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SnO2-coated polypyrrole (PPy) with a three-dimensional (3-D) structured nanotube network has been prepared via a facile 

hydrothermal method and tested as anode material for Na-ion batteries. The crystalline SnO2 nanoparticles (less than 25 

nm in size) are distributed uniformly on the surfaces of the PPy tubes. When it is used as an anode material for sodium-ion 

batteries (SIBs), the composite electrode can deliver a good reversible capacity of nearly 288 mAh g-1 when discharging at 

100 mA g-1, with more than 69.1% capacity retention and stable coulombic efficiency of 99.6% after 150 cycles. The good 

electrochemical performance compared to the 151 mAh g-1 achieved by bare SnO2
 , which was fabricated by the same 

method in the absence of PPy, could be mainly attributed to the good dispersion of SnO2 on the 3-D matrix of PPy tubes, 

which facilitates the diffusion of Na+ ions and buffers the large volumetric changes during charge/discharge. Our results 

suggest that such SnO2/carbonaceous composites would be good anode candidates for SIBs.

Introduction 

Lithium-ion batteries (LIBs) have been receiving tremendous 

attention as promising energy-storage and transformation 

devices, and they are widely applied in portable electronic 

devices, electric vehicles, hybrid electrical vehicles, etc. Now, 

they are becoming indispensable energy storage devices for 

application in the energy conversion of intermittent energy 

sources, such as in solar cell arrays and wind power stations. 

Considering these factors along with the limited reserves and 

non-uniform distribution of lithium resources, the big 

challenges for long-run and large-scale applications of lithium-

ion batteries related their availability and cost are becoming 

more and more prominent. Based on the above issues, it is an 

urgent necessity to develop new types of batteries. Over the 

past several years, sodium-ion batteries (SIBs), which are 

becoming known as future alternatives to lithium ion batteries, 

have been attracting great attention,
1, 2

 mainly in view of the 

abundance of sodium resources and their obvious cost-

effective advantages.
3-9 

As is well known, it is still a big 

challenge to develop suitable anode materials for Na-ion 

batteries because of the larger ionic radius of Na
+
 compared to 

that of Li
+
, which causes greater volume changes during cycling 

and lower gravimetric and volumetric energy densities. These 

innate characteristics are directly limiting the feasibility of 

insertion materials for SIBs, including some cathode and anode 

materials. To bypass these deficiencies, many carbon-based 

materials have been extensively investigated, such as hard 

carbons, which can achieve reversible capacities from 200 to 

290 mAh g
-1

 for more than 180 and 100 cycles, respectively.
10, 

11
 Reduced graphene oxide, could achieve a reversible capacity 

of 174.3 mAh g
-1

 over 250 cycles.
12

 N-doped carbon composite, 

which showed a reversible capacity of 155.2 mAh g
-1 

after 260 

cycles,
13 

retained a 
  
reversible capacity of  243 mAh g

-1
 after 

100 cycles,
14

 and achieved a specific capacity of 175 mAh g
-1

 

after 2000 cycles etc.
15 

Some non-carbonaceous materials such 

as metal oxide materials also
 
have been studied for SIBs.

 16-20 

Among these materials, SnO2-based materials have attracted 

more interest because SnO2 can deliver high specific capacities 

by acting as an alloying material to store Na. It has been 

demonstrated that SnO2 can be an attractive anode for SIBs, 

with a capacity of 667 mA h g
-1

, based on the following 

reactions: 4SnO2 + 16Na
+
 + 16e

-                
4Sn+8Na2O   (1)  

4Sn + 15Na
+ 

+ 16e
- 

      Na15Sn4
20  

(2). Similarly, the main 

disadvantages of SnO2 are the expansion and shrinkage of the 

active material particles during Na insertion/extraction, 

leading to particle pulverization/ exfoliation and rapidly 

mailto:jiazhao@uow.edu.au
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decreasing capacity in these materials.
5, 20

 On the other hand, 

studies have shown that the diffusion speed of Na
+
 is 30 times 

slower than that of Li
+
 in SnO2 particles.

