred as links. Each link ei has a length lei , a capacity cei and a maximum

allowed speed wmaxi . The capacity cei of the link ei is the maximal number of

vehicle agents that are allowed to cross this link at a certain time window.

• A setA of vehicle agents, A = {A1, A2, . . . , An}, where each vehicle Ai is situated

at start location si (a node in graph G) and desires to go to destination location

zi (another node in G) at a departure time, denoted by tsi .

The time horizon of the system T is discretised into a set of time slots, where each

of them is denoted by ti. Therefore, T = {t1, t2, . . . , tm}. Without loss of generality,

the duration of time slot is set at 1 time unit in this proposed problem. For each

time slot, vehicle agent Ai moves forward from one position to another position at its

current speed. However, vehicle agent might stop and wait for the next move because

of the traffic jams.

A route of vehicle agent Ai is denoted by Pi, which consists of connected links,

Pi = {e1, e2, . . . , en′}. I use vj1 , vj2 , where vj1 , vj2 ∈ V , to denote start node and end

node of link ej respectively. Therefore, two links ej, ek are supposed to be connected

if vj2 and vk1 are identical. Vehicle agents Ai are capable of rerouteing in order to

optimise their travel times and possibly, the total travel time of overall system.

An experienced route denoted by P∗i of vehicle agent Ai is the actual route that

was taken by this vehicle agent in order to arrive at destination location. An experi-

enced travel time is an amount of time that was spent by vehicle agent following its

experienced route.

The traffic flow Q on a link ei is the number of vehicles (N) traversing this link
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during a time window 4tk, where 4tk = [tk1 , tk2 ], tk1 , tk2 ∈ T and tk1 < tk2 .

Q4tk =
N

tk2 − tk1
(3.1)

In the DDTA problem, the following capacity constraint on the traffic flow Q4tk

must be satisfied to make sure that the number of vehicle agents on a link during a

given time window 4tk does not exceed the link capacity cei :

Q4tk ≤
cei

tk2 − tk1
(3.2)

Moreover, no any kind of central authority exists in the proposed model. Especially,

vehicle agents must coordinate their routes by communicating with each other in a

decentralised manner through either cellular network, 3G or Dedicated Short-Range

Communications (DSRC). Each vehicle agent is supposed to be equipped with the

following on-board hardware, which consists of:

• A geographical information system (GIS) with the global positioning system

(GPS). Note that the maps, which are used by vehicle agents, must be identical.

• An on-board navigation device. This device is used for directing vehicle agent to

the destination location.

• An in-vehicle computing processor. This processor is capable of processing re-

ceived messages and computing a shortest path between two nodes of the map.

The traffic pattern at time slot ti ∈ T is comprised of the positions of all vehicle

agents and their current routes. A social cost of a given traffic pattern at time slot ti

is the sum of expected travel times that vehicle agents will experience when following

routes of the traffic pattern above. I use Ωi, ui to denote this traffic pattern and its
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associated social cost at time slot ti respectively, then the snapshot problem of DDTA

problem, denoted by pi is defined as:

Definition 3.1.1 (Snapshot problem of DDTA problem)

The snapshot problem pi of DDTA problem is an optimisation problem that is specific

to the traffic pattern Ωi at time slot ti. The solution to the problem pi is the set of

routes for all en-route vehicle agents that satisfies the capacity constraint (Eq. 3.2)

and minimise the social cost ui given the traffic pattern Ωi.

Therefore, the DDTA problem can be divided into a sequence of snapshot problems

〈p1, p2, . . . , pm〉, where each of them is appropriate for each time slot ti, ti ∈ T and

|T | = m.

Finally, the goal of DDTA problem is solving a sequence of snapshot problems

〈p1, p2, . . . , pm〉.

3.2 Dynamic Distributed Constraint Optimisation

Model

In this section, firstly I model each snapshot problem of the DDTA problem as a

DCOP and then the DDTA problem as a DynDCOP. Initially, let me consider the

snapshot problem pi at time slot ti by taking account of the follows:

3.2.1 Variables

Vehicle agents in DDTA problem are referred to agents in DCOP model. Variable xi

within a set X = {x1, x2, . . . , xn}, which is controlled by vehicle agent Ai, represents

a current route that this agent is following.

The domain di of variable xi is a finite set of possible routes from its current location

to destination location that vehicle agent can take. It is not necessary to enumerate
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all of these possible routes for the domain di. Therefore, di consists of the possible

routes that include the shortest route and its alternatives. An alternative to shortest

route is a route that has the same start and destination locations, but it replaced some

links of shortest route by another ones.

3.2.2 Constraints

3.2.2.1 Capacity Constraint

The capacity constraint on traffic flow (Eq 3.2) is the n-ary shared constraint between

routes assigned to variables that are controlled by vehicle agents. Actually, vehicle

agents share the constraint on the number of vehicles on a link if they will enter this

link within a same time window.

Formally, let me define the capacity constraint Ci
1 over the set of variables {x1, x2, . . . , xm}

as following:

Ci
1 : (d1 × d2 × . . .× dm)→

 Satisfied if N ≤ cek

Unsatisfied if otherwise
(3.3)

where:

N =
m∑
i=1

g(Pi), where

 g(Pi) = 1 if ek ∈ Pi and αiek ∈ τ
j
k

g(Pi) = 0 if otherwise

and

• di is the domain of variable xi controlled by vehicle agent Ai,

• N is the number of vehicle agents on link ek at certain time window [tp, tq],

• cek is the capacity of link ek,

• Pi is the route that is assigned to variable xi of vehicle agent Ai from domain di,
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• αiek is the estimated time of arrival at link ek by vehicle agent Ai,

• τ jk is the considering time block for evaluating capacity constraint Ci
1,

• ek ∈ E, E = {e1, e2, . . . , eq}.

3.2.2.2 Expected Travel Time Constraint

The purpose of defining the expected travel time constraint (unary constraint) in

DCOP model of snapshot problem pi is twofold. First, in this model individual trav-

ellers have the right to reject the suggestions on optimal routes from vehicle agents.

For example, an individual traveller might try to across a link that is not allowed to

travel through according to the optimal route suggested by the vehicle agent. There-

fore, if the number of these drivers is large enough, it will cause the significant increase

in travel times on a number of links in the road network.

Second, this model also considers the events that might happen suddenly on some

links in the road network such as: road works, traffic accident, etc. Therefore, these

events cause the traffic jams that increase the expected travel times on a number of

links.

Finally, the expected travel time constraint denoted by Ci
2 on a route Pi of vehicle

agent Ai is defined as following:

Ci
2 : di →

 Satisfied if ∀ek ∈ Pi | βek ≤
lek
wfk

Unsatisfied if otherwise
(3.4)

where:

• di is the domain of variable xi controlled by vehicle agent Ai,

• Pi is the route that is assigned to variable xi of vehicle agent Ai from domain di,

• βek is the expected travel time of link ek,
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• lek is the length of link ek,

• wfk is the free-flow speed on link ek,

• ek ∈ E, E = {e1, e2, . . . , eq}.

3.2.2.3 Route Valid Constraint

The route valid constraint, which is the unary constraint, is introduced to the DCOP

model of snapshot problem pi especially for the situation where the road closure event

happened. When the road is closed, it means that this link is temporally eliminated

from the road network. Therefore, the links of a vehicle agent’s route need to be

checked to determine whether or not they are connected.

The route valid constraint denoted by Ci
3 on a route Pi of vehicle agent Ai is defined

as following:

Ci
3 : di →

 Satisfied if ∀ek ∈ Pi | ek ∈ E

Unsatisfied if ∃ek ∈ Pi | ek /∈ E
(3.5)

where:

• di is the domain of variable xi controlled by vehicle agent Ai,

• Pi is the route that is assigned to variable xi of vehicle agent Ai from domain di,

• E is the set of all links in the road network.

3.2.3 Objective function

The cost of a route can be interpreted as the sum of expected travel times of all links

of this route. The objective function Oi of a snapshot problem pi is the sum of costs

of all vehicle agents’s routes at time slot ti .
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Let me define the objective functionOi over the set of variablesXi = {x1, x2, . . . , xm}

for snapshot problem pi at time slot ti as following:

Oi : (d1 × d2 × . . .× dm)→
m∑
j=1

∑
ek∈Pi

βek (3.6)

and

• di is the domain of variable xi controlled by vehicle agent Ai,

• Pi is the route that is assigned to variable xi of vehicle agent Ai from domain di,

• βek is the expected travel time of link ek,

• ek ∈ E, E = {e1, e2, . . . , eq}.

The solution to snapshot problem pi, which is modelled as a DCOP, is satisfying all

the aforementioned constraints Ci
1, C

i
2, C

i
3 and minimising the objective function Oi:

arg min
Xi

Oi (3.7)

As mentioned before, the DDTA problem is a sequence of snapshot problems,

where each of them pi is appropriate for each time slot ti, ti ∈ T and |T | = m.

Therefore, I model DDTA problem as DynDCOP, which is a sequence of DCOPs

〈DCOP1, DCOP2, . . . , DCOPm〉, where each DCOPi is the DCOP model of snapshot

problem pi.

3.3 Infrastructurelessly Decentralised Traffic Infor-

mation System

The expected travel times of links are necessary for evaluating two constraints Ci
1

(Eq 3.3), Ci
2 (Eq 3.4) and the objective function Oi (Eq 3.6) in DynDCOP model of
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proposed DDTA problem. Typically, vehicle agents are able to calculate the expected

travel times of links based on the real-time traffic condition updates received from cen-

tral traffic information system, such as Advanced Traffic Information System (ATIS).

However, such system is costly in terms of its installation, operation and maintenance.

In this section, an Infrastructurelessly Decentralised Traffic Information System

(IDTIS) is presented especially for DDTA problem as well as its DynDCOP model.

Taking advantage of V2V communication technologies such as DSRC, vehicle agents

are committed to developing, operating and maintaining IDTIS in a decentralised man-

ner. The traffic information system built by vehicle agents is completely independent

from infrastructure and thus the cost of IDTIS is reduced substantially in comparison

with ATIS. Moreover, because of the absence of centralised entity in DDTA prob-

lem, IDTIS becomes an appropriate and efficiency tool that supplements the approach

described in section 3.5.1 for solving DDTA problem.

3.3.1 Broadcaster Agent

In order to develop IDTIS, the following assumptions can be made feasibly by exploit-

ing the current DSRC technology developments:

1. Vehicle agent is able to determine is there any other vehicle agent that is also

occupying the same link.

2. Vehicle agents, which are on the same link, are capable of identifying which is

vehicle agent among them is closest to start node of this link.

3. For all vehicle agents traversing on the same link, the message sent by one of

them will arrive immediately at others at the same time.

For developing IDTIS, a concept of broadcaster agent is defined as follows:
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Definition 3.3.1 (Broadcaster agent)

The broadcaster agent Bek of link ek is a vehicle agent, which is responsible for

broadcasting the estimated travel time of the link ek to all vehicle agents in the traffic

system.

In IDTIS, there are two types of message, which are described as follows:

• Message MA contains information about the experienced travel time and the

link’s occupation status of a broadcaster agent. This status is marked as True if

this broadcaster agent is traversing on the link and False if it left this link. MA

is sent by a broadcaster agent to vehicle agents that occupy the same link.

• Message MB contains information about the estimated travel time of a link. MB

is sent by broadcaster agents to all vehicle agents in the traffic system.

The formats of message MA and message MB will be described in Table 3.1 and

Table 3.2 respectively.

Algorithm 1 describes a process of becoming a broadcaster agent of a vehicle agent.

Lines 2-4 are about the situation where vehicle agent self has recently entered link

ek. In this situation, if there is not any other vehicle agent that is occupying link ek

then self becomes the broadcaster agent Bek of link ek.

When occupying link ek, Bek will send message MA to all vehicle agents that

are also on link ek for every constant amount of time denoted by UPDATE TIME

(Lines 11-16). The value True of message MA’s occupation status indicates that Bek

is still on link ek (Line 13). When finishing traversing link ek, Bek will “announce” its

completion of being the broadcaster agent of link ek to all vehicle agents on link ek by

broadcasting message MA with occupation status False (Lines 17 -20).

