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Pedestrian lane detection in unstructured scenes for assistive navigation

Abstract
Automatic detection of the pedestrian lane in a scene is an important task in assistive and autonomous
navigation. This paper presents a vision-based algorithm for pedestrian lane detection in unstructured scenes,
where lanes vary significantly in color, texture, and shape and are not indicated by any painted markers. In the
proposed method, a lane appearance model is constructed adaptively from a sample image region, which is
identified automatically from the image vanishing point. This paper also introduces a fast and robust vanishing
point estimation method based on the color tensor and dominant orientations of color edge pixels. The
proposed pedestrian lane detection method is evaluated on a new benchmark dataset that contains images
from various indoor and outdoor scenes with different types of unmarked lanes. Experimental results are
presented which demonstrate its efficiency and robustness in comparison with several existing methods.
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a b s t r a c t 

Automatic detection of the pedestrian lane in a scene is an important task in assistive and autonomous 

navigation. This paper presents a vision-based algorithm for pedestrian lane detection in unstructured 

scenes, where lanes vary significantly in color, texture, and shape and are not indicated by any painted 

markers. In the proposed method, a lane appearance model is constructed adaptively from a sample im- 

age region, which is identified automatically from the image vanishing point. This paper also introduces a 

fast and robust vanishing point estimation method based on the color tensor and dominant orientations 

of color edge pixels. The proposed pedestrian lane detection method is evaluated on a new benchmark 

dataset that contains images from various indoor and outdoor scenes with different types of unmarked 

lanes. Experimental results are presented which demonstrate its efficiency and robustness in comparison 

with several existing methods. 

© 2016 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

1. Introduction 

Locating the pedestrian lane in a given scene is a key compo- 

nent in many assistive and autonomous navigation systems. It en- 

ables a vision-impaired person to find the walkable path and main- 

tain his or her balance while walking – a challenging task that at 

present is performed mostly using a white cane or a guided dog 

[1] . It also allows a smart wheelchair to traverse a pedestrian lane 

with little guidance from the disabled user [2] . Pedestrian lane 

detection is also useful for autonomous vehicles in sensing off- 

limit regions or pedestrians in a scene [3] . Furthermore, algorithms 

for finding the pedestrian lane can be extended to locate open 

roads for self-driven cars or robots. Pedestrian lane detection in 

fact complements other features, e.g. obstacle detection [4,5] and 

GPS-based guidance [6] , of electronic navigation devices. 

Despite its significance, there are only a few methods proposed 

for pedestrian lane detection, which are mostly concerned with 

pedestrian lanes having white markers [7–10] . To address this gap, 

this paper focuses on camera-based detection of pedestrian lanes 

in unstructured environments. In this paper, a pedestrian lane is 

assumed to exist in the scene. However, the scene is under varying 

lighting conditions and could be indoor or outdoor. Furthermore, 

the pedestrian lanes can have arbitrary surfaces with no painted 

markers. 

∗ Corresponding author. Tel. +61 242213407. 

E-mail addresses: phung@uow.edu.au (S.L. Phung), clm635@uowmail.edu.au 

(M.C. Le), bouzer@uow.edu.au (A. Bouzerdoum). 

Existing algorithms for unmarked lane detection (including 

pedestrian lanes) rely on color and texture of lane surfaces to dif- 

ferentiate the lane pixels from the background [11–14] . These algo- 

rithms require off-line training, and hence their detection accuracy 

decreases when the lane appearance differs from the training data. 

In practice, the lane appearance varies significantly due to different 

lane surfaces or illumination conditions. Other existing algorithms 

locate the lane boundaries among the edges that point to the van- 

ishing point of the image [15,16] . However, algorithms based on 

finding the lane borders are sensitive to background clutter. In this 

paper, we propose a new method to detect unmarked pedestrian 

lanes using both color, edge, and shape features. In contrast to the 

existing methods, the proposed approach constructs a lane model 

from the input image, and is therefore more adaptive to different 

illumination conditions and lane surfaces. The main contributions 

of the paper can be briefly described as follows: 

• Firstly, we propose an improved vanishing point estimation 

method using local orientations of color edge pixels. Estimat- 

ing the vanishing point using edge pixels is more efficient than 

using all pixels as done in the existing methods [15,16] . In ad- 

dition, to estimate local orientations and edge pixels more ro- 

bustly, we apply the color tensor on multiple color channels, 

instead of relying on only the intensity channel. 
• Secondly, we present a method to define automatically a sam- 

ple region, from which a lane appearance model is constructed 

adaptively for each input image. This sample region is deter- 

mined using the vanishing point and the geometric and color 

http://dx.doi.org/10.1016/j.cviu.2016.01.011 
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features of lane borders and surfaces. The lane model is there- 

