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ABSTRACT 

 

 

 

Small area estimation (SAE) methods are widely used for estimating poverty indicators at 

finer levels of a country’s geography. Three unit-level SAE techniques – the ELL method 

(Elbers, Lanjouw, and Lanjouw, 2003), also known as the World Bank method, the 

Empirical Best Prediction (EBP) method (Molina and Rao, 2010) and the M-Quantile (MQ) 

method (Tzavidis et al., 2008) have all been used to estimate micro-level FGT poverty 

indicators (Foster, Greer, and Thorbecke, 1984). These methods vary in terms of their 

underlying model assumptions particularly differences in consideration of random effects. 

This thesis provides results from a numerical comparison of the statistical performance of 

these three methodologies in the context of a realistic simulation scenario based on a recent 

Bangladesh poverty study. This comparison study shows that the ELL method is the better 

performer in terms of relative bias but also significantly underestimates the MSEs of its 

small area poverty estimates when its underlying area homogeneity assumption is violated. 

A modified MSE estimation method for ELL-type poverty estimates is therefore developed 

in this thesis. This method is robust to the presence of significant unexplained between-area 

variability in the income distribution. This ELL-based MSE estimation methodology is 

based on a separate bootstrap procedure for MSE estimation, where a correction factor is 
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used to generate cluster-specific random errors that capture the potential between-area 

variability unaccounted for by the explanatory variables in the ELL regression model. 

A further issue is that in realistic applications of the ELL method, the cluster-specific 

(level-two) and household-specific (level-one) random errors are typically assumed to be 

homoskedastic and heteroskedastic respectively. The standard approach to modeling 

heteroskedasticity of household-level errors in the ELL method is to use a parametric 

logistic function (called the “alpha” model). Trying to find an adequate set of explanatory 

variables to include in a regression model for heteroskedastic errors is difficult, and so the 

alpha model is prone to misspecification. In this thesis we therefore propose a 

semi-parametric approach to estimating the level-one heteroskedastic error variances, based 

on a stratified method of moments approach that does not require explanatory variables to be 

specified. 

We also develop a new small area poverty estimation method based on the smearing-based 

prediction method proposed by Chambers and Dunstan (1986) for estimating a finite 

population distribution function conforming to a 2-level superpopulation model with 

unknown heteroskedasticity at level-one as in the ELL methodology. Estimated 

level-specific error variances are combined with this smearing approach, which is then used 

in a non-parametric bootstrap procedure to obtain the small area estimates of interest along 

with their mean squared errors. A modified version of this smearing method that is robust to 

when between-area variability has been incorrectly ignored is also described. 

Finally, we apply these new methods for robust MSE estimation and poverty estimation 

under heteroskedasticity to an actual poverty mapping study of Bangladesh. This application 

shows that the ideas developed in this thesis have practical, as well as theoretical, impact. 
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CHAPTER ONE 

1. Introduction 

 

 

 

The demand for official statistics on disaggregated sub-populations has increased 

remarkably in recent years. Typically, such sub-populations are the micro-level 

administrative units of a country or a large region. Classical direct estimation methods, 

for example design-based Horvitz-Thompson estimation (Horvitz and Thompson, 1952) 

or model-assisted generalized regression estimation (Särndal et al., 2003), can only be 

regarded as efficient if domain-specific sample sizes are large. When the target domains 

are lower level administrative units, which are usually ignored in the survey sampling 

design, domain-specific sample sizes are usually too small for reliable inference. In these 

situations, small area estimation (SAE) methods can be used to estimate the parameters 

of interest with greater accuracy in these target domains. 

SAE methods use regression models to obtain estimates of a parameter for a particular 

small area by so-called “borrowing strength from other areas”. This is typically achieved 

by assuming that the same regression model holds in every small area, and that there are 

area-specific random effects and/or contextual effects that account for between-area 

variability in the model residuals. These models can be specified using area-level or unit-
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level data, and the approach to SAE based on them is usually referred to as model-based 

SAE (Rao, 2003). The most extensively used model-based SAE methods are empirical 

best linear unbiased prediction (EBLUP), empirical Bayes or best (EB) methods and 

hierarchical Bayes (HB) methods. Generally, development of these methods is developed 

mainly for inference about small area linear parameters (e.g. means or totals) of the 

target variable. 

 

1.1 Small Area Poverty Estimation 

One of the most important practical applications of model-based SAE methods is in 

poverty mapping. Poverty indicators are typically complex non-linear functions of 

welfare variables (Betti et al., 2006) and so classical small area methodologies for totals 

or means cannot be straightforwardly applied to poverty estimation. The most commonly 

used poverty indicators are poverty incidence (also known as head count rate/ratio, 

HCR), poverty gap (PG) and poverty severity (PS). These indicators are often referred to 

as FGT measures, after Foster, Greer and Thorbecke (1984) where they were first 

suggested. Let ikE  be the per capita household expenditure of household (HH) k  in area 

i  and let t  be an externally determined poverty line. The FGT poverty indicators for area 

i are then defined as  
1

1=
iN

ik
ik

k

i i

t E
I E t

t
F N






  
 

 
  with 0,1,2   where iN  is the 

total number of HHs in area i. These indicators are non-linear functions of the finite 

population income distribution in an area and so the main problem when estimating them 

is to find an efficient estimator of the corresponding finite population small area income 

distribution function, which we denote by  
1

1( )
iN

i ik

k

it I E tF N


  . As an aside, we note 

that 
  
F

i
(t) = F

0i
. 
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The first systematic approach to using unit-level survey and census data model-based 

SAE methods for poverty estimation is described in Elbers, Lanjouw, and Lanjouw 

(2003). Their approach is often also referred to as the World Bank method or the ELL 

method. The ELL method utilizes survey data to develop a nested error regression model 

(Battese et al., 1988) with HHs at level-one and clusters at level-two. Simulated census 

values of the welfare variable (E) are generated from the fitted model based on known 

census values of the model covariates using either a parametric or a semi-parametric 

bootstrap procedure. Area-specific values of poverty indices are then calculated using 

these simulated census values by suitable aggregation and the procedure is repeated a 

large number of times. The average and the variance of the simulated estimates for an 

area are considered as the corresponding area estimate and mean squared error (MSE). 

Note that under the ELL approach, the fitted regression model for E includes a random 

effect for a cluster but not one for an area. That is, the approach assumes between-cluster 

heterogeneity as well as between-area homogeneity. 

An alternative SAE approach to poverty mapping is described in Molina and Rao (2010) 

and is based on the empirical Bayes or best prediction (EBP) approach to SAE. This 

method estimates the poverty indices of interest via Monte Carlo simulation of their 

empirical best predictors, i.e. the conditional expectations of these indices given the 

observed sample values of E. In particular, the approach assumes that a suitably 

transformed value of the welfare variable E (typically its logarithm) follows a nested 

error regression model with normally distributed random errors. The method generates 

simulated values of E by making independent draws from the conditional distribution of 

the non-observed values of E given the observed values of E and the associated 

population covariates or auxiliary variables. The main difference between the EBP 

method and the ELL method is that the former assumes between-area heterogeneity and 
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(typically) between-cluster homogeneity. The EBP method also depends on the 

assumption that random errors in the model are Gaussian, though this assumption has 

been relaxed subsequently (Diallo and Rao, 2014; Elbers and Van der Weide, 2014). 

Another approach to SAE uses M-quantile models (Breckling and Chambers, 1988) to 

characterise between-area variability, as first proposed by Chambers and Tzavidis (2006) 

and extended to poverty estimation by Tzavidis et al. (2008). Unlike the ELL and EBP 

methods, MQ method is free from parametric distributional assumptions and 

automatically provides outlier-robust inference. It also has the advantage that the fitted 

M-quantile model does not depend on the small area geography, so there are no 

boundary issues when distinguishing clusters from target small areas as in the ELL and 

EBP methods. 

The ELL method is by far the most widely used SAE method in poverty estimation (it 

has been applied in over 60 countries), and is particularly favoured in developing 

countries due to its theoretical and practical flexibility (Elbers and Van der Weide, 

2014). In comparison to the EBP and MQ methods, MSE estimation for ELL-based 

poverty estimates is also straightforward, requiring comparatively less time and 

computational resources. However, this method has also been criticised because of its 

dual assumption of cluster-heterogeneity and area-homogeneity when calculating small 

area poverty estimates and their estimated MSEs. In practice it is extremely unlikely that 

the area-homogeneity assumption holds, and in such situation the ELL method leads to 

unbiased poverty estimates with underestimated MSE (Tarozzi and Deaton, 2009). Such 

underestimated MSEs have the potential to give policy makers the impression that the 

ELL poverty estimates are more reliable than they actually are, and hence lead to 

incorrect decisions based on identification of the most vulnerable small areas where 

more aid may be required. 
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A number of approaches to overcoming this problem have been proposed by Elbers et al. 

(2008). Since the estimated location effect (determined by overall variation at higher 

levels than HH-level) cannot be separated into area-level and cluster-level effects in the 

ELL method, one has to assume that this effect is either entirely a cluster-level effect 

(optimistic assumption) or entirely an area-level effect (conservative assumption). 

Tarozzi and Deaton (2009) comment that the “conservative” assumption could lead to 

imprecise and unusable MSE estimates, while the “optimistic” assumption is obviously 

necessary for the validity of the ELL methodology, but leads to estimated MSEs that are 

biased low. At present, there is no accepted way has been established yet to follow in 

such situations where area-variability in the welfare data cannot be adequately explained 

by the explanatory and contextual variables. 

 

1.2 Contribution of the Thesis  

This thesis makes four contributions to our understanding of the ELL method for poverty 

estimation and how it should be applied. The first contribution, detailed in Chapter 

Three, is to present a detailed numerical comparison of the statistical performance of the 

ELL, EBP and MQ approaches in the context of a realistic simulation built on a recent 

Bangladesh poverty study. An important feature of this study is that it emulates a 

common characteristic of poverty data in developing countries, where within-cluster 

variability in the distribution of the HH income (or welfare) variable E dominates its 

between-cluster variability. 

The next contribution, set out in Chapter Four, is to develop a MSE estimation method 

for ELL-type poverty estimates that is robust to the presence of significant unexplained 

between-area variability in the distribution of E. This builds on the observation that in 

the numerical study described in the previous chapter, MSE is shown to be 
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underestimated when the underlying area-homogeneity assumption is violated. The basic 

idea behind the proposed MSE estimation method is to develop a correction factor that 

ensures a robust variance estimator of the area-specific mean is unbiased under a true 

3-level model and also approximately unbiased under a 2-level working model. The 

proposed modification to the ELL MSE estimation method is then to base MSE 

estimation on a separate bootstrap procedure that uses the correction factor to generate 

cluster-specific random errors that more realistically capture the potential between-area 

variability unaccounted for by the explanatory variables included in the ELL regression 

model. This new ELL-based MSE estimation method is referred to as robustified or 

modified ELL (MELL) methodology in what follows.  

The third contribution is based on the fact that in any realistic application of the ELL 

method, cluster-specific (level-two) random errors are typically assumed to be 

homoskedastic (i.e. the ‘location effect’ common to all HHs in the same cluster has the 

same distribution irrespective of cluster) but HH-specific (level-one) errors are allowed 

to be heteroskedastic (Elbers et al., 2003). In particular, it is standard to model the 

variances of level-one errors using a parametric logistic function (called the “alpha” 

model) based on the assumption that these variances are a monotone smooth function of 

one or more explanatory variables. Modelling heteroskedasticity in this way is known to 

be difficult, and prone to model misspecification due to its dependency on an adequate 

set of explanatory variables that can explain the heteroskedasticity. Consequently this 

method requires a careful search for potential explanators or their transformations. 

Moreover, most poverty mapping studies that use this model (BBS and UNWFP, 2004; 

World Bank, 2013; Haslett, 2013) have found that its explanatory power (r-squared 

value) is usually very small. 
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In this thesis we propose a semi-parametric approach to estimating the level-one 

heteroskedastic error variances using a stratification-based method of moments (MOM) 

approach, referred to as STR in subsequent chapters. This has the advantage of not 

requiring specification of a set of suitable explanators for the level-one 

heteroskedasticity. An iterative generalized least square (IGLS) method is then used to 

determine the level-one error variances used in the ELL simulations. 

The thesis also explores an alternative to the ELL method for estimating area-specific 

FGT poverty indicators. This uses the smearing-based prediction method proposed by 

Chambers and Dunstan (1986) (hereafter referred as CD) for model-based estimation of 

the finite population distribution function under a linear superpopulation model. 

Lombardía et al. (2005) have utilized the CD approach to estimate the distribution 

function for a finite uncorrelated population with unknown heteroskedastic errors, and 

Chambers and Pratesi (2013) have suggested how the CD approach can be adapted for 

poverty estimation in the context of a predictive model with area specific random effects 

model (Rao, 2003) or a M-quantile model (Chambers and Tzavidis, 2006).  

This thesis develops a new small area poverty estimation method following this CD 

approach by assuming a finite population conforming to a 2-level superpopulation model 

with unknown heteroskedasticity at level-one as in the ELL methodology. In this 

method, the homoscedastic level-two error variance is estimated first and then the 

level-one heteroskedastic error variances are estimated utilizing the proposed STR 

semi-parametric estimation method. These estimated variances are then combined with 

the CD smearing approach to estimate the small area distribution function of E. 

Area-specific poverty measures and their MSEs are finally calculated via a 

non-parametric bootstrap procedure that resamples from this estimated small area 

distribution function. Note that like the ELL method, this CD based method will also 
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produce underestimated MSEs if between-area variability is ignored. Consequently, it 

needs to be modified using the same MELL-based approach to overcome this issue. 

The fourth, and final, contribution of this thesis is to adapt the methodology on robust 

MSE estimation and poverty estimation under heteroskedasticity developed in earlier 

chapters to an actual poverty mapping study, in this case one that was recently carried 

out in Bangladesh. This application is important since it shows that the ideas developed 

in this thesis have practical, as well as theoretical, impact. 

 

1.3 Thesis Outline 

This thesis is organized into seven chapters. A review of related literature covering the 

main research areas of the thesis set out in Chapter Two. This starts with an overview of 

recent developments and directions in the field of small area estimation, followed by a 

discussion on the application of SAE methods in poverty estimation. The review also 

covers variance component estimation, modelling heteroskedasticity in multilevel 

populations, and the use of the bootstrap for estimating the MSEs of estimates of 

complex non-linear parameters.  

Chapter Three compares the ELL, EBP and MQ methods from both a theoretical as 

well as a numerical perspective. A number of numerical experiments have already been 

done to compare these three poverty estimation methods (Molina and Rao, 2010; 

Tzavidis, et al., 2013; Souza et al., 2015), but clear advice on how one should go about 

selecting an appropriate SAE method in a real situation is not yet available. The chapter 

uses a model-based simulation study based on real Bangladesh data to illustrate how an 

appropriate SAE method for poverty mapping can be determined in a developing country 

context. The study also clearly demonstrates that all the three methods can lead to 

underestimated MSEs in this case. 
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Variance component estimation via MOM is first discussed in Chapter Four and then a 

robust estimator of the variance of an area-specific mean is developed for the situation 

where a 3-level model is misspecified due to ignoring the third level. Based on this 

robust variance estimator, standard ELL methodology is then modified to obtain a robust 

estimate of MSE when the area-homogeneity assumption of ELL is violated. Note that 

this development (which includes a parametric bootstrap variation) is based on an 

assumption of homoskedastic random errors at all levels. A number of model-based 

simulation studies are then used to illustrate the performances of the standard and 

modified ELL estimators of MSE. 

Chapter Five then addresses the issue of level-one heteroskedasticity in implementation 

of the ELL method. A stratification-based approach (STR) to accounting for this 

heteroskedasticity is proposed and compared with the “alpha model” approach of the 

ELL methodology in this situation. This comparison allows for different types of 

heteroskedasticity functions (monotone and non-monotone). In addition, the impact of 

misspecification of the heteroskedasticity model on both the ELL and CD-based poverty 

estimation methods (CDSM) is examined numerically under different hypothetical but 

practical scenarios. Finally, following the non-parametric bootstrap procedure of 

Marchetti et al. (2012), an easy to compute Monte Carlo simulation-based (CDMC) 

alternative to the computationally intensive CDSM method is proposed and is also 

investigated in these numerical studies. 

Chapter Six brings together these research threads of the previous two chapters to 

develop modified versions of ELL- and CD-based methods that allow for heteroskedastic 

level-one errors, and lead to robust MSE estimates. These methods are then applied in a 

Bangladesh poverty mapping study. In particular, the Bangladesh Population and 
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Housing Census 2000 and the Household Income and Expenditure Survey 2000 are used 

to compare the different estimation methods. 

Finally, the thesis concludes with a summary of its major findings, and some possible 

extensions and directions for future research in Chapter Seven. Proofs for all the 

theoretical results discussed in the paper, including variance component estimation under 

homoskedasticity and heteroskedasticity, and MSE estimation via the modified ELL 

method, are presented in appendices. 
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CHAPTER TWO 

2. Background and Literature Review 

 

 

 

This chapter provides an overview of small area estimation (SAE), recent developments 

in SAE theory and its application to complex poverty analysis. Standard small area 

methodologies for linear parameters are discussed first in order to motivate SAE 

methods, and the application of these methods to estimation of poverty indicators with 

their extensions is then reviewed. 

 

2.1 Small Area Estimation 

The term “small area” is typically used to describe geographic sub-areas of a country 

(e.g. states, counties, districts, municipalities) or small groups within a population of 

interest, often defined in terms of demographic, socio-economic and other characteristics 

(e.g. by sex, age, race, income status, business group). The sample sizes of these areas in 

national surveys are usually too small for adequately precise estimation based on 

methods that are considered appropriate at population level. Such estimates are often 

referred to as direct estimates. The standard direct estimators of a population quantity of 

interest are usually asymptotically design-unbiased or design-consistent but with large 

sampling errors for areas with small sample sizes. Use of indirect estimation methods 

can improve sub-population estimates in these cases. These are methods that use a model 
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for the population characteristic of interest to generate estimates that have much smaller 

variances than the direct estimates. Since the model parameters are usually estimated 

from the entire sample (which is usually large), this approach is often said to “borrow 

strength” across all the small areas in order to improve the precision of the estimate for a 

given (small) area. These methods are reviewed in Ghosh and Rao (1994), Pfeffermann 

(2002, 2013), Rao (2003), Jiang and Lahiri (2006), and Rao and Molina (2015). 

Traditional direct estimators for small areas are based on design-based (Cochran, 1977) 

and model-assisted (Särndal et al., 1992) approaches to survey inference, while indirect 

estimators use the model-based approach (Brewer, 1963; Royall, 1970; Valliant et al., 

2000). Under the design-based approach a probability sample is drawn and the values of 

the target variable Y  are considered to be fixed characteristics of the population 

elements. That is, the known sample values of Y (denoted as sy ) and the unknown 

non-sample values of Y (denoted as ry ) are treated as fixed constants. In contrast, the 

model-based approach starts from the assumption that the distribution of population 

values of Y  is the realisation of a stochastic process which can be modelled. Provided the 

sampling method is non-informative for the parameters of this model, a sample drawn 

from the population will then have the same distribution of Y  for the sampled and 

non-sampled observations, and so the model parameters can be estimated from the 

sample. 

A direct small area estimator such as the Horvitz-Thompson estimator (Horvitz and 

Thompson, 1952) of the total of Y for an area i  iY  uses only the sample Y values within 

area i. As a consequence, the variance of this estimator is of order  1

iO n  where 
 
n

i
 is 

the sample size in area i. This can be large when 
 
n

i
 is small. A further problem is that no 

direct estimates are possible for areas with zero sample size. Design-based 
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model-assisted estimation methods can be employed to increase the efficiency of the 

Horvitz-Thompson estimator by incorporating auxiliary information correlated with Y  

via a regression model. The Generalized Regression (GREG) estimation is an example of 

the design-based model-assisted approach to SAE (Särndal et al., 1992; Rao, 2003). For 

a binary response variable, a logistic GREG (LGREG) estimator can be used, based on a 

logistic model formulation (Lehtonen and Veijanen, 1998). Lehtonen et al. (2009) also 

propose a number of semi-direct estimators based on the model calibration approach of 

Wu and Sitter (2001) and on the GREG. Model calibration has also been used to estimate 

small area poverty incidence in Lehtonen and Vejanen (2012). 

In the model-based approach to SAE, a regression model for Y is first developed based 

on the survey data and known auxiliary variables. The predicted values of Y generated by 

this model and the auxiliary information are then used to predict linear parameters such 

as the means or totals for the target small areas. These SAE methods can be split into two 

groups according to their use of implicit and explicit models. Methods that use implicit 

models link related small areas through supplementary data from census and/or 

administrative records, whereas methods that use explicit models account for variability 

between small areas and between units in the areas through variation in the auxiliary 

data. In many cases, these models also include random area effects that enable them to 

also account for between-area variability that is not present in the auxiliary data. 

 

2.1.1 Classical Small Area Estimation  

Synthetic estimators, composite estimators and James-Stein estimators are some 

common examples of classical small area estimators that are based on implicit models. 

Synthetic estimation was first used by the US National Center for Health Statistics 

(1968) in order to calculate state-level disability estimates. Its basic assumption is that 
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small areas belonging to a larger region should have the same characteristics as the larger 

region. Reliable direct estimates of these stable characteristics for the larger area can 

then be used to define an indirect estimator for the smaller areas (Gonzalez, 1973). 

Synthetic estimators are based on the implicit model that the distribution of the survey 

variable Y is the same in every small area once their differences in these characteristics 

are appropriately accounted for. These types of small area estimates are widely used by 

practitioners, in large part because they do not assume explicit models (Datta, 2009), 

being essentially a form of standardisation. They are easy and inexpensive to calculate 

but are essentially biased unless their assumption of similar small areas making up the 

larger area is true. Various synthetic estimation approaches and their application to small 

area problems are discussed by Levy (1979) and Rao (2003). 

A composite estimator is defined as the weighted average of a direct estimator and a 

synthetic estimator, and serves as a way of balancing the large standard error of the 

direct estimator and the bias of synthetic estimator (Ghosh and Rao, 1994). The rational 

here is that the synthetic estimator outperforms the simple direct estimator in terms of 

smaller mean squared error (MSE) when area-level sample sizes are small, whereas the 

direct estimator similarly outperforms the synthetic estimator when the sample sizes are 

large. The James-Stein estimator (James and Stein, 1961), also known as the 

“shrinkage estimator” is a special case of a composite estimator with weights that  

minimizes the MSE of this estimator (Efron and Moris, 1973). Like synthetic estimators, 

composite estimators provide biased but precise estimates depending on appropriate 

weight selection. 
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2.1.2 Random Effects Model-based Small Area Estimation  

The assumption that the different small areas making up a larger area are similar is 

usually false, even after controlling for known auxiliary variables. Consequently, many 

SAE methods use random area effects to account for this between-area heterogeneity. 

These random effects models can be classified into two broad groups on the basis of the 

type of data that are available for the small areas. Unit-level models assume that 

unit-specific values of a study variable and associated unit-specific as well as 

area-specific covariates are available (Battese et al., 1988); while area-level models only 

require access to area-specific direct estimates and their associated area-specific 

covariates (Fay and Herriot, 1979). Both unit-specific and area-specific covariates are 

typically collected from census and geographic databases (e.g. GIS). In many cases these 

models are linear in the available covariates, and are therefore special cases of the linear 

mixed model (Rao, 2003). The main approaches to SAE built around these models are 

based on best linear unbiased prediction (BLUP) or its empirical version (EBLUP), 

empirical Bayes or empirical best (EB) estimation, and hierarchical Bayes (HB) 

methods. Further details on SAE methods using BLUP, EBLUP, EB and HB are 

available in Ghosh and Rao (1994), Rao (2003), Chambers and Clark (2012), and Rao 

and Molina (2015). 

In most SAE applications the parameter of interest is the area-specific mean  iY  or total 

 iY  for a target small domain. The first estimators of these parameters under a random 

effects (mixed) model were based on the BLUP method proposed by Henderson (1950) 

which assumes a linear mixed model with known variance components. In reality, 

variance components are unknown and can be estimated by maximum likelihood (ML) 

or restricted maximum likelihood (REML), or the method of moments (MOM). 

Substitution of the estimated variance components in the BLUP estimator leads to the 
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EBLUP estimator (Harville, 1991), which can be expressed as a weighted combination 

of a direct estimator and a regression-synthetic estimator. This idea is used in both 

unit-level and area-level SAE methods. 

The basic area-level small area model is the Fay-Herriot (FH) model. It is typically used 

for estimation of area-specific totals and means. Fay and Herriot (1979) first used this 

model to estimate per capita income for small places (population less than 1,000) in the 

US based on data collected in the 1970 Census of Population and Housing. The FH 

model was also used to estimate mean income under the EURAREA project 

(http://www.statistics.gov.uk/eurarea) in Europe. The main problem associated with this 

method is its assumption that the sampling error variances of the direct area estimates are 

known. These sampling error variances are often estimated from unit-level survey data 

from the respective small areas. Since the area-specific sample sizes are usually very 

small, such estimated sampling error variances can be very unstable. As a consequence, 

it is usually recommended that such estimated sampling variances are first smoothed 

using an appropriate statistical smoothing technique (Wolter, 1985). The basic FH model 

has been extended by several authors to include non-normality of the random errors, 

spatial correlation of the random area-effects, and presence of outliers in the survey data 

(Rao and Molina, 2015). 

When auxiliary information is available for all individuals (units) of a population, a 

unit-level random effects model can be used for SAE. This is typically based on the 

nested-error regression model, first suggested by Battese, Harter and Fuller (1988) 

(hereafter BFH). These authors used this unit-level model to predict corn and soybean 

crop areas for 12 counties in north-central Iowa using farm-interview data and satellite 

information. Under the assumption of normally distributed level-specific random errors, 

the regression parameters and variance components can be easily estimated via ML or 
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REML. The area mean or total can then be estimated using EBLUP, EB and HB methods 

based on a linear mixed model and assuming a suitable distribution (typically Gaussian) 

for the random effects (Rao, 2003).  

Chambers and Tzavidis (2006) have proposed an alternative SAE method based on the 

structure of a unit-level model. Their M-quantile (MQ) model uses the information about 

between-area heterogeneity contained in the empirical sample level conditional 

distribution of the dependent variable, and therefore does not make any parametric 

assumptions. Furthermore, the parameters of the model are estimated using robust 

iteratively re-weighted least squares and so are insensitive to the presence of unit-level 

outliers in the sample data. 

There are many extensions to the basic FH area-level and BFH unit-level models in the 

literature. Cressie (1993) describes a spatial extension that allows the area effects to be 

correlated spatially (as a function of the distance), and so borrows strength “over space” 

from the neighboring or similar areas given a simultaneous autoregressive (SAR) error 

process assumption for these effects (e.g. Petrucci and Salvati, 2006 & 2008; Coelho and 

Pereira, 2011). If time series data are available (e.g. from previous surveys) for the small 

areas then models can be defined to take account of inter-temporal correlations and 

hence borrow strength “over time” (Rao and Yu, 1994). Marhuenda et al. (2013) propose 

a spatio-temporal FH model that is an extension of the Rao and Yu (1994) temporal 

model. Sinha and Rao (2009) address the sample outliers issue from the perspective of 

both area- and unit-level linear mixed models. A number of researchers have also applied 

state-space models in small area problems (e.g. Singh et al., 1994; Feder et al., 2000). 

Extensions to MQ-based SAE that allow for spatially correlated area effects (e.g. Salvati 

et al., 2008; Salvati et al. 2012) and for the presence of both area-level and unit-level 

outliers (Chambers et al., 2014) have been proposed. Reviews of recent developments in 
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SAE methodology are also available from Pfeffermann (2002, 2013), Jiang and Lahiri 

(2006), and Rao and Molina (2015). 

 

2.2 Small Area Estimation in Poverty Mapping 

SAE methodology has essentially been developed to estimate linear functions of the 

population values of a response variable (e.g. its total and mean). The basic small area 

estimators based on EBLUP, EB or HB methods are all well suited for this purpose. 

However in many applications, the parameters of interest are complex non-linear 

functions of the response variable. In particular, poverty indicators are non-linear 

functions of the values of a unit-level (say household) welfare variable. In such cases, 

these basic SAE methods require modification. 

The basic poverty indicators derived from household per capita income and expenditure 

are poverty incidence, poverty gap, and poverty severity. These were first defined by 

Foster, Greer and Thorbecke (1984), and are referred to as FGT measures from now on. 

Poverty incidence (also referred to as the head count ratio, HCR) is the proportion of 

individuals with income below a specified poverty line; poverty gap (PG) is the average 

relative distance from the poverty line for those individuals with incomes below the 

poverty line, and poverty severity (PS) is the average of the squares of these distances. 

There are also fuzzy monetary (and non-monetary) poverty measures (Cheli and Lemmi, 

1995; Betti et al., 2006) described in the literature, particularly those based on 

multidimensional poverty measures (such as lack of health, nutrition, education, energy, 

access to land, decision making power), which are sometimes used instead of monetary 

and unidimensional poverty measures (Henninger, 1998). These non-monetary poverty 

indicators are based on ranking individuals with respect to their welfare variable and do 

not require any poverty line. Inequality measures are also used to analyse the overall 
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distribution of income, consumption or other attributes related to the welfare variable. 

The most common of these are the Gini index (Gini, 1912), the Sen index (Sen, 1976), 

and the Sen-Shorrocks-Thon index (Shorrocks, 1995). From this perspective, the PS can 

be considered as a combined measure of poverty and inequality. 

Small area estimation of FGT poverty measures is the focus of this thesis. From a 

statistical perspective, estimation of FGT poverty indicators depends on prediction of the 

area-specific empirical distribution function (i.e. the proportion of people with income 

less than any particular pre-specified value). The better the prediction of this 

area-specific distribution function, the better the estimation of associated poverty 

indicators. In the last decade, a number of SAE methods have been developed to estimate 

complex poverty indicators, particularly the FGT indicators. These are often referred to 

as “poverty mapping methods”. Below we review the SAE approach to poverty mapping 

and discuss its application. 

 

2.2.1 Poverty Mapping: Motivations and Applications 

Poverty analysis based on national and aggregated level indicators often masks the actual 

poverty conditions within disaggregated administrative units. Aggregate level poverty 

indicators are useful for evaluating and monitoring the overall human well-being and 

poverty situation of a country but are impractical for local policy making and 

interventions. Geographically disaggregated level indicators provide information about 

the spatial distribution of inequality and poverty within a country or a large state of a 

country. These spatially disaggregated indicators are typically published via a “poverty 

map”, which allows the visualization of the incidence and magnitude of poverty across 

the region (country, state) of interest. 
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A poverty map is a tool to capture the heterogeneity in poverty and inequality within a 

country. The disparities in living standards at disaggregated level also suggest the 

variation in geographic factors that influence the poverty. Multiple dimensions of 

poverty can also be displayed in a single map (such as HCR with the positions of 

schools, hospitals, police stations, etc.), which therefore provides a spatial distribution of 

the determinants of poverty as well. Demombynes and Özler (2005) have calculated 

poverty estimates for the police jurisdictions in South Africa and showed how incidence 

of crime is related to levels of local inequality. Policy makers can utilize the spatial 

distributions of poverty indicators and their determinants in the selection and design of 

area-specific interventions. This information can also be used to determine how much an 

area is lagging behind and how many additional resources (such as subsidy for local 

infrastructure, employment) are required for reducing poverty and inequality across the 

country. A poverty map also helps to allocate aid during periods of national emergency, 

as after a flood or an earthquake. 

A poverty map for finer geographic regions rather than for larger regions is suitable for 

effective interventions for several reasons including (i) reducing the leakage of aid to 

non-poor people (Type I error) and increasing the coverage of poor people (smaller Type 

II error); (ii) optimizing the design and administrative cost (Bigman and Fofack, 2000); 

(iii) reflecting regional variations in health care, food safety, education and employment 

facilities within the intervention programs; and (iv) increasing the effectiveness of 

targeting poor people who are in small homogeneous domains compared to 

heterogeneous large region (Datta and Ravallion, 1993). 

A poverty map is a powerful way of presenting information on poverty and inequality 

within a country in a way that is understandable to non-professional viewers and also one 

that encourages stakeholders to participate in local decision making and in negotiations 
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with government organizations. A poverty map improves communication between 

national and local decision makers, and as a consequence leads to decentralization and 

improved effectiveness of national poverty alleviation intervention programs. 

On a global scale, there are several large projects that have aimed to generate poverty 

maps at finer administrative units based on SAE methods. The first (still the largest) of 

these projects is the Small Area Income & Poverty Estimates (SAIPE) project conducted 

by the US Census Bureau (Citro et al., 1997). This is an ongoing program in which the 

US Census Bureau estimates the number of poor school-age children within states and 

counties each year. These estimates are then used for the administration of federal 

programs and the allocation of federal funds to local jurisdictions (Maiti and Slud, 2002). 

The World Bank initiated development of an expenditure-based SAE methodology in 

1996 (Hentschel and Lanjouw, 1996) and finalized its application to poverty mapping in 

2002 (Elbers et al., 2002, 2003). This methodology is known as the “World Bank” 

methodology. It has been applied more than 60 countries (Elbers and Van der Weide, 

2014), and particularly in the developing countries of Asia, Africa, and South America. 

The World Bank method is now accepted as defining the industry standard SAE 

methodology for creating poverty maps that focus on finer level administrative units 

(Haslett and Jones, 2010). Some other well-known projects are SAMPLE (Small Area 

Methods for Poverty and Living Conditions Indicators) and AMELI (Advanced 

Methodology for the European Laeken Indicators) which were supported by European 

Commission and which were mainly aimed at investigating and developing suitable SAE 

methods for small area poverty estimation. 

Poverty mapping is now an important tool for decision makers when investigating and 

discussing social, economic, and environmental problems. Decision makers frequently 

use poverty maps to identify areas where development has lagged and where investments 
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in infrastructure and services could have the greatest impact. Henninger and Snel (2002) 

detail the application of poverty maps using case studies of 14 countries from Africa, 

Asia, and Latin America. Some important application of poverty maps are: poverty 

reduction strategy in Nicaragua, improving geographic targeting of annual expenditure in 

Guatemala, designing emergency response and food aid programs (e.g., creating a 

geo-referenced strategy for comprising cholera outbreak in KwaZulu Natal province of 

South Africa in 2001 and identifying the poorest communities in Cambodia for 

distributing World Food Program food aid under “food for work” interventions), local 

decision-making in “Minas Gerais” state of Brazil (e.g., distributing statewide tax 

revenues toward poorer municipalities), and improving transparency in public 

decision-making by raising awareness of poverty in Panama. 

 

2.2.2 Poverty Estimation based on Area-Level Model 

Area-level models were used to define the first efficient small area poverty estimation 

methods. In particular, these models underpin the SAIPE project, where an area-level 

model-based FH estimator is used to estimate the number of poor school-age children by 

state, county, and school district (Maiti and Slud, 2002). However, these estimators can 

be criticized. The effective sample size in this case (and hence an assessment of the 

reliability of the estimated model parameters) is the number of small areas  D , which is 

usually much smaller than the number of observations  n  in the survey data. There is 

also the problem that the method assumes that sampling error variances are known, 

whereas they are in fact unknown. Furthermore, estimates of this error variance are 

unstable (due to small in  in survey data). However, on the positive side, the FH 

estimator is free from the confidentiality issues that arise with unit-level data and is also 

less sensitive to unit-level outliers. 
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FH-type estimators have been used to estimate the proportion of population below a 

poverty line (i.e. the HCR; see Quintano et al., 2007; Hansen, et al. 2011). In order to 

estimate other FGT poverty indices, separate FH models linking the corresponding direct 

estimates and potential area-specific explanatory information are required (for example, 

see Marhuenda et al., 2013, and Guadarrama et al., 2015). When estimating PG and PS, 

application of the FH model requires one to examine the underlying assumption of a 

linear relationship between the direct estimates and the area-level explanatory variables. 

Due to the non-linear behaviour of these poverty indicators, finding an appropriate 

transformation for fitting a linear area-level model is critical. A further issue is that FGT 

indicators and other poverty inequality indicators vary with the poverty line. This means 

that indicator-specific area-level modelling is required for a specific poverty line. In 

particular, it is usually not possible to fit a single area-level random effect model that can 

be used with all three FGT measures (HCR, PG, & PS). A multivariate FH model 

(Benavent and Morales, 2016) has been developed to simultaneously estimate all three 

FGT indices but this requires area-specific direct estimates with corresponding sampling 

error variances from an underlying unit-level survey data set. 

 

2.2.3 Poverty Estimation based on Unit-Level Model 

The first unit-level SAE method applied to poverty mapping was the World Bank 

methodology. In this method, a nested-error regression model with random effects at 

cluster-level (primary sampling unit) is fitted to a survey data set using the logarithm of 

household per capita income or expenditure as the response variable, and with covariates 

defined by explanatory variables that are available in both survey and census data sets. 

The fitted model parameters are used to impute the response values for all census units 

using the available census information, and the area-specific FGT parameters are then 

calculated by appropriately aggregating these imputed values. A parametric or 
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non-parametric bootstrap procedure can be used to obtain the standard errors of these 

FGT estimates. The ELL method assumes that the only significant source of higher level 

variation is between-cluster variation, which is equivalent to the assumption that it is 

possible to incorporate a large enough number of explanatory variables in the two-level 

regression model to ensure negligible between-area variation. As a consequence, the 

ELL method will fail to provide efficient estimates when there is non-negligible 

between-area variation in the distribution of the response variable. Though this method is 

robust to departures from the assumption of normal errors and is not computationally 

intensive, it is not robust to the presence of outliers and is not robust to model 

misspecification. However, it does have the advantage that since the model is fitted at 

household (unit) level and then simulated, the same predicted model is used to estimate 

poverty indicators at any level of the population (Guadarrama et al., 2015). 

An alternative to the ELL method was introduced by Molina and Rao (2010). This is 

based on the EB prediction (EBP) method and assumes normally distributed random 

effects at area-level rather than at cluster-level in the nested-error regression model. The 

predicted non-sample values ry  ( r  stands for non-sampled units) of the response 

variable are derived from the conditional distribution of these unobserved values in ry  

given the (observed) sampled values in sy  ( s  stands for sampled units). Thus, like ELL 

approach, response values are imputed for all census units and then the area-specific 

complex functions of y  are calculated. The EBP method is sensitive to departures from 

its normality assumption of random errors, and also requires correct transformation of 

the welfare variable to normality. The normality assumption has recently been relaxed, 

with Diallo and Rao (2014) considering use of the skewed normal distribution for the 

random errors. Elbers and Van der Weide (2014) have also proposed an EBP method 

assuming the distribution of random errors can be modelled as a normal mixture. 
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Molina, Nandram and Rao (2014) have proposed a Hierarchical Bayes (HB) method as 

an alternative to the EB method of poverty estimation. Since the HB method depends on 

the posterior distribution of the target parameters, it does not require use of the bootstrap 

to estimate its MSE. Instead, these MSE estimates can be calculated from the posterior 

variances. Note that other summary measures of the posterior distribution such as 

credible intervals (the Bayesian confidence interval used for interval estimation) can be 

easily calculated under HB method. However, the HB method is highly dependent on its 

model assumptions and is not extendable to more complex models without the use of 

bootstrap procedures. Advantages and disadvantages of the ELL, EBP and HB 

estimation methods have been discussed in Guadarrama et al. (2015). 

Tzavidis et al. (2008) proposed an M-quantile (MQ) approach to poverty mapping as an 

alternative to the ELL and EBP methods. The MQ method is less sensitive to outliers and 

does not require geographical specification to develop the MQ regression model. The 

method relies on an area-specific MQ coefficient instead of the area-specific random 

effect associated with a multilevel model. This is calculated by averaging the MQ 

coefficients of units belonging to the area of interest, where the MQ coefficient of a unit 

is the value of q where the observed response and the fitted M-quantile model coincide. 

As with the EBP method, the application of the MQ method described in Tzavidis et al. 

(2008) assumes between-area variability instead of between-cluster variability. 

In all three methods (ELL, EBP and MQ), values of the response values are imputed for 

all census units using a bootstrap procedure, which can be parametric or non-parametric. 

MSE estimates are calculated from a single set of bootstrap realisations in the ELL 

method, but from separate bootstrap realisations in both the EBP and the MQ methods. 

Furthermore, separate estimation methods are required in EBP and MQ methods for 

those small areas not represented in the sample survey data. This is an important 
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advantage for the ELL method (at least in developing countries), since in many cases 

target small areas are not covered in the nationally representative survey used to fit the 

model for Y. In more developed countries, more spread out samples tend to be the norm, 

and in these cases the EBP or MQ methods can perform better (Elbers and Van der 

Weide, 2014). The ELL, EBP and MQ methods are discussed in more detail in Chapter 

Three. 

In unit-level small area poverty estimation methods, the main aim is to predict the 

empirical distribution function of the skewed response variable Y. In this context, any 

method of predicting this distribution function can be utilized in order to estimate the 

FGT poverty indicators (Chambers and Pratesi, 2013). One such method is the 

smearing-based prediction method of Chambers and Dunstan (1986, hereafter CD). Note 

that the MQ SAE method uses this smearing approach. In general, however, any other 

prediction model can be substituted. 

Linear mixed models are usually developed under the assumption of homoskedastic 

random errors. However, this homoskedasticity assumption may be violated because of 

the presence of outliers in the distribution of response variable, model misspecification, 

asymmetry of the response variable and use of incorrect transformation (Verbeek, 2008). 

Heteroskedasticity may also be present in aggregated data where the variance of 

response variable varies with the size of groups (Gordon, 2012). The violation of the 

homoskedasticity assumption need not produce bias, but may lead to invalid statistical 

inferences. Jiang and Nguyen (2012) show that homoskedasticity-based ML estimators 

of fixed effects and within-cluster correlation remain consistent under heteroskedasticity, 

but the EBLUP estimator of the small area mean is then non-optimal. A number of 

heteroskedasticity-consistent estimators are available for the linear model (Hayes and 

Cai, 2007); however to the best of our knowledge, the literature on heteroskedasticity is 
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still limited to the class of linear mixed models. Bouhlel (2013) contains a 

comprehensive discussion on heteroskedasticity under the linear mixed model. 

When applying the ELL method, level-one (household) errors are often assumed to be 

heteroskedastic, with the cluster-specific random errors assumed to be homoskedastic. 