After receiving the “completing message” MA from Bek , which has recently left

link ek, vehicle agent Ai will determine whether or not it can become the broadcaster
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Data:
1 begin
2 if no Ai occupies ek then
3 self becomes Bek

4 end
5 else if self is closest to vk1 and self received MA then
6 if MA.occupation status == False then
7 self becomes Bek

8 end

9 end
10 if self is Bek then
11 for every UPDATE TIME do
12 if self is on ek then
13 MA.occupation status ← True
14 Send MA to all other Ai occupied ek
15 end

16 end
17 if self left ek then
18 MA.occupation status ← False
19 Send MA to all other Ai occupied ek
20 Resign from broadcaster agent of ek
21 end

22 end

23 end
Algorithm 1: Process of becoming a broadcaster agent and its operation

agent of link ek. If current position of Ai is closest to start node vk1 of link ek then

Ai becomes the broadcaster agent of this link (Lines 5-9). This process repeats over

and over again to guarantee that there is only one broadcaster agent for link ek at any

time.

I use γek to denote the travel time of the link ek experienced by a broadcaster agent

and βek to denote the expected travel time of link ek. Recent broadcaster agent Bek is

able to compute the expected travel time βek of the link ek based on its current travel

speed w and travel time γek (extracted from message MA) experienced by the previous
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Message MA

message ID ID of message MA

sender ID ID of broadcaster agent (vehicle agent ID)
link ID ID of link that broadcaster agent is occu-

pying
status Occupation status of broadcaster agent

(True/False)
exp travel time Travel time experienced by broadcaster

agent

Time block 1
registered Vehicles List of vehicle agents registered to DA

auction for time block 1
auctioneer agent ID ID of auctioneer agent for time block 1

Time block 2
registered Vehicles List of vehicle agents registered to DA

auction for time block 2
auctioneer agent ID ID of auctioneer agent for time block 2

Time block 3
registered Vehicles List of vehicle agents registered to DA

auction for time block 3
auctioneer agent ID ID of auctioneer agent for time block 3

...
... ...
... ...

Time block n
registered Vehicles List of vehicle agents registered to DA

auction for time block n
auctioneer agent ID ID of auctioneer agent for time block n

Table 3.1: Data structure of message MA

broadcaster agent as follows:

βek =
1

2
(
lek
w

+ γek) (3.8)

where

lek is the length of link ek.

After computing βek , Bek broadcast message MB to all vehicle agents in the traffic

system. This message includes the βek and the format of this message will be described

in more detail in Table 3.2. After receiving messages MB, vehicle agents update their

own expected travel time of link ek, which is already stored in their storage devices.
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Message MB

message ID ID of message MB

sender ID ID of sender agent (broadcaster agent)
link ID ID of link
est travel time Estimated travel time of link

Time block 1 auctioneer agent ID ID of auctioneer agent for time block 1
Time block 2 auctioneer agent ID ID of auctioneer agent for time block 2
Time block 3 auctioneer agent ID ID of auctioneer agent for time block 3

... ... ...
Time block n auctioneer agent ID ID of auctioneer agent for time block n

Table 3.2: Data structure of message MB

3.4 Auctions

There are two types of auctions that are designed for solving DDTA problem using

decentralised multi-agent coordination algorithm as follows:

• Auction 1, denoted by Φ, is used for determining which vehicle agent will become

an auctioneer agent.

• Auction 2, denoted by Ψ, is used first for discovering constraints between vehicle

agents and then granting permissions for them to cross a link at a certain time

window.

Figure 3.1 illustrates different time points related to two aforementioned auctions

in chronological order as follows:

• Auction 1 open time. Time point when Φ is opened for bidding.

• Auction 1 close time. Time point when Φ is closed for bidding and then is

conducted.

• Auction 2 register time. Time point when Ψ is opened for vehicle agents to

register their intentions of bidding. Note that auction 2 register time and auction

1 close time are identical.
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Figure 3.1: Timeline

• Auction 2 open time. Time point when Ψ is opened for bidding.

• Auction 2 close time. Time point when Ψ is closed for bidding and then is

conducted.

• Time of arrival at link. Time point when vehicle agent starts crossing a link.

3.4.1 Auction of Determining Auctioneer Agent

Every vehicle agent needs to participate in an auction to become an auctioneer agent.

The incentive of becoming an auctioneer agent is having the privilege to cross the link

first among vehicle agents. Moreover, when an auctioneer agent is determined, it can

assign a set of vehicle agents can cross the link leading to reduction of total travel time

of all vehicle agents. Vehicle agent should not pay anything to become an auctioneer

agent but for my approach every vehicle agent should make a bid for crossing a link.

In this approach it is assumed that vehicle agent should follow the rule that it can

cross the link if it is allowed by auctioneer agent.

Definition 3.4.1 (Auctioneer agent)

Auctioneer agent Λj
k is a vehicle agent that holds the auction Ψj

k of granting per-

missions for a set of vehicle agents to travel through link ek during time block τ jk .
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Following the optimal route returned by DynDCOP solving system, vehicle agent

has to bid to auction Ψj
k for having the privilege of passing through link at during

time block τ jk . Moreover, when vehicle agents registered their intentions of bidding to

auction Ψj
k, the auctioneer agent, which controls Ψj

k, is able to determine the set of

vehicle agents that share the capacity constraint on a number of vehicle agents on a

link during time block τ jk (constraint 3.3). Theses vehicle agents become neighbouring

agents of each other in DynDCOP model of DDTA problem. Therefore, SBDO agent

starts finding the optimal value for its variable at the time when neighbouring agents

are identified.

Definition 3.4.2 (Auction Φ)

Auction Φj
k is an auction, which is held by a broadcaster agent Bek for determining

the auctioneer agent Λj
k of link ek associated with time block τ jk .

For my approach, each vehicle agent Ai needs to bid to auction Φj
k for becoming

the auctioneer agent of the link, across which it will travel during a time block. I use

ϕjki to denote the bid of vehicle agent Ai to auction Φj
k, then the amount of this bid

is defined as:

ϕjki =
1

µik
(3.9)

where

µik is the distance from current position of Ai to start node of link ek.

After the auction Φj
k was conducted, the vehicle agent with the highest bid will

become an auctioneer agent.

3.4.2 Auction of Granting Permission for Travelling

Definition 3.4.3 (Auction Ψ)

Auction Ψj
k is an auction, which is held by auctioneer agent Λj

i for granting permissions
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for a set of vehicle agents to travel through link ek during time block τ ji .

Definition 3.4.4 (Expected total travel time)

The expected total travel time δP of route P is the sum of expected travel times of all

links within route P.

δP =
∑
ek∈P

βek (3.10)

Vehicle agents have to bid for having privileges of travelling through the link e

during a time block. Let me use ψjki to denote the bid of vehicle agent Ai to auction

Ψj
k. P∗ is used to denote the shortest alternative route to current route P of the

vehicle agent Ai that doesn’t contain the link e. Then, the amount of ψjki is defined

as:

ψjki = δP∗ − δP (3.11)

3.5 Algorithms

3.5.1 Decentralised Multi-Agent Coordination Algorithm

Algorithm 2 presents the pseudocode of the decentralised multi-agent coordination

(DMAC) algorithm, which is the combination of SBDO and auctions (auction Φ and

auction Ψ). DMAC algorithm also describes the operation of a vehicle agent during

its journey from start location to destination location. Besides acting as vehicle agent,

vehicle agent participates in SBDO solving system as a SBDO agent. However, DMAC

merges vehicle agent and SBDO agent into unique agent. Therefore, the term “vehicle

agent” refers to vehicle agent as well as SBDO agent.

Lines 2-4 describe the initialisation process of a vehicle agent self. The shortest

route and its alternatives are added to vehicle agent’s domain of vehicle agents (Line

2). Moreover, according to SBDO algorithm, the value of variable self.value is the
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Data: Road Network
1 begin
2 Initialise self.domain
3 Initialise self.value by choosing the best value from self.domain
4 self.route ← Null; self.registered auctioneer agents ← ∅
5 while self did not arrive at destination location do
6 if self.route 6= self.value then
7 self.route ← self.value
8 self.domain ← Update Domain(self.route)
9 foreach e, αe in self.route do

10 if self.time ≥ αe - AUCTION1 OPEN TIME then
11 broadcaster agent ← Get broadcaster(e, αe)
12 Bid ϕαe

i to auction Φαe
e held by broadcaster agent

13 end
14 if self.time ≥ αe - AUCTION2 REGISTER TIME then
15 if self won auction Φαe

e then
16 auctioneer agent ← self
17 else
18 auctioneer agent← Get auctioneer agent(e, αe)
19 end
20 if auctioneer agent not in self.registered auctioneer agents

then
21 Register self with auctioneer agent
22 foreach agent in auctioneer agent.registered agents do

self.Add Neighbour(agent)
23 Add auctioneer agent to self.registered auctioneer agents

24 end

25 else if self.value is not changed and self.time ≥ αe -
AUCTION2 OPEN TIME then

26 Bid ψαe
e to auction Ψαe

e held by auctioneer agent
27 else if self.time ≥ αe - AUCTION2 CLOSE TIME then
28 if self won auction Ψαe

e then
29 self is allowed to cross link e
30 else
31 Eliminate self.value permanently from self.domain
32 Change self.route to another self.value

33 end
34 Request reserve space from auctioneer agent

35 end

36 end

37 end
38 foreach message in self.received messages do Process message
39 select support()

40 update view()

41 Update self.value from self.view
42 foreach agent in neighbouring agents do send update(agent)

43 end

44 end
Algorithm 2: Decentralised Multi-Agent Coordination Algorithm
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current best assignment of vehicle agent from its domain. Therefore, at the beginning

of vehicle agent’s journey, the shortest route is assigned to self.value (Line 3).

Variable self.route represents the route that vehicle agent is following. Variable

self.registered auctioneer agents represents the set of auctioneer agents, which

hold the auctions that vehicle agent registered its intention to bid (or bid). Initially,

self.route and self.registered auctioneer agents are set as null and empty

respectively.

In lines 6-7, if the current route self.route of vehicle agent is different from the

optimal value suggested by SBDO system, then this value is assigned to self.route.

Based on the new value assigned to self.route, the self.domain is updated in line

8.

Lines 9-36 are about the interaction between vehicle agent and auctions (Φ and

Ψ). In lines 10-13, vehicle agent bids to auction Φαe
e for becoming an auctioneer agent

when Φαe
e is open for biding. First, vehicle agent finds the current broadcaster agent

of link e based on αe - estimated time of arrival at link e (Line 11). I use Φαe
e to denote

the auction Φ, which is held by broadcaster agent for determining the auctioneer

agent of link e during the time block that includes estimated time of arrival αe. ϕ
αe
i is

used to denote the amount of bid of vehicle agent Ai to auction Φαe
e . Second, vehicle

agent bids ϕαe
i to auction Φαe

e for becoming the auctioneer agent of link e (Line 12).

Lines 14-35 are about the constraint discovering process and auction Ψ (auction

2) participating of vehicle agent self. First, vehicle agent should fine the auctioneer

agent of link e at time αe (Lines 15-19). If vehicle agent won the auction Φαe
e from last

bidding, vehicle agent becomes the auctioneer agent of link e during time block that

includes αe. However, if vehicle agent lost this auction, it should find the auctioneer

agent and register its intention of bidding to this agent (Line 21).

Now, auctioneer agent is able to determine the set of vehicle agents that intend to
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cross link e during a time block. In other words, the constraints on capacity of link e

between these vehicle agents are discovered (Line 22). Then each vehicle agent starts

sending and receiving messages to/from another neighbouring vehicle agents. At this

time, SBDO solving system began working as each vehicle agent will choose the best

value for self.value by V2V communication in a decentralised manner.

First, if the self.value is not changed by SBDO agent, vehicle agent follows the

current route self.route. In contrast to this, vehicle agent postpones current process

and starts again the procedure described in Lines 6-37. Next, if auction Ψαe
e is opened

for bidding, vehicle agent bid ψαe
e for having permission to cross link e during time

block that includes αe.