21
 Much research has 

been carried out to solve this problem, such as by decreasing 

the particle size of the active material to the nanoscale
 22

 and 

loading some materials as buffer layers.
20, 23-29  

In recent years, 

with the persistent efforts focused on exploring new anode 

materials for sodium storage, some three-dimensional (3-D) 

structured composites have been recognised to have sodium 

storage capability. There are many reports of SnO2 

nanoparticles loaded onto graphene,
25  

anchored on reduced 

graphene oxide frameworks
30

 and
 
confined in mesoporous  

carbon.
31

   

Polypyrrole (PPy), in particular consisting of tubes with a 3-D 

structure, as a kind of conducting polymer, not only acts as an 

electrically conducting agent, which is beneficial for reducing 

resistance and enhancing the rate capability of the cell, but 

also as a matrix or binder, which can provide efficient 

transport pathways for electrons and mitigate the 

pulverization of the electrode brought about by the huge 

volume expansion during the charging/discharging process. 

This unique hierarchical structure not only provides good 

structural robustness and short ion/electron diffusion 

pathways, but also promotes the diffusion of the electrolyte 

into the inner spaces of the material, as well as providing 

sufficient open channels for fast Na
+ 

migration.There are many 

reports on using PPy as a matrix to synthesize SnO2 based 

composites
 32-36

 for anode materials. Recently, Du and Wang 

reported the synthesis of SnO2@polypyrrole nanotubes with 

microwave-assisted method.
37 

The
 

pyrolyzed composite 

displayed very excellent capability for Li-storage as the PPy NTs 

can accommodate large volume change of the electrode 

material during Li
+
 insertion/extraction, which prevented SnO2 

nanoparticles from pulverizing and electrical isolating during 

cycling. Combining PPy tubes with SnO2 nanoparticles to 

fabricate SnO2-based anode material in SIBs has not been 

explored, however. In term of the above advantages, we also 

adopted PPy as the substrate material and anchored the active 

SnO2   nanoparticles on its’ surface. 

   Herein, we report the in situ hydrothermal synthesis of SnO2-

PPy nanotubes with a 3-D structure. In the composites, SnO2 

nanoparticles are homogeneously distributed on the surfaces 

of the PPy nanotubes. This unique hierarchical structure not 

only provides good structural robustness and short 

ion/electron diffusion pathways, but also has benefits for 

electrolyte penetration and Na
+
 transport. The obtained 3-D 

structured SnO2-PPy nanotube network showed a good 

reversible capacity of nearly 288 mA h g
-1 

 when discharging at 

100 mA g
-1

, with more than 69.1 % capacity retention and 

stable Coulombic efficiency of 99.6 % over 150 cycles. Good 

rate capability is observed, based on current rate variation  

during  cycling from 50 mA g
-1 

to 1  A g
-1

. 

Experimental Section 

Synthesis of PPy tubes 

The PPy tubes were synthesized according to a previous report 
38

 with some modifications. The process of synthesis was as 
follows: 1.95 g of FeCl3 was added to 150 mL a solution 
containing 98 mg methyl orange (MO) in deionized water 
under constant stirring. A flocculent precipitate appeared 
immediately. Then, 0.484 g (0.5 ml) of pyrrole monomer was 
added into the mixture and the mixture was continuously 
stirred for 24 hours at room temperature. After that, the thus-
formed PPy precipitate was washed several times with 
deionized water/ ethanol, until the filtrate was colourless and 
neutral. Finally, the precipitate was dried under vacuum at 60 
°C for 24 h. 

Preparation of the SnO2@PPy nanocomposites 

In a typical procedure, 0.035 g hexamethylenetetramine 

(HMTA) and 0.02 g urea were dissolved in 30 ml ethanol, and 

then 0.1 g PPy was dispersed into the foregoing solution by 

ultrasonic treatment for 0.5 h. 0.1g of SnCl2.2H2O was added 

to the preceding mixture and stirred in for 30 minutes. 

Subsequently, the resulting blend was transferred into a 

Teflon-lined autoclave and heated up to 120 °C for 10 h. When 

the precipitates were cooled down to room temperature 

naturally, then washed it with distilled water and ethanol for 

several times. Drying the precipitates in a vacuum oven 

overnight at 60 °C, the final product (denoted as SnO2-PPy-1) 

was obtained. SnO2-PPy-2 was obtained by adjusting the 

weight of SnCl2.2H2O to 0.15 g. For comparison, pure SnO2 

nanoparticles were prepared with the same conditions without 

the addition of PPy. 