Under this approach, the homoskedastic level-two variance component is first estimated 

and then the level-one heteroskedastic error variances are estimated using a logistic-type 

link function of the squared residuals (ELL, 2002). This model can depend on 

explanatory variables or their transformations and is known as the “alpha model”. Fitting 

such an “alpha model” is a critical part of the exploration of potential explanatory 

variables and their transformations. However, the explanatory power of the “alpha” 

model is typically very low, with r-square values typically below 5% in many studies, 

including those carried out in Bangladesh, Nepal, and Cambodia (Haslett, 2013). This 

parametric approach to heteroskeadasticity modeling in the ELL method and some 

alternative non-parametric approaches are discussed in Chapter Five. 

In the EBP method the nested errors are usually assumed to be homoskedastic. However, 

Van der Weide (2014) has proposed an EBP method for a linear mixed model which 

allows heteroskedasticity at level-one under an assumption of normality by adapting the 

results of Huang and Hidiroglou (2003) on GLS estimation and EB prediction with 

sampling weights. The assumption of normal errors in the EBP method can be relaxed by 

following the Elbers and Van der Weide (2014) approach, where these errors are 

assumed to follow a normal mixture. This is now incorporated into the traditional ELL 

method in the World Bank POVMAP (version 2.5) software. 
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2.3 Mean Squared Error (MSE) Estimation for Small Area Poverty Estimates 

The accuracy of small area estimates is usually measured by their mean squared error 

(MSE). In this context, Kackar and Harville (1984) proposed an MSE estimator for 

EBLUP-type estimators based on Taylor approximation under normality assumption of 

random errors. Prasad and Rao (1990) proposed an MSE estimator for the EBLUP based 

on linear mixed models with block-diagonal covariance structure, which used moment 

estimators of the variance components. This approach has been extended by Datta and 

Lahiri (2000) to the situation where ML/REML variance component estimators are used. 

An alternative to the use of asymptotic analytic approximations for the MSE of the 

EBLUP estimates is to adopt a resampling method. Availability of high-speed computers 

and powerful software has increased the use of resampling methods (e.g. jackknife and 

bootstrap techniques) both for estimating complex parameters and for estimating their 

MSEs. These procedures are attractive due to their conceptual simplicity, lack of 

parametric assumptions, and applicability to complex statistical models (Molina et al., 

2009). Jiang et al. (2002) proposed a unified jackknife method for estimating MSE of the 

EB predictor for the class of generalized linear mixed effect models. González-Manteiga 

et al. (2008a) proposed a bootstrap MSE estimator of the EBLUP that can approximate 

the Prasad-Rao MSE estimator under a linear mixed model. Under a generalized linear 

mixed model, González-Manteiga et al. (2007) also provide a bootstrap estimator based 

on a wild bootstrap design. Hall and Maiti proposed MSE estimation methods based on 

parametric (2006a) and non-parametric (2006b) bootstrap procedures under a linear 

mixed model as an alternative to analytic MSE estimators. 

For poverty estimation based on the FH area-level model, poverty indices with their 

accuracy are typically estimated via EBLUP-type and the corresponding analytic MSE 

estimators respectively (Slud and Maiti, 2006). In this context, the analytic MSE 
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estimation procedures of Kackar and Harville (1984), Prasad and Rao (1990), Datta and 

Lahiri (2000), and the bootstrap MSE estimation procedures of Pfeffermann and 

Glickman (2004), González-Manteiga et al. (2005), Hall and Maiti (2006a), Opsomer et 

al. (2008) can be employed to estimate the MSEs of the poverty estimates calculated 

under the area-level model.  

Under unit-level model, analytic MSE estimation for estimated FGT poverty measures is 

often intractable, and so bootstrap-based MSE estimators are typically used. In the ELL 

method, both FGT estimates and their corresponding MSE estimates are calculated based 

on the same parametric or non-parametric (semi-parametric for heteroskedastic level-one 

errors) bootstrap procedure. Similarly, a parametric bootstrap procedure for the EBP 

method based on González-Manteiga et al. (2008a) and a non-parametric bootstrap 

procedure for MQ method based on Marchetti et al. (2012) can be used to estimate the 

MSEs of the resulting poverty estimates. However, it should be noted that both the EBP 

and the MQ bootstrap MSE estimators are complex and computationally intensive 

compared to the ELL bootstrap MSE estimator. MSE estimation procedures for the ELL, 

EBP and MQ methods are discussed in detail in Chapter Three. 

Finally, we note that although the ELL method has been widely used (particularly in 

developing countries), it also been criticised due to its assumption of area-homogeneity 

(Tarozzi and Deaton, 2009). If the potential between-area variability cannot be captured 

by the fixed effects in the fitted regression model (i.e. there is model misspecification), 

then the estimated MSE produced by the ELL method always understates the true MSE. 

Alternative versions of the ELL method that address this issue have been proposed by 

Elbers et al. (2002) and Elbers et al. (2008). However, these have been criticised by 

Tarozzi and Deaton (2009) due to the posssibility of unstable and inconsistent results. 

We discuss the MSE estimation problem in more detail in Chapter Four. 
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CHAPTER THREE 

3. Alternative Methods for Poverty Estimation in Developing Countries 

 

 

 

Small area estimation (SAE) methods are now widely used as indirect statistical methods 

for improving geographic distribution of poverty indicators. Since the turn of the 

century, three unit-level SAE techniques: the ELL method of Elbers, Lanjouw, and 

Lanjouw (2003) also known as World Bank method, the Empirical Best Prediction 

(EBP) method of Molina and Rao (2010) and the M-Quantile (MQ) method of Tzavidis 

et al. (2008) have all been used to estimate micro-level FGT poverty indicators (Foster, 

Greer, and Thorbecke, 1984). These methods vary in terms of their underlying model 

assumptions and specifically their differences in how they use random effects to model 

the distribution of income across the geography of interest. They consequently perform 

best when the real data actually agree with their underlying assumptions. In this Chapter 

we compare the performances of the three methods in terms of the poverty estimates and 

associated standard errors they produce in an empirical situation where both 

between-area heterogeneity and between-cluster heterogeneity are present in the 

superpopulation model. Our comparison study is based on a simulated dataset which 

explicitly replicates a data scenario for a developing country. In particular, we compare 

the ELL approach based on a three-level nested-error regression model with the standard 

ELL approach based on a two-level model in this situation. 
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The Chapter is organized as follows: Section 3.1 briefly discusses the ELL, EBP, and 

MQ methods of SAE and their applications to poverty estimation; Section 3.2 describes 

the FGT poverty indicators and details how these three unit-level SAE methods are used 

in poverty studies; Section 3.3 then compares these SAE methods in terms of some key 

issues as far as poverty estimation is concerned; Section 3.4 outlines the construction of 

the census dataset and the sampling design to select a survey sample from it (with the 

associated dataset). This construction mimics real datasets from Bangladesh. An 

empirical-based simulation study based on the constructed pseudo census data is also 

illustrated in Section 3.4. Section 3.5 discusses the findings of the simulation study; and 

finally Section 3.6 concludes with a discussion of some outstanding statistical issues 

regarding the selection of a SAE method for poverty mapping in developing countries. 

 

3.1 Background 

Recently national and local administrative authorities place more importance on small 

area statistics for policy development and implementation. The traditional national 

surveys are conducted to obtain national and regional level statistics and so statistics at 

micro-level administrative units are not estimable. Direct estimation method is not 

possible to obtain estimate with efficient precision due to very small sample size (even 

zero) for a significant number of micro-level administrative units. Model-based small 

area estimation (SAE) method provides the opportunity to calculate the small area 

parameters with greater efficiency by the so called “borrowing strength” across all the 

small areas (Rao, 2003). The basic idea of SAE method is to develop a regression model 

to a survey data and then utilize the known values of the auxiliary variables available in 

census and/or administrative database for each small area. 
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Model-based SAE methods are mainly classified into two broad groups based on data 

availability. Unit-level SAE method is used when data is available at unit-level; 

otherwise area-level SAE method is applied. In case of unit-level SAE method, the 

survey data include main variable of interest and some related explanatory variables 

which must be in the form of census/administrative database. A linear mixed model is 

then developed using the survey data and the developed model is utilized to obtain the 

small area statistics using the auxiliary information available for all population units in 

census dataset. While in area-level SAE method, the weighted direct estimates of the 

small area parameters obtained from a survey data and area-level explanatory variables 

obtained from census data are utilized to develop a linear mixed model. This linear 

mixed model is then used to calculate small area statistics for both sampled and 

non-sampled areas in the survey. 

The basic model-based SAE methods are concerned with estimation of small area linear 

parameters such as means and totals. The straightforward application of standard SAE 

method is not appropriate for the parameters which are non-linear function of the 

response variable such as quantiles and distribution functions. In poverty mapping study, 

the mostly used poverty indicators: poverty incidence, poverty gap and poverty severity 

are non-linear function of small area income or expenditure distribution function (Foster 

et al., 1984). Consequently, the modified SAE methods are required for estimating these 

non-linear poverty indicators at disaggregated administrative units.  

The unit-level SAE method for poverty mapping was first developed by Elbers et al. 

(2003) which is known as World Bank method and in short ELL method. In the ELL 

method a 2-level nested-error regression model (Battese et al., 1988) is developed using 

a survey data at household (HH) level and the developed model is utilized to impute 

HH-level response values for all census HHs, which are then aggregated over the 
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corresponding small areas. The ultimate poverty indicators and their mean squared error 

(MSE) are calculated via a bootstrap procedure where the fitted model and the estimated 

regression parameters are used as inputs. Due to simplicity of the ELL methodology, it 

has been implemented in most of the developing countries including Thailand (Healy et 

al., 2003), Cambodia (Fujii, 2004), South Africa (Alderman et al., 2002), Brazil (Elbers 

et al., 2004), Bangladesh (BBS and UNWFP, 2004), the Philippines (Haslett and Jones, 

2005), Nepal (Haslett and Jones, 2006) and so on. This method has also been applied for 

estimating prevalence of child undernutrition at disaggregated administrative units 

(Haslett and Jones, 2006; BBS and UNWFP, 2004).  

Molina and Rao (2010) utilized the method of empirical Bayes or best prediction (EBP) 

under a finite population to estimate the FGT measures. The EBP method produces 

estimators with minimum mean squared error or “best predictor” through Monte Carlo 

(MC) approximation under the assumption that transformed welfare variable follows a 

nested-error regression model with normally distributed random errors. In EBP method 

simulated values of the welfare variable are generated via independent draws from the 

conditional distribution of unobserved values given the observed values. The EBP 

method is based on a 2-level nested-error regression model with area-specific random 

effects (area variability), while the ELL method is also based on a 2-level model but with 

cluster-specific random effects (cluster variability). 

Both the ELL and EBP methods are based on standard random effects model with strong 

distributional assumptions, formal specification of the random part, and are also 

non-robust to the presence of outliers in the values of response variable. An alternative 

approach to SAE is MQ method proposed by Chambers and Tzavidis (2006), and 

Tzavidis and Chambers (2007) based on the quantiles of the conditional distribution of 

response variable given the covariates (Breckling and Chambers, 1988). Unlikely ELL 
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and EBP, MQ method is distribution free and automatically provides outlier robust 

inference.  The MQ model-based approach has been brought in poverty mapping study 

by Tzavidis et al. (2008, 2010). Application of MQ methodology in poverty estimation 

relaxes the parametric assumptions of random errors in the traditional unit-level 

nested-error regression model. 

The EBP method has been implemented mostly in European Union Member States (EU-MS) 

using the Income and Living Conditions (EU-SILC 2012) survey datasets. Molina and 

Rao (2010) applied EBPP to estimate province-level poverty incidence and poverty gap 

by sex. The MQ method has also been applied to estimate poverty indicators at local 

administrative in different European countries including Albania (Tzavidis et al., 2008), 

Tuscany (Giusti et al., 2009), Italy (Giusti et al., 2011). Recently both methods have 

been applied to estimate multidimensional poverty at municipality-level in Mexico 

(Licona and Jimenez, 2015). The underlying assumptions of EBP and MQ methods 

indicate their suitability in more developed countries where more spread out samples are 

collected covering most of the target small areas (Elbers and Van der Weide, 2014).  

Since the three SAE methods for poverty mapping are based on unique assumptions, all 

methods are not perfect for a specific condition. The ELL method has criticism of 

assuming area-homogeneity, while the EBP method assumes cluster-homogeneity. Like 

EBP, the MQ method does not care about cluster-specific variation since it ignores 

boundary issue in developing the MQ model. The ELL and EBP methods are likely to 

suffer from model misspecification particularly the parametric specification of random 

errors and the presence of outliers. In reality it is very tough to select an appropriate SAE 

method for poverty studies due to unknown behaviour of population at the target 

domains where sample information is poor (even none). The aim of this chapter is to 

compare and contrast the three unit-level SAE methods numerically via a simulation 
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study built on the datasets of Bangladesh as a candidate of developing countries. Based 

on the simulation study, some benchmarks have also been made for the selection of SAE 

method for poverty estimation in the developing countries. 

 

3.2 Small Area Methodologies for Poverty Estimation 

Consider a finite population of size N  divided into D  small domains of size 

1 2, ,..., DN N N  and let 
ikE  be the income or expenditure for individual k  belongs to 

thi  

domain. If 
ikE  is less than a poverty line t , the 

thk  individual will be considered as 

below the ‘poverty line’. The FGT poverty measures for domain i  are then calculated as  

 
1

1

; 1,2,..., ; 0,1,2=
iN

i i ik
k

i DF N F



      (3.1) 

where  ik
ik ik

t E
F

t
I E t

 
 
 

 



 . The FGT poverty indicators are then defined as 

Poverty Incidence    0

Poverty Gap            1

Poverty Severity      2

=i

if

if

if

F





 









 

which clearly illustrate that poverty incidence (also known as Head Count Rate, HCR) is 

the proportion of population having income or expenditure level under the poverty line, 

poverty gap (PG) is the expected income shortfall from the poverty line, and poverty 

severity (PS) is the expected squared shortfall of income from the poverty line.  

Now consider a random sample of size 
1 2 ... Dn n n n     is drawn from the population 

following a specified sampling design. The sizes of sampled and non-sampled parts of an 

area i  are defined as 
in  and  i iN n  respectively. Also 

is  and 
ir  denote the sets of 

sample and out-of-sample individuals belonging to area i . In such case the unweighted 
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and weighted direct poverty indicators are defined as 
1

1

ˆ
in

i i ik

k

F n F



    and 

1

1

ˆ ˆ
in

w

i i ik ik

k

F N w F



    respectively where 
ik i iw N n  is the sampling weight for individual 

k  in area i  and 
1

ˆ
in

i ik

k

N w


 is a design-unbiased estimator of 
iN . In our study, the census 

units are HHs and the variable of interest is per capita consumption expenditure, and so 

the accumulation needs to be weighted by HH size when we utilize (3.1). Then the 

ultimate FGT indicators will be 
1

1

iN

i i ik ik

k

F M m F 





   where 
ikm  is HH size of 

thk  HH 

and 
1

iN

i ik

k

M m


  is total population in 
thi  area. Though it is assumed that all the small 

areas have sampled units in theoretical development, in reality a significant number of 

small areas are not covered in sample (where 0in  ). In such case, synthetic estimators 

are used to calculate poverty indices through model-based SAE methods based on the 

auxiliary information of those areas (Rao, 2003). The ELL, EBP and MQ methods of 

poverty estimation are elaborately discussed in the following subsequent sub-sections. 

 

3.2.1 The World Bank (ELL) Method 

In the World Bank poverty mapping methodology, a regression model is developed 

between the log-transformed response variable  logijk ijkY E  and the explanatory 

variables  ijkX  available in a sample data of recent household income and expenditure 

survey. Here 
ijkE  is per capita expenditure for 

thk  HH lives in thj  cluster of 
thi  area. 

Standard methods of fitting regression model cannot be used due to implementation of 

complex sampling technique (say, stratification and/or cluster) for selecting the clusters 

and the HHs in the survey design. Moreover, since HHs are tend to be clustered together 
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into villages or other small geographic or administrative units that are themselves 

relatively homogenous, it is common to have a cluster (primary sampling unit) effect on 

the response values. So a nested-error linear regression model (Battese et al.,  1988) is 

developed considering HHs at level one and clusters at level two as 

 
 

     
2

2 2

2 2

  1,...,   1,2,...,   1,2,...,

0,   0,

T

ijk ijk ij ijk i ij

ij ijku

y u i D j C k N

u N N


      

    

x β
  (3.2) 

where cluster-specific and HH-specific errors iju  and 
ijk  are assumed to follow normal 

distribution with constant variance components. The sub-script (2) of  2
β ,  

2

2u
 , and 

 
2

2
  stands for 2-level model. The model can be extended to 3-level hierarchical model 

if individual level data are available (say children within household). 

Since poverty indicators are function of the distribution of ijky , not the function of 

 2

T
ijkβx , ELL uses a bootstrap procedure to regenerate the conditional distribution of ijky  

by adding simulated values of cluster-specific  *

iju  and HH-specific errors  *

ijk  to each 

estimated fitted value   2
ˆT

ijkβx . The ELL method provides unbiased estimates of 

poverty measures with their standard errors via a parametric bootstrap procedure as 

below. 

Step 1: Fit model (3.2) to the sample data  ,s sy x  and obtain 
 2
β̂ ,   2

ˆv̂ β ,  
2

2
ˆ

u
 , and 

 
2

2
ˆ


  using appropriate estimation method such as maximum likelihood (ML) or 

restricted maximum likelihood (REML) or method of moments (MOM).  

Step 2: Generate the values of the regression parameters from the corresponding 

parametric distribution as 
       *

2 2 2
ˆ ˆˆ,Nβ β v β . 



38 
 

Step 3: Generate the cluster-specific and HH-specific random errors independently and 

identically from the corresponding parametric distributions such as 

  * 2

2
ˆ0,ij u

u N   and   * 2

2
ˆ0,ijk N


   respectively for 1,...,i D ,  1,2,..., ij C , 

and 1,2,..., ijk N . The random errors can be generated from the corresponding 

empirical distributions to relax the parametric assumptions of random errors. 

Step 4: Generate L  (say, L =500) independent and identically distributed bootstrap 

population income values 
  *

;  1,2,...,
l

ijky l L  via the bootstrap super-population 

model  
* * * *

2

T

ijk ijk ij ijky u   x β . 

Step 5: The parameter of interest for a particular small area is calculated by aggregating 

the generated income values belonging to the small area. The FGT poverty 

measures 
 * b

iF  are calculated from each bootstrap population and then the ELL 

estimates with their mean squared error  mse  are calculated as 

  *1

1

ˆ
L

lELL

i i

l

F L F 





   and     
2

*1

1

ˆ ˆ
L

lELL ELL

i i i

l

mse F L F F  





  . (3.3) 

The HH-specific errors (also known as idiosyncratic errors) are allowed to be 

heteroskedastic in the ELL method. In this chapter, the HH-level errors are assumed 

homoskedastic for the comparison purposes. In either case of homoskedastic or 

heteroskedastic HH level errors, both parametric and semi-parametric bootstrap 

procedures can be applied in the ELL method. 

In ELL methodology, the basic idea is to increase the predictive power of the fitted 

regression model (high R-squared value) and to reduce as much as possible the ratio of 

between-cluster variation to total variation 
      

1
2 2 2

2 2 2
ˆ ˆ ˆ

u u 
  



 . For these reasons, more 

explanatory variables at different hierarchical levels such as HH, cluster and area are 
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considered in the regression model. Synthetic behaviour and ignorance of between-area 

variation (as a consequence produce underestimated MSE) are the main criticisms of the 

ELL methodology. 

An ELL method based on 3-level model (3-level ELL) instead of the standard 2-level 

model (2-level ELL) can be easily conducted assuming a 3-level structure of the 

super-population model. The procedure is almost similar as the established 2-level 

model-based ELL methodology where an additional area-level random error is generated 

assuming a parametric or empirical distribution function. The procedure based on a 

3-level model solves the problem of underestimated MSE estimation if in reality the 

area-level variability exits. However, it is very tough to obtain unbiased and efficient 

estimates of all level-specific variance components due to lack of data at the considered 

levels. The ELL estimators based on 2-level and 3-level models are denoted as ELL.2L 

and ELL.3L respectively.  

 

3.2.2 Empirical Best Prediction (EBP) Method 

In the EBP method, small domain of interest (aggregate of clusters) rather than cluster is 

considered to have random effects on the response variable. The 2-level nested-error 

regression model is considered as  

 
 

     
2

2 2

2 2

   1,..,    1,..,

0,    0,

T

ik ik i ik i

i ik

y i D k N

N N
 

     

   

x β
  (3.4) 

where 
i  and 

ik  are area- and HH-specific random errors. Here the FGT estimator is 

split into sample and non-sample part as 

1

d d

i i ik ik

k s k r

F N F F  



 

 
  

 
   for 0,1,2  
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and the non-sample part is then predicted based on a MC approximation. The best 

predictor of 
iF
 under the squared error loss is given by  

 ˆ | |
r i i i ii

i i s i r s rF E F F f  
    y

y y y y  

where  |
i ir sf y y  is the joint density of 

ir
y  (vector of non-sample y  in area i ) given 

isy  (vector of sample y  in area i ). The basic procedures of EBP method to obtain the 

estimate of 
iF
 can be explained briefly as: 

Step 1: Fit the nested-error model (3.4) to survey data  ,s sy x  by ML or REML or 

Henderson method III (Rao, 2003) to obtain the estimated regression parameters 

 2
β̂ ,  

2

2
ˆ


 , and  
2

2
ˆ


 . 

Step 2: Generate L independent realization of 
ir

y  
  , 1,2,..,
i

l

r l Ly  from the conditional 

distribution  |
i ir sf y y  which is assumed to follow normal distribution with 

mean    
|

2 1

2r s i i i i i i

T

i r N n n si s su
 

  μ X β 1 1 V y X β  and variance-covariance matrix 
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2 2
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2 2 2i iu u
n


       , 

isX  

and 
ir

X  are matrices of sample and non-sample values of explanatory variables 

belong to 
thi  area. The MC approximation method is simplified by generating 

observations from  
 

   * *

2
ˆ ;  

l l lT

ik ik i ik iy ik r    x β  where     * 2

2
ˆˆ~ 0, 1i iu

N    

is independent of   * 2

2
ˆ0,ik N


  . 

Step 3: Calculate 
 l
iF  using the vector 

    ,
i i

l T lT

i s ry y y  and then average over L 

replicates to obtain the EBP estimates as  1

1

ˆ
L

lEBP

i i

l

F L F



  
.  
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In EBP methodology, the mean square error (MSE) estimator of ˆ EBP

dF  is calculated 

separately via a parametric bootstrap method (González-Manteiga et al., 2008a). The 

steps are: (i) obtain 
 2
β̂ ,  

2

2
ˆ


 , and  
2

2
ˆ


  following a suitable estimation method; (ii) 

generate domain effects   * 2

2
ˆ~ 0,i N


   and HH effects   * 2

2
ˆ0,ik N


   

independently, and then calculate bootstrap population income values *

iky  via 

 
* * *

2
ˆT

ik ik i iky    x β  for all census HHs; (iii) calculate domain-specific *

iF
 by 

aggregating the bootstrap population values; (iv) then refit the nested-error model (3.4) 

with the bootstrap elements *

iky  belonging to the sample and calculate the bootstrap 

model parameters denoted as 
 
*

2
β̂ ,  

2*

2
ˆ


 ,  
2*

2
ˆ


 ; (v) obtain the bootstrap EBP estimator of 

*

iF
 denoted by 

*EBPˆ
iF  through MC approximation method; (vi) repeat steps (ii)-(v) a 

large number of times, say, B =1000. Let 
 * b

iF  be the true value calculated at step (iii) 

and 
 *EBPˆ b

iF  be the EBP estimate calculated at step (v) in the 
thb   1,..,b B  replicate of 

the bootstrap procedure; (vii) then the estimated MSE of ˆ EBP

iF is defined by 

     
2

* *EBP1

1

ˆ ˆ
B

b bEBP

i i i

b

mse F B F F  





  
  . 

Molina and Rao (2010) pointed out that in the simplest case of estimating a small area 

mean, the EBP approach leads to    
* 1 *

2

i i i

i i

n N n
T

i i ik ik i

k s k r

E y N y 




 

 
   

 
  x β , while the ELL 

method provides a synthetic regression estimator as    
* 1

2

i

i i

N
T

i i ijk

ijk s r

E y N 

 

  x β  since 

 * 0ijE u   and  * 0ijkE  for a specific area. And so the ELL estimator would be less 

efficient than EBP estimator if the between area/cluster variation is higher comapred to 
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the total variation. If the number of small areas is large or number of sampled small areas 

with fewer observation (for example, single cluster per sampled small area), however 

EBP method will essentially deduce to the ELL method (Haslett, 2013). In reality a large 

number of small areas are uncovered in the survey data set and then ultimately the EBP 

approach will produce the synthetic estimates like ELL. 

 

3.2.3 M-Quantile (MQ) Method 

The M-quantile of order q for the conditional distribution of a random variable y  given a 

vector of P  covariates x  denoted by  ;qQ x  is defined as the solution of the 

estimating equation     ψ ; | 0q qy Q f y dy  x x  where   denotes an asymmetric 

influence function. Suppose  ,k kyx , 1,..,k n  denotes the observed sample values of 

 , yx  for an individual k . Then a linear MQ regression model for 
ky  given 

kx  is one 

where we assume that the thq  M-quantile satisfies    ψ;ψ T

q k kQ qx x β .  

For a specified q  and continuous ψ , the MQ regression parameters  ψ qβ  are estimated 

by solving the estimating equations   1

ψ

1

ˆψ 0
n

t

q k k k

k

y q



  
  x β x  where 

          ψ 2ψ * 0 1 * 0q q I q I         and   is a suitable robust estimate of 

the scale of the residuals (say, Mean Absolute deviation (MAD) estimate i.e., 

   
1 ˆ| |0.6745 * t

k kmedian y q


 x β ). Here ψ  is an appropriately chosen influence 

function such as Chambers and Tzavidis’s (2006) Huber Proposal 2 influence function 

     * *sgnI c c c         , and Tzavidis and Chambers’s (2007) Huber 

function        * *sgn *I c c c I c           with the tuning constant 



43 
 

1.345c  . A straightforward application of an iterative weighted least squares (IWLS) 

algorithm provides the solution of the estimating equations. 

The basic idea of SAE method based on MQ model is that unlikely in a mixed effects 

model the conditional variability related to the conditional distribution of y  given x  

does not depend on the pre-defined hierarchical structure, rather than being characterized 

by the MQ coefficients of the population units. Also it is assumed that since MQ 

coefficients are determined at population level, population units within a small area have 

almost similar MQ coefficients. The MQ coefficient 
kq  for the population unit k  with 

values 
ky  and 

kx  is obtained such that  ;
kq ik ikQ y x . When the conditional 

M-quantiles are assumed to follow a linear model    ; T

qQ q x x β , Tzavidis and 

Chambers (2007) proposed a bias corrected MQ predictor of area-specific mean  i  

based on smearing method of Chambers and Dunstan (1986) as   

    /

/

. 1 ˆ ˆˆ ˆ

i ii

MQ CD t i i
i i ik i ik ikik

k s k sk r i

N n
N y y y

n
 

 

 
     

 
  x β   (3.5) 

where ˆ
i  is the estimator of MQ coefficient  i  for area i  calculated by averaging the 

MQ coefficients of the units in area i ,  ˆ ˆ
i β  is the area-specific regression coefficients 

and  ˆ ˆˆ T

ik ik iy   x β  is a linear combination of the auxiliary variables. 

Straightforward estimation of FGT poverty indicators (3.1) is also not possible in MQ 

method. Like EBP, estimation of these non-linear parameters corresponds to the problem 

of estimating the out-of-sample observations. Thus MQ estimator of FGT poverty 

indicators and quantiles can be written as 
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ˆ ˆˆ exp T

i ikikk ik
E e   

 
x β  and 

ike  is 

the sample residuals defined by the fitted MQ model to  ,s sy x . Marchetti et al. (2012) 

proposed an alternative procedure to calculate (3.6) following a MC simulation approach 

parallel to the EBP approach. The basic steps are:  

Step 1: Fit the MQ small area models to the survey data  ,s sy x  and obtain estimates of 

MQ parameters 
i  and   i β  for 1,..,i D .  

Step 2: Generate an out of sample vector of size  i iN n  using the estimated model 

parameters ˆ
i  and  ˆ ˆ i   in the MQ model  * *ˆ ˆ ; T

k k i k iy x e k r     where *

ke  

is drawn from the empirical distribution function of the model residuals. 

Step 3: Repeat step 2 a large number of times L  (say, L =1000) to calculate L  estimate 

of 
iF  

  *
; 1,2,..,

l

iF l L   combining sample  
isy  and non-sample observations 

 *

ir
y  in each process. Average the L  estimates of 

iF  to obtain ultimate MQ 

estimate as  *

1

ˆ
L

lMQ

i i

l

F F 


 . 

Though the MSE of .ˆ MQ CD

d can be estimated analytically (Chambers et al., 2011), the 

procedure can be unstable when area-specific sample sizes are very small (Marchetti et 

al., 2012). A non-parametric bootstrap procedure is proposed by Marchetti et al. (2012) 

to estimate the MSE for not only small area mean but also poverty indicators and 

quantiles. The bootstrap procedure can be illustrated briefly only for the poverty 
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indicators as: (i) fit an MQ small area model  T

ik ik i iky e  x  to sample data where 

ike  is the unit-level random term with distribution function G for which no explicit 

parametric assumptions are considered; (ii) estimate the target small area parameters 

denoted by        / /

/

1 1ˆ ˆ ˆ, , , ,
i ii

i i ik ik i ikk ikk
k s k sk r

F N Z y t I y t n Z y t I y t 
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 
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  x β , and  Z , , ik
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t y
y t

t


 

   
 

; (iii) 

define an estimator denoted by  Ĝ u  of the distribution of residuals from either the 

empirical distribution function of the area-specific sample residuals  ike  or a 

corresponding smoothed distribution function; (iv) generate a bootstrap population 

consistent with MQ small area model by sampling *

ike  from the  Ĝ u  either without 

consideration of the small area (unconditional) or with consideration of the small area 

(conditional) available in sample data via  * *ˆ ˆt

ik ik i iky e  x β , 1,2,..., ik N ,  

1,2,...,i D ; (v) calculate the bootstrap population parameter as 

       / /

* / *

* 1 * * * *, , , ,

d d

i i ik ik ik ik
k s k r
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 

 
    

  
    ; (vi) select a without 

replacement sample from the bootstrap population and estimate the bootstrap population 

parameter 
*ˆ
iF  using the estimator ˆ

iF ; (vii) generate B  bootstrap populations following 

the step (iv) and draw R  bootstrap sample from each bootstrap population using simple 

random sampling (without replacement) within the small areas so that *

d dn n  and record 

the values 
 * b

iF  and 
 *ˆ br

iF  with  1,2,..,b B  and 1,2,..,r R ; (viii) estimate bias and 

variance of the estimated parameter ˆ MQ

iF  as       * *1 1

,

ˆ ˆ br bMQ

i i i

b r

bias F B R F F  

    and 
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

  ; and (ix) then calculate 

the bootstrap MSE estimator of ˆ MQ

iF  as      
2

ˆ ˆ ˆvarMQ MQ MQ

i i imse F F bias F   
. 

The description of the EBP and MQ method clearly indicates that both the methods 

require massive time in the estimation of RMSE compared to ELL method. To reduce 

the computational demand, the computation can be done separately by dividing both 

sample and population into several large regions. Ferretti and Molina (2012) suggest a 

fast algorithm for conducting the EBP method quickly. 

 

3.3 Comparison of ELL, EBP and MQ Methods 

The three unit-level SAE methods of poverty estimation are based on different 

assumptions and so will work better in different situations. There is no common analytic 

way to show which method is better. All the methods have some drawbacks particularly 

departure from the assumed distribution of random errors, misspecification of the 

multilevel model, presence of outliers in the distribution of target variable, and 

computational problem. A comparison of these SAE methods has been made below with 

respect to some technical issues noted in Table 3.1.  

The basic difference of the three methods is the distribution of random errors: ELL 

assumes cluster-specific and EBP assumes area-specific random errors which follow 

some parametric distributions. The MQ method is free from distributional assumption of 

random effects; however the area-specific MQ coefficient behaves similar to 

area-specific random effects. The distributional assumption can also be relaxed in ELL 

method by using the empirical distribution of random errors in the bootstrap procedure. 

All the three methods ignore either cluster- or area-level variability under a true 3-level 

superpopulation model. The ELL method assumes only between-cluster variation and so 
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need to incorporate a large number of explanatory variables in the 2-level regression 

model to reduce the between-area variation. The ELL method may fail to provide 

estimates with efficient MSE if a negligible amount of between-area variation remains in 

the distribution of the response variable after inclusion of some contextual variables in 

the model specification. Similar problem is also expected in both EBP and MQ methods. 

Naturally in the developing countries like Bangladesh the between-cluster variation is 

significantly higher than between-area variation. When the cluster level is ignored in the 

multilevel model specification, the cluster-level variance component would be merged 

with both the individual and area-level variance components (Tranmer and Steel, 2001a). 

In such situation, individual level and area-level variance components will mislead the 

distribution of the corresponding random errors. In similar manner, if the area-level 

random effect is found significant but ignored in ELL method, the area-level variance 

component will be merged with cluster variance component. So a careful diagnostic is 

necessary to select the ultimate multilevel model which will be used in the bootstrap 

procedure of the EBP and ELL methods. 

Geographic specification of area and cluster are not needed to develop the MQ 

regression model. Area-specific MQ coefficient  i  instead of area-specific random 

effect  i  is calculated by taking the average of MQ coefficient of individual units 

 kq  belonging to the area and then area-specific MQ regression coefficients  ψ i   are 

estimated. The area-specific regression coefficients  ψ i   are used to predict response 

values for the individuals belong to the area. In this sense MQ method also considers the 

between-area variation and ignores the between-cluster variation. Thus similar to EBP 

method, the same question regarding the ignorance of cluster-variation in the distribution 

of response variable arises in MQ method. 



48 
 

The EBP method provides efficient estimates based on nested-error regression model 

under the normality assumption of target variable. For implementation of the EBP 

method, a correct transformation of the skewed expenditure or income variable is needed 

to achieve normality of the random errors. Diallo and Rao (2014) relax the normality 

assumption by considering a skew-normal distribution for the random errors. Both the 

ELL and MQ methods are free from such transformation to make the errors normally 

distributed. This is the main reason of applying generalized least squared (GLS) 

estimation method instead of ML or REML in the ELL method. 

Both the ELL and EBP methods are sensitive to the presence of outliers in the 

distribution of response variable, while the MQ method provides robust estimates under 

the situation. Though the MQ method is distribution free of the random effects, it may be 

less efficient than EBP or ELL method if the model assumptions are unrealistically true 

(Tzavidis et al., 2013). 

The theoretical development of EBP and MQ methods are based on the matching of 

census and survey HHs which is quite impossible in real applications. The sampling 

ratios are usually found very small and so matching becomes redundant.  

In terms of computation of MSE, the ELL method is economical and very fast compared 

to other methods. In both the EBP and MQ methods, the MSE estimation requires 

separate calculation with intensive computation. For big data of developing countries, 

implementation of the EBP and MQ methods might be a problem in terms of 

computational resources. 

In reality, all small areas are not covered in the survey dataset and covered small areas 

comprise a few clusters. If only single cluster per area is available in the survey data set, 

the between-cluster variation and the between-area variation will be same and all the 

three methods will produce almost similar results since there is no chance of ignorance 
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of any random effect in any method. Thus the differences among the three methods only 

possible to examine when both between-cluster and between-area variations exist in the 

distribution of response variable. In developing countries, it is observed that a significant 

number of small areas have single cluster and some areas have two or more clusters in 

the survey data. In such situation, there is always a possibility of having both cluster- and 

area- variability. From ELL point of view some area-specific contextual variable can be 

included in the model to remove the between-area variation. 

Table 3.1: Basic comparison criteria of ELL, EBP and MQ methods 

Issues regarding SAE Methods ELL.2L ELL.3L EBP MQ 

Distributional assumptions of random errors:     

Parametric Bootstrap Yes Yes Yes - 

Non-parametric Bootstrap No No - No 

Ignored level in model specification Area None Cluster Cluster 

Sensitivity of model misspecification Yes Yes Yes Yes 

Transformation for normality No No Yes No 

Influence of outliers Yes Yes Yes No 

Necessity of matching census and survey HHs No No Yes Yes 

Computational demand Less Less High High 

 

Another issue arises in both the EBP and MQ methods with respect to prediction of 

income distribution for the small areas not covered in the survey data set. The prediction 

power for the non-sampled areas will not be as much as the sampled area in EBP and 

MQ method, while in ELL method the prediction power will be same for both sampled 

and non-sampled areas. For the non-sampled small areas, FGT measures and their 

associated MSEs are calculated based on the same bootstrap procedure in EBP and MQ 

methods similar to the ELL method. In case of MQ method, the parameters 
i  and

  i β  are estimated based on 50thq   order MQ coefficients. Since without sample in 

an area all the estimators provide synthetic type estimates, it is expected that all 
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estimators provide almost same estimates, however there is a doubt due to different types 

of generation of population in bootstrap procedure. 

Previous studies to compare ELL, EBP, and MQ methods 

A few studies have been done to compare these three methods simultaneously. Molina 

and Rao (2010) compared ELL and EBP methods through a simulation study considering 

only area-specific random effects in the population model and assuming very poor 

predictive power of the regression model. They mentioned that ELL method may provide 

worse result than the direct estimator in such situation.  

Betti et al. (2007) conducted a simulation experiment to compare ELL and MQ methods 

utilizing two real datasets: the Living Standards Measurement Study (LSMS) 2002 and 

the Population 2001 Census of Albania. Using the survey data set, at first they developed 

a 2-level regression model considering HH at 1
st
 level and cluster at 2

nd
 level and then 

generate the simulated population by drawing the regression parameters from their 

sampling distribution and resampling the level-specific errors from the corresponding 

estimated residuals. They found the ELL method provides more biased estimates than 

MQ but the ranking of the poverty estimates doesn’t influence much by the bias. They 

also noted that there were problem in MQ estimates when the small areas (districts) are 

not covered in the survey. 

Tzavidis et al. (2013) explicitly discussed some technical issues of these SAE methods 

for poverty mapping. The authors conducted an empirical study as well as an application 

to Tuscany poverty data to compare ELL and MQ methods. They also found the MQ 

method is more efficient than the ELL method, sometimes even ELL method may 

provide poor outcome than the direct estimates as Molina and Rao (2010) found. The 

main reason of such results is the synthetic behavior of ELL method. However, the ELL 

method is not based on this framework. It assumes the hierarchical structure of the 
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population where the lower levels have greater effect than the higher levels and so 

reduce the higher level impact on the model by including the corresponding level 

contextual variables.  

Souza et al., (2015) compare the ELL and EBP methods using 2010 Census data of 

Minas Gerais state of Brazil where the information of target variable (per capita HH 

income) is collected. They conducted a simulation study by selecting 400 samples 

following 2008-2009 Consumer Expenditure Survey (CES) from the known population 

and then the ELL and EBP methods are applied to estimate poverty incidence and 

poverty gap at municipality level. In the survey data set only 20% municipalities (195 

out of 853) were available. They observed that the ELL estimator is performing better 

than the EBP estimator in terms of both relative bias (RB) and relative root mean squared 

error (RRMSE). Though both estimators provide synthetic estimates (most of the areas 

are out-of-sample), the EBP estimator shows higher overestimation than the ELL 

estimator. One of the main reasons might be the differences in generation of population 

in the bootstrap procedure: ELL generates population considering cluster-level variation, 

while EBP generates based on area-level variation.  

 

3.4 An Empirical-based Simulation Study 

A model-based simulation study has been planned with the aim of comparing the three 

SAE methods as well as selecting an appropriate SAE method for poverty mapping 

under the circumstances of developing countries. The first poverty mapping study in 

Bangladesh was conducted by BBS and UNWFP (2004) utilizing 2001 Bangladesh 

Population and Housing Census (hereafter referred as 2001 Census) and 2000 Household 

Income and Expenditure Survey (hereafter referred as 2000 HIES). The simulation study 

is based on these two datasets. A brief overview of the two datasets is given at first and 
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then the generation procedure of pseudo census and the selection procedure of a sample 

from the census are explained in the following subsections. 

 

3.4.1 Structure of Census and Survey Datasets 

Sampling design of 2000 HIES was based on 1991 Census when Bangladesh was 

divided into 5 divisions (Barisal, Chittagong, Dhaka, Khulna and Rajshahi), 64 districts 

(Zila), and 507 sub-districts (Upzila). In 2001 Census Sylhet division was created from 

Chittagong division. The structure of 2000 HIES has been maintained in the simulation 

study. Instead of full census data, BBS selected 5% enumeration areas (EAs) from each 

sub-districts (the target small domains) by systematic sampling (BBS and UNWFP, 

2004). The 5% census data covers all the administrative units up to sub-districts, while 

2000 HIES covers 63 districts and 295 sub-districts (Table 3.2). Summary statistics of 

the number of EAs per sub-district given in Table 3.3 indicate that at least 3 EAs per 

sub-district are available in the census data set while more than 75% sub-districts have 

single EA in the survey data set. In the simulation study only the 295 sub-districts 

sampled in 2000 HIES are considered for comparison purpose. It is noted that the EAs 

are the primary sampling units (PSU) in 2000 HIES and the clusters in our simulation 

study. 

Sampling design of 2000 HIES 

For 2000 HIES the country was stratified into 14 strata considering the residential 

classification of PSUs: Urban, Rural and Statistical Metropolitan Area (SMA) of 5 

divisions (Barisal division had no SMA).  Two-stage stratified sampling technique was 

followed to select 442 PSUs from 14 strata by stratified random sampling at the first 

stage and then 10 or 20 HHs were drawn from the selected PSUs by systematic 

sampling. 
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The number of HHs of the selected PSUs (complete list of HHs) ranges over 190-310 for 

rural and urban areas, and 100-287 for other urban areas. In rural and non-metropolitan 

urban areas 20 HHs were selected, while 10 HHs from metropolitan urban areas (SMA). 