After auction Ψαe
e is conducted, if vehicle agent won this auction, then it has the

privilege to go through link e (Line 29). In opposition to this, vehicle agent removes

permanently link e from its domain and change self.route to another self.value

(Lines 31-32). For a vehicle agent that was not able to bid to Ψαe
e , this agent can

request the available space of link e from auctioneer agent (Line 34).

Lines 38-32 are about the operation of SBDO agent (referred as vehicle agent).

First, in line 38, vehicle agent processes the messages received from neighbouring

agents including messages isgood, nogood, add constraint, remove constraint, etc.

Second, vehicle agent select supporter agent and then update its view based on the

isgood of supporter (Lines 39-40). Next, in line 41, the self.value is updated by

extracting the best assignment of vehicle agent from self.view. Finally, vehicle agent

sends updates about its new self.view to neighbouring vehicle agents (Line 42).

3.5.1.1 Auctioneer Agent

Auctioneer agent Λj
k controls the traffic flow on link ek, which is the number of vehicle

allowed for travelling through during a time block τ jk . An auctioneer agent has three

phases during its operating time: registering, auction opening and auction closing
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Data:
1 begin
2 if self.time ≥ self.auction time - AUCTION2 REGISTER TIME then
3 Register vehicle agent to self.registered agents
4 end
5 if self.time ≥ self.auction time - AUCTION2 OPEN TIME then
6 foreach Ai in self.registered agents do
7 Receive bid for Ai
8 Store Ai with bid

9 end

10 end
11 if self.time ≥self.auction time - AUCTION2 CLOSE TIME then
12 self.winners← Select c agents with highest bids
13 self.loosers = self.registered agents \ self.winners
14 foreach winner in self.winners do
15 Send message to winner agent about winning auction
16 end
17 foreach looser in self.loosers do
18 Send message to looser agent about loosing auction
19 end

20 end

21 end
Algorithm 3: Auctioneer Agent

phases (Lines 2-20). In registering phase, auctioneer agent process request for regis-

tering from vehicle agent and add this agent to the list self.registered agents of its

registered agents (Lines 2-4). When auctioneer agent in auction opening phase, vehi-

cle agents are allowed to bid for their privileges of travelling through the link during

certain time block (Line 7). In line 8, auctioneer agent stores a list of registered agents

with appropriate bids for processing in the last phase. In closing phase (Lines 11-20),

auctioneer agent conducts auction and determines which vehicle agents are the winners

by selecting c number of bidding agents with highest bids (c equal to the capacity of

link). Next auctioneer agent informs all winners - vehicle agents by sending messages

about their obtained privileges for travelling auctioneer agent’s link (Lines 14-16). In

lines 17-19, these loosers are also noticed about their losses of having their rights to

travel their bidding links. These loosing vehicle agents will add this link to theirs list
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of forbidden links and would be forced to find a new route.

3.5.2 Decentralised Uncoordination Algorithm

In decentralised uncoordination (DECU) algorithm, vehicles plan their routes by con-

sidering the current traffic condition. Based on the estimated travel times on roads,

A∗ is used by vehicles for searching the best route with respect to minimum esti-

mated travel time. Vehicles will follow their planned routes until they arrived at their

destination locations ignoring any factor that might affect their travel time.

3.5.3 Centralised Coordination Algorithm

In centralised coordination (CECO) algorithm, central server is responsible for plan-

ning routes for all vehicles. Vehicles send their queries to central server for requesting

the optimal routes from their start to destination locations. First, central server uses

A∗ search for computing shortest routes for all vehicles. Next central server analyses

these routes to identify all points where the capacity of a link is exceeded. Then it

can re-route vehicles until there is not any congestion on links of map. Finally, central

server informs the vehicles of their optimal routes and vehicles take these routes until

they reached to destination locations.

3.5.4 Example

In order to demonstrate how decentralised multi-agent coordination algorithm works,

we provide an example of algorithm execution illustrated with Figure 3.2. In the

map of this figure, five vehicle agents A1, A2, A3, A4, A5 have to travel from their start

locations to destination locations. In particular, vehicle agents A1, A2 start at location

A and their destination locations are H. Next, vehicle agent A3 begins a trip at K

and its goal location is Q. The last three ones A4, A5 depart at R and want to arrive
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Figure 3.2: Example

at V.

The map in Figure 3.2 is a Manhattan grid (6×6) and the travel time of every

link is 2 seconds. For each link, there are a set of auctioneer agents and auctions

Ψ that appropriate to the set of time blocks, whose duration is 2 seconds. AUC-

TION2 REGISTER TIME, AUCTION2 OPEN TIME and AUCTION2 CLOSE TIME

are 6s, 4s, 2s respectively. The capacity for each link is limited to 2, except 1 for link

OP.

For simplicity’s sake, suppose that the broadcaster agents and auctioneer agents

are known for all links w.r.t different time blocks. Therefore, these aforementioned

vehicle agents are unnecessary to bid to auctions Φ for becoming auctioneer agents.

At time t = 0s, all vehicle agents initialise their routes, which are the shortest

routes from their start locations to destination locations. Suppose we have the follow-

ing first routes for these vehicles:
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• P1 = P2 : A-B-C-D-E-F-G–H

• P3 : K-L-M-N-E-F-G-V-Q

• P4 = P5 : R-S-T-U-O-P–Q-V

As we can see in figure 3.2, EF, OP is a link that has possibly the number of vehicle

agents exceeds theirs capacities at time t = 8s.

At time t = 2s, A1, A2, A3 register to auctioneer agent Λ8
EF for travelling through

link EF at t = 8s. A4, A5 register to auctioneer agent Λ8
OP for cross link OP at

t = 8s Because the AUCTION2 REGISTER TIME for all auctioneer agents is 6s,

so auctioneer agents Λ8
EF , Λ8

OP process registering requests from {A1, A2, A3, A4, A5}.

A1, A2, A3 now become neighbours of each other as well as A4, A5 do. At this time,

SBDO solving system starts working and returns the optimal value (route) for route

variable of vehicle agent.

At time t = 4s, A1, A2 continue travelling with their routes and A3 is forced to

reroute as value of its route variable is changed as A3 accepted the suggestion from

SBDO solving system. Suppose the new route for A3 is K-L-M-N-E-O-P–Q and A3

will follow this route until it reached to Q. In another group, A5 follows its planned

route and the route of A4 is supposed to be changed to P4
4 :R-S-T-U-O-E-F-G-V.

P4
4 is used to denote the route of vehicle agent A4 at time t = 4s.

At time t = 4s, auctioneer agent Λ8
EF is opened and A4 sends a bid to Λ8

EF for its

privilege of travelling through EF. The bid ψ4
4 of A4 is equal to marginal cost of not

travelling through EF. Actually, suppose we have an alternative route P ′44 for A4 that

doesn’t contain EF is R-S-T-U-O-E-D-Y–V. Therefore ψ4
4 = cost(P ′44)−cost(P4

4 ) =

20 − 16 = 4. Vehicle agents A1, A2 also bid for their rights to travel on EF at

t = 8s. Their alternative routes P ′41 = P ′42 that not included EF are A-B-C-D-E-O-

I-H. Therefore, the bids ψ4
1, ψ

4
2 of each A1, A2 is ψ4

1 = ψ4
2 = cost(P ′41) − cost(P1) =
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cost(P ′42)−cost(P2) = 18−18 = 0. Auctioneer agent Λ8
EF at this time stored 3 bidders

- vehicle agents A1, A2, A4 with their bids 4, 0, 0 respectively.

At time t = 6s, auctioneer agent Λ8
EF is closed for bidding and conducts the

auction as Λ8
EF selects 2 bidders with highest bids from its list of bidders. In this case,

the first highest bid belongs to vehicle agent A4 and second one we choose randomly,

suppose belongs to vehicle agent A1. The winners of this auction are vehicle agents

A1, A4, so that they will follow their routes P1,P4
4 until they reach their destination

locations. The looser - vehicle agent A2 changes its route to P ′42 and will go along with

this until it arrive in H.

The final routes for A1, A2, A3, A4, A5 are followings, as they satisfy the condition

that not exceed the capacity of every link in the map:

• P∗1 : A-B-C-D-E-F-G–H,

• P∗2 : A-B-C-D-E-O-I-H,

• P∗3 : K-L-M-N-E-O-P–Q,

• P∗4 : R-S-T-U-O-E-F-G-V,

• P∗5 : R-S-T-U-O-P–Q-V.



Chapter 4

Experimental Results

This chapter first presents implementation details, then experiment settings and finally

experimental results with three different traffic planners: decentralised uncoordination

(DECU), centralised coordination (CECO) and decentralised multi-agent coordination

(DMAC)

4.1 Implementation details

Three planners are implemented in Python language. For the simulation, I used Sim-

ulation of Urban Mobility (SUMO) [7] simulator. TraCI [37] is used for navigating

vehicles simulated by SUMO simulator.

4.1.1 Map

Listing 4.1 illustrates a simplified XML code that is used for storing the map shown in

Fig. 4.1. From its XML format, the structure of this map consists of the followings:

• Node. Each node has an identification id, a latitude lat and a longitude lon.

• Way. Each way (link) has an identification id, referenced nodes nd(start and

end nodes), a length length, a maximum allowed speed maxspeed and a capacity

48
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capacity.

Listing 4.1: Example of a XML map file

1 <?xml version=” 1 .0 ” ?>

2 <map>

3 <c on f i g euc l i d ean=”True”/>

4 <node id=”0” l a t=” 0 .0 ” lon=” 0.0015 ”>

5 </node>

6 <node id=”1” l a t=”0.00106066017178 ” lon=”0.00106066017178 ”>

7 </node>

8 <node id=”2” l a t=” 0.0015 ” lon=”9.18485099361 e−20”>

9 </node>

10 . . .

11 <node id=”23” l a t=”−0.00318198051534” lon=”0.00318198051534 ”>

12 </node>

13 <way id=”1”>

14 <nd r e f=”0”/>

15 <nd r e f=”1”/>

16 <tag k=”highway” v=”primary”/>

17 <tag k=” length ” v=”127.657368569 ”/>

18 <tag k=”maxspeed” v=”70”/>

19 <tag k=” capac i ty ” v=”13”/>

20 </way>

21 <way id=”2”>

22 <nd r e f=”1”/>

23 <nd r e f=”2”/>

24 <tag k=”highway” v=”primary”/>

25 <tag k=” length ” v=”127.657368542 ”/>

26 <tag k=”maxspeed” v=”70”/>

27 <tag k=” capac i ty ” v=”13”/>

28 </way>

29 . . .
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30 <way id=”40”>

31 <nd r e f=”23”/>

32 <nd r e f=”15”/>

33 <tag k=”highway” v=”primary”/>

34 <tag k=” length ” v=”166.792389876 ”/>

35 <tag k=”maxspeed” v=”70”/>

36 <tag k=” capac i ty ” v=”17”/>

37 </way>

38 </map>

The XML file of map (Listing 4.1) then is converted to SUMO map format using

NETCONVERT. The SUMO map is also stored using XML format and its simplified

code example is shown in Listing 4.2. The SUMO map file will be used with with

SUMO vehicle file as input to SUMO simulator.

Listing 4.2: Example of a SUMO XML map file

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2

3 < !−− generated on Wed Feb 27 01 : 0 5 : 4 1 2013 by SUMO netconver t Vers ion

0 . 1 5 . 0

4 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

5

6 <net version=” 0.13 ” xmlns :x s i=” ht tp : //www.w3 . org /2001/XMLSchema−

i n s t anc e ” xsi:noNamespaceSchemaLocation=” ht tp : //sumo . s f . net /xsd/

n e t f i l e . xsd”>

7 <edge id=” : 0 0 ” func t i on=” i n t e r n a l ”>

8 <l ane id=” : 0 0 0 ” index=”0” speed=” 19 .44 ” l ength=” 4 .55 ” shape

=” 674 .44 ,503 .02 673 .25 ,503 .17 672 .27 ,503 .61 671 .48 ,504 .35

670 .88 ,505 .39 ”/>

9 </edge>

10 <edge id=” : 0 1 ” func t i on=” i n t e r n a l ”>
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11 <l ane id=” : 0 1 0 ” index=”0” speed=” 19 .44 ” l ength=” 12 .36 ”

shape=” 674 .44 ,499 .72 671 .22 ,499 .32 668 .54 ,498 .12

666 .40 ,496 .11 664 .79 ,493 .29 ”/>

12 </edge>

13 . . .