fore adaptive to various types of lane surfaces. To make the lane 

model more robust to the lighting conditions, this paper em- 

ploys the illumination-invariant color space (IIS). In addition, 

we propose a novel lane score that combines color, edge, and 

shape features for detecting unmarked pedestrian lanes. 
• Lastly, we create a new dataset with manually anno- 

tated ground-truth for objective evaluation of algorithms for 

vanishing-point estimation and pedestrian-lane detection. Al- 

though several datasets exist for road/lane detection for ve- 

hicles, our dataset, to the best of our knowledge, is the first 

for pedestrian lanes. This dataset, collected from realistic in- 

door and outdoor scenes, with various shapes, textures, and 

surface colors, is expected to facilitate research in vanishing- 

point estimation and pedestrian-lane detection. It is available 

at www.uow.edu.au/ ∼phung/plvp _ dataset.html . 

The remainder of the paper is organized as follows. Existing 

methods for lane detection in unstructured scenes are reviewed 

in Section 2 . The proposed method is presented in Section 3 . Ex- 

perimental results and analysis are described in Section 4 . Finally, 

conclusions are given in Section 5 . 

2. Related work 

Current vision-based approaches for detecting pedestrian lanes 

in unstructured scenes can be divided into two categories: (i) lane 

segmentation, and (ii) lane-border detection. In the lane segmen- 

tation approach, off-line color models are used to differentiate the 

lane pixels from the background [11,12,17,18] . Different color spaces 

and classifiers have been used. For example, Crisman and Thorpe 

use Gaussian models in the red–green–blue (RGB) color space to 

represent the on-road and off-road classes [11] . Also using the RGB 

space, Tan et al. capture the variability of the road surface with 

multiple color histograms, and the background with a single color 

histogram [12] . Instead of using the RGB space, Ramstrom and 

Christensen employ UV, normalized red and green, and luminance 

components and construct Gaussian mixture models for the road- 

surface and background classes [18] . Sotelo et al. employ the hue- 

saturation-intensity (HSI) color space [17] . In their method, achro- 

matic pixels (i.e. with extreme intensities or low saturations) are 

classified using intensity only, whereas other pixels are classified 

by thresholding their chromatic distance to the training colors. Be- 

cause the color models are trained off-line, these methods do not 

cope well with the appearance variations in lane surfaces. 

To address this problem, several methods model the lane pix- 

els directly from sample regions in the input image [19–22] . These 

methods determine the sample lane regions in different ways. For 

example, Alvarez et al. select small random areas at the bottom 

and in the middle of the input image [22,23] . Miksik et al. initialize 

the sample lane region as a trapezoid at the bottom and center of 

the image, and then refine the sample region using the vanishing 

point [21] . He et al. form a sample lane region from the candidate 

lane boundaries, which are detected using the vanishing point and 

an assumption about the lane width [19] . The performance of these 

methods depends on the quality of the sample regions, which in 

turn relies on prior knowledge about the walking lane. 

In the lane-border detection approach, the lane boundaries are 

determined using the vanishing point [15,16] or templates of the 

lane boundaries [24] . In [15] , the lane borders are detected among 

the edges pointing to the vanishing point. The optimal left and 

right edges are judged using an objective function that measures 

the color and texture differences between lane and non-lane re- 

gions. This method is effective only when the lane region is homo- 

geneous and differs significantly from non-lane regions in terms 

of color and texture. Kong et al. also find the lane borders from 

the edges pointing to the vanishing point, except that their method 

ranks edges using texture orientation and color features [16] . Be- 

cause this method relies only on edges for lane-border detection, 

it is sensitive to background edges. In another method, the lane 

boundaries are found from the edges of homogeneous color re- 

gions by matching with lane templates [24] . Recently, Chang et al. 

propose combining lane-border detection and road segmentation 

for detecting lanes [25] . Similarly to [16] , their method detects lane 

borders using the vanishing point. The lane region is segmented 

using the color model learned from a homogeneous region at the 

bottom and middle of the input image. In [26] , the two left and 

right borders of the lane are found among the rays that point to 

the vanishing point; this approach is suitable mainly for pedes- 

trian lanes with straight-line borders. This paper extends this ap- 

proach to detect pedestrian lanes with curved borders and varied 

surfaces. 

3. Proposed pedestrian lane detection method 

In this section, we present the new method for detecting un- 

structured pedestrian lanes, which comprises three main stages: 

(i) vanishing point estimation, (ii) sample region selection, and (iii) 

lane segmentation. 

3.1. Vanishing point estimation 

The vanishing point in an image is often located using either 

line segments [27–29] or local orientations [15,16,30] . For unstruc- 

tured scenes with non-straight edges, using local orientations is 

more suitable than using line segments for vanishing point es- 

timation. However, most existing methods based on local orien- 

tations have high computational complexity and are sensitive to 

background clutter. Furthermore, they rely on the intensity channel 

only, even though color channels provide photometric information 

that can lead to more robust detection of edges and local orienta- 

tions. In this paper, we propose to improve the accuracy and effi- 

ciency of vanishing point detection, by employing color tensor to 

capture image structure and focusing on edge pixels only. 