A total of 7440 HHs were selected of which 7428 HHs are included in the study due to 

missing or incomplete information. Since 2000 HIES was conducted based on the 1991 

Census, the HIES classification of PSU was different from that of 2001 Census. Census 

classification of PSUs shown in appendix Table A3.1 is considered in the poverty 

mapping study. 

Table 3.2: Summary statistics of Bangladesh administrative units in 2001 Census and 

2000 HIES  

 Division District Sub-district EA Household 
Population 

(‘000) 

2001 Census 5 64 507 59990 25362321 130,523 

5% 2001 

Census 
5 64 507 12908 1258240 6,156 

2000 HIES 5 63 295 442 7428 38 
Source: BBS and UNWFP (2004) and BBS (2001) 

Table 3.3: Summary statistics of enumeration area (EA) by sub-districts in 2001 Census 

and 2000 HIES  

 Number Mean SD Min (%) Max (%) 

5% 2001 Census 12908 25.5 12.9 3 (0.02) 79 (0.007) 

2000 HIES 442 1.5 1.9 1 (75.3) 10 (0.03) 

Source: BBS and UNWFP (2004) 

Sampling design for simulation study 

In poverty analysis, matching between census HHs and survey HHs is an important issue 

for the selection of appropriate SAE method. Such matching in developing countries like 

Bangladesh, Nepal, and Bhutan is very difficult and unrealistic. For comparison of the 

three SAE methods, matching between survey and census units is maintained in the 

simulation study. This is the main reason of considering only 295 sub-districts in the 

simulations.  
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Since PSUs of a sub-district are classified into urban, rural and SMA, sub-districts are 

partitioned into unique portions (such as Urban PSUs, Rural PSUs, SMA PSUs) so that 

PSUs can be selected randomly according to their geographic location which confirms 

the structure of 2000 HIES. Appendix Table A3.2 shows how the PSUs of 2000 HIES 

are selected over the country. In the simulation work, the same structure has been 

maintained when PSUs and HHs are selected. For simplicity in the selection process, 

some PSUs in 5% census data are merged with their neighbor PSUs to make the size at 

least 40.  

Similar to 2000 HIES, 442 PSUs are selected with probability proportional to number of 

HHs and then HHs are selected randomly from the selected PSUs. The sampling ratio of 

sub-districts (based on 5% Census and 2000 HIES survey datasets) ranges from about 

0.28% to 5.15% with mean 0.98% and median 0.83% which reveal a realistic picture of 

developing countries. The real sampling ratio should be much smaller than these if full 

census is considered. 

Construction of pseudo census 

In BBS and UNWFP (2004) study, 30 explanatory variables (including two-way 

interactions) at HH and sub-district levels (a list is given in appendix Table A3.3) were 

used to develop a regression model following a robust regression procedure which 

accounts complex survey design and provides consistent estimates of the covariance 

matrices. Instead of such complex regression procedure, multilevel analysis, one of most 

significant technique to account the hierarchical effect in the regression model, can be 

done to capture the variability in average per capita expenditure for consumption at 

different hierarchies. The sources of unequal selection probabilities (complex sampling 

design) can be controlled by incorporating design covariates in the model specification. 

However, if multilevel model is correctly specified but sampling weights are 
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unaccounted by the covariates included in the regression model, a suitable weighting 

method is required to adjust the standard estimators of parameters for incorporating the 

design weights (Pfeffermann et al. 1998). For developing multilevel models for 

Bangladesh data, two design variables (division and urban-rural specification used for 

creating strata) as covariates and the hierarchies (household and clusters which are drawn 

with unequal probabilities) are incorporated in the regression model. It is expected that 

unequal selection probabilities are captured in the developed multilevel models and 

hence the estimated regression parameters and the variance components can be 

considered as reasonable and free from design-effect.  

Log-transformed per capita consumption expenditure of HHs have been regressed on the 

selected explanatory variables to develop 2-level and 3-level models considering HHs, 

PSUs and sub-districts at first, second and third hierarchies respectively. The summary 

results of the multilevel models are given in Table 3.4. Null models indicate the 

significant contribution of PSUs  2

u  and sub-districts  2

  in the variations of 

response variable. When auxiliary variables are included in the null model, both 

between-cluster and between-area variations are reduced. Though the variance 

component at sub-district level is very small, it is found still significant after including 

30 explanatory variables and even 75% sub-districts have only single cluster. Both 

marginal and conditional R-squared values (according to Nakagawa and Schielzeth, 

2013) are found slightly higher in 3-level model. So the 3-level model has been 

considered to generate the pseudo census values of per capita HH consumption 

expenditure in the simulation study. The 3-level model to generate log-transformed per 

capita HH expenditure is  

 
         

     

3 3 3 3
ˆ ˆˆy ;   ,

0,0.0086 ,  0,0.0186 ,  0,0.1135

T

ijk ijk i ij ijk

i ij ijk

u e MN

N u N e N

   



x β β β v β
  (3.7) 
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where “MN” stands for multivariate normal and  3
β  is the vector of regression 

parameters under the 3-level model. The regression coefficients with their significance 

are given in appendix Table A3.4. 

Table 3.4: Summary statistics of 2-level (2L) and & 3-level (3L) regression models fitted 

by restricted maximum likelihood method (REML) 

Model df Marginal R
2
 Conditional R

2
 P-value 2

  2ˆ
u  2ˆ

  

2L: Null 3 - 0.4102  0.2178 0.1515 - 

3L: Null 4 - 0.3970 <0.01 0.2177 0.0770 0.0663 

2L: Full 33 0.5941 0.6733  0.1135 0.0275 - 

3L: Full 34 0.5962 0.6744 <0.01 0.1135 0.0186 0.0086 

 

3.4.2 Simulation Process 

In the simulation study, S =500 artificial populations are generated based on the 

superpopulation model (3.7) and then a sample has been drawn from each population to 

estimate the FGT measures applying four estimators: 2-level ELL (ELL.2L), 3-level ELL 

(ELL.3L), EBP and MQ. Parametric bootstrap procedure assuming homoskedastic 

random errors has been followed in the ELL methods to obtain FGT estimates by 

bootstrapping L =500 populations. In EBP and MQ methods, the out of sample response 

values are recalculated L =500 times for estimating FGT indicators by following 

parametric and non-parametric bootstrap procedure respectively. To compare the four 

estimators of FGT measures, relative bias (RB) and relative root mean squared error 

(RRMSE) are calculated based on these 500 artificial populations. The Spearman’s rank 

correlation between the true and the estimated FGT measures has been calculated for 

each estimator in each simulation. The FGT poverty indicators are calculated considering 

upper poverty line (UPOVLN) estimated by the BBS (2003). The poverty line varies 

with strata which are slightly modified in the study of BBS and UNWFP (2004). The 

poverty lines shown in appendix Table A3.5 are maintained to estimate the FGT poverty 

indicators in the simulation study. 
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In ELL methodology, the root mean squared errors (RMSEs) of estimated FGT measures 

are calculated easily and very quickly with the estimation of FGT measures. While the 

RMSEs are calculated separately in both EBP and MQ methods via more complex and 

time-consuming bootstrap procedures. Particularly for the large scale simulation work, 

they require extensive computational resources. To reduce the computation burden in 

this simulation study, RMSEs are calculated only for S =100 simulations. In ELL 

method, the RMSEs are calculated by bootstrapping L =100 populations in each 

simulation. To maintain the consistency of RMSE calculation, B =100 bootstrap 

population are generated in both EBP and MQ methods. In EBP method, for each 

bootstrap population FGT measures are calculated by generating L =100 out-of-sample 

vectors based on the response values of same sample units. While in MQ method, for 

each bootstrap population R =5 samples (more sample may reduce bias) are drawn via 

SRSWOR from each area and then FGT measures are estimated by generating L =100 

out-of-sample vectors from each sample. A comparison of computation time has been 

shown in appendix Table A3.6 to show the computational intensiveness of RMSE 

estimation in EBP and MQ methods compared to ELL method. The performances of the 

RMSE estimators are shown by comparing the area-specific RMSE with the simulated 

true RMSE based on the 100S   simulated true populations and by calculating coverage 

rates (CR) of nominal 95% confidence interval of the RMSE estimators. 

3.5 Simulation Results 

The distributions of area-specific RB and RRMSE expressed in percentages are shown in 

Figure 3.1 and Figure 3.2 respectively. The figures clearly indicate that both ELL.2L 

and ELL.3L estimators are performing better than the EBP and MQ estimators in terms 

of both RB and RRMSE for all the FGT indicators. The EBP estimator is likely to 

overestimate and the MQ estimator is likely to underestimate. These trends are obvious 
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when FGT measure shifts from HCR to PS. No significant differences are observed in 

between the ELL estimators in either case of RB and RRMSE. Both the ELL estimators 

are providing lower and stable RBs and RRMSEs compared to the EBP and MQ 

estimators. The EBP estimator provides higher RB and RRMSE with large variation. 

Though MQ estimator provides downward RBs, their RRMSEs are found lower than 

those of EBP estimator. 

Figure 3.1: Distribution of relative bias (RB, %) of ELL.2L, ELL.3L, EBP and MQ 

estimators of HCR, PG, & PS over 500 simulations 

 

Figure 3.2: Distribution of relative root mean squared error (RRMSE, %) of ELL.2L, 

ELL.3L, EBP and MQ estimators of HCR, PG, & PS over 500 simulations 

 

 

In the survey dataset, about 75% sampled areas have single cluster and the remaining 

have two or more clusters. So a substantial influence of the number of sampled PSUs per 

area is expected in the performances of FGT estimators. To examine the influence of this 

sample characteristic, RB and RRMSE of four estimators are plotted by dividing the 
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areas according to single and multiple clusters sampled per area in the survey dataset. 

Figure 3.3 shows that ELL estimators perform in the similar manner for both the 

situations but EBP and MQ estimators behave differently. The EBP estimator shows 

stable distributions of RB and RRMSE for areas with multiple clusters compared to those 

with single cluster. While MQ estimator behaves similar to ELL estimators for the areas 

with single cluster, and interestingly shows higher negative RBs and smaller RRMSE for 

the areas with multiple clusters. Thus the estimates calculated by EBP and MQ methods 

are significantly influenced by the number of sampled clusters per small area. 

Figure 3.3: Distribution of relative bias (RB, %) and relative root mean squared error 

(RRMSE, %) of ELL.2L, ELL.3L, EBP and MQ estimators for HCR over 500 

simulations by areas with single and multiple sampled clusters 

 

 

The distribution of Spearman’s rank correlations between the true and the estimated FGT 

measures are plotted in Figure 3.4 to examine whether the bias issue does any change in 

the rank of the areas according to their poverty estimates. The figure shows that MQ 

estimator provides better performances in terms of ranking the sub-districts according to 

poverty situations, though it provides significant downward RB. The performances of 

MQ estimator also remain same for all the three FGT measures, while both the ELL and 

EBP estimators show a slightly downward trend of correlations with the degree of FGT 

measures. The EBP estimator shows the poorest correlations for all the FGT measures. 

These lower correlations and the higher RRMSEs of EBP estimator (Figure 3.2) indicate 
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that the EBP estimators do not provide efficient FGT estimates in the considered 

scenario of Bangladesh. 

Figure 3.4: Distribution of rank correlations between the true HCR, PG, & PS and their 

estimates by ELL.2L, ELL.3L, EBP and MQ estimators over 500 simulations 

 
 

The area-specific averages of estimated RMSEs over the 100 simulations are plotted 

against the true simulated RMSE of FGT indicators in Figure 3.5. It is obvious that the 

estimated RMSE by the ELL.3L estimator will track the true simulated RMSE than the 

other estimators and the ELL.2L estimator will significantly underestimate the true 

RMSE. Figure 3.5 exactly shows the expected trend. The estimated RMSEs obtained by 

EBP and MQ estimators also fail to track the true RMSE and their performances vary 

with the FGT indicators. With the increase of the degree of FGT measures, the estimated 

RMSEs of EBP estimator are likely to shift to the true RMSE while an opposite trend is 

observed for the MQ estimator. 

The average estimated RMSEs are also plotted against population size in Figure 3.6 

(smoothed line) to see the influence of population size. It can also be seen that how the 

performances of the RMSE estimators vary with the number of sampled clusters per area 

in the survey data set. All RMSE estimators show downward trend with the population 

size as expected but the performances vary for the areas with large population from 

where multiple clusters are selected in the survey data set. Both the EBP and MQ 

estimators show stable RMSE for the areas with relatively smaller population but 
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steadily declined RMSE for the larger areas. In case of EBP estimator, the differences 

between the true line and the estimated RMSE line gradually decrease with the degree of 

FGT indicator, but always show lower RMSE for the larger areas. The ELL estimators 

show almost similar trend of RMSE for all FGT indicators. 

Figure 3.5: Average values of estimated root mean squared errors (RMSE) of estimated 

HCR, PG, & PS by ELL.2L, ELL.3L, EBP and MQ estimators against the true 

simulated RMSE over 100 simulations  

 

Figure 3.6: Average values of estimated root mean squared error (RMSE) of estimated 

HCR, PG, & PS by ELL.2L, ELL.3L, EBP and MQ estimators over 100 

simulations against area-specific population size  

 

 

The influence of estimated RMSEs is obvious in coverage rate (CR) of the estimators. 

Figure 3.7 shows the smooth trend of coverage rate with the population size. Similar to 

the trend of estimated RMSE, the coverage rates decrease with the population size for all 

the estimators except the ELL.3L estimator. The ELL.2L estimator shows an exponential 

downward curve of coverage rates with the population size. The EBP and MQ estimators 
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also show under coverage rates but performing better than the ELL.2L estimator. The 

performance of EBP estimator improves with the degree of FGT indicators, while no 

change has been observed for both the ELL.2L and MQ estimators. The performances of 

ELL.2L estimator in terms of estimated RMSE and CR are due to the influence of 

ignoring the between-area variability though it produces unbiased FGT estimate under 

this situation. For the EBP and MQ estimators, the lower estimated RMSE and lower 

coverage are due to failure of capturing the cluster-level variation. 

Figure 3.7: Actual coverage rates (CR, %) of nominal 95% confidence intervals of 

ELL.2L, ELL.3L, EBP and MQ estimators of HCR, PG, & PS over 100 

simulations against area-specific population size 

 
 

3.6 Concluding Remarks 

In the simulation study the census and survey datasets are formed to reveal a structure of 

Bangladesh (a representative of developing countries) where both cluster-homogeneity 

and area-homogeneity assumptions are violated. In such situation, the standard ELL 

estimator (ELL.2L) fails to capture the negligible but significant area variability, while 

EBP estimator ignores the higher cluster-level variation and merge the cluster-level 

variation with both individual-level and area-level variation. On the other side, MQ 

method fails to capture cluster-specific random effects in the prediction due to 

incapability of distinguishing the area-specific random effects from the cluster-specific 

effects.  
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The simulation results show that the standard ELL estimators perform better than the 

EBP and MQ estimators in terms of RB and RRMSE in the situation like Bangladesh 

where 75% small areas have single cluster in the sample and a negligible between-area 

variation exists in the population after combining a large number of explanatory 

variables in the regression model. As expected ELL.2L estimator underestimates the true 

RMSE and hence shows under coverage due to ignorance of area variability. The EBP 

and MQ estimators also show under coverage but perform better than ELL.2L estimator, 

which may be due to observed biases of EBP and MQ estimators. 

The reasons for failure of EBP and MQ methods may be suspected as (a) higher 

between-cluster variation than between-area variation, (b) both HH- and area-specific 

random errors are generated from wrong distributions in EBP method, and MQ method 

wrongly considers cluster variation as area variation, (c) most of the small areas have 

single cluster in the survey data that may misguide the prediction of distribution function 

in both EBP and MQ methods. In such situation, 3-level model-based EBP and MQ 

methods can be thought as an alternative considering cluster as mid-level between HH 

and small area, or 2-level model-based EBP and MQ methods considering cluster rather 

than area as level-two since cluster variability is higher compared to area variability. 

In terms of computational burden and matching the survey HHs with the Census HHs, 

the ELL method is safer, easier, faster, and economical than both the EBP and MQ 

methods. Moreover, most of the target administrative units are not available in survey 

data set and so separate calculation procedure is required in both EBP and MQ methods. 

For the non-sampled areas the prediction power may vary from the sampled areas in EBP 

and MQ methods due to different estimation procedure for both FGT measures and their 

MSEs. The poverty mapping study of Minas Gerais state of Brazil by Souza et al. (2015) 

is a perfect example where 80% target small areas were out of the survey data set. 
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The main criticism of basic ELL method is the underestimation of RMSE when 

area-homogeneity assumption is violated in reality. A 3-level model-based ELL method 

can be applied when the area variability is found significant in the regression model. 

From the simulation study, it is clear that the 3-level ELL method performs better than 

the traditional 2-level ELL method in terms of both FGT estimates as well as their 

estimated RMSE. Conversely, it is very sensitive in the sense that it may overestimate 

the true RMSE if there is no area effect indeed in the distribution of the response 

variable. Moreover, fitting a better 3-level model with appropriate variance component 

estimation method is critical in the situation like Bangladesh where availability of 

multiple clusters per small area in the survey data is a concerned matter to distinguish the 

cluster- and area-specific variability accurately. As an alternative a robust approach can 

be thought which will provide unbiased or approximately unbiased RMSE when 3-level 

population model is true one but the 2-level model is considered as the working model in 

ELL method. Such a robust ELL approach will be proposed in Chapter Four. 

In the ELL method the regression model should have larger predictive power (as much 

as possible larger R-squared value) and so require many auxiliary variables. The lower 

the between-cluster and between-area variations, the better the performance of ELL 

method is expected due to its synthetic behaviour. In this regard, explanatory variables at 

different administrative levels should be included in the regression model that can 

capture variations at different levels. Having good R-squared value by inclusion of more 

explanatory variables in the model specification may not guarantee the capture of area 

variability that we found in the Bangladesh survey dataset. Thus proper care is needed in 

the application of naïve ELL methodology to free from the underestimated MSE and 

poor coverage rates in the absence of adequate contextual effects at PSU level. 
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Table A3.1: Classification of primary sampling unit (PSU) in 2000 HIES and 2001 

Census 

HIES PSU Classification (RMO) 
HIES 

Stratum 

Census PSU Classification 

(RMO) 

Census 

Stratum 

1=Rural Stratum 1 1=Rural Stratum 1 

2=Non-metropolitan Urban Stratum 2 2=Urban municipality Stratum 2 

4=Metropolitan Urban Stratum 3 3=Other Urban Stratum 1 

5=Extra Metropolitan PSU selected 

for 2000 HIES 
Stratum 3 

4=Statistical Metropolitan 

Area (SMA) 
Stratum 3 

Table A3.2: Distribution of stratum, primary sampling unit (PSU), household (HH) in 

2000 HIES by PSU Classification in 2000 HIES and 2001 Census  

Stratum 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total 

Division Barisal Chittagong Dhaka Khulna Rajshahi  

No. PSU 26 10 60 10 32 69 10 70 29 8 22 68 12 16 442 

No. HH 20 20 20 20 10 20 20 10 20 20 10 20 20 10 7440 

HIES RMO 1 2 1 2 4,5 1 2 4,5 1 2 4,5 1 2 4,5 - 

Census RMO 1,3 2 1,3 2 4 1,3 2 4 1,3 2 4 1,3 2 4 - 

Table A3.3: List of auxiliary variables available in 2000 HIES and 2001 Census 

Name Meaning Level Name Meaning Level 

electric Has electricity HH 
hhhprmed 

HH head not completed 

primary education 
HH 

ilattr_1 Sanitary latrine HH 

ilattr_3 No latrine HH child5p 
proportion of HH under 

5 
HH 

iwater1 
Drinking water from 

tap 
HH literatep 

proportion of literate 

people in house 
HH 

ibuild_3 Semi-pucca house HH femalep 
proportion of females 

in HH 
HH 

ibuild_4 Pucca house HH ownaglnd Owns agricultural land HH 

owner Own house HH mhhsize Average HH size Sub-district 

rural 
Designated as a rural 

area 
HH depratio 

population under 15 or 

over 60 / population 15-

59 

Sub-district  

workst2p 

Proportion of 

employees/family 

helpers/other 

HH 
paginc 

 

Proportion of HHs with 

agriculture as main 

income source 

Sub-district  

workst3p 
Proportion of self-

employed 
HH idiv_1 HHs in Barisal Division Division 

iincom_3 

Main income source 

from transport, 

construction 

HH idiv_2 
HHs in Chittagong 

Division 
Division 

num_hh 
Number of HH 

members 
HH idiv_4 

HHs in Khulna 

Division 
Division  

num_hh2 
(num_hh-

mean(num_hh))
2
 

HH idiv_5 
HHs in Rajshahi 

Division 
Division 

Note: variables beginning with ‘i’ are indicator variables 
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Table A3.4: Estimated regression coefficients of fitted 2-level and 3-level linear models 

by REML* 

Variables 
2-level Model 3-level Model 

Est. SE t p Est. SE t p 

Intercept   6.94 0.14 49.54 0.00 6.88 0.15 44.82 0.00 

electric 0.22 0.01 17.49 0.00 0.22 0.01 17.43 0.00 

ilattr_1 0.11 0.01 8.13 0.00 0.11 0.01 8.12 0.00 

ilattr_3 -0.13 0.01 -8.92 0.00 -0.13 0.01 -8.93 0.00 

iwater_1        0.15 0.03 6.01 0.00 0.16 0.03 6.19 0.00 

ibuild_3         0.11 0.02 5.65 0.00 0.11 0.02 5.82 0.00 

rural -0.09 0.04 -2.05 0.04 -0.08 0.04 -1.87 0.06 

owner 0.12 0.01 8.15 0.00 0.12 0.01 8.02 0.00 

ibuild_4        0.32 0.03 11.11 0.00 0.32 0.03 11.15 0.00 

workst2p -0.23 0.01 -17.62 0.00 -0.23 0.01 -17.68 0.00 

workst3p -0.14 0.02 -6.91 0.00 -0.15 0.02 -7.11 0.00 

iincom_3        -0.07 0.01 -7.00 0.00 -0.07 0.01 -6.99 0.00 

num_hh -0.08 0.00 -21.79 0.00 -0.08 0.00 -21.77 0.00 

num_hh2 0.01 0.00 11.16 0.00 0.01 0.00 11.16 0.00 

hhhprmed -0.16 0.02 -9.12 0.00 -0.16 0.02 -9.06 0.00 

literatep 0.39 0.02 24.07 0.00 0.39 0.02 24.15 0.00 

child5p -0.53 0.03 -17.72 0.00 -0.53 0.03 -17.66 0.00 

mhhsize 0.09 0.03 2.72 0.01 0.10 0.04 2.93 0.00 

depratio -0.38 0.09 -4.32 0.00 -0.39 0.09 -4.12 0.00 

paginc 0.07 0.07 0.98 0.33 0.03 0.07 0.41 0.69 

idiv_1 -0.04 0.04 -1.19 0.24 -0.03 0.04 -0.75 0.45 

idiv_2 0.15 0.03 4.84 0.00 0.15 0.03 4.24 0.00 

idiv_4 -0.17 0.03 -5.77 0.00 -0.16 0.03 -4.86 0.00 

idiv_5 -0.17 0.03 -6.01 0.00 -0.14 0.03 -4.65 0.00 

female*rural -0.19 0.03 -6.49 0.00 -0.19 0.03 -6.49 0.00 

ibuild_3*rural 0.15 0.03 5.11 0.00 0.15 0.03 5.02 0.00 

owner*ibuild_4 0.10 0.03 2.99 0.00 0.10 0.03 3.17 0.00 

rural*workst3p 0.19 0.02 8.25 0.00 0.20 0.02 8.43 0.00 

rural*num_hh 0.01 0.00 1.97 0.05 0.01 0.00 1.92 0.06 

rural*num_hh2 0.00 0.00 -2.67 0.01 0.00 0.00 -2.65 0.01 

rural*hhhprmed 0.06 0.02 2.97 0.00 0.06 0.02 2.95 0.00 
2R   M: 0.5941; C: 0.6733 M: 0.5962; C: 0.6744 

* M: Marginal 2R  , C: Conditional 
2R   
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Table A3.5: Upper (UPOVLN) and lower (LPOVLN) poverty lines in 2000 HIES by 

strata and districts  

Stratum 
Poverty Line 

District by RMO (type of residence) ID 
LPOVLN UPOVLN 

1 545.58 615.74 Rural Area of all districts in Barisal division 

2 608.82 802.92 Urban Area of all districts in Barisal division 

3 572.40 738.42  1201,1301,1901,3601,5801,9001,9101 

3 582.43 718.94 301,1501,2201,3001,4601,5101,7501,8401 

4 
693.5 818.11 302,1202,1302,1902,2202,3002,3602,4602,5102, 

5802,7502,8402,9002,9102 

4 702.46 971.08 1502 

5 702.46 971.08 SMA of all districts in Chittagong & Sylhet Divisions 

6 540.24 590.63 2901,3501,3901,4801,5401,7201,8201,8601,8901,9301 

6 547.63 659.44 2601,3301,5601,5901,6101,6701,6801 

7 
521.06 629.01 2902,3502,3902,4802,5402,5602,5902,6102,6802,7202,8202, 

8602,8902,9302 

7 648.65 893.14 2602,3302,6702 

8 648.65 893.14 SMA of all districts in Dhaka Division 

9 526.51 623.81 Rural Area of all districts in Khulna division 

10 608.82 802.92 Urban Area of all districts in Khulna division 

11 608.82 802.92 SMA of all districts in Khulna Division 

12 509.56 581.99 1001,2701,3201,3801,4901,5201,7301,7701,8501,9401 

12 585.58 689.59 6401,6901,7001,7601,8101,8801 

13 557.05 725.74 Urban Area of all districts in Rajshahi division 

14 557.05 725.74 SMA of all districts in Rajshahi Division 

Source: BBS and UNWFP (2004) 

Table A3.6: Computation time of ELL, EBP and MQ mean squared error (MSE) 

estimators via parallel computation using 50 cores 

Estimator Bootstrap, B Resample, R Out-of-sample Generation, L Minutes 

ELL 100 - 100 1.00 

EBP 100 1 100 62.50 

MQ 100 5 100 1500.00 
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CHAPTER FOUR 

4. Robust Mean Squared Error Estimation of ELL Poverty Estimates 

 

 

 

The ELL methodology is the small area estimation method developed by the World Bank 

for poverty mapping, and is widely used in developing countries. However, it has been 

criticized because of its assumption of negligible between-area variability when used to 

calculate small area poverty estimates. In particular, the mean squared errors of these 

estimates are significantly underestimated when this between-area variability cannot be 

adequately explained by the explanatory and contextual variables specified in the model. 

In this chapter a method of mean squared error (MSE) estimation for ELL-type estimates 

is proposed which is robust to the presence of significant unexplained between-area 

variability. Simulation studies have been carried out to assess the performance of the 

proposed method in comparison to standard ELL methodology when the area 

homogeneity assumption is violated. 
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This chapter is organized as follows: Section 4.1 briefly demonstrates the ELL 

methodology with the underlying assumptions and their criticisms; Section 4.2 describes 

the moment-based variance component estimation method when a 3-level model is 

perfectly specified and also when it is misspecified by ignoring a level; Section 4.3 

defines a robust variance estimator of area mean under this type of model 

misspecification; Section 4.4 describes the steps of the standard ELL methodology and 

the robustified or modified ELL methodology;  Section 4.5 explains how the proposed 

modified ELL methodology performs via a simulation experiment; and at last some 

tentative conclusions are set up in Section 4.6. 

 

4.1 Background 

Over the last two decades, the poverty mapping small area estimation methodology 

developed by the World Bank (Elbers, Lanjouw and Lanjouw; 2002, 2003; henceforth 

ELL) has been applied in many developing countries. The basic idea underpinning ELL 

methodology is to combine data from a household (HH) survey with the HH records of a 

recent census or of an administrative registrar, though any HH-level linkage of these 

datasets is not required. The ELL method provides poverty estimates, with their 

estimated precision, at a specified local area level. Since the ELL method is based on an 

area homogeneity assumption - the probability of being poor given the explanatory 

variables in a small area is the same as in the larger region (Tarozzi and Deaton, 2009); 

the main criticism leveled against it is its assumption of random effects at the survey 

cluster level rather than at the local area level. To reduce the impact of possible 

between-area heterogeneity, a large number of explanatory and contextual variables are 

typically included in the regression model.  
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Tarozzi and Deaton (2009) claim that the underlying area homogeneity assumption of 

the ELL method may not be always true and hence may lead to misleading inference 

when this assumption is violated. They also question the assumption of homoscedastic, 

independent and identically distributed cluster random effects since small areas within a 

large area are likely to be interrelated. In such cases random cluster effects may be 

correlated if model regressors fail to adequately capture this between-cluster correlation. 

In response to these criticisms, Demombynes et al. (2007) show that the issues raised by 

Tarozzi and Deaton (2009) may be addressed partially if the area-level contextual 

variables are included in the model.  

As far as criticism of the area-homogeneity assumption is concerned, Elbers et al. (2008) 

report results from a validation study based on the Census 2000 dataset of Minas Gerais 

state in Brazil, which is large enough to have heterogeneous local areas where the 

homogeneity assumptions must fail. They check the conditional independence 

assumption by developing a state-level model with municipality-level regressors and 853 

municipality-level models with HH-level and enumeration-level regressors, and conclude 

that the state-level model is adequate for estimating welfare at area level as long as it 

captures local heterogeneity by including appropriate area-level regressors. 

Inter-cluster and intra-cluster correlation coefficients are important components of the 

simulation phase of the ELL method. In particular, the variance of the welfare 

predictions obtained following this simulation may be understated when these 

correlations are large and are not explicitly accounted for in the regression model 

(Tarozzi and Deaton, 2009). Since the estimated location effect (variation due to higher 

levels of a population model) cannot be separated into area-level and cluster-level effects 

in the ELL method, one has to assume that this effect is either entirely a cluster-level 

effect - an optimistic assumption that rules out any correlation at higher level or is 
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entirely an area-level effect - a conservative assumption that can lead to an upwardly 

biased mean squared error (MSE) estimates (Elbers et al., 2002; Demombynes et al., 

2007). As Tarozzi and Deaton (2009) note, the conservative assumption could lead to 

imprecise (and hence unusable) estimates, while the optimistic assumption is obviously 

necessary for the ELL methodology to be valid, but could lead to downwardly biased 

MSEs if incorrect.  

Elbers et al. (2008) applied both optimistic (i.e. the standard) and the conservative 

methods in the Minas Gerais study. Confidence interval generated under the optimistic 

method were mostly found to be narrower those generated by the conservative method. 

In particular, the authors found that 42% municipalities could be statistically 

distinguished from one another at a 95% level of confidence using the optimistic method 

with 35% using the conservative method. The authors conclude that the ELL method 

performs well even under some violation of its assumptions. However, neither method 

provides a good solution for the problem of between-area heterogeneity. Elbers et al. 

(2008) mention that the conservative method can be applied in the situation where some 

spatial correlation of errors remains after controlling for between-cluster heterogeneity. 

However, as noted earlier, Tarozzi and Deaton (2009) argue that this conservative 

method may then produce unstable estimates. Consequently, the question of which 

approach a researcher should adopt under different circumstances remains unanswered. 

Molina and Rao (2010) also criticise the between-area homogeneity assumption and 

argue that a better random-effects specification for poverty estimation should have 

area-specific random effects than cluster-specific random effects. That is, these authors 

prefer the assumption of cluster-homogeneity to one of area-homogeneity. However, 

ignoring significant cluster-heterogeneity then raises the question of valid MSE 

estimates. 
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In this chapter a different approach to MSE estimation has been proposed when there is 

possible between-area heterogeneity associated with an ELL-based poverty estimation 

exercise. The basis of this approach is the analytical relationship between moment-based 

estimators of variance components under a 3-level hierarchical model and those obtained 

when fitting a 2-level model to the same data (i.e., when either level-two or level-three is 

ignored). This relationship allows us to identify a robust variance estimator of the area 

mean that is unbiased under the 3-level model and is also approximately unbiased under 

the 2-level model. This robust variance estimator is then to adjust the estimate of the 

level-two variance component used in the ELL simulation procedure. It should be noted 

that this adjustment is aimed purely at improving the estimated MSEs of the poverty 

estimates produced by the ELL method. Standard ELL methods are still used to calculate 

confidence intervals for poverty measures, since under our approach only the 

cluster-level variance component is modified in the ELL bootstrap procedure. 

 

4.2 Estimation of Variance Components  

Variance components of a multilevel model are usually estimated using maximum 

likelihood (ML), restricted ML (REML), Henderson method III, and moment-based least 

square (Searle et al., 1992). Moment-based variance component estimators (MOM) are 

usually unbiased if there is an adequate sample size at each level of the multilevel model; 

otherwise estimators of higher level variance components may be biased and can be even 

negative. However, MOM estimators of variance components can also be analytically 

specified and are hence suited to an investigation of the relationship between the 

variance component estimates derived under a correctly specified multilevel model and 

those calculated under an incorrectly specified multilevel model corresponding to where 

a level of the true model is either ignored or is not available in the survey data (Tranmer 

and Steel, 2001a). Here the MOM variance component estimation method is focused. 
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4.2.1 Estimation of Variance Components under Perfectly Specified Model 

Let 
ijky  indicates the value of a target variable Y  for 

thk  HH (level-one) belonging to 

thj  cluster (level-two) in 
thi  area (level-three). A 3-level linear model for Y  then can be 

written as 

 
 3

;  1,2,..., ;  1,2,..., ;  1,2,....,T

ijk ijk i ij ijk i ijy u i D j C k N       x β   (4.1) 

where   2

3
0,i N


  ,   2

3
0,ij u

u N   and   2

3
0,ijk N


   are level-specific 

zero-mean homoskedastic random errors respectively. In what follows, the sub-script  l  

is used to indicate any parameter under a correctly specified l -level model. The 

covariance between values of Y  for two distinct HHs is    
2 2

3 3u
   if the HHs are from 

same cluster,  
2

3
  if the HHs are from different clusters but from the same area, and 

zero otherwise. Suppose that a sample of n  HHs is randomly drawn from this population 

using a two-stage cluster sampling technique, with clusters randomly sampled at the first 

stage and HHs within clusters randomly sampled at the second stage. Let 
isC  denote the 

number of clusters sampled in area i , with 
is s

i s

C C


 denoting the total number of 

sampled clusters, and 
ijn   1,.., ;  1,..,

is
i D j C   is the number of HHs selected 

randomly from each selected clusters. The linear regression model implied by (4.1) can 

be fitted to the sample data using least squares method, in which case the moment-based 

estimates of the area-, cluster- and HH-specific random effects can be calculated as  

1 1

1 1 1

ˆ ˆ ˆ
s siji i

C Cn

i i ijk i ij ij

j k j

n e n n u  

  

   , 
1

1

ˆ ˆ
ijn

ij ij ijk

k

u n e



   and  ˆ ˆˆ ˆ
ijk ijk i ije u      

respectively where ˆ ˆ
ijk ijk ijke y y   and ˆ

ijky  denotes the least squares fitted value.  
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Under the model (4.1), expectations of the sample residual variances 
      1 2 3

, ,s s s  

calculated at each level of the population can be expressed in terms of population 

variance components       2 2 2

3 3 3
, ,

u 
    as 
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where 
 2 1 2

0
1

si
C

i i ij
j

n n n



  , 
 2 1 2

0 ij
ij s

n n n



  , 
 3 1 2

0 i
i s

n n n



  , and 
3E  indicates expectation 

under the true 3-level model. The right hand side of the expectation above can be written 

as 
   3 3

A Λ , where 
 3

A is the coefficient matrix and 
 3

Λ  is the vector of true variance 

components. If 
 3

A  is non-singular, unbiased estimators of the variance components are 

given by the following expression, see also Tranmer and Steel (2001a, 2001b). 

          
     1 2 32 2 2 1

3 3 3 3 3
ˆ ˆ ˆ ˆ

T T

u
s s s

 
       

  
Λ A .  (4.2) 

Unbiased estimators of the variance components of a perfectly specified 2-level model 

can be defined similarly. Detail estimation methods under correctly specified 2-level and 

3-level models are given in Appendix A.1 and Appendix A.2 respectively. Under a 

perfectly specified 2-level, the estimators of corresponding variance components are 

expressed as below.  
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Expectations of these estimators under the 3-level model become   2

3 2
ˆE



 

2

3
  and 

  2

3 2
ˆ

u
E  

   
2 2

3 3u
R


  
 

 where      
1

2 3

0 0 1R n n n n


    . Thus the estimator  
2

2
ˆ


  

is still unbiased under the 3-level model.  

 

4.2.2 Estimation of Variance Components under Misspecified Model 

In many practical applications of the ELL methodology, a 2-level model is fitted instead 

of a 3-level model because most of the small areas of interest have just one sampled 

cluster. In such situation, a fitted 3-level can be numerically unstable. However, it is 

clear from the development above that ignoring a level in a hierarchy may significantly 

influence estimates of poverty measures due to the use of biased estimators of variance 

components. The influence of an ignored level in the model hierarchy may be lessened 

by including corresponding contextual variables at the regression model specification. 

However, the influence of the ignored level will still remain in the fitted parameters of 

the model particularly in the estimated variance components (Tranmer and Steel, 2001a). 

In this section an attempt has been made to show how the variance component of an 

ignored hierarchy is involved in the estimation of other variance components. 

Suppose level-three of the 3-level population model (4.1) is ignored and a 2-level model 

is fitted to the survey data. Unbiased estimators of HH- and cluster-specific variance 

components under this 2-level model are expressed as 

 
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 
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A  

where 1A  is a sub-set of  3
A  and the sub-script (3/3) is used to denote an estimator 

under a 3-level model where level-three is ignored. Expectations of these variance 

component estimators under the (correct) 3-level model (4.1) are 
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A A A A Λ  

where 
1,2A  consists of first and second rows of  3

A . After simplification, these 

expectations become  
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  (4.3) 

where 1R  . Thus when level-three of a 3-level model is ignored,  
2

3/3
ˆ


  is still an 

unbiased estimator of  
2

3u
 . However, the expectation of  

2

3/3
ˆ

u
  always less than the sum 

of  
2

3u
  and  

2

3
 . These expectations are exactly same as   2

3 2
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

  and   2

3 2
ˆ

u
E   

respectively shown in sub-section 4.2.1. In particular, we note that equality holds only if 

survey data are such that every level-three unit contains a single level-two unit since in 

that case 
   2 3

0 0n n . 

Now if level-two of the 3-level model is ignored, unbiased estimators of the remaining 

variance components are given by   
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Expectations of these estimators under the correct 3-level model can be approximated as   
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since  

         
  

    

 

 

2 2 22

0 0 0 20

0

33
00

1 1

1 1

ii
i si s

n n n D n nn n
n

n D nn D n n



 
      

    
  


. 

Similarly, if level-one of the 3-level model is ignored, unbiased estimators of the 

remaining two variance components are   
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and their expectations under the true 3-level model are approximated as 
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Please see Appendix A.3 for details concerning the derivation of these approximations. 

When level-two of the 3-level model is ignored, expectations of the remaining variance 

component estimators (  
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 will have significant 

impact. Similarly when level-one of the 3-level model is ignored, the expected values of 

 
2

3/1
ˆ

u
  and  
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  contain terms depending on  
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 . Since  

2

3
  is typically much larger 

than the other two variance components, the terms can have a significant impact, leading 

to biased estimators of the second and third variance components. 



78 
 

In the following section, we show how these analytic relationships help us to define 

robust estimators of the variance components when a multilevel model is misspecified 

because an important level in the model is ignored. Recollect that level-three (the area of 

interest) is always ignored when implementing the ELL methodology (Elbers et al., 

2003), while level-two (cluster) is ignored when implementing the Empirical Best 

method of Molina and Rao (2010) as well as the M-quantile method of Chambers and 

Tzavidis (2006). Consequently, we expect these methods may lead to biased variance 

components estimation (and so biased MSE estimation) when used for poverty mapping. 

 

4.3 Variance Estimator of Area Mean under Misspecified Model 

The design of a household survey is usually based on a suitable hierarchical geography 

for a target population (e.g. a large region or a country). Consequently, it is inevitable 

that this hierarchy will be reflected in the distribution of a response variable measured in 

the survey. In the construction of working model for this variable, one needs to account 

for those levels in this hierarchy that correspond to significant components of the total 

variation of this variable across the target population. If a significant level (i.e., one that 

contributes significantly to total variation) is ignored in the working model, then this 

misspecification can lead to biased inference. In this section we show how the estimated 

variance of an unweighted area mean 
iY  under a working 2-level model can be corrected 

for its bias when in fact the actual population model is 3-level. 

To start, suppose that the 3-level model (4.1) holds, then the variance of an area-specific 

unweighted mean of the response variable 
iY  and its plug-in estimator can be written as 

     
 

   
22 2 1 2

3 3 3 3
Var +Ui iui

n NY  
     and      

 
   

22 2 1 2

3 3 3 3
ˆ ˆ ˆ ˆV Ui iui

n NY  
      

where 
 2 2 2

1

1
iC

Ui i ij

j

n N N



  .  
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Now suppose that an incorrect 2-level working model is assumed. Under this incorrect 

2-level model, the variance of 
iY  and its plug-in estimator are defined as  

     
 

 
22 1 2

2 2 2
Var i Ui iu

Y n N


    and      
 

 
22 1 2

2 2 2
ˆ ˆ ˆV i Ui iu

Y n N


   . 

The expected value of these variance estimators under the correct 3-level model become 

     
 

   
22 2 1 2

3 3 3 3 3
ˆE i Ui iu

V Y n N
 

      
 

 and           
 

22 2 1 2

3 2 3 3 3
ˆE i Ui iu

V Y R n N
 

      
 

 

which indicates that the expected value    3 2
ˆE iV Y 

 
  always underestimates the true 

variance    3
Var

iY  since 
 2

1Uin   and 1R  . An area-specific adjustment to    2
V̂ iY  that 

generally ensures an unbiased or approximately unbiased estimator of    3
Var

iY  is then  

 
             

 
2 22 2 1 2

2 3 3 2
ˆ ˆ ˆ ˆV 1M

i Ui Ui iu
Y n n N

 
       (4.4) 

which is unbiased under the true 3-level model. Note that the modified variance 

estimator (4.4) is also robust to model over-specification, where a 3-level model is taken 

as the working model, but in fact there is no level-three effect. In this case, we expect 

 
ŝ

h 3( )
2  to be very small (and close to zero) if in fact a 2-level model actually holds, and so 

the first term of (4.4) will be negligible. A robust variance estimator for a weighted area 

mean can be easily obtained similarly which is illustrated in Appendix A.5.  