14 <edge id=”−1” from=”1” to=”0” p r i o r i t y=”9” type=”highway . primary”

>

15 <l ane id=”−1 0 ” index=”0” speed=” 19 .44 ” l ength=” 115.43 ” shape

=” 617 .32 ,608 .11 661 .75 ,501 .58 ”/>

16 <l ane id=”−1 1 ” index=”1” speed=” 19 .44 ” l ength=” 115.43 ” shape

=” 620 .37 ,609 .39 664 .79 ,502 .85 ”/>

17 </edge>

18 <edge id=”−10” from=”10” to=”9” p r i o r i t y=”9” type=”highway .

primary”>

19 <l ane id=”−10 0 ” index=”0” speed=” 19 .44 ” l ength=” 232.96 ”

shape=” 509 .98 ,821 .25 725 .41 ,732 .61 ”/>

20 <l ane id=”−10 1 ” index=”1” speed=” 19 .44 ” l ength=” 232.96 ”

shape=” 511 .23 ,824 .30 726 .67 ,735 .66 ”/>

21 </edge>

22 . . .

23 <j unc t i on id=”0” type=” p r i o r i t y ” x=” 668 .57 ” y=” 498.07 ” incLanes=”

17 0 17 1 8 0 8 1 −1 0 −1 1 ” intLanes=” : 0 0 0 : 0 1 0 : 0 2 0

: 0 3 0 : 0 4 0 : 0 5 0 : 0 1 1 0 : 0 7 0 : 0 8 0 : 0 1 2 0 : 0 1 3 0 ”

shape=” 674 .44 , 504 .62 674 .44 ,491 .52 672 .36 ,490 .14 660 .27 ,495 .18

660 .27 ,500 .96 672 .36 ,506 .01 ”>

24 <r eque s t index=”0” response=”00000110000” f o e s=”10000110000”

cont=”0”/>

25 <r eque s t index=”1” response=”01110110000” f o e s=”01111110000”

cont=”0”/>

26 . . .

27 <r eque s t index=”10” response=”00000110001” f o e s=”00000110001”

cont=”1”/>
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28 </ junc t i on>

29 . . .

30 <j unc t i on id=” : 0 1 1 0 ” type=” i n t e r n a l ” x=” 666.95 ” y=” 494.18 ”

incLanes=” : 0 6 0 −1 0 −1 1 ” intLanes=” : 0 1 0 : 0 7 0 : 0 8 0 ”/>

31 <j unc t i on id=” : 0 1 2 0 ” type=” i n t e r n a l ” x=” 669.07 ” y=” 497.79 ”

incLanes=” : 0 9 0 8 0 8 1 ” intLanes=” : 0 1 0 : 0 2 0 : 0 3 0

: 0 4 0 : 0 5 0 ”/>

32 . . .

33 <connect ion from=”−1” to=”−8” fromLane=”0” toLane=”0” v ia=” : 0 7 0

” d i r=” r ” s t a t e=”M”/>

34 <connect ion from=”−1” to=”−8” fromLane=”1” toLane=”1” v ia=” : 0 8 0

” d i r=” r ” s t a t e=”M”/>

35 . . .

36 </net>

4.2 Traffic Demand

The traffic demand for experiment is generated and then will be converted to SUMO

format. Listing 4.3 shows the traffic demand in XML format. Each vehicle agent

consists of followings:

• A start location source, from which vehicle agent departs.

• A destination location destination, at which vehicle agent arrives and finishes

its journey.

• A departure time startTime, when vehicle agent starts its trip.

• A beginning speed speed when vehicle agent departs from start location.

• A acceleration of speed of vehicle agent acceleration.
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• A deceleration of speed of vehicle agent decceleration.

• The limited amount of carbon emissions that vehicle agent can emit during its

journey.

For the experiment, a range from 400 to 1000 vehicle agents will be generated and

converted to SUMO format XML files appropriately using utility NETCONVERT of

SUMO suite.

Listing 4.3: Example of a vehicle file

1 <?xml version=” 1 .0 ” ?>

2 < t r a f f i c>

3 <v eh i c l e a c c e l e r a t i o n=” 0 .8 ” d e c c e l e r a t i o n=” 4 .5 ” d e s t i n a t i on=”10”

emi s s i ons=” 8.63121896361 ” source=”5” speed=”0” startTime=”0”/>

4 <v eh i c l e a c c e l e r a t i o n=” 0 .8 ” d e c c e l e r a t i o n=” 4 .5 ” d e s t i n a t i on=”17”

emi s s i ons=” 5.36890623795 ” source=”21” speed=”0” startTime=”0”/>

5 <v eh i c l e a c c e l e r a t i o n=” 0 .8 ” d e c c e l e r a t i o n=” 4 .5 ” d e s t i n a t i on=”23”

emi s s i ons=” 5.36890623795 ” source=”19” speed=”0” startTime=”0”/>

6 <v eh i c l e a c c e l e r a t i o n=” 0 .8 ” d e c c e l e r a t i o n=” 4 .5 ” d e s t i n a t i on=”1”

emi s s i ons=” 5.36890623795 ” source=”12” speed=”0” startTime=”0”/>

7 . . .

8 </ t r a f f i c>

Listing 4.4 illustrates the SUMO format of traffic demand. SUMO uses the Krauss

car-following model for its simulation. The length of each car according to this model

is set at 7.5 meters and the minimum allowed distance between two cars is 2.5 meters.

Therefore,the capacity of a link can be calculated based on this information.

Listing 4.4: Example of a SUMO vehicle file

1 <route s>

2 <vType id=”vtype1” l ength=” 7 .5 ” maxSpeed=”70” minGap=” 2 .5 ” vClass

=” passenger ” guiShape=” passenger / sedan”>
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3 <carFol lowing−Krauss a c c e l=” 0 .8 ” de c e l=” 4 .5 ” sigma=” 0 .5 ” />

4 </vType>

5 <v eh i c l e id=”1” type=”vtype1” depart=”0” departPos=” f r e e ”

departSpeed=”0”>

6 <route edges=”−5 −4 −3 −19 ” />

7 </ v eh i c l e>

8 <v eh i c l e id=”2” type=”vtype1” depart=”0” departPos=” f r e e ”

departSpeed=”0”>

9 <route edges=”−38 −22 −5 −4 −3 −2 −18 −34” />

10 </ v eh i c l e>

11 <v eh i c l e id=”3” type=”vtype1” depart=”0” departPos=” f r e e ”

departSpeed=”0”>

12 <route edges=”−36 −20 4 5 6 7 24 40” />

13 </ v eh i c l e>

14 <v eh i c l e id=”4” type=”vtype1” depart=”0” departPos=” f r e e ”

departSpeed=”0”>

15 <route edges=”21 −4 −3 −2” />

16 </ v eh i c l e>

17 . . .

18 </ route s>

4.3 Experiment Settings

The experiements is desgined to evaluate the efficeincy of decentralised multi-agent co-

ordination (DMAC) algroithm in comparison with decentralised uncoordiation (DECU)

and centralised coordination (CECO) algorithms. The criteria for evaluation include

total travel time, total travel distance, percentage of used links and number of reroutes

made by all vehicle agents. These criteria are explained as follows:

• Total travel time. Sum of experienced travel time of all vehicle agent in order to
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Figure 4.1: Map

arrive at destination locations.

• Total travel distance. Sum of distances that all vehicle agents travelled during

their journeys.

• Percentage of used links. The percentage of links used by vehicle agents to travel

on.

• Number of reroutes. Sum of times that vehicle agents changed their routes.

The map (ring road), which is used for the experiment, consists of 24 nodes and 40 links

as shown in Fig. 4.1. The links of the map varies in length, capacity and maximum

allowed speed. The length of these links are listed as follows:

• Links 1 - 8: 126.67 meters

• Links 9 - 16: 255.32 meters
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Parameters

parameter meaning value
AUCTION1 OPEN TIME Open time of auction Φ 80 seconds
AUCTION1 CLOSE TIME Close time of auction Φ 60 seconds
AUCTION2 REGISTER TIME Register time of auction Ψ 60 seconds
AUCTION2 OPEN TIME Open time of auction Ψ 40 seconds
AUCTION2 CLOSE TIME Close time of auction Ψ 15 seconds
UPDATE TIME Update time for sending MA 2 seconds

Table 4.1: Parameters

• Links 25 - 32: 382.97 meters

• Links 17 - 24: 166.79 meters

• Links 33 - 40: 166.79 meters

For the traffic demand, the number of vehicle agents increased by 100 (vehicle

agents) from 400 (vehicle agents) to 1000 (vehicle agents). The distance from start

location to destination location of each vehicle agent was generated and maximised

in order to simulate traffic congestion. Departure times of all vehicle agents are the

same. However, if the number of vehicle agents on a link is too large, then simulator

SUMO will control the order of departing for these agents.

In order to run simulation with DMAC planner, the values of parameters are set

as shown in Table 4.1.

The amount of time block is calculated for each link according to the Definition

??.
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Figure 4.2: Average Total Travel Time

4.4 Experimental Results

Figure 4.2 discussion: In this section, I report averages over 10 experiments for the

parameter settings in Table 4.1. Throughout the following sections, I evaluate three

planners: DECU, CECO and DMAC based on four criteria:

• Total travel time. Sum of experienced travel time of all vehicle agent in order to

arrive at destination locations.

• Total travel distance. Sum of distances that all vehicle agents travelled during

their journeys.

• Percentage of used links. The percentage of links used by vehicle agents to travel

on.

• Number of reroutes. Sum of times that vehicle agents changed their routes.
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Figure 4.3: Average Total Travel Distance

4.4.1 Average Total Travel Time

Figure 4.3 discussion: Figure 4.2 presents the average total travel time of a number

of vehicle agents ranging from 400 agents to 1000 agents. As shown in figure 4.2, the

average total travel time dramatically increased from 552 seconds (600 agents) to 3890

seconds (700 agents) associated with DECU planner. This can be explained as traffic

congestion occurred in traffic system with 700 vehicle agents.

When the number of vehicle agents is more than 700 agents, CECO and DMAC

planners help the traffic system alleviate the traffic congestion. Specifically, DMAC

reduced the average total travel time by 71% (700 agents), 72% (800 agents), 56.7%

(900 agents), 52.3% (1000 agents) in comparison to 76.4% (700 agents), 75.9% (800

agents), 61% (900 agents), 54.9 % (1000 agents), by which CECO planner did. This

result shows that the proposed DMAC planner outperforms DECU planner and its

performance is close to CECO’s one for congested network.

Surprisingly, when there was not traffic congestion, DECU planner works better
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Figure 4.4: Percentage of Used Links

than DMAC planner ranging from 400 to 600 vehicle agents. However, the difference in

average total travel time between these planners is not much. This can be explained

as DMAC planner over-predicted the excess of number of vehicle agents on several

links that made some vehicle agents rerouted to longer route.

4.4.2 Average Total Travel Distance

Figure 4.4 discussion: Figure 4.3 reports the average total travel distance of vehicle

agents ranging from 400 to 1000 agents. As shown in figure 4.3, the distance that

vehicle agent travelled with DMAC is longest in comparison to DECU (shortest) and

CECO. Moreover, for 400-500 vehicle agents, the difference in average total travel

distance between DECU and DMAC is not much in comparison to 700-1000 vehicle

agents. This can be explained as when the traffic system was extremely congested,

DMAC made vehicle agents to reroute more and therefore vehicle agent travelled longer

than normal.
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Figure 4.5: Number of Reroutes

4.4.3 Percentage of Used Links

4.4.4 Number of Total Reroutes

Figure 4.5 discussion: Figure 4.4 illustrates the percentage of used links within

road network. The percentage of used links associated with DMAC is highest in

comparison to DECU and CECO. For the extremely congested network with 900-100

vehicle agents, DMAC planner used all links of road network (100%). Having ability

to predict the overcapacity of links, DMAC planner rerouted vehicle agents to another

routes with less traffic in contrast to DECU planer. In other words, DMAC planner

exploited links of traffic network better than DECU and CECO planners.