Materials Characterization 

The powder X-ray diffraction (XRD; GBC MMA diffractometer) 
equipped with Cu Kα radiation at a scan rate of 2° min

-1
 was 

used to identify the structures of the as-prepared SnO2-PPy 
composites and the precursors. The weight ratio between 
SnO2 and PPy was determined by thermogravimetric analysis 
(TGA) using a Mettler Toledo TGA/DSC1 between 40 °C and 
800 °C at a heating rate of 5 °C min-1 in air. The  valence state 
of Sn was evaluated by X-ray photoelectron spectroscopy (XPS) 
using a SPECS PHOIBOS 100 Analyzer equipped with a high-
vacuum chamber with base pressure below 10

-8
 mbar, with 

the X-ray excitation generated by Al Kα radiation at the high 
voltage of 12 kV and power of 120 W. The data were analyzed 
with the Casa XPS 2.3.15 software package. All the spectra 
were calibrated by C1s = 284.6 eV. Field emission scanning 
electron microscopy (FESEM; JEOL JSM-7500FA) and high 
resolution transmission electron microscopy (HRTEM; JEOL 
JSM-2010) were used to investigate the morphology of the 
samples. 

Electrochemical Measurements 
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The electrochemical performance testing was carried out via 
2032-type coin cells. The working electrode was prepared by 
preparing a slurry in the mass ratio of 80 wt % active material, 
10 wt % Super-P (carbon black) and 10 wt % carboxymethyl 
cellulose (CMC) binder, and coating it on copper foil substrate. 
Then the electrode film was dried in a vacuum oven at 80 °C 
overnight. An electrolyte with 1.0 mol L

-1
 NaClO4 in an 

ethylene carbonate (EC) – diethyl carbonate (DEC) solution 
(1:1 v/v), with 5 wt % addition of fluoroethylene carbonate 
(FEC), was used in this work. All the cells were assembled in a 
glove box filled with argon gas and measured at room 
temperature. Galvanostatic charge–discharge testing was 
carried out on a Land Test System with a cut-off voltage range 
from 0.01 to 1.5 V (vs. Na/Na

+
) at different current densities. 

The capacities are calculated based on the weight of the 
composites. Cyclic voltammetry and electrochemical 
impedance measurements were conducted using a Biologic 
VMP-3 electrochemical workstation from 0.005 V to 2.5 V (vs. 
Na/Na

+
) at a scan rate of 0.1 mV s

-1
. 

Results and Discussion 

The XRD patterns of the PPy, SnO2 particles, and the SnO2-PPy-

1 and SnO2-PPy-2 composites are displayed in Fig. 1a. The PPy 

spectrum reveals a clear broad peak at about 23.8°
 

corresponding to its’ amorphous nature, which is due to the 

scattering from PPy chains at the interplanar spacing.
39-41

 The 

XRD pattern of the SnO2 nanoparticles was characterized by 

several peaks which could be ascribed to the tetragonal SnO2 

structure (cassiterite, PDF no. 01-0625) without any impurity. 

These large peaks clearly demonstrated the formation of small 

SnO2 particles with a nanocrystalline nature. From the XRD 

patterns of the obtained SnO2-PPy-1 and SnO2-PPy-2 

composites, we find very similar broad peaks that could also 

be indexed to the tetragonal SnO2 structure (cassiterite, PDF 

no. 01-0625). No other characteristic peaks can be seen, 

suggesting that the SnO2 nanoparticles have covered the 

surfaces of the PPy. 

For quantifying the amount of PPy in the SnO2-PPy composites, 

thermogravimetric analysis (TGA) measurements were carried 

out in air. The TGA curves of pure PPy and its composites are 

shown in Fig. 1b. It can also be seen that both pure PPy and its 

composites show weight loss in the temperature range of 250–

650 C, which is in accordance with the oxidation of PPy, 

although the temperatures at which weight loss ends in the 

three samples have some differences. For pure PPy and SnO2-

PPy-1, there was no difference. SnO2-PPy-2 required a higher 

temperature to oxidize PPy compared to pure PPy. This 

phenomenon could be the result of the greater amount of 

SnO2 loaded onto the PPy, which delayed the PPy oxidation 

process. After the initial oxidation of PPy, no further weight 

change was observed in the composites. Therefore, the weight 

change due to the oxidation of PPy can be directly converted 

into the amount of PPy in the SnO2-PPy composites.  Using this 

approach, we calculated that the amounts of PPy in the SnO2-

PPy-1 and SnO2-PPy-2 composites were 61.4 wt% and, 38.4 

wt%, respectively.  