 

4.4 Standard and Robustified ELL Methodology 

The basic idea underpinning standard application of the ELL methodology for poverty 

mapping is Monte Carlo simulation of the population values of the HH 

income/expenditure. This simulation is based on a 2-level nested-error regression model 

linking logarithm of HH income to HH and cluster characteristics in the survey data. 

Two key assumptions are non-informative sampling given these characteristics and 



80 
 

similar definitions for them in the survey and in the census. Model parameters are first 

estimated from income data collected in a household income and expenditure survey, and 

fitted income values are generated for the entire target population from this fitted model 

using the census values of these characteristics. It is standard to assume that the domains 

of interest (the small areas) are homogeneous and that between-area variation is due to 

between-cluster variation. Consequently, a 2-level regression model (HH as level-one, 

cluster as level-two) is used, ignoring the domains. If there is a negligible but significant 

domain effect, the ELL method can lead to unbiased estimates of poverty indicators, but 

with underestimated MSEs (Tarozzi and Deaton, 2009).  

In what follows, it is useful to set out the basic steps of the standard ELL method. Let 

ijky  denote the logarithm of HH oncome and let ijkx  denote the vector of HH and cluster 

characteristics that “explain” ijky . The parametric bootstrap version of this approach is as 

follows: Step 1: Fit a 2-level model to the survey values of ijky  and ijkx  and hence 

calculate estimates of regression coefficients and variance components using a suitable 

estimation method (e.g. ML, REML, MOM, etc.). Step 2: Assign a cluster-specific error 

*

iju  to each census cluster by making a random draw from a suitable parametric 

distribution, say  2

(2)
ˆ0, uN  . Step 3: Assign a HH-specific error *

ijk  to each census HH 

by making independent random draw from a suitable parametric distribution, say 

 2

(2)
ˆ0,N  . Step 4: Simulate the vector of regression parameters  

*

2
β  by making a 

random draw from the sampling distribution of its estimator, i.e. the multivariate normal 

distribution with mean vector 
 2
β̂  and covariance matrix   2

ˆv̂ β . Step 5: Simulated 

population values for 
ijky  via 

  
* * * *

22
ˆ ˆT

ijk ijk ij ijky u   x β  and do exponentiation to recover 

simulated population values of HH income. The values of area specific parameters such 
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as mean, quantiles, poverty indicators defined by this simulated population are recorded. 

Step 6: Repeat steps (2)-(5) a large number of times (say, B=1000). The mean and 

variance of the simulated area-specific parameters of interest are then used as their 

estimates and estimated MSEs respectively. 

Now suppose after a proper statistical scrutiny, it is observed that the domains have a 

small but significant effect which has been ignored in the modeling. In consequence, 

implementation of the ELL procedure is likely to lead underestimated MSE. We focus on 

correcting this underestimation by repeating the ELL simulations, but with adjusted 

variance components that should lead to better MSE estimates. Since moment estimator 

of the level-one variance component  
2

2
ˆ


  is unbiased even when level-three  variance 

component is ignored in the fitted model, an appropriate adjustment to the level-two 

variance component  
2

2
ˆ

u
  is required. Three such adjustments are proposed below. 

Adjustment 1: This adjustment assumes that we do not know the exact area-level 

population sizes (here number of HHs) 
iN  and cluster-level population sizes ijN , and so 

we use the corresponding sample values as 
in  and ijn  respectively. In this adjustment, 

the area-specific term 
 2

Uin  of     2
V̂M

iY  in (4.4) is replaced by its sample version 

 2 2 2

si i ij

j s

n n n



  . Based on this adjustment, the estimated level-two level variance 

component 
 

2

2
ˆ

u
  is replaced by  

2 2

1 2
ˆ̂ ˆ

u u
k   in the ELL procedure where 

     
  22 2 2 1

1 2 3 3
1

ˆ ˆ ˆ 1
D

siu u
i

k D n


   



 
  

 
 . Note that the adjustment works better if the 

area-specific sample ratio is very close to the corresponding population ratio i.e. 

   2 2

si Uin n  for 1,2,...,i D ; otherwise the correction will still underestimate the true 
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variance. Also the population sizes for all small areas may not be available in the survey 

data set. 

Adjustment 2: If the area- and cluster-specific population sizes 
iN  and ijN  are known, 

we can substitute these in the first adjustment. That is, we replace  
2

2
ˆ

u
  by  

2 2

2 2
ˆ̂ ˆ

u u
k   

in the ELL procedure where      
  2

22 2 2 1

2 3 3
1

ˆ ˆ ˆ 1
D

Uiu u
i

k D n


   




 

 
 

 . Theoretically 

Aadjustment 2 will work better than Adjustment 1 provided area-specific population 

sizes  iN  are known. 

Adjustment 3: The procedure used for Adjustment 2 will give higher weight  2
k to 

smaller areas and comparatively lower weight to larger areas. To reduce this variation, 

areas can be assigned to H strata according to their population size and then Adjustment 

can be carried out separately in each stratum. That is, the single level-two variance 

component used in simulation Step 2 of the standard ELL method is replaced by 

stratum-specific adjusted level-two variance components of the form    
 

2 2

3 2
ˆ̂ ˆh h

u u
k    

where  
     

  
 

 
22 2 1 2

3 2 3 3
1

ˆ ˆ ˆ1
hD

h

Uiu h u
i

k D n


   




 

 
  

  and 1,..,h H . This method will work 

better if the population can be split into several large sub-populations on the basis of 

their population size. 

Adjustment 4: This is the “Optimistic” method of Elbers et al. (2008, page 29). In this 

adjustment, a 3-level model is fitted with areas considering to level-three to obtaining the 

level-two and level-three variance components.  Their sum       2 3 3

2 2 2ˆ ˆu u     is then 

used as new level-two variance component in the ELL simulation procedure. This 

adjustment is equivalent to the adjustment  

2 2

0 2
ˆ̂ ˆ

u u
k   with       0 2 3 3

2 2 2ˆ ˆ ˆu uk     . 
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Note that in this case, the expectation of the variance estimator of area mean    2
ˆ

iV Y  

under the 3-level model becomes           
 

22 2 1 2

3 2 3 3 3
ˆE i Ui iu

V Y n N
 

      
 

 where

 2
 1Uin   implying that        3 32 3

ˆ ˆE V E Vi iY Y   
   

. That is, underestimation of the 

MSEs of the poverty estimates is still likely.  

Adjustment 5: This is the “Conservative” method proposed by Elbers et al. (2008, page 

29). In this adjustment, instead of bootstrapping a cluster-specific 2-level model (HH & 

cluster), an area-specific 2-level model (HH & area) is bootstrapped with area-level 

variance component 
      2 3 3

2 2 2ˆ ˆu    . In other words, the simulated location effect 

is at the area-level instead of at the cluster-level as in the standard ELL method. In this 

case the expectation of the variance estimator of the area mean    2
V̂ iY  under the 3-level 

model becomes          
2 2 2 -1

3 2 3 3 3
V̂ iui

E NY  
      

 
, which is greater than 

       
 

 
22 2 2 -1

3 3 3 3 3
V̂ Ui iui

E m NY  
      

 
 since 

 2
 1Uin  . That is, we expect this 

adjustment may lead to overstated MSEs when there is between-area variability in the 

data. 

It is important to note that the modified approach to MSE estimation for the ELL-based 

poverty mapping defined by the adjustments above follows the same steps as the 

standard ELL method. The only difference is the use of an adjusted level-two variance 

component when simulating the location effect at Step 2. It is also noted that the purpose 

of the adjustment is solely to produce better MSE estimates. All other outputs including 

poverty estimates generated by the standard ELL simulation process remained 

unchanged. If the household-specific weights (say, HH size) are considered to calculate a 



84 
 

weighted area mean, the correction will be similar by considering the number of 

population per area instead of number of HHs. The details are shown in Appendix A.5. 

 

4.5 Numerical Evaluations 

Two simulation studies have been conducted to explore the MSE estimation performance 

of the adjusted ELL-type MSE estimation methods described in the previous section. 

These are referred to as modified ELL (MELL) methods below. We focus on most 

commonly used FGT poverty indicators (Foster et al., 1984) discussed in Chapter 

Three, i.e. head count rate (HCR), poverty gap (PG) and poverty severity (PS). The 

area-specific FGT poverty indicator is defined as    1

1 1

1
iji

NC

i i ijk ijk

j k

F N E t I E t






 

    

where ijkE  and t  are per capita HH income and poverty line respectively. Area-specific 

values of HCR, PG, and PS are obtained by putting 0,1,2   in 
iF  respectively. Note 

that 
0iF  is the value of the area-specific income distribution at t .  

The motivation of the modified ELL procedure is the analytic form of variance estimator 

of area-specific mean when the response variable is assumed to follow a normal 

distribution. In ELL procedure the log-transformed income/expenditure variable is also 

assumed to follow a normal distribution. Consequently the first simulation study 

explores the performances of these adjustments when the response variable Y  is 

normally distributes and the interest is in estimation of the area-specific mean and the 

area-specific distribution (DF) of Y . The second simulation study is more realistic in that 

it considers MSE estimation when the logarithm Y  of the response variable E  (i.e. HH 

income) follows a normal distribution, and where the interest is in estimation of the 

area-specific values of the poverty indices HCR, PG, and PS defined by E.  
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4.5.1 Simulation Process 

A 3-level hierarchical population consisting of D =75 small areas, C =1650 clusters, and 

H =180,450 HHs is used in the simulations. The number of clusters per area is allowed 

to vary between 15-29 clusters with corresponding cluster sizes varying between 96-120 

HHs. The small areas are defined so that they can be partitioned into 5 strata according to 

their size (here the number of HHs per area). A two-stage random sampling procedure is 

used to first select 2-4 clusters randomly from each area and then randomly select 10 

HHs from each of the selected clusters. Using the sampling procedure, a random sample 

of size n =2250 HHs is drawn in each simulation (see appendix Table A4.1 for detailed 

regarding the simulated population and sample structure). The following three models 

are then used to generate the population values of the response variable: 

     ;  20 ~ 0,0.80 ;  ~ 0,0.15 ;  ~ 0,0.05ijk i ij ijk ijk ij iy u N u N N         (4.5) 

    ;  20 ~ 0,0.80 ;  ~ 0,0.20ijk ij ijk ijk ijy u N u N      (4.6) 

 
   

     

3
;log

               ~ 0,0.20 ;  ~ 0,0.035 ;  ~ 0,0.015

T

ijk ijk i ij ijk

ijk ij i

uy

N u N N

 

 

   x β
  (4.7) 

where the values of the explanatory variables are drawn from a multivariate normal 

distribution as 

   
1.5 0.10

 ;    ;  , ;  6 0.5 0.55
0.10 0.95

0.50

0.75
N

T
MVN   

     
     

    

1

0 1 2 0

2

X
X X X X X 1 β

X
. 

In the first simulation study, MSEs of the estimated area-specific means and DFs at the 

10
th

, 25
th

, 50
th

, 75
th

, and 90
th

 percentiles of the population distribution of the response 

variable are estimated for the first two populations (4.5) & (4.6). The second simulation 

study then considers estimation of the FGT poverty indicators with their estimated MSEs 

for each area based on the population model (4.7) and using the 10
th

 and 25
th

 percentiles 
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of the overall income distribution as to define poverty lines. The standard MSE estimator 

generated under the 2-level model assumed by ELL (denoted ELL.2L with 1K   in 

what follows) together with its optimistic (Opt.ELL, 0K k ) and conservative 

(Cons.ELL / CON2L) versions, and the three modified 2-level model-based ELL 

estimators (MELL1: 1K k , MELL2: 2K k , & MELL3: 3K k ) are used to calculate 

estimated MSEs for the estimates of the area-specific parameters of interest. All 

HH-specific weights are set to unity, so all adjustment factors are calculated based on 

unweighted area means. A standard ELL estimator based on a 3-level working model 

(denoted as ELL.3L) is also used to estimate MSEs for comparison purposes.  

The Monte Carlo simulations were repeated 1000 times with 1000 ELL simulations for 

each simulated population. In each simulation a sample is drawn from the simulated 

population and estimates of the area-specific parameters (Mean, DFs, FGT indicators) 

with their estimated MSEs are calculated. The differences between these estimated MSEs 

and the corresponding simulation-based actual MSEs are summarized using relative bias 

(RB) and relative root MSE (RRMSE), with both performance measures averaged over 

the simulations as well as over the areas of interest. Corresponding actual coverage rates 

(CR) of nominal 95% Gaussian-type confidence intervals are also shown. Note that the 

2-level model based ELL estimates of target parameters are used for calculating the 

coverage rates for all MSE estimators based on a 2-level model. 

An investigation was also carried out to see how MSE estimation performance is affected 

by whether or not the sample estimate of the level-three variance component is 

significantly different from zero. For this purpose, the 1000 simulated populations were 

divided into two groups based on the significance of the estimate of 
 

2

3
  obtained by 

fitting a 3-level model to the sample data. This was done by carrying out a likelihood 
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ratio test (LRT) of the hypothesis  
2

0 3
: 0H


  . Note that the LRT is conservative in this 

case since the hypothesized value of  
2

3
  is on the boundary of the feasible parameter 

space (Pinheiro and Bates, 2006). The nested 2-level and 3-level models are fitted using 

REML to valid the LRT (Snijders and Bosker, 2012). The reported p-value of LRT was 

then halved to minimize the boundary problem according to Pinheiro and Bates (2006). 

 

4.5.2 Simulation Results 

The values of RB shown in Table 4.1 clearly show that the MSE estimator ELL.2L 

under standard 2-level ELL severely underestimates the actual simulated MSEs for 

ELL-based estimates of area means generated under the 3-level model (4.5). 

Furthermore, the optimistic and the sample-based adjusted MSE estimators 

corresponding to Adjustment 4 (Opt.ELL) and Adjustment 1 (MELL1) respectively, i.e. 

2L(K=k0) and 2L(K=k1) in Table 4.1, similarly underestimates these MSEs. However, 

this underestimation is corrected by the population-based adjustment (MELL2: 

Adjustment 2 with K=k2) and the stratification-based adjustment (MELL3: Adjustment 3 

with K=k3). Furthermore, the superior performance of these alternative MSE estimators 

extends to RRMSE and CR. In particular, we note that MELL2 and MELL3 perform 

very similar to the “true” MSE estimator, ELL.3L, which is calculated using the actual 

3-level model (4.5) used to generate the population data. Finally, we see that the 

conservative version of the 2-level model-based MSE estimator (CON2L in Table 4.1) 

severely overestimates as expected. 

In contrast, the standard ELL MSE estimator ELL.2L outperforms the other MSE 

estimators when the 2-level model (4.6) underpins the population data. All the other 

MSE estimators in this case tend to overestimate the MSE of the estimated area mean, 

with the optimistic (Opt.ELL) and sample-based adjusted (MELL1) estimators 
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performing very similar to ELL.2L estimator. The more conservative adjustments 

associated with MELL2 and MELL3 estimators again perform similarly to the 3-level 

model-based MSE estimator ELL.3L, while the conservative 2-level model based 

estimator Cons.ELL is clearly of no practical use. Furthermore, when we restrict our 

assessment to simulated 3-level populations where  
2

0 3
: 0H


   fails to be rejected, we 

see no significant change in these results. See appendix Table A4.2. 

Table 4.1: Area averaged values of relative bias (RB, %), relative root mean squared 

error (RRMSE, %), and actual coverage rate (CR, %) of nominal 95% confidence 

intervals generated by MSE estimates for estimated area-specific means under the 

3-level (3L) and 2-level (2L) linear models 

Model 
Performance 

Measure 

Standard and Modified ELL 

3L CON2L 2L(K=1) 2L(K=k0) 2L(K=k1) 2L(K=k2) 2L(K=k3) 

3-Level 

Linear 

RB 2.31 252.7 -80.77 -80.74 -72.62 4.56 1.60 

RRMSE 9.59 61.63 19.35 19.34 17.43 10.73 9.54 

CR 93.17 99.97 60.30 60.35 68.49 93.02 93.08 

2-Level 

Linear 

ARB 82.54 2033.87 12.83 12.82 19.41 81.81 81.86 

RRMSE 13.56 198.20 1.97 1.97 2.67 13.71 13.45 

CR 96.81 100.00 94.86 94.87 95.46 96.85 96.80 

 

Turning on to Table 4.2, we see that the performances of the adjusted ELL-type MSE 

estimators for estimates of area-specific DFs under the 3-level population model (4.5) 

vary significantly according to the percentile at which the DF is calculated. The MELL2 

and MELL3 MSE estimators show similar amounts of overestimation at extreme 

percentiles and similar amounts of underestimation in the middle of the distribution. In 

contrast, the RB values for ELL.2L, Opt.ELL and MELL1 show significant 

underestimation at all percentiles. Not surprisingly, ELL.3L records the best RB 

performance overall, while Cons.ELL is again the worst performer. RRMSE and CR 

performances are in line with these observations. Overall, MELL2 and MELL3 are 

clearly the best performers of all the 2-level model-based ELL type MSE estimators 

considered here, with RRMSE values that are comparable with those recorded by 
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ELL.3L. We also note that in this case the performance of MELL3 improves when the 

estimated value of  
2

3
  is significant. See appendix Table A4.2. 

Table 4.2: Area averaged values of relative bias (RB, %), relative root mean squared 

error (RRMSE, %), and actual coverage rate (CR, %) of nominal 95% confidence 

intervals generated by MSE estimates for estimated area-specific distribution 

functions (DFs) at different percentiles (q) under the 3-level (3L) linear model 

Model q 
Performance 

Measure 

Standard and Modified ELL 

3L CON2L 2L(K=1) 2L(K=k0) 2L(K=k1) 2L(K=k2) 2L(K=k3) 

3-Level 

Linear 

 RB 6.02 296.20 -77.58 -77.52 -65.74 41.00 36.98 

0.10 RRMSE 1.90 13.16 3.35 3.35 2.86 2.82 2.60 

 CR 93.93 99.75 64.63 64.61 75.12 96.09 96.03 

 RB 3.74 266.92 -79.53 -79.49 -72.32 -29.95 -31.45 

0.25 RRMSE 3.07 20.73 6.08 6.08 5.48 2.71 2.73 

 CR 93.51 99.93 60.92 60.92 68.26 88.58 88.63 

 RB 2.71 255.55 -80.22 -80.19 -74.48 -46.30 -47.27 

0.50 RRMSE 3.69 24.64 7.64 7.64 7.10 4.53 4.61 

 CR 93.2 100.0 59.8 59.8 66.4 84.5 84.4 

 RB 3.06 264.27 -79.68 -79.64 -72.50 -30.31 -31.82 

0.75 RRMSE 3.06 20.58 6.10 6.10 5.56 2.74 2.76 

 CR 93.57 99.89 60.89 60.84 68.26 88.66 88.60 

 RB 4.61 290.52 -77.90 -77.84 -66.18 39.59 35.52 

0.90 RRMSE 1.88 12.99 3.38 3.38 2.89 2.79 2.56 

 CR 93.87 99.70 64.44 64.51 75.01 96.03 96.03 

 

In Table 4.3 we see that if the population actually follows the working 2-level model 

(4.6), then all the MSE estimators tend to overstate the true MSEs of area-specific DFs at 

all the percentiles considered. This is similar to the behaviour observed for estimates of 

area-specific means in this situation (Table 4.1). The MSE estimators again fall into two 

groups - ELL.2L, Opt.ELL and MELL1 recording smaller upward biases (and RRMSE 

values) than ELL.3L, MELL2 and MELL3. While, the Cons.ELL performs very poor. 

Finally, we see in Table 4.4 that the performances of MELL2 and MELL3 in a realistic 

poverty estimation situation seem acceptable. The biases of these methods (compared 

with that of 3L, the gold standard here) get increasingly more positive as the index   of 

the FGT poverty measure increases. However, this seems preferable to the consistent 

(and large) negative biases and low values of CR associated with ELL.2L, Opt.ELL and 
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MELL1, even though these MSE estimates sometimes record smaller RRMSE values. 

We also see that MSE estimation performances when the poverty line is defined by the 

25
th

 percentile are generally better than those where this line is defined by the 10
th

 

percentile. This is unsurprising since in the former case more sampled HHs contribute to 

estimation of the poverty index as well as its MSE. However, it also clearly indicates that 

MSE estimation for ELL estimates of extreme poverty indices may be problematic 

unless great care is taken to ensure that there is no model misspecification. 

Table 4.3: Area averaged values of relative bias (RB, %), relative root mean squared 

error (RRMSE, %), and actual coverage rate (CR, %) of nominal 95% confidence 

intervals generated by MSE estimates for estimated area-specific distribution 

functions (DFs) at different percentiles (q) under the 2-level (2L) linear model  

Model q 
Performance 

Measure 

Standard and Modified ELL 

3L CON2L 2L(K=10) 2L(K=k0) 2L(K=k1) 2L(K=k2) 2L(K=k3) 

2-Level 

Linear 

0.10 

RB 71.3 1955.8 12.69 12.73 20.66 101.29 101.53 

RRMSE 2.29 37.39 0.45 0.45 0.61 3.37 3.31 

CR 96.34 100.0 94.56 94.55 95.22 96.57 96.55 

0.25 

RB 78.93 1995.1 13.27 13.30 18.96 62.45 62.29 

RRMSE 4.23 63.92 0.65 0.65 0.84 3.15 3.09 

CR 96.68 100.0 94.79 94.80 95.30 96.57 96.58 

0.50 

RB 82.59 2013.8 13.94 13.96 18.80 51.72 51.54 

RRMSE 5.38 78.62 0.75 0.75 0.95 3.02 2.96 

CR 96.89 100.0 94.99 94.94 95.40 96.66 96.62 

0.75 

RB 78.87 1992.29 13.21 13.24 18.95 62.52 62.32 

RRMSE 4.23 63.74 0.64 0.64 0.83 3.15 3.09 

CR 96.75 100.0 94.93 94.91 95.39 96.67 96.68 

0.90 

RB 69.76 1932.03 11.71 11.74 19.70 100.01 99.98 

RRMSE 2.27 36.99 0.43 0.43 0.59 3.36 3.29 

CR 96.35 100.0 94.54 94.59 95.23 96.58 96.57 

 

Interestingly, both MELL2 and MELL3 perform better than ELL.3L in those simulated 

populations where the hypothesis of level-three variance component cannot be rejected 

based on the sample data. See the appendix Table A4.2. This suggests one should take 

extra care in defining the MSE estimator when the area-level variance component is 

insignificant. In such cases the modified estimators MELL2 and MELL3 are likely to be 

a better choice even though they are based on an incorrect model. Note that if a 2-level 

log-normal model is true instead a 3-level log-normal model, the modified MSE 
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estimators for poverty indicators will perform similar to the MELL estimators for DFs 

that are observed in Table 4.3. 

Table 4.4: Area averaged values of relative bias (RB, %), relative root mean squared 

error (RRMSE, %), and actual coverage rate (CR, %) of nominal 95% confidence 

intervals generated by MSE estimates for area-specific HCR, PG, and PS at 

poverty lines (t) corresponding to the 10
th

 and 25
th

 percentiles under the 3-level 

(3L) log-normal model 

Indicator t 
Performance 

Measure 

Standard and Modified ELL 

3L CON2L 2L(K=1) 2L(K=k0) 2L(K=k1) 2L(K=k2) 2L(K=k3) 

HCR 

0.10 

RB 1.92 204.41 -80.12 -80.08 -70.63 37.11 33.12 

RRMSE 0.91 5.32 2.03 2.03 1.79 1.66 1.52 

CR 94.12 99.73 61.76 61.82 71.15 96.10 96.20 

0.25 

RB 1.46 201.36 -82.05 -82.01 -74.10 -10.8 -13.18 

RRMSE 1.59 9.27 3.69 3.69 3.34 1.44 1.30 

CR 93.85 99.88 58.75 58.82 67.40 92.24 92.24 

PG 

0.10 

RB 2.03 209.10 -79.67 -79.62 -68.38 120.35 114.16 

RRMSE 0.34 2.01 0.74 0.74 0.64 1.52 1.44 

CR 94.3 99.65 62.76 62.82 73.41 97.94 97.91 

0.25 

RB 1.84 206.20 -81.93 -81.82 -72.75 27.27 23.53 

RRMSE 0.75 4.38 1.69 1.69 1.51 1.19 1.08 

CR 93.98 99.79 59.33 59.48 68.97 95.45 95.57 

PS 

0.10 

RB 1.94 209.52 -78.28 -78.23 -65.56 216.52 209.15 

RRMSE 0.18 1.03 0.37 0.37 0.31 1.35 1.29 

CR 94.43 99.57 64.85 64.92 76.01 98.60 98.57 

0.25 

RB 1.97 208.3 -81.23 -81.19 -71.07 68.13 63.21 

RRMSE 0.44 2.59 0.98 0.98 0.86 1.24 1.16 

CR 94.11 99.72 60.53 60.57 70.74 96.96 96.99 

 

Figures 4.1 to 4.3 show the area-specific performances of the MSE estimators in the two 

simulation studies. Here log-scale area-specific estimated MSEs are averaged over 

simulations and then plotted against areas that are ordered according to population size. 

Figure 4.1 shows the performance of the MSE estimators for the area mean. This 

confirms that the adjusted MELL3 MSE estimator overcomes the underestimation 

problem of the standard ELL-based MSE estimator ELL.2L when the population data 

follow a 3-level model. Figure 4.2 shows that MELL2 and MELL3 MSE estimators for 

estimated area-specific DFs behave similarly to the ELL.3L MSE estimator, with 

overestimation at the two extreme percentiles and underestimation at the middle three 
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percentiles under the 3-level population. Overestimation at all percentiles under the 

2-level model as anticipated is also clear. Figure 4.3 confirms that both the MELL2 and 

MELL3 MSE estimators overcome the underestimation problem of the standard ELL.2L 

estimator in the more realistic log-normal simulation that focuses poverty estimation. 

Figure 4.3 also shows that the underestimation associated with the standard ELL.2L 

MSE estimator increases while the overestimation of MELL2 and MELL3 estimators 

decreases with an increase in the poverty line. 

Figure 4.1: Average of log-scale estimated MSE over simulations of area-specific 

estimated means under the 3-level (3L) and the 2-level (2L) linear models 

 

 

All three figures show that the underestimation associated with estimated MSEs 

calculated via ELL.2L under a 3-level model is considerably larger than the 

corresponding overestimation by ELL.3L, MELL2 and MELL3 MSE estimators under a 

2-level model. It is also worth noting that both underestimation of the true MSE under a 

3-level model and overestimation under a 2-level model by the ELL.2L MSE estimator 

increases with the area-specific population size (Figures 4.1 and 4.2). The MELL3 MSE 

estimator appears to have the capacity to resolve this underestimation problem.  



93 
 

Figure 4.2: Average of log-scale estimated MSE over simulations of area-specific estimated distribution functions (DFs) under the 3-level (3L) and 

2-level (2L) linear models 
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Figure 4.3: Average of log-scale estimated MSE over simulations of area-specific 

estimated HCR, PG, and PS at poverty lines corresponding to the 10
th

 and 25
th

 

percentiles under the 3-level (3L) log-normal model 
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4.6 Concluding Remarks 

In this paper we show how naive application of the standard 2-level model-based ELL 

method can lead to incorrect MSE estimation if its implied assumption of area 

homogeneity is incorrect. We propose a robust version of this MSE estimation method 

based on the relationship between estimated variance components under an incorrect 

2-level model and corresponding estimates under a correct 3-level model. Our simulation 

studies provide some evidence that our modified MSE estimation method adequately 

corrects the bias of standard ELL-based MSE estimates of area-specific means, DFs, and 

FGT poverty measures. Our simulation studies support a modification corresponding to a 

simple stratified bias adjustment procedure, based on correcting the bias in the MSE 

estimator of the estimated area mean under a 2-level model-based ELL procedure. This 

adjustment works reasonably when used to correct the bias of the ELL estimators of the 

MSEs of FGT poverty indicators. We also note that our proposed bias adjustment 

procedure may be slightly conservative if in fact the underlying model has a 2-level 

structure (instead a 3-level structure) since then the MSE adjustment should be small and 

positive.  

Note that the basic Monte Carlo approach to estimating MSE implicit in our modified 

MSE estimation method can be parametric (as described in Section 4.4) or 

non-parametric. In the latter case the estimated cluster-level residuals, the estimated 

cluster level residuals  ˆ
iju  should be scaled so that the ratio of the Monte-Carlo 

variances    ˆvar varij iju u  approximates the ratio of corresponding estimated variance 

components 
 

2 2

2
ˆ̂ ˆ

u u
   where        

2 1/2

2 2 2
ˆˆ ˆ ˆ[ 1 ]u sij ij ij

ij s

u u C u 



    . This approach can be 

easily extended if the level-one (HH) errors are allowed to be heteroskedastic, as in most 

applications of ELL methodology. 



96 
 

Given that the proposed modification involves fitting a 3-level model to the sample data, 

a natural question to ask is why not use a 3-level ELL approach instead of a 2-level 

approach when a significant area effect is detected. However, our experience is that the 

adjusted ELL-type MSE estimation based on the (apparently) incorrect 2-level model 

that we propose often provides more stable MSE estimates than comparable MSE 

estimation based on the correct 3-level model. This seems particularly true in 

applications where a large number of sampled areas (e.g. 75% in Bangladesh study 

conducted by BBS and UNWFP, 2004) have a single sampled cluster. In such situations 

a 3-level ELL approach can be quite unstable. 

Furthermore, the robustness of a 3-level approach to non-normality of area level errors, 

e.g. due to missing area-level contextual information in the model, is unknown. In 

contrast, the population size stratification used in MELL3 provides some robustness 

against this heterogeneity, though the issue of optimal choice of stratum boundaries for 

MSE estimation in this case remains an open question. Moreover, in terms of 

computation process, two separate bootstrap procedures are needed in the modified ELL 

methodology: basic bootstrap for poverty estimates and modified bootstrap for MSE 

estimates.  

Finally, we note that the geographic location of the target small areas has been ignored in 

the adjustment methods proposed in this paper. Extension of these ideas to where there is 

spatial correlation between units at different levels of the data hierarchies in the survey 

and in the census is a topic for further research. 
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Table A4.1: Population and sample structure for the simulations studies described in 

section 4.5.1. 

Population Structure (No. of Area, D : 75) 

No. of Clusters by Area 

No. of Total Cluster, C = 1650 

15,15,15,15,15,16,16,16,16,16,17,17,17,17,17,18,18,18,18,18,19,19,19,19,19, 

20,20,20,20,20,21,21,21,21,21,22,22,22,22,22,23,23,23,23,23,24,24,24,24,24, 

25,25,25,25,25,26,26,26,26,26,27,27,27,27,27,28,28,28,28,28,29,29,29,29,29 

No. of Units per Cluster by Area 

No. of Total Units, N = 180450 

96,97,98,99,100,96,97,98,99,100,96,97,98,99,100,101,102,103,104,105,101, 

102,103,104,105,101,102,103,104,105,106,107,108,109,110,106,107,108,109, 

110,106,107,108,109,110,111,112,113,114,115,111,112,113,114,115,111,112, 

113,114,115,116,117,118,119,120,116,117,118,119,120,116,117,118,119,120 

Sample Structure (No. of Sampled Area, D : 75) 

No. of Sampled Clusters by Area  

No. of Total Cluster, sC = 225 

2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2, 

3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4,2,3,4 

No. of Sampled Units per Cluster 

No. of Total Units, n = 2250 
10 

Table A4.2: Area averaged values of relative bias (RB, %) for estimated area-specific 

means, distribution functions (DFs) at different percentiles  q  and FGT poverty 

indicators at poverty lines t  corresponding to the 10
th

 and 25
th

 percentiles under 

the 3-level models based on significance of  
2

3
 .   

Parameter Cases q/t 
Standard and Modified ELL 

3L CON2L 2L(K=1) 2L(K=k0) 2L(K=k1) 2L(K=k2) 2L(K=k3) 

3
-L

ev
el

 L
in

ea
r 

M
o

d
el

 

Mean 
 

2

3
0


   - 12.39 250.83 -80.88 -80.84 -71.72 14.96 11.59 

 
2

3
0


   - -44.41 266.41 -79.97 -79.95 -76.5 -43.52 -44.71 

DF 

 
2

3
0


   

0.10 16.38 294.20 -77.71 -77.65 -64.38 54.56 50.05 

0.25 13.92 264.70 -79.66 -79.62 -71.59 -25.31 -26.95 

0.50 12.77 253.32 -80.35 -80.32 -73.94 -43.46 -44.51 

0.75 13.12 262.24 -79.80 -79.76 -71.77 -25.69 -27.36 

0.90 14.79 288.96 -78.00 -77.94 -64.82 53.02 48.39 

 
2

3
0


   

0.10 -41.57 313.42 -76.48 -76.44 -71.52 -20.99 -22.92 

0.25 -43.10 283.10 -78.56 -78.53 -75.34 -50.88 -51.77 

0.50 -43.76 270.71 -79.34 -79.31 -76.71 -59.04 -59.64 

0.75 -43.66 278.27 -78.84 -78.82 -75.66 -51.40 -52.21 

0.90 -42.69 303.67 -77.06 -77.03 -72.21 -22.50 -24.15 

3
-L

ev
el

 L
o

g
-n

o
rm

a
l 

M
o

d
el

 

HCR 
 

2

3
0


   

0.10 6.35 203.39 -80.22 -80.17 -70.19 43.84 39.59 

0.25 5.95 200.22 -82.14 -82.10 -73.75 -7.29 -9.80 

 
2

3
0


   

0.10 -45.24 226.68 -78.35 -78.34 -74.64 -35.02 -36.30 

0.25 -46.60 223.31 -80.52 -80.51 -77.28 -48.10 -49.18 

PG 

 
2

3
0


   

0.10 6.47 208.18 -79.76 -79.71 -67.82 133.32 126.68 

0.25 6.35 205.12 -82.02 -81.97 -72.32 33.47 29.50 

 
2

3
0


   

0.10 -45.10 231.66 -77.83 -77.83 -73.59 -20.05 -21.62 

0.25 -46.52 228.79 -80.42 -80.41 -76.80 -39.35 -40.63 

PS 
 

2

3
0


   

0.10 6.30 208.76 -78.38 -78.32 -64.90 237.03 229.07 

0.25 6.48 207.29 -81.31 -81.26 -70.58 77.30 72.04 

 
2

3
0


   

0.10 -44.43 231.30 -76.30 -76.30 -71.65 -5.77 -7.38 

0.25 -46.08 231.07 -79.62 -79.62 -75.71 -30.96 -32.39 
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CHAPTER FIVE 

5. Small Area Poverty Estimation under Heteroskedasticity 

 

 

 

Multilevel models with homoskedastic nested errors are widely used for estimation of 

small area means, as well as for estimation of the small area distribution function for the 

underlying income (or expenditure) variable. However, this type of model may not be 

adequate if these nested errors are heteroskedastic. In particular, it is easy to show that 

although heteroskedasticity of the error terms in a multilevel model does not bias small 

area mean estimation, it can certainly bias estimation of the small area distribution 

function, and hence estimation of poverty measures based on this function. In this 

chapter we tackle an important example of this problem, which is estimation of small 

area distribution functions as well as poverty estimation for a finite population defined 

by a two-level superpopulation model with unknown heteroskedasticity at level-one. We 

adopt an estimation method that involves first estimating the (assumed) homoscedastic 

level-two variance component and then estimating the level-one variances using a 

non-parametric method that assumes the underlying heteroskedasticity is a smooth 

function of the auxiliary variables. The estimated variances from this model are then 

combined with the Chambers and Dunstan (1986) type smearing approach (hereinafter 

CD approach) to estimating small area distribution functions. Finally, a non-parametric 

bootstrap procedure based on this estimated distribution function is used to estimate 
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small area quantities of interest along with their mean squared errors. The proposed 

methodology is compared with the well-known World Bank methodology for this case 

(Elbers, Lanjouw and Lanjouw, 2003). Results from simulation studies performed to 

compare these methods are then presented and an assessment of whether the proposed 

method can be considered as an alternative to World Bank poverty mapping 

methodology under level-one heteroskedasticity is provided. 

This chapter is organized as follows: Section 5.1 briefly describes the standard 

methodology of estimating small area distribution functions as well as poverty indictors 

with the corresponding assumptions and problems in reality; Section 5.2 describes 

estimation of small area distribution function for a finite 2-level population with 

homoskedastic errors at both levels; Section 5.3 describes at first the procedures of 

estimating level-two variance component and the level-one error variances, then the ELL 

procedure and the proposed CD approach considering level-one heteroskedastic random 

errors in the same finite population; Section 5.4 demonstrates several realistic simulation 

studies to compare the mentioned methodologies; Section 5.5 discusses the findings; and 

at last the concluding remarks are set out in Section 5.6. 

 

 

5.1 Background 

Standard multilevel models are developed based on the well-known homoskedastic 

(HM) nested-error regression model (Battese et al., 1988) for estimating small area linear 

parameters (e.g. means or totals) of a finite population (Rao, 2003). These multilevel 

models can also be applied to estimate the small area distribution function and the 

corresponding shape measures such as medians, quartiles, and percentiles (Molina and 

Rao, 2010; Salvati, et al., 2012). However, the standard multilevel model with strong 

assumption of HM errors is rare in practice, particularly in clustered, longitudinal and 
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time series data. As for example, in a clustered data the unit-level residuals may vary 

with the characteristics of the corresponding units and also the cluster-level residuals 

with the size of the clusters. Heteroskedasticity of the residuals may also appear due to 

some practical consequences including model misspecification, existence of outliers, 

measurement errors, and asymmetry of dependent variables. If the nested errors are 

found heteroskedastic (HT), the developed multilevel models based on the corresponding 

HM assumption will be inadequate and may produce bias estimates for small area 

distribution function. The main task in multilevel modelling with HT nested errors is to 

find sources of heteroskedasticity and then modelling the heteroskedasticity. The HM 

variance components are also required to estimate considering other HT nested errors. 

The main aim of this chapter is to deal with estimation of small area distribution 

functions as well as poverty estimation for a finite population conforming to a 2-level 

superpopulation model with HM level-two errors, and HT level-one errors whose 

variances are assumed to follow an unknown smooth function of the auxiliary variables.  

A widely used method for estimating distribution function of a finite population 

conforming to a linear superpopulation model is smearing-based prediction method 

proposed by Chambers and Dunstan (1986), hereinafter denoted as CD. The CD 

approach can also be applied to estimate distribution function for a finite population with 

unknown HT errors (Lombardía, et al., 2005). In multilevel analysis, the CD approach 

can be easily implemented by developing predictive model at a higher level such as 

area-specific random effects model (Rao, 2003) and M-quantile model (Chambers and 

Tzavidis, 2006); and then utilizing the corresponding identically and independently 

distributed sample residuals in the smearing approach (Chambers and Pratesi, 2013). The 

CD-based approach requires an area- or cluster-specific model fitted to the sample data 

and the estimated sample residuals to predict the small area estimates. If a two-fold 
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model is found as a best fit for the sample data, CD approach can also be implemented in 

the similar way. An important note is that the CD approach provides an analytical form 

of small area distribution function estimator based on the predictive model. 

The basic poverty indicators defined by Foster et al. (1984) (hereafter, denoted by FGT) 

are calculated as  1

1

=
iN

ik
i i ik

k

t E
F N I E t

t








 
 
 


  for a small area i  and poverty line t , 

where ikE  is the expenditure of thk  household (HH) and iN  is the number of households 

(HHs) in thi  area. The values of the parameter 0,1,2   provide respectively head count 

rate (HCR), poverty gap (PG), and poverty severity (PS). The poverty indicator iF  can 

be expressed as a function of small area distribution function as 

 
0

=
t

ijk

i ijki

t E
dF E

t
F





 
 
 
  where    1

1

iN

i i ik

k

F t N I E t



   is the distribution function at 

t  for the thi  area. The FGT indicator iF  provides area-specific distribution function 

 iF t  when 0  . Thus the main target of poverty estimation is to find an estimator of 

small area distribution function which leads to estimate the poverty indicators.  

The most common method of poverty estimation is the World Bank method proposed by 

Elbers, Lanjouw, and Lanjouw (2002, 2003), henceforth mentioned by ELL. The ELL 

estimators of poverty indicators are based on simulation of area-specific distribution 

function. Thus the standard ELL method can be easily applied for estimating small area 

distribution function of a finite population following a 2-level superpopulation model 

with HM or HT nested errors at level-one. The method can also be implemented by 

developing three-level model if the third level is found to have significant contribution in 

the variation of target response variable. 
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In poverty mapping study, the ELL methodology considers spatial correlation (a 

‘location effect’ common to all households in the same cluster has same distribution 

regardless of clusters) and heteroskedasticity in the HH component of the error term. 

Heteroskedasticity is considered at HH-level but not at cluster-level due to less number 

of clusters for a particular small area in the survey data (Elbers et al., 2003). The 

level-one error variance function is developed through a parametric logistic function of 

the squared level-one residuals. The development of this parametric function (known as 

“alpha” model) is based on the assumption that the variance function is a monotone 

function of one or more explanatory variables. Since the method uses a logit model of 

squared residuals, the variance estimates are expected to be distributed as an s-shaped 

curve within a fixed range estimated from the survey data set. Since estimation 

methodology is based on parametric model, it may prone to model misspecification. 

Moreover, fitting an alpha model for heteroskedasticity in ELL approach is not a 

straightforward task. It requires fitting a logit model of squared conditional residuals 

considering susceptible explanatory variables or their transformations that can explain 

heteroskedasticity. The explanatory power of the alpha model is usually very low (less 

than 5%) in most of the poverty mapping studies (e.g. BBS and UNWFP, 2004; World 

Bank 2013). As far as we know, there are no particular study have been done to check 

the properties of the alpha model. A flexible non-parametric regression method can be 

thought of as an alternative of the parametric ELL approach for approximating the HT 

error variances. 

The success of ELL methodology depends on the estimation of the variance components 

as well as the reduction of the ratio of between-cluster variation to total variation. It is 

noted that the better the estimation of location effect (spatial correlation), the better the 

precision of the ELL estimator is (Cuong et al., 2010). When it is assumed that the 
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level-one errors are HT, the level-two variance component is estimated at first and then 

the level-one error variances are estimated in ELL method.  