Figure 4.5 reports the number of reroutes made by all vehicle agents of traffic

system. The number of reroutes made by vehicle agents with DECU planner is 0 as

DECU planner does not allow vehicle agents to change routes. For DMAC planner,

vehicle agents rerouted on average 1.73 (400), 1.91 (500), 1.72 (600), 1.85 (700), 1.84
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(800), 1.87 (900) times in comparison to 1.97 (400), 1.99 (500), 1.98 (600), 1.93 (700),

1.95 (800), 1.9 (900), 1.89 (1000) times with CECO planner. The difference in number

of reroutes between DMAC and CECO planners is relatively small as the quality of

route plays important role in reducing the total travel time of overall system.



Chapter 5

Conclusion

In this chapter a summary of my thesis is presented and then the future work that I

plan to carry out.

5.1 Summary

In this thesis I proposed the DDTA problem for optimising traffic system in terms

of total travel time, total carbon emissions. Then DDTA problem is modelled as

DynDCOP in order to solve it using DynDCOP solving algorithm. SBDO is used

in combination with auctions to coordinate route plans of vehicle agents for solving

DynDCOP of DDTA problem.

In this thesis, I also proposed IDTIS for vehicle agents to update current traffic

conditions in a decentralised manner. For evaluating the efficiency of proposed coor-

dination algorithm, I implemented three different planners (DECU, CECO, DMAC)

and conducted the experiments for evaluating them with traffic simulator SUMO and

TraCI. The experimental results shows that the performance of DMAC is relatively

close to the performance of CECO.

62
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5.2 Future Work

The first possible extension of the work described in this thesis is using learning algo-

rithm for accurately predicting the expected travel times on future links.

The second extension would be using Dec-POMDP to model distributed traffic

management problem. Dec-POMDP is able to handle uncertainty in expected travel

time and capacity constraint discovery.

Finally, proposed DMAC algorithm would be run with large-scale network of hun-

dred of thousands vehicle agents for simulating real city traffic such as Sydney CBD.



Appendix A

Program Code Listings

Listing A.1: SBDO Vehicle Agent class

1 # −∗− coding : i so −8859−1 −∗−

2

3

4 import sbdo . sbdo

5 import sbdo . c on s t r a i n t

6 import sbdo . i sgood

7 import c on s t r a i n t s

8 import copy

9 from map import Map as Network

10 from l i n k import Link

11 from node import Node

12 import sbdo agent rou t e p l anne r

13 import datet ime

14 from cons tant s import ∗

15 import time

16 import i t e r t o o l s

17

18 class SBDO Agent( sbdo . sbdo . Agent ) :

19 def ge t p l an ( s e l f ) :

64
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20 count = 0

21 while s e l f . va lue i s None :

22 count += 1

23 i f count > 5 :

24 raise Exception ( ’ Timeout ’ )

25 s e l f . handler . pass message ( s e l f . name , s e l f . name , SBDO Agent .

MESSAGE NULL, None , 0)

26 count += 1

27 i f count > MAX PLANNING TIME:

28 raise RuntimeError ( ’MAX PLANNING TIME exceeded ’ )

29 time . s l e e p (1 )

30 return s e l f . va lue

31

32 class SBDO Vehicle Agent (SBDO Agent) :

33

34 def i n i t ( s e l f , handler , ob j e c t i v e , name , road network ,

s ta r t node , end node , planner , source ) :

35 s e l f . network = Network ( )

36 s e l f . network . nodes = road network . nodes

37 s e l f . network . l i n k s = copy . copy ( road network . l i n k s )

38 # roads that we have a l r eady cons ide r ed and r e j e c t e d

39 s e l f . b l a c k l i s t e d l i n k s = s e t ( )

40 s e l f . b locked paths = [ ]

41 # i n i t i a l l y the re are no c on s t r a i n t s

42 c on s t r a i n t s = [ ]

43 # domain i s de f i ned by the road network

44 domain = None

45 # there i s only one ob j e c t i v e

46 ob j e c t i v e s = [ ob j e c t i v e ]

47 s e l f . time = SIMULATION START TIME

48 s e l f . s t a r t t ime = SIMULATION START TIME

49 s e l f . s t a r t node = s ta r t node
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50 s e l f . end node = end node

51 s e l f . cur node = s e l f . s t a r t node

52 s e l f . c u r l i n k = None

53 s e l f . cu r e t a = SIMULATION START TIME

54 s e l f . p o s i t i o n = 0

55 sbdo . sbdo . Agent . i n i t ( s e l f , handler , ob j e c t i v e s , c on s t r a i n t s ,

name , domain )

56 s e l f . p lanner = planner

57 s e l f . source = source

58 s e l f . add domain (None , None )

59

60 def b l a c k l i s t ( s e l f , l i n k i d ) :

61 i f l i n k i d in s e l f . network . l i n k s and s e l f . network . l i n k s . index (

l i n k i d ) not in s e l f . network . l i n k s :

62 return False

63 i f l i n k i d == s e l f . c u r l i n k or ( l i n k i d in s e l f . network . l i n k s and

s e l f . c u r l i n k . source == s e l f . network . l i n k s [ s e l f . network . l i n k s

. index ( l i n k i d ) ] . source ) :

64 return False

65 n ew b l a c k l i s t e d l i n k s = copy . copy ( s e l f . b l a c k l i s t e d l i n k s )

66 n ew b l a c k l i s t e d l i n k s . add ( l i n k i d )

67 new network = Network ( )

68 new network . nodes = s e l f . network . nodes

69 new network . l i n k s = copy . copy ( s e l f . network . l i n k s )

70 try :

71 del new network . l i n k s [ new network . l i n k s . index ( l i n k i d ) ]

72 except ValueError :

73 print ( ”Warning , l i n k %s has a l r eady been b l a c k l i s t e d f o r

v e h i c l e %s ” %( l i n k i d , s e l f . name) )

74 route r = sbdo agent rou t e p l anne r . SBDO Agent Route Planner (

new network , sbdo . i sgood . Isgood ( ) , s e l f . planner , s e l f . source )

# th i eu source gay ra l o i
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75 route = route r . AStar ( s e l f . c u r l i nk , s e l f . end node , s e l f . cur e ta ,

s e l f . p o s i t i o n )

76 i f route [ 0 ] i s not None :

77 s e l f . b l a c k l i s t e d l i n k s = n ew b l a c k l i s t e d l i n k s

78 s e l f . network = new network

79 s e l f . handler . pass message ( s e l f . name , s e l f . name , SBDO Agent .

MESSAGE NULL, None , 0)

80 return True

81 return False

82

83 def add neighbour ( s e l f , s rc , message ) :

84 l i n k i d = message [ 0 ]

85 agent id = message [ 1 : ]

86 # i f we a l r eady have a c on s t r a i n t f o r t h i s l i n k

87 # add t h i s agent to the c on s t r a i n t

88 # add t h i s agent as a neighbour

89 # e l s e

90 # add a new con s t r a i n t f o r t h i s l i n k

91 found = False

92 for c on s t r a i n t in s e l f . c o n s t r a i n t s :

93 # Relying on there only being one type o f c on s t r a i n t

94 i f c on s t r a i n t . con . l i n k i d == l i n k i d : # change id to l i n k i d

95 found = True

96 i n s e r t = True

97 for agent in agent id :

98 s e l f . ne ighbours . add ( s t r ( agent ) )

99 for a in c on s t r a i n t . agents :

100 i f a == agent :

101 i n s e r t = False

102 break

103 i f i n s e r t :

104 #con s t r a i n t . agents . append ( agent )
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105 c on s t r a i n t . agents = con s t r a i n t . agents + ( s t r ( agent ) , )

106 break

107 i f not found :

108 for l i n k in s e l f . network . l i n k s :

109 i f l i n k . id == l i n k i d :

110 l i n k = l i n k

111 break

112 i f l i n k i s None :

113 raise ValueError ( ” l i n k id %s does not e x i s t in the t r a f f i c

network” %( l i n k i d ) )

114 c on s t r a i n t = sbdo . c on s t r a i n t . Constra int ( c on s t r a i n t s .

v e h i c l e c a p a c i t y ( l i n k ) , s e l f . name)

115 for ID in agent id :

116 c on s t r a i n t . agents = con s t r a i n t . agents + ( s t r ( ID) , )

117 s e l f . ne ighbours . add ( s t r ( ID) )

118 s e l f . c o n s t r a i n t s . append ( c on s t r a i n t )

119

120 def remove neighbour ( s e l f , s rc , message ) :

121 l i n k i d = message [ 0 ]

122 agent id = message [ 1 : ]

123 # remove t h i s agent from the con s t r a i n t

124 # i f i t was the l a s t agent

125 # remove the c on s t r a i n t

126 # maybe remove t h i s agent from our ne ighbours

127 for c on s t r a i n t in s e l f . c o n s t r a i n t s :

128 i f c on s t r a i n t . con . l i n k i d == l i n k i d :

129 try :

130 i f l en ( agen t id ) > 0 :

131 for agent in agent id :

132 a g e n t s l i s t = l i s t ( c on s t r a i n t . agents )

133 a g e n t s l i s t . remove ( s t r ( agent . ID) )

134 index = s e l f . c o n s t r a i n t s . index ( c on s t r a i n t )
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135 del s e l f . c o n s t r a i n t s [ index ] . agents

136 s e l f . c o n s t r a i n t s [ index ] . agents = tup l e ( a g e n t s l i s t )

137 i f l en ( c on s t r a i n t . agents ) == 1 :

138 s e l f . c o n s t r a i n t s . remove ( c on s t r a i n t )

139 else :

140 s e l f . c o n s t r a i n t s . remove ( c on s t r a i n t )

141 except ValueError :

142 pass

143 break

144 # rebu i l d the l i s t o f ne ighbours

145 s e l f . r ebu i l d ne i ghbou r s ( )

146

147 def add domain ( s e l f , s rc , message ) :

148 i f message i s not None :

149 route = message [ 0 ]

150 e ta s = message [ 1 ]

151 else :

152 route = None

153 e ta s = None

154

155 i f s e l f . c u r l i n k i s not None :

156 del s e l f . domain [ : ]

157 domain values = [ ]

158 i f route i s not None and e ta s i s not None and s e l f . c u r l i n k i s

not None :

159 s ho r t e s t r ou t e , s h o r t e s t e t a s = route , e ta s

160 else :

161 i f s e l f . support i s None :

162 route r = sbdo agent rou t e p l anne r . SBDO Agent Route Planner (

s e l f . network , sbdo . i sgood . Isgood ( ) , s e l f . planner , s e l f .

source )

163 else :
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164 route r = sbdo agent rou t e p l anne r . SBDO Agent Route Planner (

s e l f . network , s e l f . recv [ s e l f . support ] , s e l f . planner , s e l f .

source )

165 # get a s e t o f p o s s i b l e route s from o r i g i n a l to d e s t i n a t i on

166 # get f i r s t s h o r t e s t route

167 i f s e l f . c u r l i n k i s None :

168 s ho r t e s t r ou t e , s h o r t e s t e t a s = route r . AStar ( s e l f . cur node ,

s e l f . end node , s e l f . time , 0)

169 else :

170 s ho r t e s t r ou t e , s h o r t e s t e t a s = route r . AStar ( s e l f . c u r l i nk ,

s e l f . end node , s e l f . time , s e l f . p o s i t i o n )

171 i f s e l f . c u r l i n k i s not None and ( l en ( s h o r t e s t r o u t e ) == 0 or

s h o r t e s t r o u t e [ 0 ] != s e l f . c u r l i n k ) :

172 s h o r t e s t r o u t e . i n s e r t (0 , s e l f . c u r l i n k )

173 s h o r t e s t e t a s . i n s e r t (0 , s e l f . c u r e t a )

174 domain values . append ( ( sho r t e s t r ou t e , s h o r t e s t e t a s ) )

175 # remove each l i n k o f s h o r t e s t route from network and c a l c u l a t e

again s ho r t e s t route without t h i s l i n k

176 new map = Network ( )

177 new map . nodes = s e l f . network . nodes

178 new map . l i n k s = copy . copy ( s e l f . network . l i n k s )

179 # Add po s s i b l e route s from current p o s i t i o n to d e s t i n a t i on

l o c a t i o n s to domain o f v e h i c l e agent

180 tmp route = [ ]

181 temp route = copy . deepcopy ( s h o r t e s t r o u t e )

182 f i r s t l i n k = temp route [ 0 ]

183 del temp route [ 0 ]

184 d e l s e t l i n k s = [ ]

185 for i in range (1 , l en ( temp route )+1) :

186 g e n s e t l i n k s = l i s t ( i t e r t o o l s . combinat ions ( temp route , i ) )

187 d e l s e t l i n k s . extend ( g e n s e t l i n k s )

188 for remove tuple in d e l s e t l i n k s :
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189 for j in range (0 , l en ( remove tuple ) ) :

190 del new map . l i n k s [ new map . l i n k s . index ( remove tuple [ j ] ) ]

191 i f s e l f . support i s None :

192 new router = sbdo agent rou t e p l anne r .