The Fourier transform infrared (FTIR) spectra of bare SnO2, 

PPy, SnO2-PPy-1, and SnO2-PPy-2 are shown in Fig. 1c. In the  

spectrum for SnO2, a strong vibration around 609 cm
−1

 is 

observed in the low wave number range, which is indexed to 

the antisymmetric Sn–O–Sn mode of tin oxide. In the spectrum 

for PPy, the band centered at 1560 cm
−1

 corresponds to typical 

C=C in plane vibration, while the characteristic bands at 1300 

and 1205 cm
−1

 are connected with C–C and C–H ring 

stretching, respectively. The sharp peak at 1052 cm
−1

 is  

ascribed to C–H in-plane vibrations. The band at 929 cm
−1

 can 

be attributed to N–H in-plane vibrations.
42

 In the spectra of  

 

Figure 1 XRD patterns (a), TGA curves (b) and FTIR spectra (c) 

of PPy, bare SnO2 and SnO2-PPy composite. 
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Figure 2 XPS spectra: survey spectrum (a) for SnO2-PPy-2 ( PPy 

38.4%) composite, and high resolution spectra of Sn3d (b) for 

bare SnO2  and  SnO2-PPy-2 composite, and C1s (c) for PPy and 

SnO2-PPy-2 (PPy 38.4%) composite. 

 

SnO2-PPy-1 and SnO2-PPy-2, all the characteristic bonds for 

both SnO2 and PPy can be clearly observed. Therefore, the 

FTIR results confirm the presence of both PPy and SnO2 in the 

SnO2-PPy nanocomposites. 

To investigate the interaction between the PPy, SnO2 and 

SnO2-PPy-2, X-ray photoelectron spectroscopy (XPS) was used 

to detect the chemical states of elements. Peaks for C, Sn, and 

O in SnO2-PPy-2 were founded in the XPS survey spectrum, as 

shown in Fig. 2a. The Sn 3d XPS spectra of SnO2 and SnO2-PPy-2 

were collected to investigate the changes in the chemical state 

of tin before and after the hydrothermal reaction. In Fig. 2b, 

for both materials, there are two peaks, and the binding 

energy interval between them is 8 eV, which is consistent with 

the energy splitting of Sn or SnO2.
43  

For bare SnO2, the peaks 

found at 497.7 eV and 505.7 eV correspond to the 3d5/2 and 

3d3/2 curves of Sn (IV) in SnOx.
44, 45

 When SnO2 is coated with 

PPy, Sn3d peaks are shifted towards lower binding energies, 

i.e., 486.9 eV and 494.9 eV. These differences in the peak 

locations are obviously induced by the presence of PPy, which 

is conductive, while the bare SnO2 nanoparticles behave as an 

insulator in term of the XPS results.
31

 In the C1s spectra for bare 

SnO2 and SnO2-PPy-2, there is no obvious peak change, which 

means the absence of C-Sn bonds. This result indicates that no 

chemical reaction occurred during the preparation and that 

the composit structure is held together by van der Waals 

forces.  

The morphologies of PPy, bare SnO2, SnO2-PPy-1 and SnO2-

PPy-2 were characterized by scanning electron microscopy 

(SEM), as shown in Fig. 3. The image of PPy shows a 

homogeneous morphology of strip-like 3-D structured tubes 

about 300-450 nm in diameter (Fig.3a and 3e). For SnO2-PPy-1 

and SnO2-PPy-2, in Fig. 3b, 3c, 3f, 3g, the coarse surface can be 

clearly observed, with the diameters of the tubes apparently 

increased compared to PPy. There is not obvious difference in 

the shape of SnO2-PPy-1 and SnO2-PPy-2. Fig. 3d and 3h show 

the bare SnO2 nanoparticles at different magnifications. The 

size of the SnO2 particles is similar to that in the composites. 

The uniformity of the material composition was also confirmed  

 

Figure 3 SEM images at low magnification of PPy (a), SnO2-PPy-

1 (PPy 61.4%) (b), SnO2-PPy-2 (PPy 38.4%) (c), and bare SnO2 

(d); and SEM images at high magnification of PPy (e), SnO2-

PPy-1 (PPy 61.4%) (f), SnO2-PPy-2 (PPy 38.4%) (g), and bare 

SnO2 (h). 
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Figure 4 Dark field image of SnO2-PPy-2 (PPy 38.4%) (a), with 

corresponding EDS elemental mappings of  C (b), N(c), Sn (d), 

and O (e). 