Like ELL, our proposed method uses a moment approach to estimate the variance of HM 

level-two errors at first, and then a non-parametric smoothing technique is used to 

estimate the level-one error variances. The estimated residuals and their variances are 

combined with the CD-type smearing approach to estimate small area distribution 

functions. Finally, a non-parametric bootstrap procedure based on the estimated 

distribution function is used to estimate small area parameters along with their mean 

squared errors (MSE). The estimation procedure can be easily extended to a 3-level 

superpopulation model with level-one HT errors. 

 

5.2 Estimation of Small Area Distributions and Poverty under Homoscedasticity 

A 3-level hierarchical finite population is considered by assuming HH at level-one, 

cluster at level-two, and target small area at level-three. To maintain the 

area-homogeneity assumption of ELL methodology, nested random errors are considered 

only at HH and cluster. Suppose ijky  indicates the value of the variable of interest Y  for 

the thk  HH belonging to 
thj  cluster of thi  area. The superpopulation model for the finite 

population can be expressed as a 2-level nested-error regression model 

  2
 ;   1,2,...,  ;   1,2,..., ;  1,2,...,T

ijk ijk ij ijk i ijy u i D j C k N     x β   (5.1) 

where the cluster-level  iju  and HH-level  ijk  random errors are assumed to be 

mutually independent with   2

2
0,ij u

u N   and   2

2
0,ijk N


   respectively. Since the 

individuals are nested within cluster, the covariance between two observations is  
2

2u
  if 

they are in the same cluster and zero (0) otherwise. Now consider a sample of size n  has 
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been drawn from the population following a two-stage cluster sampling design. In the 

sampling procedure, 
1

i

D

s s

i

C C


  clusters are drawn randomly at first covering all the D  

areas and then ijn   1,.., ;  1,..,
is

i D j C   HHs are selected randomly from each selected 

clusters. Fitting a linear model via least square (LS) method, the cluster and HH specific 

errors are estimated as 
1

1

ˆ ˆ
ijn

ij ij ijk

k

u n e



   and ˆ ˆ ˆ
ijk ijk ije u    with ˆ ˆ

ijk ijk ijke y y   respectively. 

The moment-based (MOM) estimators of level-specific variance components are 

obtained as  

 
 

 

 

 

 

 

 

 
 

 

 

2 1
2

2 2
2

2 2

0 0

1 1

ˆ

ˆ 11 11

s

s s

u s s

s s

n C

n C n C s

nC Cn s

n C n Cn n n n



   
          

          
    

  (5.2) 

where 
 2 1 2

0 ij

ij s

n n n



  , 
 1

s  and 
 2

s  are HH- and cluster-level sample residual variances. 

The derivation of the estimators has been shown in Appendix A.1. Then the generalized 

least squares (GLS) estimates of the regression parameters and their corresponding 

variance-covariance matrix are obtained as      
1

1 1

2
ˆ ˆ ˆgls T T

s s


 β X V X X V y   and 

    
1

1

2
ˆ ˆˆ gls T

s


v β X V X  where     2 2

2 2
ˆ ˆ ˆ ˆ

c c c

T

s c n n nu
diag


   V V I 1 1 , 1,..., sc C . The 

estimated regression parameters 
 2

ˆ gls
β  with 

  2
ˆˆ gls

v β  are used as input in the estimation of 

small area parameters. 

 

5.2.1 The ELL Estimator: Parametric Bootstrap (PELL) 

The standard ELL estimator of small area distribution function is based on a parametric 

bootstrap (PB) procedure as follows. First, a set of regression parameters 
 
*

2
β is 
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generated from the multivariate normal distribution      2 2
ˆ ˆˆ,gls glsN β v β . Second, each 

cluster in the census is assigned a cluster-level error 
*

iju  drawn from a suitable parametric 

distribution say
  2

2
ˆ0,

u
N  . Third, each HH in the census is assigned a HH-specific error 

*

ijk  from a suitable parametric distribution say
  2

2
ˆ0,N


 . Fourth, simulated values of 

the response variable are generated via  
* * * *

2

T

ijk ijk ij ijky u  x β  and a value of the 

area-specific parameter say  * 1 *

1 1

iji
NC

i i ijk

j k

F N I y t

 

   is calculated for a specific value t . 

All the four steps are iterated for a large number of times say B =1000, and then mean 

and variance of the B  area-specific estimates are considered as the ultimate ELL 

estimates and their mean squared errors  mse  respectively. The PB-based ELL 

estimator of area-specific distribution function is defined and denoted as 

 
      

2
* *1 1

1 1

ˆ ˆ ˆ & 
B B

b bPELL PELL PELL

i i i i i

b b

F B F mse F B F F 

 

    .  (5.3) 

The poverty indicators considering t  as the poverty line is denoted by ˆ PELL

iF
, =0,1,2 

and calculated as (5.3) by generating  
*

* 1 *

1 1

iji
NC

ijk

i i ijk

j k

t y
F N I y t

t







 

 
   

 
  instead of 

*

iF  

in the bootstrap procedure. 

 

5.2.2 The ELL Estimator: Non-parametric Bootstrap (NPELL) 

Instead of PB procedure, a non-parametric bootstrap (NPB) procedure can be followed to 

conduct the ELL estimation method. In NPB procedure, the level-specific errors are 

randomly drawn from the corresponding empirical distributions rather than the 

parametric distributions. Here all census clusters are assigned cluster-level error 
*

iju  
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drawn from the empirical distribution  ˆ ,  iju ij s  via simple random sampling with 

replacement (SRSWR). Similarly, HH-level errors 
*

ijk  for each census HH are randomly 

drawn from the sample residuals  ˆ ;  ijk ijk s   via SRSWR. However, if the estimated 

raw residuals at different levels are used in NPB, the bootstrap variation (empirical) of 

the residuals will overestimate the estimated variance components (Carpenter et al., 

1999). In such case the estimated raw residuals  ˆ ˆ,  ijk iju  are required to adjust for 

utilizing in the bootstrap procedure. The estimated raw residuals can be scaled 

respectively as 
   

1/2

1 2

2
ˆ ˆ ˆ1ijk ijk jk

ijk s

n e








 
     

 
 and 

   
1/2

1 2

2
ˆ ˆ ˆ1ij ij s iju

ij s

u u C u







 
   

 
 so 

that the empirical variations approximately close to the estimated variance components 

(details are shown in Appendix A.4). These scaled residuals instead of raw residuals are 

utilized in the NPB procedure. Thus the basic differences between PB and NPB 

procedures are in second and third steps where the level-specific errors 

 * * & ;  1,..., ;  1,..., ;  1,...,ij ijk i iju i D j C k N     are assigned to population units via 

SRSWR from the corresponding estimated scaled sample residuals  , ;  ij ijku ijk s  . 

Similar to the PB procedure, generation of the bootstrap values 
*

ijky  and calculation of 

area-specific estimates 
*

iF  are repeated B  times to calculate the ultimate estimates with 

their MSEs similar to (5.3). The NPB-based ELL estimators of small area distribution 

functions and their MSEs are denoted by ˆ NPELL

iF  and  ˆ NPELL

imse F  respectively. 
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5.2.3 The CD Estimator: Smearing Approach (CDSM) 

As an alternative of NPB-based ELL estimator, a Chambers and Dunstan (1986) type 

estimator has been described based on the smearing approach. For this approach, the 

superpopulation model (5.1) is written as 

 
     2 2 2

| = + = +T T

ijk ijk ijk ijk ijk ij ijk ijk ij ijky E y e u u


        x x β x β   (5.4) 

where    1

2
~ 0,1ijk ijk N


     are normalized errors. The first task in the proposed CD 

approach is to estimate the cluster-specific distribution function  ijF t  under the 

superpopulation model. Since  ijF t  can be partitioned into known sample and unknown 

non-sample parts as below, the task reduces to find an estimator of non-sample part 

 
ijrF t  of  ijF t  only. 

           1 1 1+ 1
ij ij

ij ij

ij ij ijk ijk ij ij s ij ij r

s r

F t N I y t I y t N n F t N n F t  
 

      
  
   

The expectation of the non-sample part under (5.4) can be expressed as 

      2 2

ij ij

T

ijk ijk ijk ij

r r

E I y t E I t u


      
    
   
    
  x β

 

 

 

 

2 2

2 2ij ij

T T

ijk ij ijk ij

ijk

r r

t u t u
P G

 

   
   

 

      
   
      

 
x β x β

 

where G is the distribution function of the normalized errors  ijk . It is therefore natural to 

approximate  ijkI y t  by an estimator of      1

2 2

T

ijk ij
G t u




  x β  to estimate   

ijrF t . 

Since the normalized errors       
1 1

2 2 2

T

ijk ijk ij ijkt u G 

 
        x β , ijk U  are 

assumed to be independent and identically distributed, an estimator of G is the empirical 

distribution of the standardized residuals 
 
1

2
ˆ ˆˆ

ijk ijk




    . Given the values of the level-two 
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errors  iju , the CD estimator of cluster-specific distribution function can be expressed 

as below 

           

 

1 21

2

ˆ
ˆˆ

ˆ
ˆ

ij ij

ij ij

T

ijk ij

ij ij s ij ij r ij ijk

ijk s ijk r

ij

t u
t N n F t N n F t N I y t GF 

  


 

     


   
     

    
 

x β
. (5.5) 

The distribution function G can be estimated using smearing approach of Chambers and 

Dunstan (1986) as 

   1ˆ ˆ ijk

ijk s

G n I



     , with 
 

   

2

2 2

ˆ
ˆ

ˆ ˆ

T gls

ijk ijk ij ijk

ijk

y u

 

  
  

 

x β
 

where 
1

1

ijn

ij ij ijk

k

u n e



   and ijk ijk ije u    with  2
ˆT gls

ijk ijk ijke y x β  are estimated using GLS 

estimator of the regression parameter  2
β , and  

2

2
ˆ


  is the MOM estimator of HH-level 

variance component. The REML estimators of  2
β ,  

2

2u
 ,  

2

2
  as well as the 

corresponding level-specific residuals can be used in this smearing estimator. The 

smearing estimator Ĝ  can be rewritten as 

 

 

 

 
    2 21 1

2 2
1 1 1 12 2

ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ

s c s c
T gls T glsC n C n
ijk ij ijk ij T gls

ch ijk ij ch

c h c h

t u t u
G n I n I u t 


    

       
          
      

 
x β x β

x β

    
   

1

2 2
1 1

ˆ ˆ  with  
s cC n

ch ch T gls

ijk ijk ijk ij ch

c h

n I y t y u


 

       x β . 

Then the estimate of area-specific distribution function would be obtained as 

                  1 1ˆ ˆ
i i

ij ij

C C
chCD

i ij ij ijk ijk

j j s r ch s

F t F t N I y t n I y t 



  
      

   
      . (5.6) 

This CD estimator of area-specific distribution function can be used if and only if all the 

clusters of an area are covered in the sample. Since area-specific census clusters are not 
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covered in the sample, cluster random effects for the census clusters can be generated 

from either the parametric distribution or the empirical distribution of estimated sample 

cluster random effects via SRSWR. In reality, the number of clusters per area is not large 

enough to use only those clusters belong to that area. Moreover, under the assumption of 

area-homogeneity of ELL methodology, the estimated cluster random effects can be 

utilized in the resampling procedure. Therefore a NPB procedure is needed to estimate 

the ultimate area-specific distribution in the proposed CD approach. 

The basic steps of the NPB are as follows. First, develop the cluster-specific model (5.4) 

to the survey data to obtain  2
ˆ gls
β ,   2

ˆˆ gls
ν β , 

 
2

2
ˆ

u
 , 

 
2

2
ˆ


 , and the level-specific residuals iju  

and jk . Second, the cluster-level residuals  * ,  iju ij U  are generated for all the census 

clusters from the estimated sample residuals  ,  iju ij s  via resampling with SRSWR. 

The residuals at level-one can also be resampled but only for the sample individuals to 

utilize in the smearing approach. Third, the bootstrap realization  *ˆ
ij tF  of 

cluster-specific distribution function is calculated for every cluster and also aggregated 

them to produce a bootstrap realization of the CD estimator for each small area as 

   * 1 *ˆ ˆ
iC

i i ij ij

j

F t N N F t  . The steps are repeated for B  times and then estimate the 

ultimate parameter with MSE as (5.3). Since this CD estimator is based on a bootstrap 

procedure and the smearing approach, the ultimate estimator is called here as 

bootstrap-based CD-type smearing estimator, hereafter CDSM. Thus the proposed 

estimators are defined and denoted as  

 
      

2
* *1 1

1 1

ˆ ˆ ˆ and 
B B

b bCDSM CDSM CDSM

i i i i i

b b

F B F mse F B F F 

 

      (5.7) 
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where the term “SM” stands for smearing approach. As NPB procedure in section 5.2.2, 

the estimated sample residuals are required to scaling to make the estimator free from the 

overestimation of the estimated variance components. The scaling terms might be 

respectively as    
1/2

1 2

2
ˆ 1ijk ijk ijk

ijk s

n e








 
     

 
 and 

   
1/2

1 2

2
ˆ 1ij ij s iju

ij s

u u C u







 
   

 
  as 

per Appendix A.4. 

If area-specific model instead of cluster-specific model is assumed as working model, 

there will be no necessity to generate area-level random effects for the sampled areas and 

so distribution function can be estimated directly from analytic estimator like (5.6). For 

details please see Salvati et al. (2012). However, the analytic estimator is not possible to 

use for the non-sampled areas and so a synthetic estimator is then needed for the 

non-sampled small areas. 

 

5.2.4 The CD Estimator: Monte Carlo Simulation Approach (CDMC) 

Marchetti et al. (2012) proposed an alternative procedure to calculate the smearing-based 

estimator of small area parameters following a Monte Carlo (MC) simulation approach. 

The authors proposed their procedure for estimating small area distribution function 

using M-Quantile regression model. The main reason of such approach is to speed up the 

calculation procedure in CD method. When the sample size is reasonably large, the 

smearing-based CD estimator (5.7) will take much time if all the sample residuals are 

used in the smearing method. The basic steps of the MC simulation approach are parallel 

to the ELL semi-parametric procedure. In the simulation approach, response values for 

the non-sample units are generated using the fitted model parameters and the estimated 

residuals via  
* * * *

2
ˆT

ijk ijk ij ijky u  x β  where 
* ,  iju ij U  and 

* ,  ijk ijk U   are drawn from the 

empirical distribution functions of the corresponding model residuals iju , ij s and ijk , 
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ijk s  respectively. Then combining the sample and non-sample response values, the 

area-specific parameters are calculated and the process is repeated for B  times to 

calculate the ultimate estimates as (5.7). The estimators of area-specific distribution 

function and their MSE are denoted by ˆ CDMC

iF  and  ˆ CDMC

imse F  respectively where the 

term “MC” stands for MC simulation approach. Since the proportion of sampled 

individuals out of total population is very negligible, response values are generated for 

all population units to conduct the MC simulation. 

 

5.3 Estimation of Small Area Distributions and Poverty under Heteroskedasticity 

The described ELL and CD approaches will produce bias estimates of small area 

distribution function if the assumption of HM nested errors is violated in reality, though 

the small area mean estimation will not be affected much. Table 5.1 reveals this situation 

considering a HM and a HT 2-level population models in a simulation study, which is 

detailed in section 5.4. The first population is considered with HM level-one error 

variance as 
   2

12
94.05ijkx


    , and the second one with HT level-one error 

variances as 
   2 2

32 .
90 0.5 ijk ijkijk

x x


      where  2~ 20ijkx  . Level-two errors are 

considered HM 
  2

2
23.05

u
   for both the populations. The application of PELL 

estimator under homoskedasticity for the HT population produces higher relative bias 

(RB) and lower bootstrap coverage rate (BCR). However, the small area means of the 

HT population are not much affected in terms of RB and BCR. 

Thus both the ELL and CD approaches under the assumption of HM nested errors must 

be extended when the level-one error is assumed HT. In such case, level-two variance 

component is required to estimate at first assuming level-one errors as HT, and then 

estimate the level-one error variances. A parametric regression approach has been 
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proposed in the ELL methodology based on a logistic function specification of the 

squared level-one residuals  ˆ
ijk . This parametric method is highly reliant on the 

selection of the potential variables that can explain the heteroskedasticity. Two 

semi-parametric alternatives of heteroskedasticity modelling have been proposed in this 

section at first. Similar to the ELL methodology, we assume that the level-one error 

variances are HT and correspond to a smooth function of the auxiliary variables. 

Table 5.1: Area averages of relative bias (RB, %), relative root mean squared error 

(RRMSE, %) and bootstrap coverage rate (BCR, %) of nominal 95% 

confidence intervals for homoskedastic PELL estimator of area-specific means 

and distribution functions (DFs) for populations with homoskedastic and 

heteroskedastic level-one errors  

Working 

Model 
Parameter 

True Model 

Homoskedastic Heteroskedastic 

RB RRMSE BCR RB RRMSE BCR 

Homoskedastic 

0.10q  0.429 23.857 94.69 14.844 24.834 83.52 

0.25q  0.152 15.762 94.61 -0.937 12.734 91.69 

0.50q  -0.030 9.344 94.52 -5.442 9.067 86.05 

0.75q  -0.069 4.864 94.59 -2.903 4.679 88.34 

0.90q  -0.053 2.286 94.70 0.120 1.732 95.70 

Mean 0.001 0.309 94.59 0.002 0.328 94.31 

 

5.3.1 The ELL Estimator: Parametric Bootstrap (PELL) 

A new superpopulation model similar to model (5.1) is considered here as 

 
 
 

 
     2 2

2 2 2 ,
;  0, ;  0,

ht htT

ijk ijk ij ijk ij ijku ijk
y u u N N


       x β   (5.8) 

where the level-one errors (also known as idiosyncratic errors) are allowed to be HT, 

while the level-two errors are assumed homoscedastic, independent and identically 

distributed from the idiosyncratic errors. In such case we have    
 

 
2 2

2 2 ,
Var

ht

ijk u ijk
y


    

and    
 

/ / /

2

2
cov ,

ht

ijk ui j k
y y    only if 

/ /ij i j  under the model (5.8). 



113 
 

Initially the regression parameters and the residuals at levels one and two are estimated 

using the LS method as in section 2. The level-two variance component can be estimated 

via MOM approach assuming HT level-one errors as below: 

      
 
       

1
2

2 2

. ...2
ˆ ˆˆ ˆmax 1 1 ,0

ht

ij ij ij ij ij ij iju
ij s ij s ij s

w w w e e w w



  

        
            

       
     (5.9) 

where ij ijw n n , 
1

.
ˆ ˆ

ijn

ij ij ijk

k

e n e  , 
1

...
ˆ

îjk

ijk s

e n e



  , 
 

 
2

2

.

1 ˆˆˆ
1

ijn

ij ijk ij

kij ijn n
    


 , and 

1

.
ˆ ˆ

ijn

ij ij ijk

k

n   . Detail derivation of the estimator has been shown in Appendix A.6. 

Elbers et al. (2002) proposed the same estimator with 
ijn

ij ijk

k

ijk

ijk s

w w w


   where ijw  is 

the by-cluster transformed sampling weights which sum to one across clusters and ijkw  is 

the rescaled sampling weights which sum to the total sample size. The main problem of 

such estimators is the possibility of getting negative estimates of variance components. 

In case of negative value, 
 
 2

2

ht

u
  can be estimated assuming HM HH-specific random 

errors. Interestingly,  
 
 2

2
ˆ ht

u
  in (5.9) will be exactly same as  

2

2
ˆ

u
  in (5.2) when the 

clusters are equal sizes (proof is shown in the Appendix A.6). 

Now the interest is estimation of HH-level residual variances. Two ways are suggested 

by Elbers et al. (2002): (1) direct estimation method assuming a HM level-one random 

errors and (2) logistic-type model-based computation assuming HT level-one random 

errors. The direct HH-level variance component  
 2

2
ˆ ht


  can be easily obtained by taking 

the difference between  
 2

2
ˆ ht

u
  and overall mean squared error (MSE) 

2ˆ
e  obtained from 

the initial fitted model using LS method. The direct estimation method can be applied for 

negligible heteroskedasticity but would be unreasonable for wide heteroskedasticity. The 
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decision can be made from the basic literature on checking heteroskedasticity via 

graphical and statistical diagnostics (Gujarati, 2003). 

In ELL methodology, the HT residual variances are calculated based on the parametric 

logistic function as 

    
 
 

2

2 ,

exp
, , ,

1 exp

T

ijk

ijkijk T

ijk

A B
A B



 
    

  

z α
x α

z α
  (5.10) 

where  ijk ijkz g x , A  and B  are upper and lower value of  
2

2 ,ijk
 . This parametric 

form avoids both negative and extremely high values of  
2

2 ,ijk
 . The parameters ,  ,A B  

and α  can be estimated following an approximate/pseudo maximum likelihood 

procedure. The upper and lower bound are recommended as  2ˆ ˆ1.05 maximum ijkA     

and ˆ 0B   respectively. These values of A  and B  help to develop a simpler logistic type 

link function of squared HH-level residuals with explanatory variables as: 

 

2

2

ˆ
ˆln

ˆ ˆ

ijk T

ijk ijk

ijk

r
A

 
  

   

z α   (5.11) 

where ijkr  is a random error term. In the poverty mapping work, a slight modification 

may be required by adding a constant term    to residual squares  2ˆ
ijk  in model (5.11) 

(Haslett, et al., 2010). Also trimming and winsorizing techniques may be needed for 

getting better estimates of the alpha parameters. Applying delta method (Oehlert, 1992), 

the estimator of 
 

2

2 ,ijk
  can be expressed as (Elbers et al., 2002) as:  

 
   

 
2.

32 ,

ˆˆ (1 )1
ˆ ˆ

21 1

ijk ijkijkELL

ijk

ijk ijk

AD DAD
v r

D D


  
    

      

  (5.12) 
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where ˆexp( )T

ijk ijkD  z α  and  v̂ r  is the estimated MSE obtained from (5.11). Then the 

estimated variance components 
 
 2

2
ˆ ht

u
  and  

2.

2 ,
ˆ ELL

ijk
  are used to obtain GLS estimates of 

regression parameters and their variance-covariance matrix as  

 
     

1
1 1

2
ˆ ˆ ˆT T

s s

gls ht 
 

β X V X X V y  and 
 

    
1

1 11
2

ˆ ˆˆˆ
gls ht TT

c c cs
c


 

 
   

 
βv X V XX V X  

where       
  

1

22 2

, ,2 2 2
ˆ ˆ ˆ ˆ ˆ,..., ;  1,...,

c c ncnc

T

s c n n sc c u

ht
diag c C

 
     V V 1 1I . The ELL method 

uses a simulation procedure to regenerate the conditional distribution of ijky  by adding 

simulated values of cluster-level  iju  and HH-level  ijk  errors to fitted values 

 
  2

ˆ gls htT

ijkx β . To conduct the simulation process, 
 
 2

2

ht

u
  is needed to estimate with its 

estimated variance 
 
  2

2
ˆ ˆ ht

u
v   for generating the location-specific errors  iju . Both 

analytic and bootstrap variance estimators of 
 
 2

2
ˆ ht

u
  are given in Elbers et al. (2002). For 

estimating small area distribution functions and their standard errors, the ultimate inputs 

used in simulation are: point estimates of alpha and beta regression parameters 

 
  2

ˆˆ ,
gls ht

α β  with their estimated covariance matrices    
   2

ˆˆ ˆ ,
gls ht

v α v , empirical and or 

parametric distribution of the level-specific errors. The PB procedure is conducted as the 

following steps.  

Step 1: A set of *
α  and  

 *

2

ht
β  parameters are generated from multivariate normal 

distributions with mean vectors  
  2

ˆˆ ,  
gls ht

α β  and variance-covariance matrices 

   
   2

ˆˆˆ ˆ,  
gls ht

v α v β . 
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Step 2: The cluster-level variance component 
 
  2

2

ht

u
  can be remained fixed or 

generated from a parametric distribution such as gamma distribution with mean 
 
 2

2
ˆ ht

u
  

and variance 
 
  2

2
ˆ ˆ ht

u
v  . The HH-level error variances 

  2

2 ,ijk
  are estimated from (5.12) 

using the generated α  values in Step 1. In this thesis, 
 
 2

2
ˆ ht

u
  is considered fixed.  

Step 3: Level-specific errors  * *,  ij ijku   are then generated from their respective assumed 

parametric distribution using 
 
 2

2
ˆ ht

u
  and  

2.

2 ,
ˆ ELL

ijk
  respectively. Non-normality can be 

assumed for both errors such as student’s t-distribution with degrees of freedom that can 

approximate the distribution of sample residuals estimated in the first stage. 

Step 4: Generate the response values using the predicted values  
 *
2

htT

ijkx β  and the 

generated errors via  
 * * * *

2
ˆ htT

ijk ijk ij ijky u  x β  and calculate the bootstrap parameter 
*

iF  at 

t  for each target sub-population. 

Step 5: Repeat the steps for B  times to calculate the ultimate estimates and their MSEs 

which are defined as (5.3) and denoted by respectively ˆ PELL

iF  and  ˆ PELL

imse F . 

 

5.3.2 The ELL Estimator: Semi-parametric Bootstrap (SPELL) 

A semi-parametric bootstrap procedure can be easily conducted using the estimated 

parameters obtained in the first phase of ELL methodology (Elbers et al., 2002). The 

basic differences are in the second and third steps of PB procedure. In second step, 

instead of generating cluster-level errors 
*

iju , ij U  from the sampling distribution, they 

are randomly drawn for all census clusters from the sample residuals ˆ
iju , ij s  with 

replacement. In third step, the estimated sample residuals ˆ
ijk , ijk s  are standardized 
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as     
1

22 ,, 2 ,
ˆ ˆˆ ˆELL ELL

ijk ijk ijkiijjkk ijk
ijk s

r n

 


       from where the standardized errors 
*

ijkr , ijk U  

are randomly drawn for all census HHs via SRSWR. The standardized errors 
*

ijkr  are then 

rescaled as  
* * *

2 ,ijk ijk ijk
r


    where  

2*

2 ,ijk
  are calculated by putting the generated 

*
α  in 

(5.12). A conditional approach can also be followed to resample the level-one errors by 

drawing 
*

ijkr  for unit k  only from the standardized residuals ijkr s that correspond to the 

cluster ij  from which 
*

iju  is obtained for the unit k  in step 2. Though ijk and iju  are 

uncorrelated, the conditional approach may capture any non-linear relationship between 

them (Elbers et al., 2002). Using the generated level-specific errors, the bootstrap 

response values are simulated via  
* * * *

2

T

ijk ijk ij ijky u  x β  and then the target parameters 

of interest 
*

iF  are calculated by aggregating the simulated response values. The ELL 

estimators of area-specific distribution functions with their MSE based on the 

semi-parametric bootstrap procedure are denoted by ˆ SPELL

iF  and  ˆ SPELL

imse F  

respectively. The LS raw residuals are recommended to scale in the NPB bootstrap 

procedure when level-one errors are assumed HM, however under the assumption of 

level-one HT errors no clear idea is given in the ELL method. 

 

5.3.3 Non-parametric Estimation of Heteroskedastic Error Variances 

The most difficult part in the ELL method is the development of heteroskedasticity 

(alpha) model. The estimator of the HT error variance is based on the delta method 

which is based on second order Taylor approximation (Oehlert, 1992) and consequently 

it can approximate any monotone heteroskedasticity pattern. The logistic form of the 

heteroskedasticity function is structured in such a way that it provides estimates within a 

fixed range  ,B A  based on the sample data set. As a result unavailability or missing 
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any potential explanatory variable (and hence misspecification of heteroskedasticity 

model) may cause understating or overstating the true variation if the sample 

observations are imbalanced to heteroskedasticity. An extensive exploration is needed to 

find out the potential explanatory variables and their transformation and then fitting an 

alpha model with satisfactory r-squared value is critical. As an alternative of the 

parametric heteroskedasticity modelling, semi-parametric modelling can be followed that 

does not require any recognized form of heteroskedasticity function. Since the 

heteroskedasticity function is assumed to be a smooth function of the explanatory 

variables, residual variances can be estimated for all the population units based on a 

non-parametric regression of sample residual squares on the sample x-values or their 

combination (say, predicted values). The main task will be finding a suitable non-

parametric regression method from the sample data set. A stratified MOM approach is 

proposed here assuming heteroskedasticity varies with regression mean  ˆ
ijky . The 

HH-level error variances are estimated by stratifying the sample dataset based on the 

marginal distribution of the predicted values obtained from the GLS regression line. A 

non-parametric regression approach and the stratified MOM are described in the 

following two sub-sections. 

 

5.3.3.1 Non-parametric Regression Approach  

Lombardia et al. (2005) proposed a non-parametric method to estimate error variances 

under a general linear model where population units are assumed uncorrelated. The 

method can be extended to a multilevel model to estimate the level-one error variances. 

In a 2-level model, the level-two errors iju  are assumed independently distributed from 

the level-one errors ijk  and so a non-parametric variance estimator like 
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Nadaraya-Watson type estimator of Lombardia et al. (2005) can be used to estimate the 

level-one error variances 
  2

2 ,ijk
  as 
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  
 

 

 
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x
x x x x

 

where k  is a symmetric density function (say, Kernel function), b  is the bandwidth 

parameter, x  is a set of values of the explanatory variables. The Kernel regression is the 

basic and simplest non-parametric regression method, however suffers from boundary 

problem (Chu and Marron, 1991). At the lower and upper values of explanatory variables 

(wide windows), Kernel smoothing provides higher biased estimates. However, if the 

x-values are uniformly distributed (rare case in reality), there is less possibility of 

boundary problem in kernel regression smoothing method. The problem can be solved by 

choosing variable bandwidth where higher bandwidth is considered at the boundary 

points to estimate the parameter using more observations. 

The K-nearest neighbor (KNN) regression method (Altman, 1992) can also be applied to 

estimate the error variances based on the sample residuals ˆ
ijk  whose x-values are near to 

the x-values of a population HH. Thus we have to find out the conditional distribution of 

ˆ
ijk  for a population unit with ,ijkx ijk U . Suppose  ijkxs  denotes the set of sample 

x-values whose values are nearest neighbor of population ,ijkx ijk U ,  ijkn x  denotes 

the size of the vector, and  ijkxw  is the set of weights based on the distances of the 

sample x-values from ijkx . Then the KNN estimator of  
2

2 ,ijk
  for the population unit 

with ijkx  will be  
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 
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2 ,
ˆˆ
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ijkijk ijkijk
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xx n x




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s

w . 

The KNN regression approach is also suffered from the boundary effects (Rahvar and 

Ardakani, 2011). Local polynomial regression, hereinafter LPR, has good performance 

on the boundary (Hastie and Loader, 1993) and is superior to all other linear smoothers 

in a minimax sense (Cheng et al., 1997; Avery, 2013). The LPR estimates depends on 

choice of weighting function  K , the size of neighborhood  b , and the order of 

polynomial  p  which is the order of Taylor’s approximation. The LPR estimator of the 

error variance function can be written as 

          
2

2. 2

22 ,
ˆ ˆˆˆ ln tLPR

ijk ijkijk ijk ijb b ijkijk
ijk s ijk s

y uK K


 

      x x x xx βx   (5.13) 

where b  controls the size of the neighborhood around x ,  .bK  controls the weights, 

where   1 .
.bK b K

b

  
  

 
, and K  is the kernel function. A special care is needed for 

extrapolation in LPR method particularly when the non-sample x-values are far from the 

sample x-values. In combining the survey data set with the census data set, the first 

assumption is that the distribution of survey explanatory variables will be similar as that 

of the census explanatory variables in terms of definition or measurement (Tarozzi and 

Deaton, 2009). Thus it can be assumed that the non-sample x-values can be distributed as 

the sample x-values. If frequency distribution of x is uniform in the sample data set, 

non-parametric method will provide the better estimates of error variances. In this study, 

local linear regression (LPR with first order polynomial) is used to examine the 

performance of  
2.

2 ,
ˆ LPR

ijk
  estimator. 
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5.3.3.2 Stratified Method of Moments (STR) Approach 

We propose a stratification-based method of moments (MOM) approach to estimate the 

level-one error variances based on the conditional distribution of the level-one squared 

residuals of sample observations given the marginal distribution of predicted values. The 

scatterplot of squared residuals  2ˆ
ijk  against the predicted values   2

ˆT

ijkx β  is expected to 

show the existence of heteroskedasticity. If heteroskedasticity exists, the scatterplot 

should have some specific pattern. On the basis of shape, the whole sample can be split 

into H  strata so that the distribution of squared residuals given the predicted values 

looks HM within a stratum. In such situation, mean of the squared residuals 
1 2ˆ

h ijk

ijk h

n



  

belong to a stratum h   1,...,h H  will be considered as the error variance  
 2

2 ,
ˆ h

ijk
  for 

the 
thh  stratum. To make the estimates stable, the residual variances will be calculated 

through an iterative GLS (IGLS) method where the initial estimates of cluster variance 

component 
 
 2

2
ˆ ht

u
  and HH error variances are used as below. 

Suppose the sample of size n  is divided into H  strata of size hn  based on the quantiles 

of the sample predicted values 
 2

ˆT

ijkx β , ijk s  and then the level-one error variance for 

the 
thh  stratum is calculated as  

 2 1 2

2 ,
ˆˆ h

h ijkijk
ijk h

n




   . This estimate is considered as the 

level-one error variance for all individuals belong to that stratum. Then the estimated 

cluster variance component 
 
 2

2
ˆ ht

u
  and the sample residual variances  

 2

2 ,
ˆ h

ijk
  are 

employed to attain the GLS estimates of regression parameters, 
 

*

2
ˆ gls
β . The corresponding 

new predicted values and HH-level conditional residuals are used again to estimate the 

new error variances by creating new H  strata. The procedure will be iterated until the 

convergence of the strata error variances. After obtaining the ultimate strata with their 
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corresponding error variances, population units are allocated to the strata according to 

their predicted values calculated as 
 2

ˆT gls

ijkx β , ijk U where 
 2

ˆ gls
β  will be the GLS estimates 

at the final iteration. The HH-level error variances for all population units denoted as 

 
 2

2 ,
ˆ STR

ijk
 , ijk U  will be their corresponding estimated stratum error variance. 

The advantage of this procedure is its simplicity and no parameter is required to 

capturing heteroskedasticity. It is expected that the procedure will not be affected due to 

model misspecification and outliers. A proper method of stratification can be employed 

to determine the number of strata. A proper scrutiny of the scatterplot may help to take 

decision on stratification where finer stratification is required. If it is observed that the 

conditional distribution of squared residuals given predicted values are skewed, a finer 

stratification can be considered in the non-skewed region where the most observations 

are. If proper stratification is made, the method might provide automatically ELL-type 

estimates which are based on the delta method. 

 

5.3.4 The CD Estimator: Smearing Approach (CDSM) 

The model (5.8) with HT level-one random errors can be rewritten as 

  
 

     2 2 ,
 ;  0,1

htT
ijkijk ijk ij ijk ijkijk

y u N


     xx β   (5.14) 

where ijk  is the normalized error. The main difference from the procedure described in 

the section 5.2.3 is the estimation of level-one error variances  
2

2 ,ijk
  and their 

application in the CD approach. With the HT error variances, the estimator of the 

distribution function G will be 

   1ˆ ˆ ijk

ijk s

G n I



     , with 
 

 

       
2

2 , 2 ,

ˆ
ˆ

ˆ ˆ

gls htT

ijk ijk ij ijk

ijk

ijk ijkijk ijk

y u

 

  
  

 

x β

x x
. 
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And the final CD estimator of cluster-specific distribution function is then 

       11

1 1

ˆ
s c

ij ij

C n
ch

jk ijkij ij
ijk s ijk r c h

y tI n I y tF Nt


   

 
    

 
     (5.15) 

with 
 

 
 

   2 2 ,
ˆ ˆch gls htT

ijkijk ijk ij ch ijk
xy u


    x β . And hence the estimator of area-specific 

distribution function will be 

                  1 1

1 1

ˆ ˆ
i i s c

ij ij

C C C n
chCD

i ij ij ijk ijk

j j s r c h

F t F t N I y t n I y t 

 

  
      

   
       (5.16) 

As per section 5.2.3 a NPB procedure is required to conduct for estimating the ultimate 

area-specific distribution. The steps can be summarized as follows: Step 1: Fit the 

cluster-specific model (5.14) to the survey data and then obtain 
 

 
2

ˆ gls ht
β ,  

  2
ˆˆ gls ht

v β , 
 
 2

2
ˆ ht

u
 , 

and then HH-level error variances  
2

2 ,
ˆ

ijk
  for both sample and non-sample HHs using 

any non-parametric method; Step 2: calculate the level-specific residuals as 

1

1

jn

ij ij jk

k

u n e



   and jk jk ije u    where 
 

 
2

ˆ gls htT

jk jk jke y x β  and then obtain the 

standardized level-one residuals as 
 2 ,

ˆ
ijk ijk ijk
    ; Step 3: randomly draw 

*

iju  from iju

, ij s  via SRSWR, calculate 
*ˆ

ijF  using the estimator (5.15) and then aggregated 
*ˆ

ijF  to 

the level of interest as (5.16). Step 3 is repeated for B  times to obtain the ultimate 

parameters with their EMSEs denoted as ˆ CDSM

iF  and  ˆ CDSM

i
mse F  respectively as (5.7). 

As in section 5.2.3, the estimated sample residuals are also required to scaling to free 

from the overestimation of the estimated variance components. There is no question 

about scaling the cluster-level residuals as    
1/2

1 2

2
ˆ 1ij ij s iju

ij

u u C u



 
   

 
 , however 

scaling the HH-level residuals in such situation is an important issue. Since there is no 
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specific variance component for the HT level-one errors, a constant variance should be 

used so that the overall variation due to scaling remains same in the bootstrap procedure. 

A constant variance can estimated by  
 

   
 2 22

2 2 2
ˆ ˆ ˆht ht

e u
     (similar to the direct estimation 

approach of ELL method) where  
2

2
ˆ

e
  is the overall MSE estimated via LS method at the 

initial stage.  

 

5.3.5 The CD Estimator: Monte Carlo Simulation Approach (CDMC) 

The MC simulation based CD approach (CDMC) is similar to the semi-parametric 

approach of ELL method. The basic difference is the estimation of level-one residual 

variances and their application in the bootstrap procedure. In ELL method, level-one 

residual variances are generated via the generated *
α  parameters in each bootstrap, while 

in CDMC approach the error variances are remained fixed over the bootstraps. In the 

CDMC approach, the level specific errors 
*

iju  and 
*

ij  are generated for all census units 

from the corresponding GLS sample residuals  ,  iju ij s  and  ,  ijk ijk s   via 

SRSWR. The level-one normalized errors 
*

ij  are multiplied by their corresponding 

estimated variances  
2.

2 ,
ˆ STR

ijk
 , ijk U  to obtain the ultimate generated errors as 

 
* *

2 ,
ˆ STR

ijk ijk ijk
    .  The generated bootstrap population values are then aggregated to obtain 

the area-specific target parameters. This MC simulation is repeated for B  times to 

calculate the target parameter of interest with the MSE denoted as ˆ CDMC

iF  and 

 ˆ CDMC

i
mse F  respectively. The cluster- and HH-level residuals are also required to scale 

by the corresponding variance components discussed in section 5.3.4. The CD-type 

estimators with scaled residuals are denoted as “SCDMC” and “SCDSM”. 
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5.4 Numerical Evaluations 

A number of model-based simulation studies have been conducted to evaluate the 

performances of the ELL and CD-type estimators for small area distribution functions 

and FGT poverty indicators. The area-specific distribution functions are calculated at 

10
th

, 25
th

, 50
th

, 75
th

 and 90
th

 quantiles, while the poverty indicators are estimated at the 

lower two quantiles of income distribution as poverty lines. The performances of the 

estimators are compared by calculating relative bias (RB), relative root mean squared 

error (RRMSE), and bootstrap coverage rate (BCR) of nominal 95% confidence 

intervals. The performance measures are defined as follows: 

   
 

 
 

 
  

1

1 1

1 1
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i q i q i q i q
r r
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 
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   
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   
 

 
 

 
  

1
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1 1

1 1

ˆ ,
R R

r r r

i q i q i q i q
r r
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

 

 

 
  
 

   and 

   
 

 
 

 
  ,0.025 ,0.975

1

1 ˆ ˆ
R

r r r

i q i q i q i q
r

BCR I F F F
R 

   . 

Here R  denotes the number of simulations, 
 
 r

i q
F  denotes the true value of the distribution 

function at thq  quantile of y  for area i  in simulation r , 
 
 ˆ r

i q
F  denotes the corresponding 

estimate, 
 
 

,0.025
ˆ r

i q
F  and 

 
 

,0.975
ˆ r

i q
F  indicate the lower and upper limit of 95% bootstrap 

confidence interval of 
 
 r

i q
F . 

In the model-based simulations, two types of models are considered to generate the 

population values of Y . The first simulation referred as Type-I is based on a linear 

2-level model and the second one referred as Type-II is based on a log-normal 2-level 

model. In both type of simulations, the finite population is assumed to have D =50 small 
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domains each with iC =10 clusters and number of HHs per cluster ijN  randomly drawn 

from a uniform distribution on [100,120] which lead to area sizes iN  within the range 

[1000,1200] HHs. 

In Type-I simulations, the 2-level linear model is 500 1.5ijk ijk ij ijky x u     where 

 2~ 20ijkx  ,  ~ 0,23.5iju N , 
  2

2 ,
~ 0,ijk ijk

N


  , 1,...,i D , 1,..., ij C  and 

1,..., ijk N . Five different scenarios have been considered based on the distribution of 

HH-level errors  ijk  under Type-I simulations. In the first scenario, ijk  are assumed to 

have homoscedastic variance as 
   2

12
94.05ijkx


     which corresponds to an 

intra-cluster correlation of  23.5 23.5 94.05 0.20  . In second scenario the error 

variances are assumed to have mild heteroskedasticity as    
2

0.25*

2 90 0.75 ijkx

ijkx e   , 

while in third scenario strong heteroskedasticity as   2

3 90 0.5 ijk ijkx x   . In fourth and 

fifth scenarios, model misspecification situations are created by ignoring an explanatory 

variable in the sampling procedure that characterizes the heteroskedasticity of HHs in 

each cluster. It is assumed here that each cluster consists of two types of households (say 

literate and illiterate HH head; rich and poor; Muslim and Non-Muslim; slum and 

non-slum dwellings) with different error variances. A new heteroskedasticity function is 

then assumed as          4 2 3, 0 1ijk ijk ijk ijk ijk ijkx z x I z x I z       where the 

proportion of HHs with 0ijkz   in a cluster is assumed to vary uniformly on [20%, 

40%]. In fourth scenario the HHs are randomly selected without considering the 

grouping variable, while in fifth scenario the HHs are selected randomly only from the 

large group with 1ijkz   and hence the sample becomes imbalanced. In both the cases, 
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the true populations are misspecified due to ignorance of the grouping variable in fitting 

the regression model. 