SBDO Agent Route Planner (new map , sbdo . i sgood . Isgood ( ) ,

s e l f . planner , s e l f . source )

193 else :

194 new router = sbdo agent rou t e p l anne r .

SBDO Agent Route Planner (new map , s e l f . r ecv [ s e l f . support ] ,

s e l f . planner , s e l f . source )

195 i f s e l f . c u r l i n k i s None :

196 po s s i b l e r ou t e , p o s s i b l e e t a s = new router . AStar ( s e l f .

cur node , s e l f . end node , s e l f . time , 0)

197 else :

198 po s s i b l e r ou t e , p o s s i b l e e t a s = new router . AStar ( s e l f .

c u r l i nk , s e l f . end node , s e l f . time , s e l f . p o s i t i o n )

199 i f s e l f . c u r l i n k i s not None and ( l en ( p o s s i b l e r o u t e ) == 0 or

po s s i b l e r o u t e [ 0 ] != s e l f . c u r l i n k ) :

200 po s s i b l e r o u t e . i n s e r t (0 , s e l f . c u r l i n k )

201 p o s s i b l e e t a s . i n s e r t (0 , s e l f . cu r e t a )

202 i f po s s i b l e r o u t e != sh o r t e s t r o u t e and ( p o s s i b l e r ou t e ,

p o s s i b l e e t a s ) not in domain values and po s s i b l e r o u t e [ 0 ] ==

f i r s t l i n k and ( p o s s i b l e r o u t e not in s e l f . b locked paths ) :

203 domain values . append ( ( po s s i b l e r ou t e , p o s s i b l e e t a s ) )

204 e l i f po s s i b l e r o u t e == sho r t e s t r o u t e :

205 i ndex route = domain values . index ( ( sho r t e s t r ou t e ,

s h o r t e s t e t a s ) )

206 del domain values [ i ndex route ]

207 domain values . append ( ( po s s i b l e r ou t e , p o s s i b l e e t a s ) )

208 for j in range (0 , l en ( remove tuple ) ) :

209 new map . l i n k s . append ( remove tuple [ j ] )

210 s e l f . domain = domain values
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211

212 def g e t a l t e r n a t e r o u t e ( s e l f , l i n k i d , time ) :

213 network = Network ( )

214 network . nodes = s e l f . network . nodes

215 network . l i n k s = copy . copy ( s e l f . network . l i n k s )

216 try :

217 del network . l i n k s [ network . l i n k s . index ( l i n k i d ) ]

218 except ValueError :

219 # l i nk has a l r eady been de l e t ed

220 pass

221 i f s e l f . support i s None :

222 route r = sbdo agent rou t e p l anne r . SBDO Agent Route Planner (

network , sbdo . i sgood . Isgood ( ) , s e l f . planner , s e l f . source )

223 else :

224 route r = sbdo agent rou t e p l anne r . SBDO Agent Route Planner (

network , s e l f . recv [ s e l f . support ] , s e l f . planner , s e l f . source )

225 route , e ta s = route r . AStar ( s e l f . c u r l i nk , s e l f . end node , time ,

s e l f . p o s i t i o n )

226 i f route i s None :

227 return None

228 i f s e l f . c u r l i n k i s not None :

229 route . i n s e r t (0 , s e l f . c u r l i n k )

230 e ta s . i n s e r t (0 , s e l f . c u r e t a )

231 return ( route , e t a s )

232

233 def stop ( s e l f ) :

234 s e l f . handler . pass message ( s e l f . name , s e l f . name , SBDO Agent .

MESSAGETERMINATE, ’DIE ! ’ , 0)

Listing A.2: Vehicle Agent class

1 # −∗− coding : i so −8859−1 −∗−

2
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3 # This c l a s s d e f i n e s a smart v e h i c l e agent .

4

5 import v eh i c l e

6 import sbdo agent

7 import sbdo

8 import sbdo agent rou t e p l anne r

9 import datet ime

10 import time as t ime sys

11 from cons tant s import ∗

12

13 class Vehic le Agent ( v e h i c l e . Veh ic l e ) :

14 def i n i t ( s e l f , v eh i c l e , planner , sbdo message handler , ID ,

ob j e c t i v e , road network ) :

15 for at t in v eh i c l e . d i c t . i t e r k e y s ( ) :

16 s e l f . d i c t [ a t t ] = v eh i c l e . d i c t [ a t t ]

17 s e l f . p lanner = planner

18 s e l f . ID = ID

19 s e l f . sbdo agent = sbdo agent . SBDO Vehicle Agent (

sbdo message handler , ob j e c t i v e , ID , road network , s e l f . source

, s e l f . d e s t i na t i on , s e l f . planner , s e l f . source )

20 s e l f . sbdo agent . s t a r t ( )

21 s e l f . route = None

22 s e l f . time = SIMULATION START TIME

23 s e l f . o b j e c t i v e = ob j e c t i v e

24 s e l f . r e g i s t e r e d a u c t i o n s = [ ]

25 s e l f . network = road network

26

27 def v e h i c l e r e g i s t e r e d ( s e l f , l i n k i d , ∗ v e h i c l e i d ) :

28 message = [ l i n k i d ]

29 message . extend ( v e h i c l e i d )

30 s e l f . sbdo agent . handler . pass message ( s t r ( s e l f . ID) , s t r ( s e l f . ID) ,

s e l f . sbdo agent .MESSAGE ADD NEIGH, message , 0)
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31

32 def v e h i c l e d e r e g i s t e r e d ( s e l f , l i n k i d , ∗ v e h i c l e i d ) :

33 message = [ l i n k i d ]

34 message . extend ( v e h i c l e i d )

35 s e l f . sbdo agent . handler . pass message ( s t r ( s e l f . ID) , s t r ( s e l f . ID) ,

s e l f . sbdo agent .MESSAGE REM NEIGH, message , 0)

36

37 def auct ion open ( s e l f , l i n k i d ) :

38 cu r r e n t c o s t = s e l f . o b j e c t i v e . co s t ( s e l f . route , s e l f .

est imatedTimesOfArr ival )

39 s t a r t t ime = s e l f . est imatedTimesOfArr ival [ 0 ]

40 a l t e r n a t e r o u t e = s e l f . sbdo agent . g e t a l t e r n a t e r o u t e ( l i n k i d ,

s t a r t t ime )

41 i f a l t e r n a t e r o u t e i s None :

42 d i f f e r e n c e = 65545

43 else :

44 a l t e r n a t e c o s t = s e l f . o b j e c t i v e . co s t (∗ a l t e r n a t e r o u t e )

45 d i f f e r e n c e = a l t e r n a t e c o s t − cu r r e n t c o s t

46 for l i nk , time , auc t i onee r in s e l f . r e g i s t e r e d a u c t i o n s :

47 i f l i n k == l i n k i d :

48 break

49 auc t i onee r . r e g i s t e r b i d ( s e l f , d i f f e r e n c e )

50

51 def auction won ( s e l f , l i n k i d ) :

52 for l i nk , time , auc t i onee r in s e l f . r e g i s t e r e d a u c t i o n s :

53 i f l i n k == l i n k i d :

54 break

55 auc t i onee r . d e r e g i s t e r ( s e l f )

56

57 def au c t i o n l o s t ( s e l f , l i n k i d ) :

58 auc t i onee r . d e r e g i s t e r ( s e l f )

59 s e l f . sbdo agent . b l a c k l i s t ( l i n k i d )
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60

61 def t ime t i c k ( s e l f , new time ) :

62 a s s e r t i s i n s t a n c e ( new time , datet ime . datet ime )

63 s e l f . sbdo agent . time = new time

64 s e l f . time = new time

65 s e l f . sbdo agent . p o s i t i o n = s e l f . p o s i t i o n

66

67 i f s e l f . route i s None :

68 s e l f . sbdo agent . cur node = s e l f . source

69 s e l f . sbdo agent . c u r l i n k = None

70 s e l f . sbdo agent . cu r e t a = s e l f . time

71 else :

72 s e l f . sbdo agent . c u r l i n k = s e l f . route [ s e l f . r ou t ePos i t i on ]

73 s e l f . sbdo agent . cur node = s e l f . sbdo agent . c u r l i n k . d e s t i n a t i on

74 i f s e l f . r ou t ePo s i t i on + 1 < l en ( s e l f . route ) :

75 s e l f . sbdo agent . cu r e t a = s e l f . est imatedTimesOfArr ival [ s e l f .

r ou t ePo s i t i on + 1 ]

76

77 def update plan ( s e l f , auc t i ons=True ) :

78 try :

79 print ( s e l f . ID , ”update plan ” )

80 new route = s e l f . sbdo agent . g e t p l an ( )

81 a s s e r t l en ( new route [ 0 ] ) > 0 or s e l f . route [ 0 ] [ − 1 ] . d e s t i n a t i on

== s e l f . d e s t i n a t i on

82 i f s e l f . route i s None :

83 s e l f . r ou t ePo s i t i on = 0

84 s e l f . route , s e l f . est imatedTimesOfArr iva l = new route

85 s e l f . route changed = True

86 else :

87 i f new route [ 0 ] != s e l f . route :

88 route r = sbdo agent rou t e p l anne r . SBDO Agent Route Planner (

s e l f . network , 0 , s e l f . planner , s e l f . source )
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89 new etas = route r . c on s t r u c t e t a s ( new route [ 0 ] , s e l f . time ,

s e l f . p o s i t i o n )

90 new route = new route [ :−1]+( new etas , )

91

92 i f s e l f . route [ s e l f . r ou t ePo s i t i on ] in new route [ 0 ] :

93 i f new route [ 0 ] . index ( s e l f . route [ s e l f . r ou t ePo s i t i on ] ) ==

0 :

94 s e l f . r ou t ePo s i t i on = 0

95 s e l f . sbdo agent . b locked paths . append ( s e l f . route )

96 s e l f . route , s e l f . est imatedTimesOfArr iva l = new route

97 s e l f . route changed = True

98 message = [ new route [ 0 ] , new route [ 1 ] ]

99 s e l f . sbdo agent . handler . pass message ( s t r ( s e l f . ID) , s t r (

s e l f . ID) , s e l f . sbdo agent .MESSAGEADDDOMAIN,

message , 0)

100 else :

101 positionNewRoute = new route [ 0 ] . index ( s e l f . route [ s e l f .

r ou t ePo s i t i on ] )

102 del new route [ 0 ] [ : positionNewRoute ] # remove t r av e l ed

l i n k s

103 del new route [ 1 ] [ : positionNewRoute ] # remove as soc .

e ta s

104 s e l f . r ou t ePo s i t i on = 0 # se t r ou t ePo s i t i on to 0

105 s e l f . sbdo agent . b locked paths . append ( s e l f . route )