The color tensor is a tool for analyzing the local differential 

structure of a color image [31] . Consider an image with three color 

channels: F = { F k ; k = 1 , 2 , 3 } . Let D k , x and D k , y denote the deriva- 

tives of F k along the horizontal and vertical direction, respectively. 

Let w be the convolution kernel of a smoothing filter. The color 

tensor of the image is represented as 

(
G xx G xy 

G yx G yy 

)
where 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

G xx = w ∗
[

3 ∑ 

k =1 

D k,x ◦ D k,x 

]

G yy = w ∗
[

3 ∑ 

k =1 

D k,y ◦ D k,y 

]

G xy = w ∗
[

3 ∑ 

k =1 

D k,x ◦ D k,y 

]
. (1) 

Here, ∗ denotes the 2-D convolution, and ◦ denotes the 

element-wise multiplication (Hadamard product). Based on eigen- 

value analysis of the color tensor [31] , we estimate the dominant 

local orientation θ and the edge strength λ for all image pixels as 

θ = 

1 

2 

arctan 

(
2 G xy 

G xx − G yy 

)
+ 

π

2 

, (2) 

λ = 

1 

2 

(
G xx + G yy + 

√ 

(G xx − G yy ) 2 + 4 G 

2 
xy 

)
, (3) 

where the arithmetic operations are performed element-wise. 

Next, the edge pixels in the image are identified via non-maximum 

suppression and hysteresis thresholding, as done in the intensity- 

based Canny edge detector. The main difference in this paper is 

http://www.uow.edu.au/~phung/plvp_dataset.html
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Fig. 1. Illustration of the proposed vanishing point estimation: (a) color input image; (b) local orientations estimated by the color tensor for sampled pixels; (c) edge map 

obtained by the color Canny edge detector; (d) VP map and the vanishing point (in red). See the electronic color image. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Selecting the sample lane region: (a) rays created from the vanishing point; (b) properties of a single ray; (c) properties of a pair of rays. (For interpretation of the 

references to color in this figure, the reader is referred to the web version of this article.) 

that the dominant local orientation θ and the edge strength λ are 

estimated more reliably using photometric information obtained 

from (2) and (3) . For the input image of Fig. 1 (a), Fig. 1 (b) shows 

the computed local orientations, and Fig. 1 (c) shows the estimated 

edge map. 

To determine the vanishing point (VP), each pixel location v = 

(x v , y v ) is considered as a candidate, for which a VP score is com- 

puted. Let P be the set of edge pixels { p = (x p , y p ) } where y p > y v . 

Let �v p be the difference between the dominant local orienta- 

tion at pixel p and the angle of vector � v p connecting v to p : 

�v p = | θp − ∠ � v p | . Let μv p be the ratio between the length of � v p 
and the diagonal length L of the image: μv p = | � v p | /L . After inves- 

tigating several choices, we propose to define the contribution of 

pixel p to the score of candidate pixel v as 

s (v , p) = 

{
exp ( −�v p μv p ) , if �v p ≤ τo , 

0 , otherwise . 
(4) 

Here, τo is a positive threshold on the orientation similarity be- 

tween p and � v p . Eq. (4) means that s (v , p) is high if (i) pixel p has 

a similar orientation to vector � v p , and (ii) pixel p is spatially close 

to v . The VP score of candidate v is the sum of contributions from 

all pixels in P : 

S(v ) = 

∑ 

p∈ P 
s (v , p) . (5) 

The vanishing point is finally found as the pixel with the high- 

est VP score. Fig. 1 (d) illustrates the VP map and the vanish- 

ing point computed for the image in Fig. 1 (a). More results of 

the proposed method for vanishing point estimation are given in 

Section 4.3 . 

3.2. Sample region selection 

Because the appearance (e.g. color, edge, shape, texture) of 

pedestrian lanes in unstructured scenes varies significantly and is 

strongly affected by illumination conditions, it is difficult to ob- 

tain a robust appearance model with off-line training. Hence, it is 

more plausible to construct an appearance model adaptively and 

directly from the input image. To this end, existing methods (e.g. 

[20,21,23] ) usually select the sample region as a small region at the 

bottom or center of the input image. However, the sample region 

selected in such a manner tends to include non-lane regions. In 

our approach, the sample region is automatically defined using the 

vanishing point (estimated in the previous stage), and then verified 

using color and orientation features of both lane borders and lane 

regions. 