In Type-II simulations, the response values are generated from a log-normal model as 

  1 2log 6 0.5 0.55ijk ijk ijk ij ijky x x u       to see the performances of ELL and CD-type 

estimators for the FGT poverty indicators at the first two quantiles of the overall 

distribution of  exp ijky  as the poverty lines. Here two explanatory variables are 

assumed to follow a bivariate normal distribution with mean vector  
/

0.50  0.75 and 

variance-covariance matrix    
/ /

1.50  0.10 0.10  0.95   
 

. Similar to Type-I 

simulation, cluster-level random errors are assumed HM with 
 

2

2
0.05

u
   and different 

HT functions are assumed for generating HH-level errors to create five different 

scenarios. The HT functions are  1 0.20ijkx   in first scenario, 

   2

2 0.19 0.005exp 0.05 ( )ijkijk g xx   a monotone increasing function with 

  1 26 0.5 0.55ijk ijk ijkg x x x    in second scenario, and 

    
2

3 0.20 0.015 ijkijkx s d g xt    a non-monotone function of  ijkg x  in the third 

scenario where the HHs with higher and lower values of  ijkxg  have higher variances 

compared to the intermediate values. The fourth and fifth scenarios are created in the 

similar manner of Type-I simulation. 

In each simulation process, a sample is randomly drawn via two stages: at first 2 clusters 

are randomly selected from each small area and then HHs are drawn randomly from the 

selected clusters. Sample cluster sizes ijn  are also randomly drawn from a uniform 

distribution on [10, 20]. In the simulation process population  55068N   and sample 
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 1479n   sizes are retained fixed after first generation of the population structure. The 

simulation process is iterated 500R   times each with 500B   bootstraps to estimate 

small area distribution functions and FGT indicators using both ELL and CD-type 

estimators. 

 

5.5 Simulation Results 

The estimators of HM cluster variance component  
2

2
ˆ

u
  and  

 2

2
ˆ ht

u
  provide very close 

estimates in all the scenarios of Type-I and Type-II simulations (appendix Figure A5.1). 

However, the variations of their distributions significantly increase with the 

heteroskedasticity of HH-level errors in Type-I simulations. In case of misspecified 

scenarios 4 and 5 under Type-I simulation both the estimators provide bias estimates. 

Though the simulation results indicate either estimator can be used for cluster-level 

variance component,  
2

2
ˆ

u
  is used only in HM cases. Under HT working model, the 

HH-level error variances are estimated following the ELL parametric approach, the 

non-parametric local linear regression (LPR) approach and the stratification method of 

moments (STR). The estimated HH-level error variances against the true error variances 

for the sample individuals are plotted in appendix Figure A5.2 (only for Scenario 3 

under both types of simulations), which shows that the ELL estimator performs better 

than the others for perfectly specified and monotone heteroskedasticity function but may 

fail in the non-monotone situations. The STR estimator provides more stable estimates 

than the LPR estimator and so only the STR estimates of HH-specific error variances are 

used in the bootstrap procedure. The results are based on five estimators – PELL, 

SPELL, CDMC (with naïve residuals), CDSM (with naïve residuals), and SCDMC (with 

scaled residuals). The SPELL is actually NPELL for the purely HM cases. 
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5.5.1 Type-I Simulation 

The average values of RB (%), RRMSE (%), and BCR over small areas for all the 

estimators of distribution functions at five quantiles are shown in Table 5.2 under the 

considered five scenarios. When the level-one errors are HM, no considerable difference 

is observed among the estimators in terms of RB, RRMSE and BCR. However, the 

estimator with scaled residuals SCDMC at lower quantiles and NPELL estimator at 

upper quantiles are providing slightly lower RB under homoskedasticity. The RB 

increases with the complexity of the heteroskedasticity in both perfectly and imperfectly 

specified scenarios. It is observed that the SCDMC estimator performs better 

comparatively than the other estimators in terms of RB for the all HT scenarios 

particularly at the lower quantiles. In the HT balanced scenarios (Scenarios 2-4), the 

estimators based on NPB procedure either raw or scaled residuals are likely to 

overestimate at lower quantiles and underestimate at upper quantiles. In the misspecified 

and imbalanced scenario 5 all the estimators behave in the similar trend - highly 

overestimate at the lower quantile and underestimate at the upper quantiles with higher 

RRMSE and lower BCR. However, the SCDMC and the PELL estimators perform better 

compared to others in terms of RB and RRMSE under Scenario 5. In terms of BCR, the 

estimators with raw residuals show slightly over coverage rate which is obviously for the 

higher bootstrap variations than the estimated residual variances. 

The area-specific true bias for the distribution function estimators shown in Figure 5.1 

reveals similar results observed from the area averaged RB. The CD estimator with 

scaled residuals (SCDMC) has shown better performances than the others particularly at 

lower quantiles under all the scenarios. The SPELL estimator shows slightly higher 

area-specific bias than the CD estimators with raw residuals. The differences among the 

estimators’ performances noticeably increase with the complexity of heteroskedasticity 
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at all quantiles. In the perfectly specified scenarios, no obvious trend of bias is observed 

with the area-specific population size (here number of HHs) but in the misspecified 

cases, the observed bias shows an upward trend at lower quantiles and a downward trend 

at upper quantiles. It is noted that though the bootstrap procedures in CDMC and CDSM 

are different, they provide almost same area-specific bias but CDMC produces higher 

BCR than CDSM which may be due to smearing approach. 

 

5.5.2 Type-II Simulation 

The area averaged RBs for the FGT poverty estimators shown in Table 5.3 clearly show 

that the RB increases with the degree of FGT indicators in case of all scenarios. Under 

homoskedasticity, the NPELL estimator produces the lowest RB followed by the 

SCDMC estimators. While under heteroskedasticity, the SCDMC estimator 

outperformed all the estimators particularly at the upper poverty line (25
th

 quantile) for 

all the FGT indicators in the balanced scenarios. In the scenarios with monotone and 

non-monotone HT residual variances under balanced sample (Scenarios 2-4), the CDMC 

and CDSM are also performing comparatively better than the traditional SPELL 

estimator. In the misspecified and imbalanced situation it is very tough to say which one 

is showing better performances that actually happen in reality. The performance of the 

considered estimators in terms of RB also varies with the degree of FGT indicators. 

The area averaged RMSEs given in Table 5.4 indicate that relative stability of the 

estimators increases with the poverty line for all poverty indicators but decreases with 

the order of FGT poverty indicators (from HCR to PS). No significant differences among 

the estimators are observed in term of RRMSE; however area averaged BCRs shown in 

Table 5.5 display some slight differences. The estimators with raw residuals show 

slightly higher coverage than the PELL and SCDMC estimators in all the scenarios for 
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all poverty indicators at both poverty lines as observed in case of distribution functions. 

Similar to Type-I simulations, the smearing estimator with naïve residuals (CDSM) 

shows slightly lower BCR compared to SPELL and CDMC estimators with raw 

residuals. The SCDMC and PELL are showing almost similar BCRs. The slightly higher 

bias estimate by SPELL, CDMC and CDSM estimators may another reason of such 

slightly higher BCRs. 

The area-specific bias for the estimators of poverty indicators at the two poverty lines are 

shown in Figure 5.2 and Figure 5.3. In the pure HM scenario 1, all the estimators are 

performing in the similar manner for all the poverty indicators at both poverty lines, 

however NPELL shows slightly lower bias. The proposed CD-based estimators with 

scaled residuals (SCDMC) outperforms than the other estimators for the scenarios with 

both monotone and non-monotone heteroskedasticity with balanced sample. The 

performance of SCDMC estimator is found far better than the others for the upper 

poverty line compared to the lower poverty line. Also the CDMC and CDSM estimators 

perform better than the SPELL estimator under the HT scenarios for all poverty 

indicators at upper poverty line. However, the performances of the estimators vary at the 

lower poverty line particularly for PG and PS indicators. 

Both PELL and SPELL estimators show the trend of upward to downward bias with the 

degree of FGT indicators in the scenarios with non-monotone heteroskedasticity 

(Scenarios 3-5). These results may be due to failure of capturing the non-monotone 

behaviour of heteroskedasticity function. However, all the CD-based estimators show 

similar trend of bias for all the poverty indicators. The performances of the estimators in 

the misspecified and imbalanced scenario of Type-II simulation is not as much worse as 

Type-I simulation may be due to comparatively mild heteroskedasticity of Type-II 

simulation and the unbiased estimate of 
 
 2

2

ht

u
  as well. 
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5.6 Concluding Remarks 

This chapter develops a non-parametric estimation procedure of area-specific distribution 

function and poverty indicators for a finite population defined by a 2-level 

superpopulation model with unknown HT variances of level-one errors.  The estimation 

procedure is based on two important steps to obtain the ultimate small area estimates: (i) 

the estimation of level-one error variances following a non-parametric approach and then 

(ii) the simulation of smearing based CD estimates of cluster-specific parameter at the 

target quantile. The proposed method shows some evidence that a non-parametric 

estimation procedure instead of modelling a complex parametric logistic function can be 

utilized to estimate the HH-level error variances after the estimation of HM cluster-level 

variance component. Moreover, the proposed stratification-based MOM (STR) does not 

require any parameter instead of determining the number of strata. It is also evident that 

the ELL method may fail in the situation where the heteroskedasticity model is very 

much difficult to develop based on the sample information particularly when potential 

explanatory variables are not available either in survey or census dataset. In such 

situations, non-parametric approach may be a better way to handle the situation at least 

to save the time to search the potential explanators of heteroskedasticity. 

Simulation studies based on linear and log-normal super-population models indicate that 

the proposed CD-type estimators behave slightly better than the ELL-type estimators 

under balanced and perfectly specified cases, even much better in the situations with 

non-monotone HH-level heteroskedasticity. The simulation studies with misspecified but 

balanced scenarios also suggest that both ELL and CD-type estimators may robust to 

model-misspecification if the samples are found balanced to heteroskedasticity. The 

simulation result also confirms the necessity of scaling the raw residuals in the bootstrap 

procedure. The SPELL estimator may behave similar to scaled CD estimators if scaled 
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residuals are utilized in the bootstrap procedure. Thus the CD-type estimators with scaled 

residuals would be a good alternative to the ELL-type estimators in either case of HM or 

HT level-one errors. The comparison study also confirms that scaling of the raw 

residuals in ELL and CD-type estimation methods might be a safe way to reduce the 

relative bias and increase the stability under both perfectly specified and misspecified 

scenarios with either balanced or imbalanced sample. Similar to the ELL methodology, 

the proposed bootstrap-based CD-type estimation method can be easily extended for the 

two-fold superpopulation model with level-one HT random errors. In Chapter Six, 

applications of two-fold ELL and CD-based estimation methods have been discussed. 



134 
 

Table 5.2: Area averages of relative bias (RB, %), relative root mean squared error (RRMSE, %) and bootstrap coverage rate (BCR, %) of nominal 

95% confidence intervals of ELL and CD-type estimators for distribution functions (DFs) by scenarios of Type-I simulation 

Hetero- 

skedasticity 
q 

RB RRMSE BCR 

PELL SPELL CDMC SCDMC CDSM PELL SPELL CDMC SCDMC CDSM PELL SPELL CDMC SCDMC CDSM 

None
‡ 

0.10 0.429 0.427 0.464 0.313 0.500 23.857 23.903 23.861 23.864 23.858 94.69 94.42 96.82 94.47 95.86 

0.25 0.152 0.177 0.147 0.093 0.172 15.762 15.800 15.768 15.769 15.763 94.61 94.52 96.76 94.46 96.36 

0.50 -0.030 0.006 -0.052 -0.046 -0.036 9.344 9.362 9.347 9.348 9.345 94.52 94.38 96.76 94.50 96.45 

0.75 -0.069 -0.029 -0.077 -0.055 -0.068 4.864 4.872 4.865 4.866 4.866 94.59 94.46 96.84 94.58 96.35 

0.90 -0.053 -0.024 -0.052 -0.036 -0.048 2.286 2.291 2.288 2.288 2.289 94.70 94.39 96.66 94.51 95.65 

Mild 

0.10 -0.583 0.799 0.573 0.273 0.587 24.126 24.127 24.058 24.062 24.053 95.03 96.94 96.67 94.32 95.85 

0.25 0.028 0.495 0.144 0.067 0.153 15.855 15.897 15.856 15.867 15.854 94.74 96.89 96.72 94.40 96.34 

0.50 0.091 0.077 -0.064 -0.029 -0.060 9.382 9.401 9.373 9.376 9.370 94.65 96.85 96.85 94.57 96.41 

0.75 -0.004 -0.126 -0.100 -0.053 -0.098 4.866 4.869 4.865 4.863 4.861 94.62 96.80 96.68 94.34 96.25 

0.90 -0.035 -0.120 -0.089 -0.067 -0.088 2.274 2.272 2.272 2.270 2.270 94.79 96.78 96.57 94.34 95.58 

Strong 

0.10 -2.057 3.569 3.571 2.053 3.583 20.323 20.521 20.456 20.282 20.463 94.52 98.53 98.28 93.58 97.77 

0.25 -1.368 0.317 0.248 0.106 0.256 12.988 12.958 12.919 12.939 12.923 94.36 98.59 98.50 93.87 98.20 

0.50 -0.463 -0.762 -0.832 -0.486 -0.828 7.341 7.397 7.371 7.346 7.372 94.63 98.54 98.58 93.97 98.32 

0.75 0.198 -0.380 -0.494 -0.289 -0.494 3.628 3.643 3.651 3.627 3.653 94.85 98.60 98.52 93.97 98.06 

0.90 0.309 -0.001 -0.108 -0.100 -0.108 1.700 1.665 1.676 1.675 1.678 94.83 98.47 98.10 94.20 96.96 

Misspecified  

Balanced 

0.10 -6.014 1.828 1.521 -0.122 1.496 21.216 20.376 20.373 20.344 20.388 94.21 98.16 98.03 93.68 97.39 

0.25 -1.246 0.106 0.689 0.252 0.672 13.493 13.417 13.437 13.437 13.440 94.76 98.22 98.25 94.44 97.89 

0.50 -0.205 -0.547 0.081 0.448 0.075 7.834 7.852 7.821 7.839 7.820 94.54 98.09 98.20 94.21 97.90 

0.75 -0.087 -0.679 -0.540 -0.275 -0.542 3.928 3.976 3.950 3.921 3.948 94.73 98.02 97.90 93.84 97.40 

0.90 0.323 -0.241 -0.426 -0.395 -0.426 1.824 1.792 1.829 1.819 1.827 94.72 98.07 97.48 93.27 95.90 

Misspecified  

Imbalanced 

0.10 19.170 24.719 24.810 16.648 24.818 28.205 32.222 32.261 26.523 32.255 85.66 91.08 90.20 86.34 88.01 

0.25 9.353 10.725 10.721 8.504 10.720 16.373 17.207 17.188 15.937 17.179 87.54 94.58 94.34 88.31 93.50 

0.50 1.381 1.041 0.985 1.357 0.984 7.989 7.952 7.935 8.015 7.925 92.29 97.69 97.57 92.20 97.30 

0.75 -2.015 -2.600 -2.723 -1.905 -2.724 4.459 4.747 4.819 4.418 4.817 89.10 94.98 94.26 88.65 93.10 

0.90 -1.933 -2.306 -2.427 -1.863 -2.428 2.659 2.934 3.033 2.602 3.032 81.15 87.29 84.62 79.84 79.40 

‡ SPELL is NPELL under homoscedasticity 
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Table 5.3: Area averages of relative bias (RB, %) of ELL and CD-type estimators for FGT poverty indicators by scenarios of Type-II simulation 

Hetero- 

skedasticity 

Poverty 

Line 

Poverty Incidence (HCR)
2
 Poverty Gap (PG) Poverty Severity (PS) 

PELL SPELL CDMC SCDMC CDSM PELL SPELL CDMC SCDMC CDSM PELL SPELL CDMC SCDMC CDSM 

None
‡ 0.10 0.201 0.070 0.184 0.118 0.180 0.468 0.297 0.451 0.353 0.449 0.672 0.469 0.654 0.530 0.654 

0.25 0.026 -0.048 0.011 -0.010 0.001 0.148 0.040 0.133 0.084 0.122 0.269 0.134 0.253 0.184 0.242 

Monotone 
0.10 0.061 0.620 0.365 0.172 0.361 -0.169 0.734 0.699 0.364 0.693 -0.422 0.754 0.983 0.534 0.974 

0.25 0.137 0.286 0.064 0.027 0.056 0.075 0.480 0.267 0.132 0.255 -0.029 0.583 0.440 0.223 0.426 

Non-

monotone 

0.10 1.426 2.019 0.790 0.615 0.788 -0.277 0.603 0.994 0.900 0.992 -2.262 -1.166 0.697 0.687 0.696 

0.25 1.110 1.319 0.185 0.068 0.190 1.053 1.497 0.483 0.342 0.490 0.518 1.146 0.651 0.525 0.660 

Misspecified 

Balanced 

0.10 1.208 1.879 0.787 0.632 0.787 -0.072 0.923 1.039 0.926 1.040 -1.555 -0.312 0.947 0.883 0.947 

0.25 0.936 1.189 0.250 0.166 0.266 0.913 1.425 0.536 0.418 0.558 0.523 1.238 0.718 0.599 0.745 

Misspecified 

Imbalanced 

0.10 1.133 1.806 0.560 0.379 0.553 0.200 1.215 1.722 1.633 1.709 -0.958 0.321 2.447 2.452 2.429 

0.25 0.720 0.950 -0.256 -0.376 -0.249 0.806 1.309 0.265 0.122 0.268 0.565 1.284 0.816 0.691 0.817 

Table 5.4: Area averages of relative root mean squared error (RRMSE, %) of ELL and CD-type estimators for FGT poverty indicators by scenarios 

of Type-II simulation  

Hetero- 

skedasticity 

Poverty 

Line 

Poverty Incidence (HCR) Poverty Gap (PG) Poverty Severity (PS) 

PELL SPELL CDMC SCDMC CDSM PELL SPELL CDMC SCDMC CDSM PELL SPELL CDMC SCDMC CDSM 

None
‡ 0.10 16.077 16.066 16.077 16.063 16.078 18.853 18.826 18.846 18.828 18.848 21.619 21.586 21.611 21.590 21.612 

0.25 10.882 10.884 10.885 10.877 10.884 13.443 13.437 13.444 13.431 13.441 15.545 15.530 15.542 15.527 15.539 

Monotone 
0.10 16.209 16.185 16.223 16.216 16.208 19.143 19.079 19.073 19.059 19.059 22.104 22.006 21.964 21.956 21.950 

0.25 10.904 10.911 10.914 10.911 10.913 13.509 13.500 13.500 13.491 13.500 15.684 15.654 15.648 15.635 15.647 

Non-

monotone 

0.10 16.067 16.111 16.010 15.999 16.002 18.624 18.573 18.564 18.550 18.553 21.434 21.260 21.217 21.214 21.203 

0.25 10.994 11.027 10.956 10.957 10.948 13.430 13.465 13.385 13.374 13.372 15.424 15.430 15.384 15.369 15.369 

Misspecified 

Balanced 

0.10 16.162 16.244 16.098 16.091 16.101 18.782 18.829 18.738 18.737 18.741 21.551 21.533 21.476 21.496 21.478 

0.25 11.009 11.052 10.978 10.976 10.979 13.515 13.584 13.470 13.464 13.473 15.551 15.618 15.513 15.506 15.515 

Misspecified 

Imbalanced 

0.10 16.069 16.121 16.018 16.012 16.015 18.752 18.767 18.757 18.748 18.754 21.557 21.501 21.629 21.645 21.625 

0.25 10.967 10.992 10.970 10.974 10.969 13.450 13.488 13.421 13.416 13.422 15.493 15.525 15.467 15.456 15.469 
‡ SPELL is NPELL under homoscedasticity 
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Table 5.5: Area averages of bootstrap coverage rate (BCR, %) of nominal 95% confidence intervals of ELL and CD-type estimators for FGT 

poverty indicators by scenarios of Type-II simulation  

Hetero- 

skedasticity 

Poverty 

Line 

Poverty Incidence (HCR) Poverty Gap (PG) Poverty Severity (PS) 

PELL SPELL CDMC SCDMC CDSM PELL SPELL CDMC SCDMC CDSM PELL SPELL CDMC SCDMC CDSM 

None
‡ 

0.10 94.93 94.85 96.84 94.79 95.31 94.81 94.67 96.60 94.71 95.59 94.88 94.62 96.49 94.64 95.01 

0.25 95.00 94.90 96.82 94.96 96.15 94.99 94.86 96.80 94.83 96.50 94.96 94.70 96.71 94.75 96.29 

Monotone 
0.10 94.91 96.84 96.84 94.72 95.38 94.88 96.88 96.66 94.62 95.49 94.91 96.78 96.51 94.45 94.93 

0.25 95.01 97.02 96.95 94.70 96.21 94.88 97.00 96.95 94.68 96.57 94.87 96.95 96.85 94.62 96.32 

Non-monotone 
0.10 95.08 96.81 96.61 94.57 95.19 95.10 96.98 96.58 94.32 95.26 95.00 96.76 96.38 94.41 94.59 

0.25 94.76 96.66 96.88 94.81 96.26 94.86 96.90 96.87 94.60 96.34 95.02 97.00 96.76 94.44 96.05 

Misspecified 

Balanced 

0.10 94.81 96.74 96.66 94.36 95.09 94.90 96.64 96.40 94.25 95.11 94.82 96.54 96.24 94.10 94.43 

0.25 94.51 96.49 96.64 94.51 95.91 94.53 96.61 96.73 94.31 96.24 94.74 96.62 96.64 94.18 96.00 

Misspecified 

Imbalanced 

0.10 95.01 96.68 96.39 94.35 94.91 95.06 96.73 96.40 94.18 95.13 94.99 96.78 96.26 94.17 94.26 

0.25 94.67 96.61 96.72 94.54 95.98 94.75 96.77 96.68 94.37 96.18 94.77 96.76 96.56 94.34 95.96 

‡ SPELL is NPELL under homoscedasticity
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Figure 5.1: Area-specific bias (smooth line) of ELL and CD-type estimators of 

distribution function (DFs) at different percentiles by scenarios of Type-I 

simulation 
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Figure 5.2: Area-specific bias (smooth line) of ELL and CD-type estimators of FGT 

poverty indicators at lower poverty line corresponds to the 10
th

 percentile by 

scenarios of Type-II simulation 
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Figure 5.3: Area-specific bias (smooth line) of ELL and CD-type estimators of FGT 

poverty indicators at upper poverty line corresponds to the 25
th

 percentile by 

scenarios of Type-II simulation 
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Figure A5.1: Distribution of estimated homoskedastic level-two variance component 

under the scenarios of Type-I and Type-II simulations   

 

Figure A5.2: Heteroskedastic level-one error variances estimated by ELL, local linear 

regression (LPR), and stratified method of moments (STR) estimators against 

true variances under Scenario 3 of Type-I and Type-II simulations 
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CHAPTER SIX 

6. Extensions to ELL Method and Application to Bangladesh Poverty 

Mapping 

 

 

 

The ELL method (Elbers, Lanjouw and Lanjouw, 2003) has been criticized because of 

the risk of underestimating the mean squared error (MSE) of the ELL-based poverty 

estimates in situations where its area homogeneity assumption is violated. Its use of a 

complex parametric approach to modeling heteroskedasticity of household-level errors 

represents another area of concern. A robust ELL-based MSE estimation methodology 

that assumes unit-level homoskedasticity, and a semi-parametric approach to modelling 

unit-level heteroskedasticity have been proposed in Chapter Four and Chapter Five 

respectively. A non-parametric poverty estimation method based on the same assumption 

of area homogeneity as the ELL approach has also been developed in Chapter Five based 

on the smearing approach of Chambers and Dunstan (1986), hereafter the CD method. 

These ideas are combined in this Chapter, allowing us to extend the ELL and CD 

methods in order to resolve the issue of underestimating the MSE poverty estimates 

under heteroskedasticity. In order to evaluate the applicability and flexibility of these 

extensions in a realistic data scenario, we apply them to data used in a recent Bangladesh 

poverty mapping study. 
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The chapter is organized as follows: Section 6.1 briefly summarizes the Bangladesh 

poverty mapping study and points out some practical issues relating to the available data 

sources; Section 6.2 describes the ELL and CD estimation methods with their 

modifications for capturing the potential area variability under the assumption of both 

homoskedastic (HM) and heteroskedastic (HT) household-level errors; Section 6.3 

demonstrates how the proposed methodologies are implemented in the Bangladesh 

datasets; Section 6.4 explains the findings, and Section 6.5 concludes the chapter. 

 

6.1 Background 

6.1.1 Poverty Mapping in Bangladesh 

Bangladesh is the tenth most densely populated country (1108 per square km) in the 

world and one of the poorest where poverty head count rate (HCR) at $1.90 a day is near 

about 45% (World Bank, 2015). To monitor the poverty situation, the poverty rates have 

been estimating at national and divisional levels using Household Income and 

Expenditure Survey since 1983-84 based on the food consumption expenditure. To 

unveil the actual variation in poverty incidence (HCR) at local administrative units, 

Bangladesh Bureau of Statistics (BBS) in conjunction with United Nation World Food 

Program (UNWFP) conducted the first poverty mapping study using the Bangladesh 

2001 Population and Housing Census (hereafter referred as 2001 Census) and the 

Bangladesh 2000 Household Income and Expenditure Survey (hereafter referred as 2000 

HIES) datasets (BBS and UNWFP, 2004). Recently poverty map is updated using the 

2005 HIES data (WB, BBS and WFP, 2009).  

Though the national level poverty incidence was about 40.0 percent in 2005 (BBS, 

2011), sub-district level poverty incidence varied from about zero to 55.0 percent (WB, 

BBS and UNWFP, 2009). The ELL method of World Bank has been implemented to 
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obtain the poverty estimates at sub-district level. Both the poverty maps show that the 

areas close to the capital city Dhaka have lower poverty rates but the actual size of poor 

population is large. Comparatively, the sub-districts in the Chittagong Hill Tracks 

(south-eastern part of Bangladesh) have high poverty incidence but the size of population 

is relatively small. On the other hand, the sub-districts in the northern part (known as 

seasonal food insecure area) have large population size as well as higher poverty rates 

(WB, BBS, and  WFP, 2009).  

 

6.1.2 Data Sources for Bangladesh Poverty Mapping 

In the first poverty mapping study of Bangladesh (BBS and UNWFP, 2004), hereafter 

referred as BBS-2004 study, the BBS considered only 5% enumeration areas (EAs) from 

each sub-districts of 2001 Census by systematic sampling instead of using a mammoth 

full census data. The 5% 2001 Census covers 5 divisions, 64 districts (Zila), 507 sub-

districts (Upzila), 12908 enumeration areas (EAs), 1258240 HHs, and 6,156,000 

individuals. The target small domains are the sub-districts which are not considered in 

the survey sampling design. The structures of the full 2001 Census and the 5% 2001 

Census are discussed in Chapter Three.  

The 2000 HIES is used as the survey dataset which covers 295 out of 507 sub-districts. 

The sample is drawn following a standard two-stage stratified sampling design where 

442 EAs (clusters) are drawn from 16 strata at the first stage and 7428 HHs are drawn 

from the selected EAs (10-20 HHs per PSU) at the second stage. It is observed that about 

two-third sampled sub-districts (222 of 295) had single cluster and hence sub-district 

specific sample sizes are very small. The sampling design and the structure of 2000 

HIES data are detailed in Chapter Three. The 2001 Census and 2000 HIES datasets are 

utilized in this Chapter to examine the proposed estimators. 
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6.1.3 Issues Related to Model Selection 

In ELL methodology, the main task is to reduce the overall variation particularly at 

cluster and area levels by incorporating more explanatory variables at different 

hierarchies of the population in the model specification. In the BBS-2004 study,  27 HH 

specific and 3 sub-district specific explanatory variables are considered to fit a two-level 

random effects model considering HH and cluster as levels one and two respectively. 

The between-area variation was ignored may be due to about 75% of the sampled 

sub-districts have single sampled cluster. In this study, an exploration has been made to 

examine the variations due to cluster and sub-district hierarchies by fitting both 2-level 

(2L) and 3-level (3L) models considering sub-district as level-three. It is observed that 

about 20% variations  2 2 2/u e     in the HH expenditure are due to cluster and sub-

district level variations (the row for Set-1 in Table 6.1). The contribution of sub-district 

level variation is found negligible (about 5%) but statistically significant (p-value < 

0.0001). Negligible between-area variation and also lack of sufficient survey data to fit 

an appropriate 3-level model enforce someone to implement the standard 2-level 

model-based ELL method by ignoring the sub-district level random effects. 

Table 6.1: Estimated variance components by method of moments estimator under 

2-level (2L) and 3-level (3L) homoskedastic models for different datasets 

Data Set Model DF 
2ˆ
  2ˆ

u  2ˆ
  % 2 2ˆ ˆ

u e   % 2 2ˆ ˆ
e   MR CR 

p-value 

of LRT 

Set-1: 

 All 

2L 33 0.1132 0.0253 - 18.28 - 59.84 67.18  

3L 34 0.1132 0.0192 0.0062 13.82 4.46 59.97 67.29 <0.00005 

Set-2:  

Multiple 

Clusters 

2L 33 0.1091 0.0267 - 19.67 - 64.17 71.21 - 

3L 34 0.1091 0.0186 0.0082 13.69 6.03 64.50 71.50 0.00010 

Set-3:  

Rural 

Clusters 

2L 27 0.1121 0.0222 - 16.52 - 47.83 56.45 - 

Set-4:  

Urban  

Clusters 

2L 27 0.1143 0.0282 - 19.77 - 63.07 70.37 - 

3L 28 0.1143 0.0215 0.0066 15.12 4.68 63.34 70.60 0.00065 

Note: MR – Marginal R-squared, CR – Conditional R-squared 
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Scrutiny of the 2000 HIES data shown in Table 6.2 suggests that the sampled 

sub-districts with single cluster are mainly from rural parts (197 out of 222 rural 

clusters), while the sub-districts with multiple clusters mainly have urban clusters (183 

out of 220 urban and SMA clusters). To examine whether area variability exits in the 

urban parts of Bangladesh, an investigation has been done by creating a new sample 

dataset (hereinafter, data set-2) considering the sampled sub-districts with multiple 

clusters so that both 2-level and 3-level random effects models can be fitted and tested 

the significance of between-area variability. The row for Set-2 in Table 6.1 confirms the 

statistical significance of the sub-district level random effects in the urban parts of 

Bangladesh. 

Both survey and census datasets suggest that a significant number of sub-districts have 

both urban and rural parts (Table 6.2) and so it is considerable to divide each dataset into 

rural and urban sub-sets, and then check the area variability by residential areas. In the 

rural survey dataset (hereafter set-3), only 35 out of 232 sub-districts have multiple 

clusters, while the number is 71 out of 96 sub-districts in the urban survey dataset 

(hereafter set-4). The row for Set-4 in Table 6.1 also confirms the significance of area 

variability in the urban survey dataset. These investigations stand out some questions 

regarding application of naïve ELL methodology based on a 2-level model which might 

not capture the existing area variability in 2000 HIES data. 

Table 6.2: Distribution of household (HH), cluster, and sub-districts (area) by type of 

residence in 2000 HIES and 2001 Census 

Type of 

Residence 

2001 Census 
2000 HIES 

Overall Single Cluster Multiple Cluster 

HH Cluster Area HH Cluster Area HH Area HH Cluster Area 

Urban 244849 2506 263 2775 208 96 489 25 2286 183 71 

Rural 1013241 10403 455 4653 234 232 3929 197 724 37 35 

Total 1258090 12908 507 7428 442 295 4418 222 3010 220 73 

Note: 1 Census EA has both rural (22) and urban (68) HHs  
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6.1.4 Alternatives to ELL Methodology 

The ELL method is based on the assumption of cluster-heterogeneity rather than 

area-heterogeneity. If the assumption is violated, the method produces approximately 

unbiased poverty estimates but with underestimated mean squared errors (MSEs) that 

produce poor coverage rate of the real poverty estimates (Tarozzi and Deaton, 2009). 

The estimated MSEs help to prioritize the small areas according to their corresponding 

poverty estimates. A small area with underestimated MSE will be less prioritized 

compared to an area with the same poverty estimates with correct MSE. The estimated 

MSE depends on several issues including (i) fitting regression model, (ii) unexplained 

variation in the response variable after accounted for the explanatory variables, (iii) 

estimated variation at higher levels (cluster/area), and (iv) population size of a small 

area. In this chapter, an investigation has been made on the estimated MSEs of the ELL 

poverty estimates under the violation of area homogeneity assumption using the 

Bangladesh datasets. 

In the implementation of ELL methodology to real dataset, HH specific random errors 

are usually considered heteroskedastic (HT) but the cluster random effects are remained 

homoskedastic (HM) due to availability of a few clusters per sampled area in the survey 

data set. The ignorance of heteroskedasticity will lead to biased estimates of distribution 

functions and hence FGT poverty incidences (shown in Chapter Five). In such situation, 

at first the HM cluster-specific variance component is estimated considering 

heteroskedasticity at HH-level, and then a heteroskedasticity model known as “alpha” 

model is developed to estimate the HH-level error variances using the potential 

explanatory variables. A suitable non-parametric approach proposed in Chapter Five 

can also be applied instead of fitting an alpha model to approximate the HH-level error 

variances. 
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In either case of HM or HT level-one errors, a 2-level nested-error regression model is 

fitted in ELL methodology ignoring area-specific random effects. If area-level variation 

remains small but significant after incorporating area-level contextual variables in the 

regression model, the ELL method provides smaller estimated mean squared error 

(MSE) than the expected one and hence shows under coverage of the true poverty 

estimates. The modified ELL (MELL) methodology proposed in Chapter Four shows 

better performances in such practical situation. The MELL method has been developed 

on the assumption of HM level one errors. The proposed MELL method is required to 

modify to account heteroskedasticity of HH-level errors.  

In several poverty mapping studies, the optimistic and the conservative ELL 

methodologies are implemented (Elbers, et al., 2008; World Bank, 2013) considering 

heteroskedasticity at HH-level, however, the methodology is based on the assumption of 

HM random effects for both 2-level and 3-level random effects models. No instruction 

has been made with respect to heteroskedasticity for the optimistic and conservative 

methods. An attempt has been made to implement the MELL methodology under 

heteroskedasticity at HH-level in this chapter. 

The CD-based poverty estimation method developed in Chapter Five has also been 

implemented to the Bangladesh data set as an alternative of the ELL methodology. Since 

the CD-type estimators based on 2-level model also violates the area homogeneity 

assumption of ELL methodology, the CD estimators are also modified and then 

implemented to show how the proposed idea of modification performs in both the ELL 

and CD methods. With these aims, the proposed methodologies developed in Chapter 

Four and Chapter Five are modified by considering heteroskedasticity at HH-level. 
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6.2 The ELL Methodology and Its Extensions 

Suppose  logijk ijky E  and 
ijkm  indicate the logarithm of per capita household 

expenditure  ijkE  and the number of family members of 
thk  household (HH) belonging 

to the thj  cluster in the 
thi  area. Then the area-specific FGT poverty indicators are 

calculated as  
1

1

1

=
iji N

ijk

ijk

k

C

i i ijk
j

t E
m

t
F M I E t










 
 
 

 ; 0,1,2   where 

iji i
NC C

i ijk ij

j k j

M m M    and iC  are respectively total number of individuals and clusters 

in thi  area; 
ijN

ij ijk

k

M m  and ijN  are respectively total number of individuals 

(population) and households (HHs) in thj  cluster of 
thi  area. When HH-specific weights 

are ignored or equal, the FGT indicator becomes  
1

1

1

=
iji N

ijk

k

C

i i ijk
j

t E

t
F N I E t










 
 
 

  

with 
iC

i ij

j

N N .  

In standard ELL methodology a 2-level nested error regression model is considered 

assuming HHs at level-one and clusters at level-two as  

 

     

       

2 2 2

2 2

2 2
0, ,  0, , ~ 0,1

1,2,..., ;  1,2,..., ;  1,2,....,

T T

ijk ijk ij ijk ijk ij ijk

ij ijk ijku

i ij

y u u

u N N N

i D j C k N





  

   

     

  

x β x β

  (6.1) 

where, 
iju  and 

ijk  are identically and independently distributed cluster-specific and 

HH-specific HM random errors. Here the sub-script  l  is used to indicate any parameter 

under a perfectly specified l -level model. If the HH-specific random errors are assumed 

to be HT, the model (6.1) can be expressed as below 
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 
 

 
 

 

 
       

2 2 2 ,

2 2

2 2 ,
0, ;  0,  &  0,1

ht htT T

ijk ijk ij ijk ijk ij ijkijk

ht

ij ijk ijku ijk

y u u

u N N N





  

   

     x β x β
  (6.2) 

where the super-script  ht  stands for heteroskedasticity. Now if an area-specific 

random effect is assumed as an additional one in the above two models, the 

corresponding 3-level models can be expressed as below. 

 
     

          

3 3 3

2 2 2

3 3 3
0, , 0, ,  0, , ~ 0,1

T T

ijk ijk i ij ijk ijk i ij ijk

i ij ijk ijku

y u u

N u N N N



 

    

     

       x β x β

  (6.3) 
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       x β x β
  (6.4) 

Now if the model (6.3) is true but the corresponding 2-level model (6.1) is assumed to 

conduct the standard 2-level ELL, the estimated MSE will underestimate the true mean 

squared error (MSE). The similar problem will be appeared if the HT 2-level model (6.2) 

is used instead of HT 3-level model (6.4) in the implementation of ELL methodology. 

Since the area homogeneity assumption of ELL method is violated in both the situations, 

it is necessary to prevent the sub-sequent consequence of underestimated MSE by 

capturing the level-three variability. The MELL methodology proposed in Chapter Four 

is adapted for accounting the HH-level heteroskedasticity in this chapter.  

Estimation of variance components is one of the most difficult tasks when the HH 

random errors are assumed HT. The estimation methods of HM variance components 

and the HT error variances are discussed at first and then the ELL- and CD- based 

methods are discussed under both 2-level and 3-level working models considering HT 

level-one errors. At last 2-level model-based ELL- and CD-type estimators are modified 

to account for the ignored area variability of a 3-level true model. 
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6.2.1 Variance Component Estimation under Heteroskedasticity 

The variance components are estimated via method of moment (MOM) approach in this 

chapter. The MOM approaches for 2-level and 3-level homoskedastic models are 

explained in Appendix A.1 and Appendix A.2 respectively. Under the 2-level HT model 

(6.2), a moment-based estimator of  
 2

2

ht

u
  can be obtained under the assumption of 

known HH-level error variances as 

 
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2 2
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n   . In the similar manner, the moment-based estimators of  
 2
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  and  
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3

ht


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under (6.3) can be obtained as  
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where 
i iw n n  and 1

.. .
ˆ ˆ
i i ij ij

j s

e n n e



  . The derivations of these estimators are shown in 

Appendices A.6 and A.7 respectively. The negative value of the estimator will be treated 

as zero. 
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The HH-level error variances are estimated by fitting a heteroskedasticity model known 

as “alpha model” in ELL methodology. Moment-based estimates of HH-level random 

errors are utilized to develop a logistic-type regression model to estimate the alpha 

parameters. These estimated alpha parameters are used to obtain the ultimate error 

variances using the estimator 

 
   

 
2

32 ,

ˆˆ (1 )1
ˆ ˆ

21 1

ijk ijkELL ijk

ijk

ijk ijk

AD DAD
v r

D D


  
    

      

 

 where  2ˆ ˆ1.05 maximum ijkA    , ˆexp( )T

ijk ijkD z  , and  ijk ijkz g x . The estimated 

alpha parameters ̂  and the estimated mean squared error  v̂ r  are obtained from the 

fitted alpha model. The procedure is detailed in Chapter 5 under 2-level HT working 

model. 

A stratification-based moment method (STR) has also been proposed in Chapter Five to 

estimate HH-level error variances in a flexible way via iterative generalized least square 

(IGLS) method. The HM variance components and the HT level-one error variances can 

be obtained simultaneously via the IGLS method so that the HH-level error variances are 

consistent. The STR estimates 
 
  2

2 ,
ˆ STR

ijk
   are used only in the Chambers and Dunstan 

(CD) approach. Under the 3-level model (6.4), the estimates of  
2

3 ,ijk
  can be estimated 

by the ELL and STR estimators using the corresponding estimated HH-level residuals. 

 

6.2.2 The ELL Method 

After fitting the regression model and the corresponding parameters, the second stage of 

ELL method is to conduct either a parametric bootstrap (PB) or a non-parametric 

bootstrap (NPB) procedure to obtain the ultimate area-specific poverty estimates and 

their corresponding estimated mean square errors (ESMEs). In either case of PB or NPB 
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procedure, the basic steps are: (1) generate regression parameters *
β  from a suitable 

sampling distribution say multivariate normal distribution   ˆ ˆˆ,gls glsN β v β ; (2) generate 

level-specific random errors using an appropriate parametric distribution or by 

resampling via SRSWR from the estimated level-specific sample residuals; (3) generate 

bootstrap income values *

ijky  using the generated regression parameters and the 

level-specific random errors. The generated income values are used to estimate the 

area-specific parameter say  * 1 *

1 1

exp
iji

NC

i i ijk

j k

F N I y t



 

  
   for a specific poverty line t . 

These steps are iterated for a large number of times say B =500 and then the mean and 

variance of the B  estimates are considered as the ultimate estimates and their MSEs 

respectively. 