 

by energy dispersive X-ray spectroscopy (EDS) mapping, as 

illustrated in Fig.4. For the elemental mapping of Sn and O, the 

points clearly indicate that the SnO2 was homogeneously 

distributed on the PPy tubes.  

Transmission electron microscopy (TEM) was further used to 

investigate the changes in structure between PPy and SnO2-

PPy-1, SnO2-PPy-2 composites. As displayed in Fig. 5a and 5b, 

5c before coating with SnO2, the diameter of PPy is less than 

450 nm. The diameters of the tubes were significantly 

increased for the both composites, and the diameters are 

larger than 550 nm, Fig. 5e and 5f all exhibit the (110) and 

(101) lattice fringes, which are found to reflect d-spacings of 

0.343 and 0.263 nm, respectively. Meanwhile, the selected 

area electron diffraction (SAED) pattern (Fig. 5d) is well 

ascribed to the pure phase of SnO2, corresponding to the 

diffraction peaks of the (110), (101), (211), and (301) planes in 

the XRD pattern. 

In addition, we used V-Sorb 2800P specific surface area 

analyser to measure the BET surface areas of PPy and 

composites. As shown on Table 1, the specific surface area of 

PPy tubes is only 12.65 m
2
/g. After loading SnO2 on it, the 

specific surface areas of SnO2-PPy-1 and SnO2-PPy-2 

composites increased to 44.04 m
2
/g and 48.32 m

2
/g 

respectively, due to the SnO2 nanoparticles were loaded on the 

tubes. For composites, the average pore size which represents 

the size of pores formed by SnO2 nanoparticles. These pores 

provide the path to accommodate to the insertion/extraction 

Figure 5 TEM image of PPy (a), low magnification images of 

SnO2-PPy-1 (PPy 61.4%) (b) and SnO2-PPy-2 (PPy 38.4%) (c), 

SAED pattern of SnO2-PPy-2 (PPy 38.4%) (d), high 

magnification images of SnO2-PPy-1 (PPy 61.4%) (e) and SnO2-

PPy-2 (PPy 38.4%) (f). 
 

of sodium ions. As for SnO2-PPy-2, its’ surface area is bigger 

than SnO2-PPy-1. This can be inferred to the more content of  

SnO2 in SnO2-PPy-2. 

Table 1 Key pore characteristics of PPy, SnO2-PPy-1 and SnO2-

PPy-2 

Material 

 

Surface area 

(m
2
 g

-1
) 

Pore volume 

(cm
3
 g

-1
) 

Average pore 

size (nm) 

PPy 12.65 0.899 116.68 

SnO2-PPy-1 44.04 0.332 97.01 

SnO2-PPy-2 48.32 0.302 95.27 

The capacity and coulombic efficiency of the SnO2-PPy-1 and, 

SnO2-PPy-2 composites as a function of cycle number, at a 

constant current density of 100 mA g
-1

 with a cut-off voltage 

range from 0.01 to 1.5 V (vs. Na/Na
+
),  are  presented  in Fig. 

6a over 150 cycles. To clarify the contribution of the PPy 

matrix and the bare SnO2 to the electrochemical performance 

of the SnO2-PPy composites, they were also tested under the 

same current and voltage conditions. The reversible charge 

capacity of the SnO2-PPy-2 composite is about 288 mAh g
-1

 

after 150 cycles, corresponding to 69.1% of the initial charge 

capacity. Even though the reversible charge capacity (246.2 

mAh g
-1

) of the SnO2-PPy-1 composite is relatively lower than 

that of the SnO2-PPy-2 due to the lower content of SnO2, the 

capacity retention of 74.2% is higher than for SnO2-PPy-2.  



ARTICLE Journal Name 

6 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

 

Figure 6 Cycling performances (a) of SnO2-PPy-1 (PPy 61.4%), 

SnO2-PPy-2 (PPy 38.4%), bare PPy, and SnO2. Rate capability 

(b) of SnO2-PPy-1 (PPy 61.4%), SnO2-PPy-2 (PPy 38.4%) and 

bare SnO2. Charge-discharge profiles for the first 3 cycles of 

SnO2-PPy-2 (PPy 38.4%) (c) and bare SnO2 (d). Cyclic 

voltammetry curves for the first 4 cycles of SnO2-PPy-2 (PPy 

38.4%) (e). Nyquist plots and equivalent circuit model (inset) of 

SnO2-PPy-2 (PPy 38.4%) and bare SnO2 (f) for the fresh 

electrodes and after 100 cycles. 