Although a lane may have various shapes, its main part can be 

approximated with straight borders. Hence, it is possible to repre- 

sent the border of the sample region using imaginary rays. To this 

end, a set of rays B = { r 1 , r 2 , . . . , r N } emanating from the vanish- 

ing point is created as shown in Fig. 2 (a). These rays are uniformly 

spaced over an angle range [ φmin , φmax ] relative to the horizontal 

direction. The sample region is identified by finding a ray pair ( r i , 

r j ) that best captures the main part of the pedestrian lane. 

For a given ray r two features are defined: (1) the orientation 

difference d o between ray r and its neighboring pixels; (2) the 

color difference d c between two regions adjacent to r , see Fig. 2 (b). 

Let θ r denote the angle of ray r . Let N r be the set of pixels whose 

Euclidean distance to r is smaller than L τ e . Here, L is the diagonal 

length of the image, and τ e is a threshold. The orientation differ- 

ence d o between r and its neighboring pixels is calculated as 

d o = 

1 

|N r | 
∑ 

p∈N r 
| θr − θp | , (6) 

where θp is the orientation of pixel p computed in (2) . 

Let R + r and R −r be two neighboring regions on the left and right 

of ray r as shown in Fig. 2 (b). These regions are formed from ray r 

by an angular spacing of φ. Suppose that c + and c − are the mean 

color of all pixels in R + r and R −r , respectively. The color difference 
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d c between adjacent regions of ray r is computed as 

d c = 

|| c + − c −|| 2 
max (|| c + || 2 , || c −|| 2 ) , (7) 

where || · || 2 denotes the L 2 -norm. 

Next, for a given ray pair ( r i , r j ) two features are defined: (1) 

the color uniformity u ij of pixels between r i and r j ; (2) the angle 

φij of the bisector between r i and r j . Let R ij denote an image region 

formed by a ray pair ( r i , r j ) as shown in Fig. 2 (c). The uniformity 

u ij of R ij is computed as 

u i j = 

M ∑ 

m =1 

M ∑ 

n =1 

M ∑ 

k =1 

h (m, n, k ) 2 , (8) 

where h is the normalized 3-D color histogram of pixels in R ij , and 

M is the number of bins for each color channel. 

In summary, for a given ray pair ( r i , r j ), six features are ex- 

tracted: (1) the orientation difference d o, i of ray r i and its neigh- 

boring pixels; (2) the orientation difference d o, j of ray r j and its 

neighboring pixels; (3) the color difference d c, i between adjacent 

regions of ray r i ; (4) the color difference d c, j between adjacent re- 

gions of ray r j ; (5) the color uniformity of u ij of region R ij ; 6) the 

bisector angle φij of ray r i and r j . 

Given these six features, we propose the following lane score 

for the ray pair ( r i , r j ): 

f (r i , r j ) = f 1 (d o ,i ) f 1 (d o , j ) f 2 (d c ,i ) f 2 (d c , j ) f 3 (u i j ) f 4 (φi j ) , (9) 

where the individual score functions are given by: 

f 1 (d o ) = exp { −d o /π} , (10) 

f 2 (d c ) = 

1 

1 + a e −b d c 
, (11) 

f 3 (u ) = 

1 

1 + α e −β u 
, (12) 

f 4 (φ) = 

1 

σ
√ 

2 π
exp 

{
− (φ − φ) 2 

2 σ 2 

}
. (13) 

In Eqs. (10) –(13) , a , b , α, β , σ and φ are fixed parameters that are 

determined empirically from the training data. The individual score 

functions are chosen to model the relationship between a feature 

and the lane score. For example, Eq. (10) means that the smaller 

is the orientation difference d o (i.e. when neighboring pixels have 

similar orientations as ray r ), the higher is the score f 1 ( d o ), and 

vice versa. Eq. (11) indicates that the higher is the color difference 

d c (i.e. when ray r is at the lane border), the higher is the score 

f 2 ( d c ). Eq. (12) means that the higher is the color uniformity u , the 

higher is the score f 3 ( u ). Lastly, Eq. (13) is based on the observa- 

tion that the bisector angle on training data approximates a normal 

distribution. 

The optimal pair (r ∗
i 
, r ∗

j 
) for the sample region is obtained by 

maximizing the lane score: 

(r ∗i , r 
∗
j ) = arg max 

(r i ,r j ) ∈B 2 
f (r i , r j ) . (14) 

Fig. 3 (a) shows an example of detecting the borders of the sam- 

ple region. Instead of using the entire triangular region defined 

by (r ∗
i 
, r ∗

j 
) , we use only the trapezoidal region (lower-half) formed 

by the two rays as a lane sample region, see Fig. 3 (b). This strat- 

egy is adopted to improve the stability of the lane model, even if 

the vanishing point is located outside the image or the pedestrian 

lane. 