 

6.2.3 The Bootstrap-based CD Method   

The smearing-based CD approach has been developed in Chapter Five based on 

cluster-specific 2-level model. The method can be extended for a 3-level model by 

developing area-specific 3-level model. Under the 3-level HM model (6.3), unweighted 

CD-type estimator of cluster-specific distribution function can be expressed as  
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x β
 

given the values 
i  and 

iju . The smearing estimator Ĝ  can be obtained from 

area-specific or whole sample information as 

   1ˆ ˆ 
i
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jk s
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

      or    1ˆ ˆ ijk

ijk s
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

     ,  
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where 
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ijk ijk i ije u     with  3
ˆT gls

ijk ijk ijke y x β . In reality, calculation based on area-specific 

estimator Ĝ  might be critical due to availability of a few clusters per sampled area. The 

smearing estimator Ĝ  can be rewritten as 
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with 
 

 3
ˆ ˆch T gls

ijk ijk i ij chy u      x β . Under the CD approach, the estimate of area-specific 

distribution function would be obtained as 

         1 1ˆ ˆ
i i
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Since all clusters of an area are not available in the sample dataset and also a few 

sampled clusters are available per sampled small area, the analytic estimator cannot be 

used to obtain the ultimate area-specific estimate. A NPB procedure is needed to 

estimate the ultimate area-specific distribution in the proposed CD based approach.  

The basic steps of the NPB are as follows: First, develop the area-specific 3-level model 

(6.3) to the survey data and obtain  3
ˆ gls
β , 

  3
ˆˆ gls

ν β ,
 

2

3
ˆ


 , 
 
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3
ˆ

u
 , 

 
2

3
ˆ


 , and the level-specific 

residuals 
ij , 

iju  and 
jk . Second, the level specific errors *

i , *

iju , and  *

ijk  are generated 

for all the census units from the corresponding estimated sample residuals via resampling 

with SRSWR. Third, the area-specific bootstrap realization    * 1 *ˆ ˆ
iC

i i ij ij

j

F t N N F t   is 

calculated from the bootstrap income values. The steps are repeated for B  times to 
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calculate the ultimate area-specific parameters with their MSE. The Monte Carlo 

simulation approach of Marchetti et al. (2012) can be easily implemented in the similar 

way of the ELL semi-parametric approach. The basic difference is that ELL approach is 

based on the least squares (LS) raw residuals instead of the generalized least squares 

(GLS) raw residuals. 

In case of HT model, the normalized errors 
ijk  are calculated using the HH-specific 

error variances as 
 
1

3 ,
ˆ

ijk ijkijk




    . The residual variances  

2

3 ,ijk
  can be estimated by 

ELL parametric approach or STR non-parametric approach. In this study, the CD based 

estimators are based on STR estimates. The CD method with smearing approach requires 

extensive computation time particularly when if all the sample residuals are used in the 

smearing method. In such situation the smearing method can be conducted by dividing 

the large population into several sub-populations. Dunstan and Chambers (1989) 

extended the CD approach to obtain efficient estimates using the “summary information” 

of the auxiliary variable instead of “full information”. This approach can be though to 

reduce the computational burden of the “full information” CD method. 

 

6.2.4 Modification of the ELL and CD Methods 

Both the ELL- and CD- based approach will produce underestimated MSE if the area 

variability is ignored. Both the approaches based on 2-level working model can be 

modified to capture the potential area variability following the modified ELL approach 

which is already developed in Chapter Four. In this sub-section, the proposed idea is 

illustrated considering HH-specific weight and HT random errors. The basis of the 

modified ELL (MELL) methodology is the bias correction of variance estimator of 

weighted area mean 
1

1 1

iji
NC

i i ijk ijk

j k

Y M m y

 

   under an incorrect 2-level model to make it 
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unbiased under the corresponding 3-level model. Under the 3-level model (6.3), the 

variance of 
iY  and its plug-in estimator can be expressed  

       
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(6.1), the variance of 
iY  and its plug-in estimator can be written as  
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The expectations of the variance estimator    2
V̂

iY  under the true 3-level model 

becomes 
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 which always underestimates the 

true variance 
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Unlike homoskedastic working model, an unbiased plug-in estimator of  Var iY  is 

difficult to obtain under the multilevel models with HT level-one random errors due to 

estimation of heteroskedasticity. However, a plug-in consistent estimator of  Var iY  can 

be obtained if a consistent estimator of HT error variances is available. Under the HT 

population models (6.4) and (6.2), the variance estimators can be expressed as 

respectively 
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Under the HT population models, it can be shown that  
 2

3
ˆ ht


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 2

3
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u
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unbiased and consistent estimators under the assumption of known HH-level error 

variances (please see Appendices A.6 and A.7). Now suppose the HH error variance 

estimator  
2
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  are consistent estimators of  
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Then the consistent plug-in estimators of    3
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iY  and    2
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iY  can be considered as  
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expectations of    3
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V̂

iY  under the HT 3-level model (6.4) can be expressed 
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Thus the estimator    2
V̂ iY  might underestimate the true variance    3

Var
iY  in both the 

HM and HT cases. An area-specific adjustment or robustification can be done to make 

   2
V̂ iY  an unbiased or approximately unbiased estimator of    3

Var
iY  as  

             
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which are approximately unbiased under the true 3-level model. The variance estimator 

   2
V̂M

iY  would be robust under model misspecification, since 
 

2

3
ˆ


   might be very small 

(close to zero) under a true 2-level model, and hence the first term of    2
V̂M

iY  might be 

negligible.  

In the modified ELL and CD methods, the cluster-level variance component is adjusted 

to capture the potential area-level variability. Under HM and HT cases, the adjustment 

will be same without the estimated cluster-specific and area-specific variances 

components (details are given in Appendix A.8). The adjusted cluster-level variance 

component under HM working model can be calculated as below:  

 

2 2

1 2
ˆ̂ ˆ

u u
k   with 

   
    
22 2 1 2

1 2 3 3
1

ˆ ˆ ˆ1
sD

s siu u
i

k D m


  
 



 
  

 
 ,   

 

2 2

2 2
ˆ̂ ˆ

u u
k   with    

    2

22 2 1 2

2 3 3
1

ˆ ˆ ˆ1
D

Uiu u
i

k D m


   




 

 
 

 , and  

 
 

2 2

3 2
ˆ̂ ˆh

u u
k  with 

 
     

  
 

 
22 2 1 2
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1

ˆ ˆ ˆ1 ;   1,...,
hD
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k D m h H
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


 
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  

where  2 2 2

si i ijk

jk s

m m m



  , sD  is number sampled areas, 
im  is total members observed in 

thi  sampled area, 
ijm  is total members observed in thj  sampled cluster of 

thi  sampled 

area. 

The modified ELL can be implemented via both PB and NPB procedures. In PB 

procedure, the cluster level residuals are generated from a suitable parametric 

distribution with the adjusted cluster-variance component, say 
  2ˆ0,
M

uN   where  2
ˆ

M

u  

is the adjusted cluster-specific variance component. In the NPB procedure, the 

cluster-level scaled residuals  iju  are required to rescale in such way so that the ratio of 
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bootstrap variations    var varij iju u  approximates the ratio of corresponding estimated 

variance components 
 

 
2 2

2
ˆ ˆM

u u
  , where scaled residuals are 

   
     

1/2

2

2 2 2
ˆ 1

M

u sij ij ij
ij s

u u C u





 
   

 
  and 

         

1/2

2

2 2 2 2
ˆ ˆ ˆ1sij ij u ij

ij s

u u C u





 
   

 
 . The 

procedure will be similar for all the proposed modifications. For the stratification based 

MELL, the generation of cluster residuals or resampling the sample cluster-specific 

residuals will be conducted based on the stratum-specific adjusted cluster-variance 

component, say 
   

 
2

. 3 2
ˆ ˆM h

u h u
k   , 1,..,h H . The bootstrap procedures are also explained 

in next section. 

 

6.3 Implementation of ELL Method and Its Alternatives 

6.3.1 First Stage Regression  

The first task in the ELL methodology is to fit the regression model utilizing the survey 

dataset. It is recommended to incorporate considerably a large number of explanatory 

variables at different hierarchies in order to capture the potential between-cluster and 

between-area variabilities. Overfitting the regression model is the main problem of 

including more explanatory variables. Also inclusion of more explanatory variables and 

contextual variables may not guarantee the reduction of between-area variability 

sufficiently. To avoid such overfitting problem, log of HH per capita monthly 

consumption expenditure is regressed on those 30 explanatory variables that are used in 

BBS-2004 study. The list of the explanatory variables is included in the appendix Table 

A3.1. For the first two datasets (Set-1 and Set-2), all these explanatory variables are used 

to develop both 2-level and 3-level models. In case of rural (Set-3) and urban (Set-4) 

datasets, the explanatory variable “rural” that reperesents type of clusters and the 

corresponding two-way interections are not included in fitting the regression models. 
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In the ELL methodology, the level-specific errors and the variance components are 

estimated using moment-based estimators after fitting a linear model via LS method. The 

estimated variance-components are then utilized to obtaine GLS regresion parameters 

and their variance-covariance matrix. Marginal and conditional R-squared values are 

calculated following Nakagawa and Schielzeth (2013) to compare the multilevel models. 

Both 2-level and 3-level regression models are developed, and the corresponding 

estimated values of parameters and level-specific random errors are stored for the 

bootstrap procedure. The multilevel models are developed considering both HM and HT 

variances of HH-specific random errors only for the first two-data sets.  

 

6.3.2 Heteroskedasticity Modelling 

To examine the heteroskedasticity of the HH-level random errors, the squared LS 

residuals obtained from the Set-1 are plotted against the predicted values (Figure 6.1). 

The plot suggests a negligible monotone heteroskedasticity due to less information at the 

extreme tails. The “alpha” model is fitted with the explanatory variables that are used in 

the BBS-2004 study to avoid the extensive exploration of potential explanators of 

heteroskedasticity. The estimated “alpha” parameters are shown in appendix Table A6.1. 

The exploration of heteroskedasticity explanators is not rquired for the proposed STR 

estimation approach which depends only on the GLS residuals and the predicted values.  

Both the ELL and STR estimation methods have been utilized to model the HH-level 

error variances. The Figure 6.1 shows how the STR method goes through the center of 

the ELL estimates. The ELL estimates are used in ELL methodologies and the STR 

estimates in the CD based methods. The HT error variances estimated by the ELL 

parametric approach under 2-level model (  
2.

2 ,
ˆ ELL

ijk
 ) are fluctuating more than those under 

3-level model (  
2.

3 ,
ˆ ELL

ijk
 ) which may be due to ignoring the existing area variability in the 



160 
 

survey dataset. The HT variances estimated by either ELL or CD method are found 

slightly higher with less variation when estimated under a 3-level model than those under 

a 2-level model. 

The estimated area-level and cluster-level homoskedastic variance components under the 

assumption of heteroskedastic HH-level errors are shown in appendix Table A6.2. The 

variance components estimated by MOM and stratified MOM approaches are found 

close to those estimated under the assumption of homoskedastic HH-level errors. These 

results suggest a negligible influence of level-one heteroskedasticity in the estimation of 

higher level variance components. 

Figure 6.1: Unit-level heteroskedastic error variances estimated by ELL and stratified 

method of moments (STR) estimators under 2-level and 3-level models 
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6.3.3 Bootstrapping  

In this study both PB and NPB bootstrap procedures have been implemented to calculate 

the FGT poverty estimates and their MSEs. Under the HT model, the NPB procedure is 

mentioned as semi-parametric bootstrap (SPB) since the HH-level error variances are 

generated assuming parametric distribution of the alpha parameters. In both types of 

bootstrap procedure, the regression parameters are generated from multivariate normal 

distribution with mean vector  .
gls

β  and variance-covariance matrix 
  .

ˆ gls
v β . In PB 

procedure, level specific random errors are generated following normal distribution with 

zero mean and the corresponding estimated variances as variance. In NPB and SPB 

procedures, the LS raw residuals are used under the ELL methods, and the GLS raw 

residuals under the CD based approaches to generate level-specific random errors via 

simple random sampling with replacement (SRSWR). Under a 2-level model, the 

residuals can be drawn either from sample raw residuals or scaled residuals if the 

bootstrap variation is same as the estimated variance component. Under a 3-level model, 

the moment-based cluster-specific residuals and are-specific residuals are same for the 

75% sub-districts and so all the residuals are required to scale. In the study scaled 

residuals are utilized in all bootstrapping under both 2-level and 3-level models. 

Under heteroskedasticity at HH-level, there is no recommended way to scale the 

HH-level residuals when they are put in bootstrapping. Similar to Chapter Five, the 

HH-specific HT residuals are scaled by HH-level variance component estimated as 

 
 22

2
ˆ ˆ

ht

e u
   under a 2-level model where 2ˆ

e  is the MSE of initial single-level linear 

model fitted by LS method. The mean of estimated HH-level residual variances (say, 

 
1 2.

2 ,
ˆ ELL

ijk
n


  ) or the HM variance component  

2

2
ˆ


  can be used for the scaling purpose. 
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Resampling of the level-specific residuals via SRSWR can be implemented either 

unconditionally or conditionally according to ELL (2002) method. Under the 

unconditional sampling method, the level-specific errors are assigned to census units 

from the full set of sample residuals. Under the conditional sampling method, the 

level-specific residuals are drawn following a nested approach. Suppose a 

cluster-specific sample residual is randomly assigned to a census cluster. Then census 

HHs nested within a census cluster are assigned HH-level random errors from the sub-set 

of sample HHs nested within the selected sample cluster.  

Under a 3-level working model, conditional approach can be used if a sufficient number 

of sampled areas have multiple clusters. In the study, conditional approach has been 

followed under a 2-level model and unconditional approach under a 3-level model. It is 

observed that both unconditional and unconditional approaches behave similar under a 

2-level model but conditional approach produce unstable results under a 3-level model. 

The ELL methodologies have been performed via PB, NPB, and SPB procedures, while 

only NPB procedure is followed in CD based methods. 

Similar to NPB-based ELL, the Monte Carlo simulation based CD method (CDMC) is 

implemented following conditional approach under 2-level model and unconditional 

approach under 3-level model. In the smearing based CD method (CDSM), only 

cluster- and area-specific random errors are drawn via SRSWR from the sample residuals 

and the HH-specific residuals are remained same in each bootstrap.  

Since ELL and CD based methods can be implemented in different ways based on (i) 

bootstrap procedure (PB/NPB/SPB), (ii) skedasticity of HH-level random errors 

(HM/HT), and (ii) the assumed working model (2L/3L); the estimators are denoted 

differently. As for example “PELL.HM.2L” stands for PB based ELL estimator under a 

2-level HM working model. A list of the estimators is given in appendix Table A6.3. 
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6.3.4 Application of Modified ELL and CD Methods 

Under the assumption of HM and HT level-one errors, the stratification-based 

adjustment (Adjustment 3) has been applied to implement the modified version of ELL 

and CD methods. Sub-districts are grouped into six strata according to 20
th

, 35
th

, 50
th

, 

65
th

, and 80
th

 percentile of the distribution of their population size. Cluster-level variance 

component  

2

2
ˆ

u
  is adjusted for each stratum by  

   
 

2 2

32 2
ˆ ˆh h

u u
k  , 1,...,6h  . The same 

stratification has been used under both HM and HT working models. Thus stratum 

specific bootstrap procedures are conducted based on the stratum-specific adjusted 

cluster-level variance component in the ELL and CD methods. 

 

6.3.5 Mixed ELL Methodology 

It is observed that between-area variability exists in urban sub-districts but doesn’t in 

rural sub-districts. Since a sampled area may comprise both urban and rural clusters, 

implementation of either a cluster-level 2-level model or an area-level 3-level model may 

mislead the overall variation. Moreover, the socio-economic characteristics vary with the 

place of residence. To avoid such problem, an attempt has been made to implement 

separate multilevel models for rural and urban clusters in a single ELL bootstrap 

procedure. To conduct the mixed ELL bootstrap, the HHs belong to urban clusters are 

assigned three level-specific errors estimated under an area-specific 3-level model and 

the HHs belong to rural clusters are assigned two level-specific errors estimated under a 

cluster-specific 2-level model. Thus the bootstrap income values are calculated based on 

the location of cluster in a small area as 

     

       

* * *
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where the sub-script  l  stands for l -level model. The procedure would be complex but 

may be reasonable to capture the actual variability observed in the survey data set. This 

procedure is implemented based only on ELL method following PB procedure under the 

assumption of HM level-one errors and hence the estimator is denoted as MIX.PELL. 

 

6.4 Results and Discussion 

In the 2000 HIES, lower and upper poverty lines were developed to measure the FGT 

poverty indices. Poverty lines were set up according to the 16 strata which were created 

for the survey sampling design. Since the 2000 HIES was based on 1991 Bangladesh 

Population and Housing Census, poverty lines were rearranged according to 2001 

Census in the poverty mapping study of BBS-2004. The poverty lines used in the BBS 

study are not exactly maintained in this Chapter for some sub-districts due to lack of 

information. The poverty lines shown in appendix Table A3.5 are utilized in this study. 

In BBS-2004 study, sub-district level poverty incidences were calculated using the ELL 

method with SPB via conditional approach under a 2-level working model. In this thesis 

the similar approach with scaled residuals is followed to create a poverty map of 

Bangladesh. Figure 6.2 shows an administrative map and a poverty map where 

sub-district level poverty incidences are calculated at the lower poverty line (LPOVLN). 

The map is comparable to the poverty map reported in BBS and UNWFP (2004, page 

35). The sub-districts at the north-western (Rangpur division) and mid-western (Rajshahi 

division) regions have higher poverty incidence compared to the central (Dhaka division) 

region. Also the hilly areas of the south-eastern (Bandarban district) region, the wetland 

(called haor) areas of the mid-northern (Mymensingh and Netrokona districts) region and 

some sub-districts at the coastal region (Bhola district) are vulnerable to poverty 

incidence. 
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Consistency of the estimated FGT poverty indices is checked by comparing summary 

statistics of the estimated poverty measures and their MSEs with those of BBS and 

UNWFP (2004, page 34). Table 6.3 shows that means of the estimated FGT measures 

are slightly lower with slightly higher standard deviation (SD) compared to those of BBS 

results, while means and SDs of the estimated MSEs are marginally smaller. The reasons 

of these differences may be (i) different procedure of fitting the regression model, (ii) 

different way of heteroskedasticity modelling, (iii) different bootstrap procedure, (iv) 

slightly different poverty lines for some sub-districts, and (v) the number of resampling 

in bootstrap procedure (500 instead of 100 bootstrap). Also two covariates created be us 

behave differently in the fitted regression model.  

Summary statistics of the estimated MSEs by the 3-level model-based ELL 

(SPELL.HT.3L), and the modified ELL (MSPELL.HT) estimators are shown in Table 

6.3 along with SPELL.HT.2L estimator. The SPELL.HT.2L estimator shows 

underestimated MSEs in comparison to the SPELL.HT.3L estimator, and the 

MSPELL.HT estimator overcomes this underestimation under area variability. The 

SPELL.HT.2L estimator might provide better accuracy if really area variability is absent. 

In the BBS-2004 poverty mapping study, MSEs were associated with the FGT estimates 

and number of households. For examining the relationship, sub-district specific 

population size, estimated HCR at upper poverty line (UPOVLN), and estimated MSE 

(SPELL.HT.2L and MSPELL.HT) are plotted in Figure 6.3. First three maps of Figure 

6.3 suggest that sub-districts with large population and closer to the capital (Dhaka) or 

port cities (Chittagong) have lower HCRs with lower MSEs. Conversely, sub-districts 

with smaller population in coastal and hilly regions have higher HCRs with higher 

MSEs. Some sub-districts in the north-western part with large population (Rangpur and 

Rajshahi divisions) have relatively higher HCRs with lower MSEs. 
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Figure 6.2: Bangladesh maps of administrative units and sub-district level poverty incidences at lower poverty line 

  
Source: https://en.wikipedia.org/wiki/Administrative_geography_of_Bangladesh Source: Author’s calculation 
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Table 6.3: Comparison of summary statistics of the estimated HCR, PG, and PS at lower 

(LPOVLN) and upper (UPOVLN) poverty lines with their estimated MSEs by 

different estimators assuming unit-level heteroskedasticity (HT) with those of 

BBS-2004 study   

Parameter 
Poverty 

line 
Estimated by Min. Q1 Median Q3 Max. Mean SD 

HCR 

LPOVLN 
BBS-2004 0.0014 - - - 0.5531 0.2930 0.1063 

SPELL.HT.2L 0.0089 0.1930 0.2797 0.3686 0.5898 0.2810 0.1174 

UPOVLN 
BBS-2004 0.0049 - - - 0.7081 0.4212 0.1238 

SPELL.HT.2L 0.0453 0.3302 0.4224 0.5115 0.7239 0.4164 0.1280 

PG 

LPOVLN 
BBS-2004 0.0001 - - - 0.1638 0.0679 0.0297 

SPELL.HT.2L 0.0012 0.0364 0.0585 0.0840 0.1732 0.0622 0.0325 

UPOVLN 
BBS-2004 0.0006 - - - 0.2441 0.1142 0.0421 

SPELL.HT.2L 0.0073 0.0745 0.1056 0.1389 0.2462 0.1082 0.0443 

PS 

LPOVLN 
BBS-2004 0.0000 - - - 0.0650 0.0228 0.0112 

SPELL.HT.2L 0.0003 0.0104 0.0177 0.0275 0.0676 0.0201 0.0121 

UPOVLN 
BBS-2004 0.0001 - - - 0.1091 0.0429 0.0182 

SPELL.HT.2L 0.0019 0.0240 0.0371 0.0512 0.1079 0.0392 0.0190 

Estimated 

MSE of 

HCR 

LPOVLN 

BBS-2004 0.0025 - - - 0.1145 0.0388 0.0146 

SPELL.HT.2L 0.0047 0.0268 0.0330 0.0395 0.1047 0.0340 0.0122 

SPELL.HT.3L 0.0070 0.0542 0.0642 0.0712 0.1152 0.0617 0.0159 

MSPELL.HT 0.0146 0.0478 0.0545 0.0622 0.1533 0.0553 0.0146 

UPOVLN 

BBS-2004 0.0062 - - - 0.1081 0.0416 0.0143 

SPELL.HT.2L 0.0127 0.0302 0.0351 0.0418 0.1027 0.0371 0.0115 

SPELL.HT.3L 0.0226 0.0630 0.0680 0.0737 0.1147 0.0680 0.0118 

MSPELL.HT 0.0304 0.0523 0.0580 0.0644 0.1549 0.0596 0.0135 

Estimated 

MSE of 

PG 

LPOVLN 

BBS-2004 0.0003 - - - 0.0436 0.0127 0.0054 

SPELL.HT.2L 0.0008 0.0076 0.0103 0.0130 0.0313 0.0106 0.0045 

SPELL.HT.3L 0.0012 0.0150 0.0201 0.0247 0.0401 0.0196 0.0071 

MSPELL.HT 0.0037 0.0183 0.0218 0.0253 0.0549 0.0216 0.0061 

UPOVLN 

BBS-2004 0.0009 - - - 0.0538 0.0169 0.0066 

SPELL.HT.2L 0.0027 0.0112 0.0139 0.0168 0.0434 0.0144 0.0051 

SPELL.HT.3L 0.0045 0.0224 0.0271 0.0320 0.0538 0.0269 0.0073 

MSPELL.HT 0.0085 0.0234 0.0268 0.0301 0.0730 0.0270 0.0066 

Estimated 

MSE of PS 

LPOVLN 

BBS-2004 0.0001 - - - 0.0203 0.0055 0.0026 

SPELL.HT.2L 0.0003 0.0029 0.0041 0.0056 0.0125 0.0044 0.0021 

SPELL.HT.3L 0.0003 0.0054 0.0079 0.0106 0.0210 0.0081 0.0035 

MSPELL.HT 0.0013 0.0088 0.0110 0.0133 0.0250 0.0110 0.0035 

UPOVLN 

BBS-2004 0.0002 - - - 0.0300 0.0082 0.0036 

SPELL.HT.2L 0.0009 0.0048 0.0064 0.0083 0.0209 0.0068 0.0028 

SPELL.HT.3L 0.0014 0.0094 0.0125 0.0156 0.0268 0.0126 0.0044 

MSPELL.HT 0.0033 0.0123 0.0148 0.0174 0.0386 0.0149 0.0041 

 

The maps (c) and (d) in Figure 6.3 show that the SPELL.HT.2L MSE estimator shows 

more accuracy of HCRs compared to the MSPELL.HT estimator. These performances of 

SPELL.HT.2L are due to the population sizes of sub-districts. The higher the population 

size, the lower the MSE if there is no other potential source of variability. Ignorance of 

area variability is the main reason of such lower MSEs by the SPELL.HT.2L estimator. 

If area variability exits in reality, this accuracy will mislead the policy makers.  
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Figure 6.3: Bangladesh maps of sub-district specific population, estimated poverty 

incidence at upper poverty line (UPOVLN) and their estimated MSEs (EMSE) by 

SPELL.HT.2L and MSPELL.HT estimators 

 

 

Under the assumption of area variability, it can be said that the SPELL.HT.2L estimator 

provides underestimated MSEs particularly for the large cities (e.g., blue points) due to 

ignorance of area variability and the MSPELL.HT estimator adjusts them by considering 
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the potential area variability. The SPELL.HT.2L and MSPELL.HT estimators show 

similar MSEs only for the sub-districts with significantly smaller sub-districts 

particularly in the south-eastern regions. Apparently variation in the estimated MSEs is 

more explicit in Map (c) compared to Map (d). The reason may be the tendency of 

providing lower MSE for the sub-districts with a modest population size (more than 

13,000) and highest MSE for the smaller sub-districts by the SPELL.HT.2L estimator, 

while MSPELL.HT estimator provides comparatively higher weight to the smaller 

sub-districts and comparatively lower weight to the larger sub-districts for accounting the 

between-area variability. With respective to the presence of negligible area variability, 

SPELL.HT.2L is highly optimistic and MSPELL.HT is reasonably conservative. More 

detail comparisons are given in the next sub-sections. The proposed FGT estimators, 

MSE estimators, and mixed ELL approach are compared with the traditional 2-level 

model-based ELL estimators considering only UPOVLN in the following sub-sections. 

 

6.4.1 Comparison of Poverty Estimators 

The FGT poverty indicators at UPOVLN are estimated assuming both HM and HT 

HH-level errors under 2-level and 3-level working models. The HCRs estimated by 

different ELL- and CD-type estimators are plotted against the HCRs estimated by the 

standard 2-level model-based ELL estimator with PB procedure (PELL.HM.2L). 

Figure 6.4 shows that the NPB-based ELL- and CD-type estimators under a 2-level 

working model (NPELL.HM.2L, CDMC.HM.2L, and CDSM.HM.2L) provide almost 

same results as PELL.HM.2L estimator under homoskedasticity. The HT estimators 

(SPELL.HT.2L, CDMC.HT.2L, and CDSM.HT.2L) provide slightly overestimated 

HCRs compared to the PELL.HM.2L estimator except the SPELL.HT.2L estimator 

which shows slight underestimation for the areas with lower HCRs. 



170 
 

Figure 6.4: Estimated HCR at upper poverty line (UPOVLN) under 2-level working 

model with homoskedastic (HM) and heteroskedastic (HT) level-one errors by 

the ELL and CD-type estimators via conditional bootstrap 

 

 

The estimators based on 3-level working model perform similar to the 2-level 

model-based estimators with some fluctuations (Figure 6.5), which suggest that 3-level 

model-based estimators also provide unbiased poverty estimates as 2-level model-based 

estimators. The insignificant variation among the results of ELL- and CD-type estimators 

under both 2-level and 3-level working models suggest applicability of the proposed CD 

method as well as the non-parametric estimation method (STR) of heteroskedasticity. 

Also minor differences among the FGT estimates calculated by the HM and HT 

estimators recommend that the observed heteroskedasticity does not influence much the 

estimated poverty measures under homoskedasticity. 

To illustrate complexity of utilizing a 3-level model in the Bangladesh datasets, FGT 

measures are estimated via both conditional and unconditional bootstrap procedure. 

Appendix Figure A6.1 shows that unconditional bootstrap with scaled residuals provides 

stable HCRs and estimated MSEs compared to conditional bootstrap with scaled 
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residuals. One of the main reasons of such difference might be due to a large number of 

sampled areas (about 75%) with single sampled cluster. 

Figure 6.5: Estimated HCR at upper poverty line (UPOVLN) under 3-level working 

model with homoskedastic (HM) and heteroskedastic (HT) level-one errors by 

the ELL and CD-type estimators via unconditional bootstrap 

 

 

6.4.2 Comparison of MSE Estimators 

The naïve ELL- and CD-type estimators based on 2-level model have higher possibility 

to produce underestimated MSE if the between-area variability is not captured by the 

explanatory variables included in the regression model. Fitting a 3-level model with the 

available data is also difficult with respect to estimation of variance components and 

bootstrapping. The modified ELL- and CD-type estimators are expected to provide 

compromised results compared to the naïve 2-level and 3-level model-based estimators. 

Estimated MSEs calculated by the ELL- and CD-type estimators and their modified 

versions under the assumption of both HM and HT level-one errors are plotted against 

area-specific population sizes in Figure 6.6. The figure shows declining trend of 

estimated MSEs with population size proportionally. As expected the 2-level 
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model-based ELL- and CD-type MSE estimators are showing lower estimates than those 

of the 3-level model-based estimators. The modified MSE estimators overcome the 

underestimation problem of 2-level model-based estimators. In full dataset (Set-1), the 

modified estimators provide MSE close to the naïve 3-level estimator for the areas with 

small population, but shows lower MSE for the areas with large population. Differences 

between the estimated MSEs calculated by the 2-level and 3-level model-based 

estimators increase with the population size. The proposed modification for both ELL- 

and CD-type estimators performs similarly in all types of bootstrap procedure under both 

the HM and HT working models. Performances slightly vary for PG and PS measures. 

Appendix Figure A6.2 shows that the modified estimators provide estimated MSEs very 

nearly to the 3-level model-based estimators for PG and slightly higher for PS. 

Since both the ELL- and CD-type estimators perform similarly, only the parametric and 

non-parametric ELL approaches under homoskedasticity have been implemented for the 

data set-2. When area variability is obvious in the data Set-2, the modified estimators 

based on PB procedure perform almost in similar way as the data Set-1 (please see 

Figure 6.7 and appendix Figure A6.3). The modified ELL estimators show 

underestimated MSE only for HCR but perform much better than the naïve 2-level ELL 

estimators (Figure 6.7). This underestimation problem of the modified estimators 

disappears for the PG and PS indicators (Appendix Figure 6.3). 

Figure 6.7 also shows no significant difference between conditional and unconditional 

NPB approaches under the 2-level working model (similar to PELL estimator) but 

interestingly the conditional bootstrap under the 3-level working model behaves 

differently from unconditional bootstrap though small areas have multiple clusters in the 

survey dataset. Under the conditional approach, the naïve 3-level estimator is providing 

MSE estimates closer to those of the naïve 2-level estimators (Figure 6.7 and appendix 
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Figure A6.3). Thus in either case of conditional or unconditional bootstrap procedures, 

the modified 2-level ELL- or CD-type estimators provide better estimated MSEs 

compared to the naïve 2-level estimators in both Set-1 and Set-2 datasets. 

Figure 6.6: Estimated MSE (EMSE) of HCR at upper poverty line (UPOVLN) under 

2-level and 3-level models with homoskedastic (HM) and heteroskedastic (HT) 

level-one errors by ELL and CD-type estimators with their modified versions 

Homoskedastic Model Heteroskedastic Model 
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Figure 6.7: Estimated MSE (EMSE) of HCR at upper poverty line (UPOVLN) under 

2-level and 3-level models with homoskedastic (HM) level-one errors by PELL 

and NPELL estimators with their modified versions for sampled sub-districts 

with multiple clusters 

 

 

6.4.3 Comparison of Mixed ELL Approach 

For Set-3 and Set-4 datasets, only the parametric ELL approach has been utilized to 

conduct the mixed ELL approach (MIX.ELL) under homoskedasticity. Figure 6.8 shows 

the performance of MIX.ELL estimator for both FGT estimates and their estimated 

MSEs. The estimated HCR calculated by the naïve 3-level estimator (PELL.HM.3L) and 

MIX.ELL estimator are plotted against the estimated HCR by the naïve 2-level ELL 

estimator (PELL.HM.2L). The MIX.ELL estimator shows more variation in the 

estimated HCR than those of ELL.3L estimator. The variation may be due to the 

standard errors of the regression parameters estimated separately for 2-level and 3-level 

models. Also sample sizes vary for the two data sets. The fitted regression models for 

different datasets are shown in appendix Table A6.4. 

In case of MSE estimation, the MIX.ELL estimator shows similar trend of the 

PELL.HM.2L estimator with some exceptions. The behaviour might be due to more 

sub-districts with rural clusters where 2-level model is used in the bootstrap procedure. 

For the sub-districts with more urban clusters, the naïve 2-level estimator is still 

underestimating compared to the MIX.ELL estimator. The MIX.ELL estimator provides 

higher estimated MSEs for a significant number of sub-districts with smaller and larger 
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population (pink circles). For the sub-districts with large population, the PELL.HM.2L 

estimator is significantly underestimating in comparison to the MIX.ELL estimator due 

to ignorance of area variability in urban parts. In comparison to the estimated MSE by 

MIX.ELL estimator, the naïve 2-level estimator seems better for the rural sub-districts 

but the problem of underestimation remains for the sub-districts with urban clusters 

where the actual population size is large but the poverty rate is low. For PG and PS, 

performances of the MIX.ELL estimator shown in appendix Figure A6.4 are found 

similar to those of HCR. 

Figure 6.8: Estimated HCR at upper poverty line (UPOVLN) with estimated MSE 

(EMSE) under 2-level and 3-level homoskedastic (HM) models by PELL, 

modified PELL, and MIX.ELL estimators  

 

 

6.5 Concluding Remarks  

In this chapter we have shown that the proposed CD-based estimators perform similar to 

the ELL-type estimators in a real poverty mapping dataset of Bangladesh. Also the 

proposed non-parametric approach of modelling heteroskedasticity via simple 

stratification-based moment approach provides a flexible way of estimating HH-level 

error variances. All possible versions of ELL method have been implemented and 
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compared with the CD-based methods. These comparisons support the applicability of 

the CD-based estimation methods as an alternative of the well-known ELL methodology. 

In other way, the CD-based method (CDMC) can be considered as a non-parametric 

(instead of semi-parametric) version of ELL method which depends on parametric 

modelling of heteroskedasticity. Though the smearing-based CD-type estimators 

(CDSM) require extensive time to implement for a big data, it may produce more stable 

results than the ELL methodology does. The MC simulation based CD approach 

(CDMC) which is parallel to the ELL methodology overcomes this computational 

problem and can approximate the CDSM results. 

It has been shown that both the ELL- and CD-type estimators based on 2-level working 

model must fail to capture the true MSE if the working regression model violates the 

area homogeneity assumption. In the Bangladesh dataset, the area homogeneity 

assumption is violated particularly in the urban small areas (sub-districts). Since ELL- or 

CD-type estimators based on 3-level model are not suited for the considered dataset 

perfectly (most sampled sub-districts have single sampled clusters), the 2-level 

model-based ELL- and CD-type estimators are used to obtain stable FGT estimates with 

underestimated MSE. We have shown that the proposed modified version of both 

ELL- and CD-type estimators overcome this underestimation problem of 2-level 

model-based naïve ELL- and CD-type estimators. Under the assumptions of both HM 

and HT level-one errors, the proposed modification idea suits properly. The properties of 

the modified version have also been examined under the situation where area variability 

is obvious (data set-2) and negligible (data set-1). In both situations, the modified 

estimators performed better than the naive 2-level ELL- and CD-type estimators. The 

modified estimators show slightly underestimated MSE compared to 3-level estimators 

only for HCR but better than the naïve 2-level estimators. 
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The application of mixed ELL method (simultaneous consideration of 2-level and 3-level 

models) to Bangladesh dataset suggests the appropriateness of naïve 2-level model since 

most of the small areas mainly have rural clusters where area variability does not exist. 

However, the small areas with urban clusters where population density is higher 

compared to the rural small areas, the naïve ELL method underestimates the MSE 

compared to both the mixed model and the 3-level model. The modified ELL method 

helps to overcome this MSE error problem for the small areas with urban infrastructure. 

These findings support the applicability of the proposed modified version of ELL- and 

CD-type estimators particularly in such situation where the area-heterogeneity problem 

cannot be solved by including contextual variables in the model specification. 