 

This indicates that a smaller amount of SnO2 nanoparticles can 

decrease the agglomeration of bare SnO2. The reversible 

charge capacity is much lower than that of SnO2-PPy-2, 

however, and the capacity fading is apparent. The contribution 

of PPy to the capacity of the SnO2-PPy composites can be 

neglected.  

The coulombic efficiency for both SnO2-PPy-1 and SnO2-PPy-2 

is near 100%, beginning from the second cycle, indicating that 

electrons/Na ions are no longer trapped in secondary parasitic 

reactions that can be introduced by further electrolyte 

degradation. The stable electrochemical performance of the 

SnO2-PPy composite and the enhanced capacity benefit from 

the synergetic effects generated by SnO2 particles on the PPy 

framework.
31

 This promotes greater conductivity of the SnO2 

particles in the case of SnO2-PPy than in the case of nano-SnO2, 

as suggested by the XPS results (Fig. 2b).  

In addition, the charge/discharge rate capability of the SnO2, 

SnO2-PPy-1 and SnO2-PPy-2 composites were investigated at 

increasing current rates by progressively increasing the current 

rate from 50 mA g
-1

 up to 1 A g
-1

 and finally returning it to 100 

mA g
-1

, in order to test the robustness of the samples. Fig.6b 

shows the cycling performances of the samples under these 

different current rate conditions. In the case of SnO2-PPy-2, 

the reversible charge capacity of the composite decreases 

from 428.7 (50 mA g
-1

), to 400.2 (0.1A g
-1

), 354.2  (0.2 A g
-1

), 

290.1 (0.4 A g
-1

), 260.2 (0.8 A g
-1

), and 160.3 mAh g
-1 

(1 A g
-1

), 

respectively, and the composite was found to successfully 

return to 398.9 mAh g
-1

 (recovering 99.7 % of its initial 

capacity) after 60 cycles when the current density was 

returned to 0.1 A g
-1

.  The rate capability of SnO2-PPy-1 shows 

lower reversible charge capacity compared to SnO2-PPy-2.  

This result is in line with their cycling performances. As for the 

bare SnO2, we can find this trend that with the increasing of 

current density, the capacity degraded more severely 

compared to both composites. Fig. 6c and 6d show the 

discharge–charge voltage profiles of the initial three cycles for 

SnO2-PPy-2 and bare SnO2. The 1
st 

cycle discharge and 2
nd 

cycle 

charge capacities of SnO2-PPy-2 composite electrode are 

1040.6 and 416.6 mAh g
-1

, respectively, giving an initial 

coulombic efficiency of 40%. This is due to the formation of an 

irreversible solid electrolyte interphase (SEI) layer on the 

electrode surface and irreversible Na insertion into the active 

materials. The initial discharge–charge voltage profiles for bare 

SnO2 display the 1
st

 cycle discharge capacity of 1217.3 mAh g
-

1
and the 2

nd
 cycle charge capacity of 300.2 mAh g

-1
, giving a 

much lower initial coulombic efficiency of 24.7 %.  

The electrochemical reactions of the SnO2-PPy-2 

nanocomposite were studied by cyclic voltammetry (CV). As 

shown in Fig. 6e, there is an irreversible transformation of 

SnO2 into Sn in the initial discharge process. Weak and 

irreversible shoulder peaks are seen at 1.4 and 0.6 V in the first 

negative scan. These peaks are attributed to some irreversible 

decomposition of the electrolyte, which forms a (SEI) film on 

the surface of the SnO2-PPy-2 composite, and to irreversible 

reactions between Na
+
 and the active materials. Two reductive 

peaks are observed at 0.28 and 0.02 V in the following cycles 

with different intensities, which are in accordance with the 

transformation of Sn into NaxSn alloys. In conformity with the 

Na–Sn binary alloy phase diagrams and previous reports,
 20, 46  

α-NaSn, Na9Sn4, Na3Sn, and Na15Sn4 are the main stable 

phases. It can be inferred that the reductive peak located at 

0.28 V is related to the formation of a two-phase alloy of α-

NaSn and Na9Sn4. Another reductive peak positioned at 

around 0.02 V is considered to be due to the formation of 

single phase Na3Sn and Na15Sn4. In the reverse positive scan, 

two oxidative peaks are obviously observed at approximately 

0.28 V and 0.5 V, which indicates that the phase transitions 

during the de-alloying process had become clear. A hump that 

appeared at 0.28 V can be mainly assigned to the de-alloying 

reactions of Na3Sn, and Na15Sn4. The peak at 0.5 V is due to the 

Na9Sn4 de-alloying reactions.
47

  