Fig. 3. Illustration of the proposed method for pedestrian lane detection: (a) the imaginary rays (blue lines) and the detected borders (green lines) of the sample region; (b) 

lane sample region (blue region); (c) color homogeneous sub-regions segmented using the graph-based method [32] ; (d) segmented walking lane. See the electronic color 

image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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3.3. Lane segmentation 

In this stage, the input image is segmented initially into color 

homogeneous sub-regions. Numerous image segmentation algo- 

rithms can be applied. In this paper we use the graph-based seg- 

mentation algorithm presented in [32] , because it is fast and suit- 

able for our task . This algorithm initializes sub-regions as single 

pixels. Adjacent sub-regions are then merged iteratively, according 

to the color difference between the sub-regions. Fig. 3 (c) illustrates 

the segmented regions for the input image of Fig. 1 (a). 

Next, the pedestrian lane is detected. Let R = { R 1 , R 2 , . . . } be 

the set of color homogeneous sub-regions. The pedestrian lane is 

treated as a set Z of connected sub-regions of R . Two sub-regions 

R i and R j are considered to be connected if there exist two pixels 

p i ∈ R i and p j ∈ R j that are connected (e.g. 4-connected pixels). 

A connected region Z ⊂ R is represented by a color feature and 

a shape feature. The color feature c is the mean of all color pixels 

in Z . The lane score for a given color feature c is defined as 

g 1 (c ) = p(c |L ) , (15) 

where p(c |L ) is the class-conditional probability density function 

for the lane class. It is estimated from the color histogram of all 

pixels in the sample lane region, which is found as in Section 3.2 . 

In this paper, we consider two color spaces: the red–green–blue 

(RGB) and the illumination invariant space (IIS). Compared to the 

RGB, the IIS is less sensitive to illumination conditions and shading. 

Conversion from the RGB to the IIS is as follows [33] : ⎧ ⎨ 

⎩ 

C 1 = arctan { R/ max (G, B ) } , 
C 2 = arctan { G/ max (R, B ) } , 
C 3 = arctan { B/ max (R, G ) } . 

(16) 

The shape feature s is extracted using the shape contexts pro- 

posed in [34] . The shape contexts are known for their robustness 

to local deformation and partial occlusion, and their invariance to 

scale and rotation. Consider a shape with sampling points on its 

contour. The shape context of a sampling point p is the histogram 

h p of the angles and distances from the remaining sampling points 

to p . 

The dissimilarity between the shape contexts of two points p 

and q is represented as 

C(p, q ) = 

1 

2 

K ∑ 

k =1 

[ h p (k ) − h q (k )] 2 

h p ( k ) + h q (k ) 
, (17) 

where K is the number of bins of each shape context. On a single 

shape, the shape contexts of the points p and q are different, i.e. 

C ( p , q ) is high. However, on two similar shapes, the shape contexts 

of two corresponding points p and q are similar, i.e. C ( p , q ) is low. 

Let T = { T 1 , T 2 , . . . } be a set of shape templates for pedestrian 

lanes. Examples of the shape templates obtained from the training 

data are shown in Fig. 4 . To obtain shape feature s , the outer con- 

tour of region Z is sampled in a similar way as the templates. The 

matching cost D ( s , T ) between s and a template T is modeled as 

D (s , T ) = 

1 

| s | 
∑ 

p∈ s 
min 

q ∈ T 
C(p, q ) , (18) 

where | s | denotes the number of sampling points on s . The smaller 

is the matching cost D ( s , T ), the higher is the similarity between s 

and T . Consequently, the lane score for shape feature s is defined 

as 

g 2 (s ) = exp 

[ 
−λ min 

T ∈T 
D (s , T ) 

] 
, (19) 

where λ is a positive scalar determined from the training data. 

Collectively, the lane score for region Z with color feature c and 

shape feature s is calculated as 

g(Z) = g 1 (c ) g 2 (s ) . (20) 

The optimal region Z ∗ of R is found by maximizing the lane 

score: 

Z ∗ = arg max 
Z⊂R 

g(Z) . (21) 

The optimal region Z ∗ can be obtained with a computational 

complexity of O (2 |R| ) via an exhaustive search among the subsets 

of R . To reduce the computational load, we adopt a greedy-search 

algorithm [35] , which generates Z ∗ by iteratively adding and re- 

moving sub-regions (see Algorithm 1 ). At each iteration, a sub- 

region is added to or removed from Z ∗, only if the connectivity 

of the new Z ∗ is satisfied and the lane score g ( Z ∗) is increased. 

In addition, for faster search we consider only sub-regions R i ∈ R 

with p(c |L ) greater than or equal to a predefined threshold τ c . 

Because the number of sub-regions is finite and the operators in 

Algorithm 1 are deterministic, the algorithm will converge. 