The 2-level model-based naïve MSE estimators provide more accuracy of the FGT 

estimates than the modified 2-level and naïve 3-level MSE estimators under the 

assumption of area homogeneity. However, such accuracy of 2-level naïve estimators 

will mislead the policy makers in decision making if area variability exists in reality. The 

results of this chapter show how the naïve 2-level model-based estimators are highly 

optimistic when the area homogeneity assumption is violated particularly in the urban 

areas of Bangladesh. The modified MSE estimators may be conservative when capturing 

the area variability but reduce the problem of MSE underestimation. In Chapter Four, we 

also showed how the naïve 2-level model-based estimators become worse in such 

situations via simulation study. The cost due to having underestimated MSE (showing 

incorrectly higher precision) may be much higher than the premium for getting 

conservative precision (slightly overestimated MSE). Thus proper care and appropriate 

investigation should be taken for considering a naïve 2-level model-based MSE estimator 

to obtain FGT estimates with correct higher precision. 
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Figure A6.1: Estimated HCR at upper poverty line (UPOVLN) and estimated MSE 

(EMSE) under 2-level and 3-level homoskedastic (HM) models by NPELL 

estimators via conditional and unconditional bootstraps  

 

Figure A6.2: Estimated MSE (EMSE) of estimated PG and PS at upper poverty line 

(UPOVLN) under 2-level and 3-level models with homoskedastic (HM) and 

heteroskedastic (HT) level-one errors by PELL and modified PELL estimators 
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Figure A6.3: Estimated MSE (EMSE) of estimated PG and PS at upper poverty line 

(UPOVLN) under 2-level and 3-level homoskedastic models by PELL and 

NPELL with their modified estimators for sampled sub-districts with multiple 

clusters 

 

Figure A6.4: Estimated PG and PS at upper poverty line (UPOVLN) with their 

estimated MSE (EMSE) under 2-level and 3-level homoskedastic (HM) models 

by PELL, modified PELL, and MIX.ELL estimators 
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Table A6.1: Heteroskedasticity model using ELL approach under 2-level and 3-level 

heteroskedastic (HT) working models 

Variables 
2-level Model 3-level Model 

   se t p   se t p 

Intercept -4.77 0.14 -33.71 0.00 -4.77 0.14 -34.67 0.00 

hhhprmed -0.29 0.08 -3.56 0.00 -0.14 0.08 -1.74 0.08 

ibuild_4 0.15 0.11 1.39 0.16 0.15 0.11 1.39 0.16 

idiv_1 -0.28 0.10 -2.71 0.01 -0.33 0.10 -3.30 0.00 

idiv_2 -0.04 0.08 -0.50 0.62 -0.11 0.07 -1.54 0.12 

idiv_4 -0.11 0.09 -1.21 0.23 -0.22 0.09 -2.56 0.01 

idiv_5 0.06 0.07 0.82 0.41 -0.08 0.07 -1.04 0.30 

ilattr_1 -0.01 0.08 -0.15 0.88 0.03 0.08 0.40 0.69 

literatep 0.26 0.10 2.58 0.01 0.12 0.10 1.22 0.22 

ownaglnd -0.08 0.06 -1.29 0.20 -0.06 0.06 -1.00 0.32 

workst2p -0.31 0.07 -4.48 0.00 -0.14 0.07 -2.16 0.03 

% R
2
  1.39   0.566 

Table A6.2: Variance components under 2-level and 3-level models with homoskedastic 

(HM) and heteroskedastic (HT) level-one errors by method of moments (MOM) 

and stratified MOM for different datasets 

Skedasticity at HH-level Cluster Model DF 
2ˆ
  2ˆ

u  2ˆ
  2 2ˆ ˆ

u e   2 2ˆ ˆ
e   

HM: MOM 

Single 2L 33 0.1153 0.0238 - 16.00 - 

Multiple 
2L 33 0.1091 0.0267 - 19.67 - 

3L 34 0.1091 0.0186 0.0082 13.69 6.03 

All 
2L 33 0.1132 0.0253 - 18.28 - 

3L 34 0.1132 0.0192 0.0062 13.82 4.46 

HT: MOM* 

Single 2L 33 0.1162 0.0220 - 15.90 - 

Multiple 
2L 33 0.1123 0.0268 - 19.25 - 

3L 34 0.1122 0.0187 0.0082 13.65 5.95 

All 
2L 33 0.1137 0.0254 - 18.26 - 

3L 34 0.1176 0.0195 0.0059 14.01 4.25 

HT: Stratified MOM 

(IGLS)* 

Single 2L 33 0.1155 0.0225 - 16.31 - 

Multiple 
2L 33 0.1123 0.0288 - 20.41 - 

3L 34 0.1122 0.0201 0.0085 15.19 6.04 

All 
2L 33 0.1137 0.0258 - 18.50 - 

3L 34 0.1176 0.0200 0.0058 14.53 4.04 

 *Under heteroskedasticity, 2 2 2 2ˆ ˆ ˆ ˆ
e        
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Table A6.3: ELL and CD-type estimators of FGT poverty indicators and their MSE 

based on different bootstrap procedures under 2-level (2L) and 3-level (3L) 

models with homoskedastic (HM) and heteroskedastic (HT) level-one errors 

Estimator  Description Parameter 

PELL.HM.2L PB-based ELL estimator under 2L HM model  FGT & MSE 

PELL.HM.3L PB-based ELL estimator under 3L HM model  FGT & MSE 

PELL.HT.2L PB-based ELL estimator under 2L HT model  FGT & MSE 

PELL.HT.3L PB-based ELL estimator under 3L HT model  FGT & MSE 

NPELL.HM.2L NPB-based ELL estimator under 2L HM model  FGT & MSE 

NPELL.HM.3L NPB-based ELL estimator under 3L HM model  FGT & MSE 

SPELL.HT.2L SPB-based ELL estimator under 2L HT model  FGT & MSE 

SPELL.HT.3L SPB-based ELL estimator under 3L HT model  FGT & MSE 

CDMC.HM.2L MC & NPB-based CD estimator under 2L HM model  FGT & MSE 

CDMC.HM.3L MC & NPB-based CD estimator under 3L HM model  FGT & MSE 

CDMC.HT.2L MC & NPB-based CD estimator under 2L HT model  FGT & MSE 

CDMC.HT.3L MC & NPB-based CD estimator under 3L HT model  FGT & MSE 

CDSM.HM.2L SM & NPB-based CD estimator under 2L HM model  FGT & MSE 

CDSM.HM.3L SM & NPB-based CD estimator under 3L HM model  FGT & MSE 

CDSM.HT.2L SM & NPB-based  CD estimator under 2L HT model  FGT & MSE 

CDSM.HT.3L SM & NPB-based  CD estimator under 3L HT model  FGT & MSE 

MPELL.HM Modified PB-based ELL estimator under 2L HM model  MSE 

MPELL.HT Modified PB-based ELL estimator under 2L HT model  MSE 

MNPELL.HM Modified NPB-based ELL estimator under 2L HM model  MSE 

MSPELL.HT Modified SPB-based ELL estimator under 2L HT model  MSE 

MCDMC.HM Modified CDMC estimator under 2L HM model  MSE 

MCDMC.HT Modified CDMC estimator under 2L HT model  MSE 

MCDSM.HM Modified CDSM estimator under 2L HM model  MSE 

MCDSM.HT Modified CDSM estimator under 2L HT model  MSE 
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Table A6.4: Fitted regression models for Set-1, Set-2, Set-3, and Set-4 datasets under 

2-level and 3-level homoskedastic (HM) models via method of moments 

Variables 

Set-1 Set-2 Set-3 Set-4 

2-level 3-level 2-level 3-level 2-level 3-level 

  se   se   se   se   se   se 

Intercept   6.95* 0.14 6.89* 0.15 7.02* 0.21 6.90* 0.25 6.83* 0.21 6.91* 0.24 

electric 0.22* 0.02 0.22* 0.02 0.22* 0.02 0.22* 0.02 0.21* 0.02 0.24* 0.03 

ilattr_1 0.11* 0.02 0.11* 0.02 0.11* 0.02 0.11* 0.02 0.11* 0.02 0.11* 0.02 

ilattr_3 -0.13* 0.02 -0.13* 0.02 -0.06 0.04 -0.06 0.04 -0.14* 0.02 -0.06 0.05 

iwater_1        0.15* 0.03 0.16* 0.03 0.13* 0.03 0.14* 0.04 0.19 0.17 0.15* 0.04 

ibuild_3         0.11* 0.02 0.11* 0.02 0.12* 0.02 0.12* 0.02 0.25* 0.03 0.12* 0.02 

rural -0.09 0.05 -0.08 0.05 -0.15 0.09 -0.14 0.09 - - - - 

owner 0.12* 0.02 0.12* 0.02 0.13* 0.02 0.13* 0.02 0.09* 0.03 0.14* 0.02 

ibuild_4        0.32* 0.03 0.32* 0.03 0.36* 0.04 0.35* 0.04 0.46** 0.21 0.34* 0.04 

workst2p -0.23* 0.01 -0.23* 0.01 -0.18* 0.02 -0.18* 0.02 -0.28* 0.02 -0.17* 0.02 

workst3p -0.14* 0.02 -0.15* 0.02 -0.14* 0.03 -0.14* 0.03 0.01 0.02 -0.11* 0.03 

iincom_3        -0.07* 0.01 -0.07* 0.01 -0.06* 0.02 -0.05* 0.02 -0.08* 0.02 -0.06* 0.02 

num_hh -0.08* 0.00 -0.08* 0.00 -0.08* 0.00 -0.08* 0.00 -0.07* 0.00 -0.08* 0.00 

num_hh2 0.01* 0.00 0.01* 0.00 0.01* 0.00 0.01* 0.00 0.01* 0.00 0.01* 0.00 

hhhprmed -0.16* 0.02 -0.16* 0.02 -0.14* 0.02 -0.13* 0.02 -0.09* 0.02 -0.16* 0.02 

literatep 0.39* 0.02 0.39* 0.02 0.39* 0.03 0.39* 0.03 0.40* 0.02 0.38* 0.03 

child5p -0.53* 0.03 -0.53* 0.03 -0.52* 0.05 -0.52* 0.05 -0.52* 0.04 -0.52* 0.06 

mhhsize 0.09** 0.03 0.10* 0.03 0.07 0.05 0.10 0.06 0.09 0.04 0.10 0.06 

depratio -0.38* 0.09 -0.38* 0.09 -0.39* 0.14 -0.41** 0.16 -0.23 0.12 -0.47* 0.16 

paginc 0.07 0.07 0.03 0.07 0.12 0.11 0.07 0.12 -0.06 0.09 0.14 0.12 

idiv_1 -0.04 0.04 -0.03 0.04 -0.08 0.06 -0.05 0.07 -0.04 0.04 -0.03 0.07 

idiv_2 0.15* 0.03 0.15* 0.03 0.13** 0.05 0.11** 0.05 0.15* 0.05 0.13** 0.05 

idiv_4 -0.17* 0.03 -0.16* 0.03 -0.25* 0.04 -0.24* 0.05 -0.08 0.04 -0.26* 0.05 

idiv_5 -0.17* 0.03 -0.14* 0.03 -0.29* 0.05 -0.27* 0.06 -0.08** 0.03 -0.25* 0.05 

femalep*rural‡ -0.19* 0.03 -0.19* 0.03 -0.10 0.08 -0.10 0.08 -0.19* 0.03 -0.03 0.04 

ibuild_3*rural 0.15* 0.03 0.15* 0.04 0.21* 0.07 0.21* 0.07 - - - - 

owner*ibuild_4 0.10** 0.04 0.10* 0.04 0.10** 0.04 0.11** 0.04 -0.08 0.22 0.10** 0.04 

rural*workst3p 0.19* 0.03 0.20* 0.03 0.19* 0.05 0.19* 0.05 - - - - 

rural*num_hh 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 - - - - 

rural*num_hh2 0.00** 0.00 0.00** 0.00 0.00* 0.00 0.00* 0.00 - - - - 

rural*hhhprmed 0.06** 0.03 0.06** 0.03 0.07 0.05 0.07 0.05 - - - - 

n 7428 3010 4653 2775 

* p<0.001, ** p<0.05, ‡ femalep for Set-3 and Set-4 
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CHAPTER SEVEN 

7. Conclusion 

 

 

 

This thesis describes and evaluates an MSE estimation method for the well-known 

World Bank’s ELL methodology for poverty estimation that is robust to the violation of 

this methodology’s area-homogeneity assumption. In addition, a flexible poverty 

estimation method that can account for household-level heteroskedasticity and based on 

the Chambers and Dunstan (1986) smearing approach to estimation of a finite population 

distribution function (referred to earlier as the CD-based method) was developed within 

the framework of the ELL methodology. This chapter concludes the thesis with a 

summary of the robust MSE estimation method, the CD-based method, the limitations of 

the proposed methods, and the results. We then discuss some promising directions for 

further research in poverty estimation. 

 

7.1 Thesis Summary 

One of the aims of the thesis is to examine how the ELL, EBP and MQ methods work in 

a realistic data set relevant to developing countries. The simulation study reported in 

Chapter Three was therefore based on the structure of actual census and survey datasets 

for Bangladesh. On the basis of the comparisons reported in this study we concluded that 

the standard ELL methodology based on 2-level working model performs better than the 

EBP and MQ methods in a realistic developing country scenario where between-cluster 
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variability is higher than between-area variability. However, Gaussian-type confidence 

intervals based on MSE estimates obtained via ELL still undercover compared to the 

alternative methods. A 3-level model-based ELL method can be used to overcome this 

issue, but then has to overcome the problem that most sampled areas have only a single 

cluster, so fitting a 3-level model becomes difficult. As a consequence, a 2-level model is 

typically used instead of a 3-level model. 

In Chapter Three we also developed guidelines for selecting a good multilevel model 

for use in small area estimation (SAE) in the context of poverty estimation. These 

included: (1) identification of the highest level in the data hierarchy where between-unit 

variation is maximized, (ii) If between-cluster variability is higher than the between-area 

variability, then one should fit a cluster based 2-level model and follow the standard ELL 

method (or EBP/MQ), reducing the between-area variability as much as possible by 

including area-level contextual variables, (iii) if between-area variability is higher than 

between-cluster variability, then one should fit an area-level 2-level model and follow 

EBP method (or ELL/MQ) after reducing cluster-level variability by including cluster-

specific contextual variables in the model specification. However, this approach can be 

problematic, since fitting such an area-level model implies the availability of 

cluster-specific contextual variables from other sources, which may be impractical (e.g. 

spatial coordinates of a cluster are typically much less accessible than those of an area).  

The results set out in Chapter Three indicate that the standard ELL method 

underestimates the true MSE of the poverty estimates that it produces, mainly because it 

ignores between-area variability in its model specification. These findings suggest the 

development of a modified version of 2-level model-based ELL method that accounts for 

the impact of between-area variability on the ELL-based MSE estimates. A modified 

ELL methodology that is robust to the presence of between-area variability is therefore 
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developed in Chapter Four. The basic idea underpinning this modified methodology is 

an estimator of the MSE of area-specific means that is robust to ignoring level three in a 

3-level model implemented under a simple stratification of the target small areas 

according to their population size. This modified MSE estimator shows improved 

performance for area-specific means, distribution functions, and poverty estimates 

compared with the standard 2-level model-based ELL method when there is 

between-area variability in the data. We also show that this modified method performs 

better than the optimistic and conservative version of ELL methods that have been 

proposed in the literature. Our findings in Chapter Three and the analysis set out in 

Chapter Four also provide evidence that both the EBP and MQ methods could also 

underestimate MSE if significant between-cluster variability is ignored in model 

specification. 

In Chapter Five we consider the issue of dealing with level-one heteroskedasticity under 

an ELL approach to poverty estimation. Here we propose a semi-parametric approach to 

heteroskedasticity modelling based on stratified MOM estimation (STR) and show that 

the method is flexible and performs similarly to the ELL “alpha model” approach in this 

situation. We also demonstrate that the STR method can work better than the ELL 

approach when the heteroskedasticity function is non-monotone. If the HH-level error 

variances are estimated by the STR method and then used in the ELL bootstrap 

procedure, the approach can be considered as a purely non-parametric (rather than 

semi-parametric) extension of the ELL method. 

Chapter Five also contains the next major contribution of the thesis, a small area 

poverty estimation method based on the smearing approach of CD (Chambers and 

Dunstan, 1986). This CD-based method is developed under both homoskedastic and 

heteroskedastic level-one errors for a 2-level working model similar to the one employed 
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by the ELL method, and the proposed STR method is used to estimate heteroskedastic 

level-one error variances. Numerical experiments reported in Chapter Five show that the 

proposed method performs similarly or better than the ELL method. 

In Chapter Six, the 2-level model-based ELL and CD-type MSE estimators are modified 

to account for between-area variability as well as heteroskedasticity at level-one, and 

then used in a poverty mapping exercise based on the Bangladesh datasets. These 

empirical results provide support for the applicability and the flexibility of the proposed 

CD-based method and the modified versions of both the ELL and CD-type estimators. 

They also show how the 2-level model-based ELL and CD-type estimators underestimate 

MSEs by ignoring the presence of between-area variability for those small areas with 

significant urban components and a large population size. Overall, the results in Chapter 

Five and Chapter Six confirm the viability of the proposed CD approach as a robust 

alternative to ELL methodology. 

 

7.2 Future Research 

This thesis has focused on the MSE estimation problem when ELL methodology is used 

for poverty estimation, and has developed an approach to overcoming this problem. 

However there are still theoretical and practical research questions that relate to the ELL 

and CD-based poverty estimation methods and their modifications. Some ideas for future 

research are discussed below. 

Idea 1: Identification of guidelines for choosing an appropriate SAE method 

The results from the numerical experiments reported in Chapter Three and based on the 

Bangladesh census and survey datasets suggest guidelines for choosing an appropriate 

model for poverty estimation. Depending on the hierarchical structure of a survey 

dataset, the general procedure is to find an appropriate 2-level model (either cluster or 
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area level) and then apply one or more of the ELL, EBP, and MQ methods. Note that 

although fitting the MQ model does not require prior identification of the data hierarchy, 

the M-quantile coefficients and corresponding regression coefficients can be estimated at 

that hierarchy level (cluster or area) for which maximum variation is observed in a fitted 

multilevel model.  

If a 3-level model is a better representation of a survey dataset compared with a 2-level 

model then 3-level model-based ELL, EBP and MQ methods should be better. In such 

cases the ELL method will be the easiest to implement due its flexibility. Model-based 

EBP and MQ methods based on a 3-level model require further research. Note that 

Diallo (2014) has developed a two-fold EBP method under skewed normal random 

errors. 

The structure of the survey and census datasets should be an important consideration 

when selecting an SAE methodology for poverty estimation. In developing countries, the 

proportions of target small domains in the household level income and expenditure 

surveys tend to be small (20 - 50%) (Elbers and Van der Weide, 2014). In such 

situations, the EBP and MQ method may work better for the sampled areas if 

between-area variability dominates spatial variation in the data. In developed countries, 

the survey may include most of the target small areas and in this case the EBP and MQ 

methods perform consistently provided any intermediate level between the unit and 

target small area does not significantly contribute to the local variation of response 

variable. This implies that it is important to develop appropriate diagnostics for 

identifying significant between-cluster variability if the EBP or MQ methods are to be 

considered for poverty estimation. 
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Idea 2: Further development of poverty estimation based on a 3-level model 

One of the key differences between fitting a single-level model and fitting a multilevel 

model is estimation of variance components. Nationally representative household 

surveys are usually designed with multiple purposes in mind and consequently tend to 

ignore lower-level administrative units. Estimating variance components defined by 

these lower-level administrative units (such as cluster and small areas) is then difficult, 

particularly in terms of efficiency. In this context, Haslett (2013) notes previous research 

by Münnich and Burgard (2012) and Haslett (2012) that consider estimation of variance 

components when a survey is not designed to produce small area estimates. 

Unavailablity of multiple clusters in most of the sampled areas makes it difficult to 

separate area random effects from cluster random effects. In the Bangladesh poverty 

mapping study (BBS and UNWFP, 2004) more than 75% of the sampled areas had a 

single sample cluster, which creates issues in obtaining consistent and efficient estimates 

of higher-level variance components. Research is necessary to determine the optimum 

proportion of sampled areas with multiple clusters for which both the cluster and 

area-specific variance components estimators will be unbiased, stable, and consistent. 

This research should contribute significantly towards resolving the problem of whether 

to consider either a 2-level or a 3-level model for the ELL and EBP methods. 

Reduction of between-area variation is vital when applying ELL methodology. The 

relevant question here is “how much of total variation due to between-area variability 

can be considered as negligible?” when a suitable test (e.g. a likelihood ratio test or LRT) 

shows that the area-level variance component is significant. Because of large overall 

sample size, it can be the case that a negligble (perhaps less than 0.5%) proportion of 

between-area variation could be identified as significant. Datta et al. (2011) have 

proposed a preliminary test estimator for the presence of a random effect at a specified 
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level in a data hierarchy for an area-level model with a modest number of small areas. 

This estimator can be used to check the significance of cluster and area effects 

separately, but what is needed is the capacity to check the significance of the area effect 

given a significant cluster effect and vice versa. Thus a standard test or criterion is still 

required for identifying whether or not area-level random effects are redundant in a 

three-level model specification. 

Idea 3: EBP and MQ methods under cluster-heterogeneity 

In Chapter Three it was observed that both the EBP and the MQ methods underestimate 

the true simulation MSE when there is high between-cluster variability and negligible 

between-area variability. In Chapter Four, we show that if the 2
nd

 level of a 3-level 

model is ignored then the 1
st
 and 3

rd
 variance components are biased, complementing 

similar results reported in Tranmer and Steel (2001a). This bias is one of the main 

reasons for underestimation of MSE by the EBP method. In contrast, the MQ method 

then behaves similarly to the 2-level model-based ELL method since the area-specific 

MQ coefficient is actually a cluster-specific MQ coefficient for the 75% of target areas 

containing a single cluster. This suggests that both the EBP and MQ methods should also 

be modified in order to deal with this underestimation of MSE issue, perhaps following a 

similar approach to the one used to develop the modified ELL methodology described in 

Chapter Four. 

Idea 4: Practical issues in the use of unit-level SAE 

The application of unit-level SAE methodology can be a real practical problem when the 

census dataset is huge, e.g. as in countries like China and India. In the Bangladesh study, 

a 5% Census data set was used. If a full census dataset was available and used, the 

computational effort would be very high for unit-level SAE methods. Using additional 

(or adequate) computational resources might be one way of handling this type of “big 
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data”. In the usual case of limited resources, an alternative approach could be based on a 

partitioning of the whole country into several strata. Area-level SAE methods are another 

alternative; however, given the focus of poverty, and, by implication, small area income 

distributions, indicator-specific area-level models are then needed. 

The use of sample census data (e.g. 5% Census data) raises the question of how big a 

proportion of a real population is required in order to make reliable inferences about the 

whole country. One possibility is that the poverty estimates based on sample Census data 

be scaled up to the whole census via an appropriate calibration method. Specification of 

how this calibration should work remains an open research question. 

The ELL method is also used in nutrition mapping where anthropometric data on 

children, rather than HH incomes, are used (BBS and UNWFP, 2004; Fujii, 2010). 

However, in nutrition studies most unit-level models have low goodness of fit due to a 

lack of proper explanatory variables. In such studies, observed maximum variation is at 

child level, as one would expect, with these variations most likely due to human genetic 

variation. This lack of fit can be improved by inclusion of child-level demographic 

variables that are available in the survey dataset but are not available in the census 

dataset. That is, a better multilevel model can be developed using the survey dataset 

alone, but it is not possible to use this model in an ELL-type analysis due to lack of these 

child-level demographic variables in the census dataset. In such a situation, an area-level 

SAE approach may be better, particularly if relevant area-specific demographic and 

genetic variables can be estimated from other sources (e.g. contemporaneous genetic 

surveys). 

Idea 5: Non-normality of random errors 

The methodologies developed in Chapter Four and Chapter Five are based on an 

assumption of nested Gaussian errors. This assumption also held for the numerical 
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experiments that were reported there. Some evidence for the validity of this assumption 

is the fact that for these simulations, which were based on the Bangladesh data sets; there 

were no significant differences in the MSE estimation performances of the ELL and 

CD-based methods that used parametric (i.e. based on a Gaussian assumption) as well as 

non-parametric bootstrap procedures. However, the question still remains about the 

performance of these approaches when errors are non-normally distributed. 

Idea 6: Spatial correlation of random errors and distances among small areas 

The proposed modified ELL method described in Chapter Four is based on the 

population sizes of the small areas and ignores their geospatial positions. Small areas 

close to the capital/port/metropolitan cities are highly interconnected in terms of 

communication facilities and employment opportunities, and can be expected to have 

similar poverty characteristics. This type of correlation is ignored when implemented the 

modified ELL procedure. In such cases, both the population size and the distance from 

neighboring small areas could be considered for the stratification used in the modified 

ELL methodology.  

More generally, the ideas set out in the thesis have been developed based on the 

assumption of spatially uncorrelated random errors. Though such spatial correlation can 

be reduced by incorporating contextual variables in the regression model (Elbers et al., 

2008), there is still the possibility of spatial lag dependence (value of dependent variable 

in one area is affected by values of the dependent variable in contiguous areas) and 

spatial error dependence (the error term in one area is correlated with the error terms in 

nearby areas). Olivia et al. (2009) have examined such situation in a real data set relating 

to Shaanxi, China using exact measures of distance between each household. They show 

that ignoring the spatial error structure and the spatial lags at the modeling stage may 

lead to over-stated precision of local-level estimates of poverty. The main constraint in 
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modeling such spatial effects is the availability of spatial data at household and cluster 

levels in the nationally representative household survey. However, the growing use of 

GPS (Global Positioning System) in recent household surveys (Gibson and McKenzie, 

2007) implies that a spatial version of ELL methodology will soon be developed. 

Idea 7: Heteroskedasticity at higher levels of the population hierarchy 

The heteroskedasticity pattern in the Bangladesh dataset was monotone and negligible, 

so the ELL and CD-based methods led to very similar results. This raises the question of 

how different would be the results generated by these two methods if in fact the 

heteroskedasticity that is observed is very prevalent and non-monotone. Also, both 

approaches assume heteroskedastic random errors at unit-level only. But there may be 

heteroskedasticity at higher (cluster/group/area) levels (Gordon, 2012). If the variances 

of cluster-level (or area-level) random errors vary with the cluster size (or area size), then 

the ELL method needs to be modified in order to account for such heteroskedasticity. 

Note that this issue of general heteroskedasticity also arises for the EBP method 

proposed by Van der Weide (2014). 

Idea 8: Application of SAE methods to inequality estimation 

The ELL method is usually used to measure the FGT class of poverty measures - HCR 

 0iF , PG  1iF , and PS  2iF . Poverty severity 2iF  is a combined measure of poverty 

and income/expenditure inequality. The Sen index (Sen, 1976) combines HCR and PG 

with the Gini index  iG  as  0 1 1
i

p p

S i i i iF F G F G    where p

iG  is the Gini coefficient 

of inequality among the poor people belonging to area i . The Gini coefficient (Gini, 

1912) is calculated as  2cov , /i i i iG y y R  where iR  is a vector of standardized ranks 

of individuals or households in the income distribution (here 0 denotes poorest and 1 

denotes richest). Several authors have modified the Sen index to use with a desired 
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poverty inequality. A widely used modification is the Sen-Shorrocks-Thon index 

(Shorrocks, 1995), which is calculated as  0 1
ˆ1

i

p p

SST i i iF F F G   where 
1

p

iF  is the PG 

calculated over poor people only, and ˆ p

iG  is the Gini coefficient of the PG variable over 

the whole population belonging to the thi  area. The Sen index and its modified versions 

have the capability to answer the three questions simultaneously: (i) Are there more poor 

people? (ii) Are the poor people more poor? and (iii) Is there higher inequality among the 

poor people? (Haughton and Khandker, 2009). Since these complex indicators are 

functions of the FGT measures, the ELL approach can be easily implemented in order to 

estimate them. Moreover, we expect that the proposed CD-based method and the 

modified versions of both the ELL and the CD-based methods also be capable of 

producing the estimates of such poverty and inequality measures. 

The performances of the proposed methods could also be examined for other poverty 

inequality measures such as Theil-index (Theil, 1967) (a special case of the General 

Entropy class), the decile dispersion ratio (the ratio of the average income/consumption 

of the richest 10% of the population to that of the poorest 10%), share of 

income/consumption of the poorest 10/20% population (Haughton and Khandker, 2009), 

and the quintile share ratio denoted by S80/S20 (the ratio of total income/consumption 

shared by the top quintile to that of the bottom quintile). 

Idea 9: Application of SAE methods to a Multidimensional Poverty Index (MPI) 

Generally, poverty is defined by a scalar measure, say per capita income. However, 

people experience poverty due to other monetary and non-monetary attributes, such as 

lack of education, health, housing, empowerment, humiliation, employment, personal 

security, and so on. One indicator cannot represent these multiple aspects of poverty. A 

household may be not poor in monetary terms but could still be deprived with respect to 



194 
 

lack of education, health, and security. Income poverty alone fails to capture these other 

aspects of deprivation. 

Alkire and Foster (2009, 2011) created a multidimensional poverty index (MPI) by 

including a number of non-monetary deprivation criteria with the monetary FGT poverty 

measures. Alkire and Foster (hereafter referred as AF) proposed an identification and 

agrregation method by considering multiple response variabes (either continuous or 

integer) simultaneously with corresponding cut-off points. Similar to the traditional FGT 

measures, AF defined adjusted head count ratio, adjusted poverty gap, and adjusted FGT 

measures which are together referred as the adjusted FGT class of multidimentional 

poverty measures. A number of countries including Bhutan, Colombia, Mexico, the 

Philippines, and the state government of Minas Gerais, Brazil have produced their 

national MPI using the AF methodology. 

Calculation of an MPI index for disaggregated administrative units represents a new field 

of application for SAE methods. Since income/consumption is the main monetary 

variable used in preparation of such an MPI index, the main task is still one of predicting 

the small area income distribution. In the identification phase of the AF method, 

prediction of the non-sample values of a set of dependent variables including income is 

still required. This implies the use of multivariate multilevel models for joint prediction 

of dependent variables in the SAE method. Schmid and Tzavidis (2015) have 

implemented an SAE method by fitting a generalized linear mixed model considering a 

multinomial dependent varable with five categories which is based on a two-dimensional 

representation of poverty: economic and social deprivation.  

Idea 10: Time lag between Census and Survey 

The time lag between the census data and the survey data used in ELL is an important 

issue in an ELL-based poverty mapping study. If the time lag is large, caution should be 
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exercised when carrying out SAE (Haslett, 2013). Lanjouw and van der Wiede (2006) 

have suggested the use of approximately time invariant structural variables in the 

modeling process; Isidro, Haslett and Jones (2010, 2016) on the other hand suggest 

fitting the SAE model using contemporaneous survey and census data, and then updating 

the model fit using an ESPREE (extension of structure preserving estimation) method by 

using a set of margins from an up to date survey that make allowance for associated 

sampling error. However, the question now arises as to how one allows for sampling 

error if there is between-area variability in the recent survey but not in the base survey. 

In such situation, our modified ELL methodology may be able to capture this 

between-area variability. 

An investigation of the proposal of Isidro, Haslett and Jones (2010, 2016) is also 

worthwhile. This proposes utilizing 2001 Bangladesh Population and Housing Census 

and 2000 Household Income and Expenditure Survey (HIES) datasets as the 

contemporaneous datasets, updates the resulting poverty estimates utilizing 2010 HIES, 

and then compares these updated estimates with the standard estimates based on 2011 

Census and 2010 HIES. A further complication here is that the boundaries of the small 

areas of interest will almost certainly have changed over this time period. 
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APPENDIX A 

Proofs of Theoretical Results 

 

 

 

A.1 Variance Component Estimation: 2-level Homoskedastic (HM) Population Model 

Suppose ijky  indicates the value of the response variable Y  for thk  household (HH) 

belonging to thj  cluster of thi  area. Assuming households (HHs) at level-one and clusters at 

level-two, a 2-level nested error regression model can be written as  

 
   2 2

1,2,..., ;  1,2,..., ;  1,2,....,

T T
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i ij

y u e

i D j C k N

    
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where, 
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2
0,ij u

u N  , and 
  2

2
0,ijk N


   are identically and independently distributed 

cluster- and HH-level random errors. The sub-script  l  stands for a perfectly specified 

l -level model. Since the HH are nested within cluster, the covariance between two 

observations becomes 
   

2 2

2 2u



   if /ij ij  & 

/k k , 
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  /ij ij , and zero otherwise. 

Suppose a sample of size n  is drawn randomly through a two-stage cluster sampling design 

covering all D  small areas, where 
is s

i s

C C


  clusters are randomly selected at the first 

stage and ijn   1,...,  & 1,...,
is

i D j C   HHs are randomly selected at the second stage from 

the corresponding selected clusters. Fitting the model (1) to the sample data via least square 
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(LS) method, the estimated residuals can be utilized to calculate moment-based estimates of 

cluster- and HH-level random effects as 1ˆ ˆ
ij ij ijk

k s

u n e



   and ˆ ˆ ˆ
ijk ijk ije u   where 

ˆ ˆ
ijk ijk ijke y y  . Under the 2-level model (1), we have 
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where  .lE  stands for expectation under a perfectly specified l -level model . The HH- and 

cluster-level sample residual variances are expressed as   
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where 
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; 1,..,
p

s p l  indicates the sample residual variances calculated at thp  level of an 

l -level model. Under the population model (1), the expectation of different terms associated 

with  1
s  and  2

s  can be expressed as  
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 

 
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
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 
 

      

where  2 1 2

0 ij

ij s

n n n



  . In matrix form, the expectations are expressed as  

 

       

 

   

 

 

2

0
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2
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1
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1
1

u

s
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E
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C






 
           
        

 

A Λ A Λ . 

Now the unbiased estimator of the variance components can be easily obtained if the 

coefficient matrix 
 2

A  is non-singular (Tranmer, 1999). The unbiased estimators of the 

variance components can be expressed as  

  

 

 
 

 

 

   

 

 
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2 1
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n C n Cn n n n


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



 
       

       
               

   

Λ A   (2) 

and their unbiasedness can be easily checked as below 

          
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 
 
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1 22 2

2 2 22 22
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s
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E E s E s

n C n n

     
  

  . 
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A.2 Variance Component Estimation: 3-level Homoskedastic (HM) Population Model 

Consider an additional area-level random effect in the 2-level model (1) to construct a 3-

level nested error linear regression model for the response variable of interest as 

    3 3

 1,2,..., ;  1,2,..., ;  1,2,....,

T T

ijk ijk i ij ijk ijk ijk

i ij

y u e

i D j C k N

      

  

x β x β
  (3) 

where HH-  ijk , cluster-  iju  and area-level  i  random errors are identically and 

independently distributed as respectively 
  2

3
0,N


 , 

  2

3
0,

u
N  , and 

  2

3
0,N


 . Now the 

covariance between two observations becomes 
   

2 2

3 3u



   if 

/ijk ijk , 
 

2

3
  if 

/ /ijk ij k , 

and zero otherwise. As previous area-, cluster-, and HH-level random effects are estimated 

as 1ˆ ˆ
i i ijk

jk s

n e



  , 
1ˆ ˆ

ij ij ijk

k s

u n e



   and ˆ ˆˆ ˆ
ijk ijk i ije u     where ˆ ˆ

ijk ijk ijke y y  . Under the 

3-level model (3), we have 

       
1 2 2 2

3 . 3 3 3
ˆVar +ij ij u
e n

 
    ,        

1 2 2 2 2 2

3 .. 3 3 3
ˆVar +i i i iju

j s

e n n n
 

   



    and 

       
1 2 2 2 2 2 2 2

3 ... 3 3 3
ˆVar ij iu

ij s i s

e n n n n n
 

    

 

    . 

 The sample residual variances at area level is defined as 
     
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ˆ ˆ1 i i

i s

s D n e e




  

   ..

2
1 2 1 ˆ1

i

ijk
i

ijk s
i s

eD n e n
 




 
   

 
 . Now the expectations of the core terms under model (3) 

      2 2 2 2

3 3 3 3
ˆ

ijk u
ijk s

E e n


 
   

 
  

   , 
     .

2 2 2 2

3 3 3 3
ˆ

ijij s u
ij s

E n e C n n


 
   

 
  

   , 

 
 

   ..

22 2 2 2

3 03 3 3
ˆ

ii i u
i s i s

E n e D n n
 

 
   

 
  

   ,      

2

2 2 2 2 2

3 3 3 3îjk ij iu
ijk s ij s i s

E e n n n
  

 
   

 
   

    

lead to  
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     
    

    

2
2 32 2 2

3 ... 0 03 3 3
ˆˆ 1 +ijk u

ijk s

E e e n n n n n
 

  


 
      

 
 ,

     
    

    

2
2 32 2 2

3 . ... 0 03 3 3
ˆ ˆ 1 +ij ij s u

ij s

E n e e C n n n n
 

  


 
      

 
 , and 

     
   

 
    

2
2 2 32 2 2

3 .. ... 0 0 03 3 3
ˆ ˆ 1 +i i i u

i s i s

E n e e D n n n n
 

  
 

   
        

   
   

with 
 2 1 2

0i i ij

j s

n n n



   and  3 1 2

0 i

i s

n n n



  . After simplification, the expectations of the sample 

residual variances become   

                  

1 11 2 32 2 2

3 0 03 3 3
1 1

u
E s n n n n n n

 
      

 
   , 

                  

1 12 2 32 2 2

3 0 03 3 3
1 1s su

E s C n n C n n
 

      
 

   , and 

          
        

1 13 2 2 32 2 2

3 0 0 03 3 3
1 1i u

i s

E s D n n D n n
 



 
       

 
 

    

which can be expressed in matrix form as below. 

 

 

 

     

         

         

          

 

 

 

 

1 12 3
21 0 0

3

1 12 3 22
0 03 3 3 3 3

23

1 1 32 2 3

0 0 0

1 1 1

 with 1 1 1  & 

1 1 1

s s u

i

i s

n n n n n n
s

E C n n C n ns

s
D n n D n n











 

 

 



                                         
   



A Λ A Λ

The coefficient matrix  3
A  is comparable to Tranmer and Steel (2001b). If the coefficient 

matrix  3
A  is non-singular, the unbiased estimators of the variance components are easily 

obtained from 

          
     1 2 32 2 2 1

3 3 3 3 3
ˆ ˆ ˆ ˆ

T T

u
s s s

 
       

  
Λ A   (4) 

with 
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 

       

     

 

     

    
      

 
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 
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  
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 
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 
 
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 
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 
 
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  



. 

Unbiasedness of these estimators can be easily checked by taking the expectation under the 

true 3-level population model. 

Suppose the first two variance components of the 3-level model are estimated using the 

estimators 
 

2

2
ˆ


  and 
 

2

2
ˆ

u
  which are based on a perfectly specified 2-level model. The 

expectations of these incorrect estimators under the 3-level model become 
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 
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 
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    
     

     
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where 
 

 

3

0

2

0

1
n n

R
n n


 


. Thus the estimator of level-one variance component 

  2

2
ˆ


  under a 

2-level model provides unbiased estimate of the level-one variance component 
  2

3
  of a 

3-level model. However, the estimator of level-two variance component 
  2

2
ˆ

u
  under the 

2-level model doesn’t provide unbiased estimate of the sum of level-two and level-three 

variance components 
    2 2

3 3u 
   of the 3-level model. 

 

A.3 Variance Component Estimation by Ignoring a Level of 3-level Homoskedastic 

(HM) Population Model 

Suppose the level-three of the 3-level model (3) is ignored. Then the estimators of level-two 

and level-three variance components can be expressed as 
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A  

where 1A  is a sub-set of  3
A  and the sub-script (3/3) is used for an estimator under a 3-

level model of which the 3
rd

 level is ignored. Under the 3-level model, expectations of the 

estimated variance components can be expressed as 
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where 
1,2A  consists of first and second rows of 

 3
A . After the simplification, the 

expectations become  
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 . 

Suppose the level-two of the 3-level model (3) is ignored, then the estimators of the 

remaining variance components and their expectations under the true 3-level model become 
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respectively where 2A  and 1,3A  are sub-set of matrix  3
A . The term 
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An approximation following Tranmer and Steel (2001b) can be done as   
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which leads to the following relationship 
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Thus, considering the relationship as  
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the expectations of the variance component estimators can be approximated as  
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Equality holds only if the relationship is true in a particular case. These approximations are 

comparable to those of Tranmer and Steel (2001a). 

Suppose the level-one of the 3-level model (3) is ignored, then the estimators of the 

remaining variance components and their expectations under the true 3-level model become 
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respectively where 3A  and 2,3A  are sub-sets of matrix  3
A . The term 
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The complex term of the above matrix can be approximated as 
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Then the approximate expected values of the variance component estimators become   
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where the complex term of 
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 tends to zero if the overall sample size n  becomes 

very large. Thus the estimator of area-level variance component can be approximately 

unbiased under this situation. These approximate results are comparable to those of Tranmer 

and Steel (2001a). 

 

A.4 Scaling Raw Residuals under 2-level Homoskedastic (HM) Population Model  

The empirical (sample) variances of HH- and cluster-level residuals under the 2-level 

population model (1) are respectively  
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where 
sC  is the total number of sample clusters. The adjustments are needed in such a way 

that the empirical variances     1 2
,   in the bootstrap procedure are approximately equal to 
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In the similar way, scaling the cluster-level residuals by the term    
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 tends to zero. The scaling procedure of the raw 

residuals under a random slope model is described by Carpenter et al. (1999). 

 

A.5 Motivation of Modified ELL Methodology (MELL) under Misspecified Model with 

Homoskedastic (HM) Level-one errors 

Under the 3-level population model (3), let assume ijkm  indicate the HH weight (say, HH 

size) of 
thk  HH belonging to the

thj  cluster in the 
thi  area. Then the area-specific weighted 

mean of the response variable become 
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thi  area; 
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k

M m  and ijN  are total number of individuals (population) and HHs 

respectively in 
thj  cluster of 

thi  area. Under the considered 3-level model (3), the variance 

of cluster-specific mean 
1
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where the suffix (3) stands for the 3-level model. The covariance between ijY  and /ij
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leads to the variance of 
thi  area mean iY  as 
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   3
Var

iY  and    3
V̂

iY  become 
   2 22 2

1

iC

Ui i ij Ui

j

m N N n



   and 
 3 1

Ui im N  .  



223 
 

Under the 2-level model (1),    2
Var

iY  and its plug-in estimator can be written as  
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 The expectations of the variance estimators 
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where 
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1Uim   and 1R   lead to 
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. Thus the expected value of 

the variance estimator 
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V̂ iY  under the true 3-level model always underestimates the true 

variation of area mean. We can adjust (or ‘robustify’) 
   2

V̂ iY  to make it unbiased or 

approximately unbiased under the 3-level model. This leads to an adjusted estimator as 
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which is unbiased under the true 3-level model.  

Based on this modified variance estimator of 
iY  under the 2-level model, the second 

variance component estimator 
 

2

2
ˆ

u
  in the ELL methodology is adjusted. The first 

adjustment factor is proposed based on the sample information as below:  
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224 
 

adjustment factor and the corresponding corrected 
 

2

2
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u
  are based on the area-specific 

population size ( iM ) recorded in the census as respectively 
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The third adjustment factor is based on the stratification of all the small areas based on their 

population size. The adjustment factors and the corresponding corrected 
 
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u
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expressed as  
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When the HH weights are equal, the adjustment factors becomes  
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  , i in m m  is total HHs observed in 
thi  sampled area, ij ijn m m  is 

total HHs observed in 
thj  sampled cluster of 

thi  sampled area. 

 

A.6 Variance Component Estimation: 2-level Model with Heteroskedastic (HT) 

Level-one Errors 

Now consider the HH-level random errors are heteroskedastic (HT) and distributed as 

  2

2 ,
0,ijk ijk

N


   where    2

2 , ijkijk
x


    is assumed to be an unknown function of 

explanatory variables. Then the 2-level nested error regression model can be considered as 
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As previous cluster- and HH-level random effects can be estimated at first by the moment 
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Using these expected values, the expectation of the HH- and cluster-level sample residual 

variances  1
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Under the assumption of known HH-level variances 
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The terms involved in 
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which leads to    

 

  
     

 
       1 22 2

22

0

1
ˆ 1 1

1

ht s

su

n mCn
n s C ss

n mnn n


  
            

  
     

 

  

 
 2 1

22

0

1 1
1

1 1

sC n m n m nn
s s

n n m n mn n

      
    

      

 
  

 

 
   

 
 2 1

2

0

1 1

1 1

sn m C n m
s s

n m n mn n

   
  

   

 
  

 

 

 

 
    

  
 2 1

2

0

1 1

1 1 1

s s s

s s

n C m n C n C n m
s s

n C n m n m Cn n

     
  

     

 
  

 

 
   

   2 1 2

22

0

1 1
ˆ    

s

su

s

n C
s s n mC

n Cn n


 
    
 

 . 

Thus the estimators  
 2

2
ˆ ht

u
   under heteroskedasticity will provide the same estimate as 

 
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2
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if the number of sampled HHs per cluster is same for all the sampled clusters. 

 

A.7 Variance Component Estimation: 3-level Model with Heteroskedastic (HT) 

Level-one Errors  

Consider a 3-level population model including an area-level random effect in the 

superpopulation model (5) as 
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ijk  are identically and independently distributed from each other. As 
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Under the 3-level model (6) with heteroskedasticity at HH-level, we have 
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Now the expectation of the sample residual variances become 
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putting 
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The coefficient matrix will be the same as 
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A  shown in Appendix A.2 if 
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2 2

3 . 3ijk 
   . In 

such case, the unbiased estimators of the variance components 
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, ,
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    can be 

easily obtained if the new coefficient matrix 5A  is non-singular (Tranmer & Steel, 2001a). 

Assuming the coefficients 11 , 21 , and 31  as known, the estimator of 5  can be easily 

obtained from 1

5 5 1
ˆ A S  . The determinant and conjugate of 5A  are  
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where, 
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There are some relationships among the coefficients as: 
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from which the estimators of 
 

2

3u
  and 

 
2

3
  can be written as  
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Under homoskedasticity at HH-level, the complex terms become 00 sn C   , 22 n D   , 

and 21 sC D    which lead to the unbiased estimators of variance components as (4) under 

the HM model (3). 
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If the estimators produce negative values, the variance components will be valued as zero.  

The estimators can be obtained directly from the estimating equations as follows. From the second 
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which are similar to previous estimators. 
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A.8 Motivation of Modified ELL Methodology (MELL) under Misspecified Model with 

Heteroskedastic (HT) Level-one Errors 
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where 
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       3 32 3

ˆ ˆV Vi iE Y E Y   
   

 under the assumption of 

     3 2 3

3 3
ˆ ˆ
ijk ijk ijkE E      

   
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which is approximately unbiased under the true 3-level model. When HH weights are equal, 

the adjusted estimator becomes  
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  , sD  is number sampled areas, im  is total members observed in 
thi  

sampled area, ijm  is total members observed in 
thj  sampled cluster of 

thi  sampled area. The 

adjusted factor will be based on the number of HHs if no HH-level weights are considered. 
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APPENDIX B 

R Scripts 

 

 

 

R scripts for the contributed four chapters are available in the following links. Bangladesh 

datasets, which are used in chapters Three and Six, are not attached with the link. 

 

Chapter Three: https://github.com/sumon148/Chapter-Three.git 

 

Chapter Four: https://github.com/sumon148/Chapter-Four.git 

 

Chapter Five: https://github.com/sumon148/Chapter-Five.git 

 

Chapter Six: https://github.com/sumon148/Chapter-Six.git 

 

Contact information of Bangladesh Bureau of Statistics (BBS) for Bangladesh Census and 

Survey Datasets: http://www.bbs.gov.bd/PageWebMenuContent.aspx?MenuKey=62  

 

 

 

https://github.com/sumon148/Chapter-Three.git
https://github.com/sumon148/Chapter-Four.git
https://github.com/sumon148/Chapter-Five.git
https://github.com/sumon148/Chapter-Six.git
http://www.bbs.gov.bd/PageWebMenuContent.aspx?MenuKey=62
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