106 s e l f . route , s e l f . est imatedTimesOfArr iva l = new route

107 s e l f . route changed = True

108 message = [ new route [ 0 ] , new route [ 1 ] ]

109 s e l f . sbdo agent . handler . pass message ( s t r ( s e l f . ID) , s t r (

s e l f . ID) , s e l f . sbdo agent .MESSAGEADDDOMAIN,

message , 0)

110 else :

111 i f s e l f . route [ s e l f . r ou t ePo s i t i on ] . source == new route
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[ 0 ] [ 0 ] . source :

112 s e l f . r ou t ePo s i t i on = 0

113 s e l f . sbdo agent . b locked paths . append ( s e l f . route )

114 s e l f . route , s e l f . est imatedTimesOfArr iva l = new route

115 s e l f . route changed = True

116 message = [ new route [ 0 ] , new route [ 1 ] ]

117 s e l f . sbdo agent . handler . pass message ( s t r ( s e l f . ID) , s t r (

s e l f . ID) , s e l f . sbdo agent .MESSAGEADDDOMAIN,

message , 0)

118 print ( ” f i n i s h update plan ” )

119 i f auct i ons :

120 return s e l f . update auct ions ( )

121 print ( s e l f . ID , ” f i n i s h update plan + update auct ion ” )

122 except Asse r t i onErro r :

123 print ( ’WARNING: Tried to change to a non−con t i gu i ou s route ’ )

124 print ( ’ s e l f . route =’ , s e l f . route )

125 print ( ’ s e l f . r ou t ePo s i t i on =’ , s e l f . r ou t ePo s i t i on )

126 print ( ’ new route =’ , new route [ 0 ] )

127 return True

128

129 def update auct ions ( s e l f ) :

130 i f s e l f . route i s None :

131 print ( ”warning , v eh i c l e a g en t . update auct ions , no route ” )

132 return False

133 # check to see i f we should d e r e g i s t e r from any auct i ons

134 i f not not s e l f . r e g i s t e r e d a u c t i o n s :

135 for l i n k i d , time , auc t i onee r in s e l f . r e g i s t e r e d a u c t i o n s :

136 found = False

137 for i in xrange ( l en ( s e l f . route ) ) :

138 i f s e l f . route [ i ] == l i n k i d and s e l f .

est imatedTimesOfArr ival [ i ] >= time and s e l f .

est imatedTimesOfArr ival [ i ] < time + AUCTION BLOCK TIME:
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139 found = True

140 break

141 i f not found :

142 auc t i onee r . d e r e g i s t e r ( s e l f )

143

144 # check to see i f we should r e g i s t e r f o r any new auct i ons

145 for i in xrange ( l en ( s e l f . route ) ) :

146 #fo r r l i n k i d , r t ime in s e l f . route :

147 found = False

148 for l i n k i d , time , auc t i onee r in s e l f . r e g i s t e r e d a u c t i o n s :

149 print l en ( auc t i onee r . r e g i s t e r e d v e h i c l e s )

150 i f s e l f . route [ i ] == l i n k i d and s e l f . est imatedTimesOfArr ival [

i ] >= time and s e l f . est imatedTimesOfArr ival [ i ] < time +

AUCTION BLOCK TIME:

151 found = True

152 break

153 i f not found :

154 i f s e l f . time > ( s e l f . est imatedTimesOfArr ival [ i ] −

AUCTION CLOSE TIME) :

155 auc t i onee r = s e l f . p lanner . g e t au c t i on e e r ( s e l f . route [ i ] ,

s e l f . est imatedTimesOfArr ival [ i ] )

156

157 r e s e r v e = auc t i onee r . r e qu e s t r e s e r v e ( )

158 i f not r e s e r v e :

159 s e l f . r e g i s t e r e d a u c t i o n s . append ( ( s e l f . route [ i ] , s e l f .

est imatedTimesOfArr ival [ i ] , auc t i one e r ) )

160 else :

161 # remember that we have r e s e rved a spot on t h i s l i n k

162 s e l f . r e g i s t e r e d a u c t i o n s . append ( ( s e l f . route [ i ] , s e l f .

est imatedTimesOfArr ival [ i ] , auc t i one e r ) )

163 e l i f s e l f . time >= s e l f . est imatedTimesOfArr iva l [ i ] −

AUCTION LEAD TIME and s e l f . time < s e l f .
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est imatedTimesOfArr ival [ i ] − AUCTION CLOSE TIME:

164 auc t i onee r = s e l f . p lanner . g e t au c t i on e e r ( s e l f . route [ i ] ,

s e l f . est imatedTimesOfArr ival [ i ] )

165 cu r r e n t c o s t = s e l f . o b j e c t i v e . co s t ( s e l f . route , s e l f .

est imatedTimesOfArr ival )

166 s t a r t t ime = s e l f . est imatedTimesOfArr ival [ 0 ]

167 a l t e r n a t e r o u t e = s e l f . sbdo agent . g e t a l t e r n a t e r o u t e ( s e l f .

route [ i ] , s t a r t t ime )

168 i f a l t e r n a t e r o u t e i s None :

169 d i f f e r e n c e = 65545

170 else :

171 a l t e r n a t e c o s t = s e l f . o b j e c t i v e . co s t (∗ a l t e r n a t e r o u t e )

172 d i f f e r e n c e = a l t e r n a t e c o s t − cu r r e n t c o s t

173 auc t i onee r . r e g i s t e r b i d ( s e l f , d i f f e r e n c e )

174 e l i f s e l f . time > ( s e l f . est imatedTimesOfArr ival [ i ] −

AUCTION REGISTER TIME) :

175 auc t i onee r = s e l f . p lanner . g e t au c t i on e e r ( s e l f . route [ i ] ,

s e l f . est imatedTimesOfArr ival [ i ] )

176 auc t i onee r . r e g i s t e r ( s e l f )

177 s e l f . r e g i s t e r e d a u c t i o n s . append ( ( s e l f . route [ i ] , s e l f .

est imatedTimesOfArr ival [ i ] , auc t i one e r ) )

178 # de l e t e ob s o l e t e r e c e i v ed proposa l

179 message = [ ]

180 s e l f . sbdo agent . handler . pass message ( s t r ( s e l f . ID) , s t r ( s e l f . ID) ,

s e l f . sbdo agent .MESSAGE REM OBS PROPL, message , 0)

181 return True

182

183 def e q ( s e l f , o ther ) :

184 i f type ( other ) != type ( s e l f ) :

185 return False

186 i f s e l f . ID != other . ID :

187 return False
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188 return True

189

190 def ha sh ( s e l f ) :

191 return s e l f . ID

192

193 def ge t p l an ( s e l f ) :

194 return s e l f . sbdo agent . g e t p l an ( )

195

196 def s t a r t ( s e l f ) :

197 s e l f . sbdo agent . s t a r t ( )

198

199 def stop ( s e l f ) :

200 s e l f . sbdo agent . stop ( )

201

202 def g e t s t a t e ( s e l f ) :

203 return { ’ ID ’ : s e l f . ID}

Listing A.3: Auctioneer agent class

1 # −∗− coding : i so −8859−1 −∗−

2 import v eh i c l e a g en t

3 from cons tant s import ∗

4 import math

5

6 class Auct ioneer :

7 def i n i t ( s e l f , l i nk , time , p lanner ) :

8 s e l f . r e g i s t e r e d v e h i c l e s = [ ]

9 # l i nk f o r b idding to t r av e r s e

10 s e l f . l i n k = l i n k

11 # time f o r which p r i v i l e g e s are a l r eady a l l o c a t e d

12 s e l f . time = time

13 # simulator ’ s time

14 s e l f . s imu la to r t ime = None
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15 # l i s t s f o r s t o r i n g bidders , winners , l o s e r s o f auct ion

16 s e l f . b idder s = [ ]

17 s e l f . r e s e r v e c apa c i t y = 0

18 s e l f . auct ion open = False

19 s e l f . auct ion done = False

20 s e l f . p lanner = planner

21

22 def r e g i s t e r ( s e l f , agent ) :

23 # check to see i f the agent i s a l r eady r e g i s t e r e d

24 for a in s e l f . r e g i s t e r e d v e h i c l e s :

25 i f a == agent :

26 return

27 i f l en ( s e l f . r e g i s t e r e d v e h i c l e s ) != 0 :

28 i d l i s t = [ ]

29 for r e g v e h i c l e in s e l f . r e g i s t e r e d v e h i c l e s :

30 i d l i s t . append ( r e g v e h i c l e . ID)

31 agent . v e h i c l e r e g i s t e r e d ( s e l f . l i n k . id , ∗ i d l i s t )

32

33 for a in s e l f . r e g i s t e r e d v e h i c l e s :

34 a . v e h i c l e r e g i s t e r e d ( s e l f . l i n k . id , agent . ID)

35 # add t h i s v e h i c l e to the l i s t

36 s e l f . r e g i s t e r e d v e h i c l e s . append ( agent )

37

38 def d e r e g i s t e r ( s e l f , agent ) :

39 a g e n t l i s t = [ ]

40 found = False

41 for a in s e l f . r e g i s t e r e d v e h i c l e s :

42 i f a == agent :

43 s e l f . r e g i s t e r e d v e h i c l e s . remove ( a )

44 found = True

45 break

46 i f found :
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47 agent . v e h i c l e d e r e g i s t e r e d ( s e l f . l i n k . id , ∗ s e l f .

r e g i s t e r e d v e h i c l e s )

48 for a in s e l f . r e g i s t e r e d v e h i c l e s :

49 a . v e h i c l e d e r e g i s t e r e d ( s e l f . l i n k . id , agent )

50

51 def r e g i s t e r b i d ( s e l f , agent , bid ) :

52 # NOTE: assuming each v eh i c l e only makes one bid

53 s e l f . b idder s . append ( ( bid , agent ) )

54

55 def conduct auct ion ( s e l f ) :

56 s e l f . b idder s . s o r t ( )

57 s e l f . b idder s . r e v e r s e ( )

58 l o s e r s = 0

59 l en w inne r s = len ( s e l f . b idder s )

60 i f l en w inne r s <= s e l f . l i n k . capac i ty :

61 for i in xrange (0 , l en w inne r s ) :

62 s e l f . b idder s [ i ] [ 1 ] . auction won ( s e l f . l i n k . id )

63 s e l f . r e s e r v e c apa c i t y = s e l f . l i n k . capac i ty − l en w inne r s

64 else :

65 for i in xrange (0 , s e l f . l i n k . capac i ty ) :

66 s e l f . b idder s [ i ] [ 1 ] . auction won ( s e l f . l i n k . id )

67 for i in xrange ( s e l f . l i n k . capac i ty , l en ( s e l f . b idder s ) ) :

68 s e l f . b idder s [ i ] [ 1 ] . a u c t i o n l o s t ( s e l f . l i n k . id )

69 l o s e r s += 1

70 s e l f . auct ion done = True

71 return l o s e r s

72

73 def r e qu e s t r e s e r v e ( s e l f ) :

74 # Check i f i t ’ s p o s s i b l e to g ive p r i v i l e g e to v eh i c l e agent i f

auct ion i s a l r eady c l o s ed

75 i f s e l f . r e s e r v e c apa c i t y > 0 :

76 s e l f . r e s e r v e c apa c i t y −= 1
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77 return True

78 else :

79 return False

80

81 def t ime t i c k ( s e l f , time ) :

82 s e l f . s imu la to r t ime = time

83 i f s e l f . s imu la to r t ime >= s e l f . time − AUCTION LEAD TIME and not

s e l f . auct ion open :

84 s e l f . open auct ion ( )

85 i f s e l f . s imu la to r t ime >= s e l f . time − AUCTION CLOSE TIME and not

s e l f . auct ion done :

86 s e l f . conduct auct ion ( )

87

88 def open auct ion ( s e l f ) :

89 for agent in s e l f . r e g i s t e r e d v e h i c l e s :

90 agent . auct ion open ( s e l f . l i n k . id )