Finally, the optimal region Z ∗ obtained using Algorithm 1 is 

considered as a pedestrian lane region if 

g(Z ∗) ≥ τv , (22) 

Fig. 4. Example shape templates for pedestrian lanes. Row 1: straight lanes. Row 2: left-curved lanes. Row 3: right-curved lanes. 
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Algorithm 1 Adding and removing regions for pedestrian lane de- 

tection. 

R 

′ ← { R i ∈ R | p(c i |L ) ≥ τc } 
Z ∗ ← arg max R i ∈R 

′ p(c i |L ) 

continue ← TRUE 

while continue do 

R add ← { R i ∈ {R 

′ − Z ∗} so that Z ∗ ∪ R i is a connected set } 
R + ← arg max 

R i ∈R add 

g(Z ∗ ∪ R i ) 

R rmv ← { R i ∈ Z ∗ so that { Z ∗ − R i } is a connected set } 
R − ← arg max 

R i ∈R rmv 

g(Z ∗ − R i ) 

if g(Z ∗ ∪ R + ) > g(Z ∗) and g(Z ∗ ∪ R + ) ≥ g(Z ∗ − R −) then 

Z ∗ ← Z ∗ ∪ R + 

else if g(Z ∗ − R −) > g(Z ∗) then 

Z ∗ ← Z ∗ − R −

else 

continue ← FALSE 

end if 

end while 

where τ v is a verification threshold learnt using training data. This 

step is necessary because the scene may contain no pedestrian 

lane. Fig. 3 (d) illustrates the result of lane detection for the input 

image shown in Fig. 1 (a). 

4. Experimental results 

In this section, we first describe the image data and evaluation 

measures ( Section 4.1 ). We then discuss the parameters used in 

the proposed method ( Section 4.2 ), and present the experimental 

results of vanishing point estimation ( Section 4.3 ) and pedestrian 

lane detection ( Section 4.4 ). 

4.1. Image dataset and performance measures 

We created an image dataset for pedestrian lane detection and 

vanishing point estimation (PLVP). The dataset consists of 20 0 0 

images that were taken under various environmental conditions 

(indoor and outdoor scenes, different times of day, and differ- 

ent weather conditions). The images contain unmarked pedestrian 

lanes with various surface structures (pavement, brick, concrete, 

or soil) and shapes (straight or curved). In many cases, lane re- 

gions are affected by extreme lighting conditions (e.g. very low il- 

lumination, very high illumination, or strong shadow). To enable 

quantitative performance evaluation, we manually annotated the 

lane region and the vanishing point in each image. An example 

from the PLVP dataset is shown in Fig. 5 . Statistics regarding the 

lane surfaces and the lighting conditions are given in Table 1 . The 

dataset is available for download from www.uow.edu.au/ ∼phung/ 

plvp _ dataset.html . 

Table 1 

Statistics of the PLVP dataset. 

Description Number of images Percentage (%) 

Brick surfaces 637 31 .85 

Concrete surfaces 944 47 .20 

Pavement surfaces 179 8 .95 

Indoor surfaces 159 7 .95 

Other surfaces 81 4 .05 

Normal lighting 1393 69 .65 

Shadows, extreme lighting 607 30 .35 

To evaluate pedestrian lane detection, the detected regions 

are compared with the annotated regions. Suppose that R d is a 

machine-detected region and R g is a ground-truth region. The 

matching score between R d and R g is computed as 

χ(R g , R d ) = 

| R g ∩ R d | 
| R g ∪ R d | , (23) 

where | R | denotes the area of region R , ∩ denotes the intersection, 

and ∪ denotes the union of R d and R g . Detected region R d is con- 

sidered as correct if there exists a ground-truth region R g where 

χ ( R g , R d ) is greater than or equal to an evaluation threshold τ e . 

Similar to the evaluation of other object-detection systems [36,37] , 

τ e is set to 0.5. 

For pedestrian lane detection, three evaluation measures are 

computed: recall, precision and F-measure. Recall is the percent- 

age of the ground-truth lanes that are detected correctly. Precision 

is the percentage of the machine-detected lanes that are consid- 

ered to be correct. F-measure is the harmonic mean of precision 

and recall: 

F-measure = 2 × Recall × Precision 

Recall + Precision 

. (24) 

To evaluate vanishing point estimation, the detected vanishing 

point is compared with the ground-truth vanishing point. Sup- 

pose that P d is a machine-detected vanishing point, and P g is the 

ground-truth vanishing point. Consistently with [30] , the estima- 

tion error for an image is measured as the ratio of the Euclidean 

distance from P d to P g versus the diagonal length L of the image: 

E vp = 

| P d − P g | 
L 

. (25) 

The averaged estimation error across all test images is used to 

compare vanishing point estimation algorithms. 