To verify the effects of PPy towards improving the cyclability of 

SnO2-PPy-2 electrode, which had better electronic conductivity 

compared to the bare SnO2 electrode. Electrochemical 

impedance spectroscopy (EIS) measurement was carried out. 

The Nyquist plots and the fitting model using an equivalent 

circuit are depicted in Fig. 6(f), with the equivalent circuit as 
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Figure 7 SEM images of the SnO2-PPy-2 (PPy 38.4%) composite 

electrodes before the Na-storage test (a) and after 100 cycles 

(b), and of bare SnO2 before the Na-storage test (c) and after 

100 cycles (d). 

 

the inset. Where Ri represents the total resistance of the 

electrolyte, separator, and electrical contacts. The charge 

transfer resistance (Rct) can be calculated from the semicircle 

within the high frequency region, which reflects the 

impedance related to the sodium ion transport through the 

film surface and charge transfer between the 

electrode/electrolyte interfaces. The Warburg impedance (W) 

is observed from the inclined line in the low frequency region 

and represents the charge transfer by sodium ion diffusion 

through the material 

or electrolyte. The constant phase element (CPE) in the 

equivalent circuit is used to simulate an ideal capacitance. It 

can be observed that the sizes of the depressed semicircles for 

bare SnO2 in the fresh electrode and after 100 cycles have 

changed significantly, which indicates that the charge transfer 

resistance (Rct) has increased from 494.8 to 898.57 Ω. For 

SnO2-PPy-2, from the fresh cell to after 100 cycles, Rct of the 

electrode changed from 358.05 to 715.98 Ω, respectively. This 

implies that the electronic conductivity of the SnO2-PPy-2 

sample was enhanced and benefited from the good electrical 

conductivity of the PPy in the composite, where it serves as 

both an active material and a conductor. The morphology of 

bare SnO2 electrode after cycling shows very obvious cracks 

(Fig. 7d). No cracks were observed for the SnO2-PPy-2 

composite electrode after cycling, which is attributed to the 

SnO2-PPy-2 3-D structure with void space between the tubes, 

which could accommodate large volume changes during 

cycling. Further more, the homogeneous distribution of SnO2 

nanoparticles on the PPy tube network is the key factor that 

provides the balancing force over the whole composite 

electrode and enhances the long-term electrochemical 

properties. These results are in good agreement with the EIS 

conclusions. 

Conclusions 

SnO2 nanoparticles were successfully coated on the surfaces of 

a PPy nanotube network via a simple, convenient, and 

environmentally friendly method. The obtained 3-D structured 

SnO2-PPy nanotube network demonstrates good performance 

as an anode for application in SIBs, especially with regards to 

the cyclability (over 150 cycles), with a high coulombic 

efficiency of  99.6% and good rate capability, recovering up to 

99.7 % of the initial charge capacity after several current 

variation cycles from 50 mA g
-1

 to 1 A g
-1

. These outcomes are 

attributed to the uniform coating of nanoscale tin dioxide 

particles on the PPy matrix with unique 3-D structure, which 

can significantly improve electronic conductivity of composites 

and acts as a buffer to alleviate the strain resulting from the 

volume changes in the electrodes during the cycling. At the 

same time, the diffusion speed of sodium ions is accelerated. 

On the other hand, a positive synergetic effect between the 

PPy interfaces and the SnO2 particles is responsible for 

maximization of the SnO2 conductivity. This is confirmed by 

the highly uniform distribution of particles. It is further 

demonstrated by the inferior performance of bare SnO2 

particles with similar particle size. Accordingly, our results 

clearly demonstrate that the coated SnO2 particles on the PPy 

tubes generate synergetic effects during the cycling, enabling 

PPy to act as a conductor, which maximizes its utilization 

during insertion/extraction.  
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