91 s e l f . auct ion open = True

Listing A.4: SUMO simulator, TraCI and traffic planner

1 #!/ usr /bin /python

2 # −∗− coding : i so −8859−1 −∗−

3

4 import sys

5 sys . path . append ( ” Tra f f i cP l anne r /” )

6 from xml .dom import minidom

7 from map import Map

8 from node import Node

9 from l i n k import Link

10 from v eh i c l e import Vehic l e

11 from planner import Planner

12 from aStarPlanner import AStarPlanner

13 from c e n t r a l i s e dT r a f f i cP l a nn e r import Cent r a l i s edTra f f i cP l anne r
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14 from de c en t r a l i s e dT ra f f i cP l ann e r import Decen t r a l i s edTra f f i cP l anne r

15 from t imeEst imatingPlanner import TimeEstimatingPlanner

16 from s bdo veh i c l e p l anne r import SBDO Vehicle Planner

17 from sbdo l i nk p l anne r import SBDO Link Planner

18 from cons tant s import ∗

19 import random

20 import time

21 import subproces s

22 import t r a c i

23 import t r a c i . cons tant s as tc

24 import os

25 os . env i ron [ ’XERCESC NLS HOME ’ ] = ’ / usr / share / xerces−c/msg ’

26

27 def main ( ) :

28 act iveCars = [ ]

29 completedCars = [ ]

30 map = Map( )

31 #Var iab l e s f o r program run

32 f i n i s h e d = False

33 cur t ime = 0

34 mapFN = ”map . xml”

35 vehic lesFN = ” v eh i c l e s . xml”

36

37 i f l en ( sys . argv ) > 1 :

38 mapFN = sys . argv [ 1 ]

39 i f l en ( sys . argv ) > 2 :

40 vehic lesFN = sys . argv [ 2 ]

41 map = ParseMapFile (mapFN)

42 print ( ”Map loaded ” )

43 act iveCars = Par s eVeh i c l e sF i l e ( vehiclesFN , map)

44 print ( ” Veh i c l e s loaded ” )

45 i f l en ( sys . argv ) > 3 :
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46 i f sys . argv [ 3 ] . lower ( ) == ”ctp ” :

47 routePlanner = Cen t r a l i s edTra f f i cP l anne r (map)

48 e l i f sys . argv [ 3 ] . lower ( ) == ”dctp” :

49 routePlanner = Decen t r a l i s edTra f f i cP l anne r (map)

50 e l i f sys . argv [ 3 ] . lower ( ) == ” tetp ” :

51 routePlanner = TimeEstimatingPlanner (map)

52 e l i f sys . argv [ 3 ] == ’ svtp ’ :

53 routePlanner = SBDO Vehicle Planner (map)

54 e l i f sys . argv [ 3 ] == ’ s l t p ’ :

55 routePlanner = SBDO Link Planner (map)

56 e l i f sys . argv [ 3 ] == ’ a s ta r ’ :

57 routePlanner = AStarPlanner (map)

58 else :

59 routePlanner = AStarPlanner (map)

60 # ensure sumo has the same map we have

61 try :

62 os . un l ink (mapFN + ’ . xml ’ )

63 except OSError :

64 pass

65 r e s u l t = subproces s . c a l l ( (NETCONVERT, ’−−osm− f i l e s ’ , mapFN, ’−o ’ ,

mapFN + ’ . xml ’ , ’−−t l s . j o i n ’ , ’−−remove−edges . by−v c l a s s ’ , ’

r a i l s l ow , r a i l f a s t , b i cyc l e , p ede s t r i an ’ , ’−−pro j . utm ’ , ’−−

j un c t i on s . j o i n ’ ) )

66 i f r e s u l t != 0 :

67 print ( ”Error : netconvert f a i l e d , abor t ing ” )

68 routePlanner . Setup (map, ac t iveCars )

69 routePlanner . I n i t i a l P l a nn i n g (map, ac t iveCars )

70 print ( ” I n i t i a l Planning Completed” )

71 wr i t e sumo veh i c l e s ( act iveCars , vehic lesFN )

72 # s t a r t sumo

73 sumo = subproces s . Popen ( (SUMO, ’−−net− f i l e ’ , mapFN + ’ . xml ’ , ’−−

remote−port ’ , ’ 32000 ’ , ’−−route− f i l e s ’ , vehic lesFN + ’ . xml ’ , ’−−
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summary−output ’ , os . path . j o i n (OUTPUT DIR, ’ summary ’ ) , ’−−

t r i p i n f o−output ’ , os . path . j o i n (OUTPUT DIR, ’ t r i p i n f o ’ ) , ’−−

vehroute−output ’ , os . path . j o i n (OUTPUT DIR, ’ vehroute ’ ) , ’−−

vehroute−output . ex i t−t imes ’ , ’ t rue ’ ) )

74 # setup t r a c i

75 t r a c i . i n i t (32000)

76 print ( ” S ta r t i ng ” )

77 a l l c a r s = act iveCars

78 act iveCars = {}

79 s t a r t ed = False

80 num reroutes = 0

81 #This i s to record the load ba lanc ing

82 l oad ba lance = [ ]

83 abso lu t e ba l anc e = f l o a t ( l en ( a l l c a r s ) ) / f l o a t ( l en (map . l i n k s ) )

84 while not f i n i s h e d and sumo . p o l l ( ) i s None :

85 #The load balance f o r t h i s s tep

86 t h i s b a l a n c e = [ ]

87 # sumo s imu la t i on step

88 t r a c i . s imulat ionStep (0 )

89 r e s u l t s = t r a c i . s imu la t i on . getDepartedIDList ( )

90 i f l en ( r e s u l t s ) > 0 :

91 s t a r t ed = True

92 for c a r i d in r e s u l t s :

93 for car in a l l c a r s :

94 i f s t r ( car . id ) == ca r i d :

95 act iveCars [ c a r i d ] = car

96 cu r r en t po s = t r a c i . v e h i c l e . getRoadID ( s t r ( car . id ) )

97 car . r ou t ePo s i t i on = car . route . index ( i n t ( cu r r en t po s ) )

98 car . p o s i t i o n = t r a c i . v e h i c l e . getLanePos i t ion ( s t r ( car . id ) )

99 i f car . r ou t ePo s i t i on == −1:

100 car . route = [ cu r r en t po s ]

101 car . r ou t ePo s i t i on = 0
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102 r e s u l t s = t r a c i . s imu la t i on . getArr ivedIDLis t ( )

103 #pr in t ’DEBUG: a r r i v ed = ’ , r e s u l t s

104 for c a r i d in r e s u l t s :

105 i f c a r i d in act iveCars :

106 del act iveCars [ c a r i d ]

107 i f cur t ime % SIMULATION UPDATE INTERVAL == 0 :

108 for car in act iveCars . va lue s ( ) :

109 #fo r car in a l l c a r s :

110 try :

111 cu r r en t po s = t r a c i . v e h i c l e . getRoadID ( s t r ( car . id ) )

112 car . r ou t ePo s i t i on = car . route . index ( i n t ( cu r r en t po s ) )

113 car . p o s i t i o n = t r a c i . v e h i c l e . getLanePos i t ion ( s t r ( car . id ) )

114 a s s e r t car . r ou t ePo s i t i on != −1

115 except ValueError :

116 # car i s cu r r en t l y on an i n t e r s e c t i o n , mark the car as

being on the prev ious road

117 try :

118 node = in t ( cu r r en t po s . s p l i t ( ’ ’ ) [ 0 ] [ 1 : ] )

119 except ValueError :

120 # car i s probably t e l e p o r t i n g

121 continue

122 for n in map . nodes :

123 i f n . id == node :

124 for edge in n . incomingLinks :

125 i f edge in car . route :

126 car . r ou t ePo s i t i on = car . route . index ( edge )

127 car . p o s i t i o n = 0

128 break

129 i f cur t ime % SIMULATION PLANNING INTERVAL == 0 :

130 print ( ” planning ” )

131 routePlanner . Plan (map, ac t iveCars . va lue s ( ) , cur t ime )

132 for car in act iveCars . va lue s ( ) :
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133 i f car . route changed :

134 # t e l l sumo about the new route

135 car . route changed = False

136 new route = [ s t r ( edge . id ) for edge in car . route ]

137 cu r r r ou t e = t r a c i . v e h i c l e . getRoute ( s t r ( car . id ) )

138 i f new route != cu r r r ou t e :

139 print ( ” car = {0} , cu r r ent route = {1} , cu r r ent p o s i t i o n

= {2} , new route = {3}” . format ( car . id , cu r r route ,

t r a c i . v e h i c l e . getRoadID ( s t r ( car . id ) ) , new route ) )

140 t r a c i . v e h i c l e . setRoute ( s t r ( car . id ) , new route [ car .

r ou t ePo s i t i on : ] )

141 num reroutes += 1

142 i f l en ( ac t iveCars ) == 0 and s t a r t ed :

143 f i n i s h e d = True

144 #Record the load ba lanc ing f o r t h i s s tep

145 for l i n k in map . l i n k s :

146 l i n k . occupants = [ ]

147 for car in act iveCars . va lue s ( ) :

148 try :

149 cu r r en t po s = in t ( t r a c i . v e h i c l e . getRoadID ( s t r ( car . id ) ) )

150 except ValueError :

151 # car i s cu r r en t l y on an i n t e r s e c t i o n , or t e l e p o r t i n g

152 # i t doesn ’ t count f o r any o f the l i n k s

153 break

154 for l i n k in map . l i n k s :

155 i f l i n k . id == cur r en t po s :

156 l i n k . occupants . append ( car )

157 for l i n k in map . l i n k s :

158 t h i s b a l a n c e . append ( l en ( l i n k . occupants ) )

159 l oad ba lance . append ( t h i s b a l a n c e )

160 # get the l i s t o f a c t i v e v e h i c l e s

161 i f cur t ime % SIMULATION STATISTICS INTERVAL == 0 :
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162 print ( ”At time : ” , cur t ime , ” amount o f a c t i v e ca r s : ” , l en (

ac t iveCars ) )

163 cur t ime += 1

164 t r a c i . c l o s e ( )

165 count = 0

166 while sumo . p o l l ( ) i s None :

167 time . s l e e p (1 )

168 i f count > 10 :

169 sumo . terminate ( )

170 print ( ”Percentage o f l i n k s used : ” , ( f l o a t ( roads used . count (1 ) ) /

f l o a t ( l en ( roads used ) ) ) ∗ 100 .0 )

171 print ( ’ Reroutes : ’ , num reroutes )

172 print ( ’MainThread f i n i s h ed , Safe to k i l l any ch i l d threads ’ )

173

174 def wr i t e sumo veh i c l e s ( v eh i c l e s , vehic lesFN ) :

175 # have to s o r t the v e h i c l e s by departure cur t ime

176 v e h i c l e s . s o r t ( key=lambda v : v . startTime )

177 fd = open ( vehic lesFN + ’ . xml ’ , ’w ’ )

178 fd . wr i t e ( ’<routes>\n ’ )

179 fd . wr i t e ( ’ <vType id=”vtype1” l ength =”7.5” maxSpeed=”70” minGap

=”2.5” vClass=”passenger ” guiShape=”passenger / sedan”>\n ’ )

180 fd . wr i t e ( ’ <carFol lowing−Krauss a c c e l =”0.8” de c e l =”4.5”

sigma=”0.5” />\n ’ )

181 fd . wr i t e ( ’ </vType>\n ’ )

182 for veh in v e h i c l e s :

183 fd . wr i t e ( ’ <v eh i c l e id=”{0}” type=”vtype1” depart=”{1}”

departPos=” f r e e ” departSpeed=”0”>\n ’ . format ( veh . id , veh .

startTime ) )

184 fd . wr i t e ( ’ <route edges=” ’ )

185 for edge in veh . route :

186 fd . wr i t e ( s t r ( edge . id ) )

187 fd . wr i t e ( ’ ’ )
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188 fd . wr i t e ( ’ ” />\n ’ )

189 fd . wr i t e ( ’ </veh i c l e >\n ’ )

190 fd . wr i t e ( ’</routes>\n ’ )

191 fd . c l o s e ( )

192

193 i f name == ” main ” :

194 main ( )
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