4.2. Algorithm parameters 

In our experiments, 500 images (image number 1 to 500) 

were used for training, and 1500 images (image number 501–

20 0 0) were used for testing. Note that in the PLVP dataset, im- 

ages collected from multiple sources were given randomized image 

Fig. 5. An example from the PLVP dataset. Left : an input color image. Middle : the ground-truth pedestrian lane. Right : the ground-truth vanishing point. See the electronic 

color image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

http://www.uow.edu.au/~phung/plvp_dataset.html
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Table 2 

Vanishing point estimation performance of the proposed method on the training 

set for different values of H . 

Gaussian 

window size H 5 7 11 13 17 19 

Average error 0.0969 0.0838 0.0737 0.0694 0.0662 0.0783 

Table 3 

Vanishing point estimation performance of the proposed method on the 

training set for different values of τ o . 

Angle interval τ o π /180 π /36 π /18 π /12 π /9 

Average error 0.0914 0.0675 0.0659 0.0674 0.0677 

numbers. The parameters of the proposed method were selected 

by analyzing the performance of the pedestrian lane detection on 

the training set. 

For the processing steps described in Section 3.1 , two param- 

eters need to be determined: the window size H of the Gaussian 

filter w , and the angle interval τ o , see (4) . Table 2 shows the VPE 

error on the training set for different values of H . Based on this ta- 

ble and in order to reduce the filtering time, we selected H = 13 . 

Table 3 shows the VPE error on the training set for different val- 

ues of τ o . Based on this table and in order to reduce the number 

of non-zero votes (by using a smaller τ o ), we selected τo = π/ 36 . 

For the steps described in Section 3.2 , a similar strategy was 

adopted to determine the values of the parameters. The number 

of imaginary rays was selected as N = 29 , and the angle range of 

imaginary rays was selected as [ φmin , φmax ] = [ π/ 9 , 8 π/ 9] . The an- 

gular spacing was set as φ = π/ 12 . The parameters a and b in (11) , 

α and β in (12) , σ and φ in (12) were set as a = 0 . 9 , b = 2 . 3 , 

α = 0 . 9 , β = 2 . 3 , and σ = 0 . 3437 and φ = 1 . 5970 . 

For the steps described in Section 3.3 , the thresholds τ c and τ v 

were selected as τc = 0 . 02 and τv = 0 . 01 . Table 4 shows the lane 

detection performance of the proposed method on the training set 

for different values of the shape parameter λ in (19) . Based on this 

result, we selected λ = 5 . 0 . Table 5 shows the lane detection per- 

formance of the proposed method on the training set for different 

numbers of color quantization bins M . The F-measure fluctuated 

slightly for M = 16 , 32 , 64 , and reduced when M = 128 , 256 . Based 

on this result, we selected M = 16 for our experiments. 

4.3. Analysis of vanishing point estimation 

The proposed method for vanishing point estimation was com- 

pared with three existing methods. 

• Hough-based method [27] : This method first applies the Hough 

transform on the edge map to find line segments. It then 

computes the vanishing point by voting the intersections of 

line pairs in another Hough transform. In the experiments, we 

used the same edge map as in the proposed method. The dis- 

tance and orientation resolutions in the Hough transforms were 

tuned using the training set. 
• Gabor-based method [16] : This method applies Gabor filters on 

the intensity image to compute local orientations, and then es- 

Table 5 

Lane detection performance of the proposed method on the training 

set for different color bin numbers. 

Number of color bins M 16 32 64 128 256 

Recall (%) 93.0 92.8 92.6 92.2 92.2 

Precision (%) 97.5 97.5 97.5 97.1 97.1 

F-measure (%) 95.2 95.1 95.0 94.6 94.6 

Table 6 

Performance of vanishing point estimation algorithms on the test set. 

Method Average error Computation 

times 

Hough-based method (Wang et al. [27] ) 0.1199 ± 0.1802 0.029 

Gabor-based method (Kong et al. [16] ) 0.0809 ± 0.1034 2.980 

OLDOM (Moghadam et al. [30] ) 0.1964 ± 0.1086 0.595 

Proposed VPE method 0.0707 ± 0.0954 0.595 

timates the vanishing point using these orientations. Each pixel 

location v in the top 90% region of the image is considered as a 

VP candidate. It is voted by all pixels p in the half-disk region, 

which is centered on v and below v . Our experiments used the 

MATLAB code provided by the authors of [16] . However, the 

parameters of the Gabor-based method were tuned using the 

training set. 
• Optimal local dominant orientation method (OLDOM) [30] : This 

method uses four Gabor filters to estimate the local dominant 

orientation θ at each pixel p in the intensity image. The upward 

ray r originating from pixel p and along orientation θ is then 

identified. Each pixel along ray r will accumulate a voting score 

according to its distance to pixel p . Finally, the image pixel with 

the highest voting score is considered as the image vanishing 

point. 

Table 6 shows the performance of different VPE algorithms on 

the test set of 1500 images. The average error of the proposed 

method (0.0707) was significantly lower than that of the Hough- 

based method (0.1199) and the OLDOM (0.1964). The Hough-based 

method employs straight lines for finding the vanishing point. It 

does not work well for natural scenes that contain many non- 

straight edges. The OLDOM is designed for speed and it uses only 

four Gabor filters to estimate the local dominant orientations [30] . 

Furthermore, to calculate the voting score, the OLDOM uses only 

pixel distance, whereas our method takes into account both pixel 

distance and pixel orientation difference. The proposed method 

also had a lower average error (0.0707) compared to the Gabor- 

based method (0.0809) [16] . The Gabor-based method calculates 

the voting score for each vanishing point candidate from all pix- 

els in a half-disk region, and is therefore affected by clutter pixels. 

Furthermore, the Gabor-based method uses only intensity for com- 

puting the edge orientations and magnitudes. In comparison, the 

proposed method uses only edge pixels for voting, and therefore 

reduces significantly the computation load and the influence of 

background pixels. Moreover, the proposed method employs mul- 

tiple color channels for finding edge pixels and their orientations 

Table 4 

Lane detection performance of the proposed method on the training set for different λ. 

Parameter λ 1 2 3 4 5 6 7 8 9 10 

Recall (%) 91.0 92.2 92.6 92.8 93.2 93.2 93.2 93.2 93.2 93.2 

Precision (%) 97.0 96.2 96.3 96.3 96.3 96.3 96.1 96.1 95.9 95.9 

F-measure (%) 93.9 94.2 94.4 94.5 94.7 94.7 94.6 94.6 94.5 94.5 
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Fig. 6. Visual results of vanishing point estimation. Ground-truth VP: red dot. VP detected by the proposed method: green marker. VP detected by Hough-based method [27] : 

yellow marker. VP detected by Gabor-based method [16] : blue marker. VP detected by OLDOM [30] : cyan marker. See the electronic color image. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Visual comparative results of different methods for pedestrian lane detection. Column 1: input images. Column 2: output of the edge-based method [16] . Column 3: 

output of the lane-border detection method [26] . Column 4: output of the proposed method using the RGB color space. Column 6: output of the proposed method using the 

IIS color space. See the electronic color image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(via color tensor). Hence, it can distinguish color pixels even if they 

have similar intensity. 

For images of size 100 × 140 pixel, the average processing 

time per image of the proposed method (0.595 s) was significantly 

shorter than that of the Gabor-based method (2.980 s) and was al- 

most the same as that of the OLDOM (0.595 s). That is, the pro- 

posed method was about 5.0 times faster than the Gabor-based 

method. Although the Hough-based method had the shortest pro- 

cessing time per image (0.029 s), it also had the highest error 

(0.1199) among the four tested methods. Fig. 6 shows examples of 

VPE using different methods. As can be seen, the proposed method 

estimates the vanishing point more accurately, compared to the 

Hough-based method, Gabor-based method, and the OLDOM. 

4.4. Analysis of pedestrian lane detection 

For pedestrian lane detection, we compared the proposed 

method with two related methods: 

• Edge-based method (Kong et al. [16] ): This approach detects 

the lane boundaries from edges directed towards the vanishing 

point, using the color and orientation features of lane borders. 

In the experiments, we used the MATLAB code provided by the 

authors of [16] , and adjusted it using the training data to suit 

better this application. 
• Lane-border detection method (Le et al. [26] ): This method is our 

previous work, and it finds two lane borders among the edges 

pointing to the vanishing point. Each edge is represented by 

Table 7 

Performance comparison of pedestrian lane detection algorithms on the test set. 

Methods Recall Precision F-measure Processing 

(%) (%) (%) time (s) 

Edge-based method (Kong et al. [16] ) 62.7 65.0 63.8 3.04 

Lane-border detection method (Le et al. [26] ) 89.0 89.7 89.3 1.20 

Proposed method using RGB 92.1 94.9 93.5 1.94 

Proposed method using IIS 93.5 97.2 95.3 2.81 

Fig. 8. Visual sample results of the proposed method for detecting pedestrian lanes in indoor and outdoor environments. Columns 1, 3, 5 and 7: input images. Columns 2, 4, 

6 and 8: detected lanes. See the electronic color images. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 

article.) 
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two features: (i) the color difference between two regions adja- 

cent to the edge, and (ii) the orientation difference of neighbor- 

ing pixels to the edge. Each region formed by a pair of edges is 

described by two features: (i) its color uniformity, and (ii) the 

direction of the bisector of the edges. A pair of edges is con- 

sidered as the lane borders if the likelihood of their edge and 

region features is the highest among all pairs. This method does 

not use lane segmentation technique proposed in Section 3.3 . 

Table 7 shows the performance of different methods for pedes- 

trian lane detection on the test set of 1500 images. Using the RGB 

color space, the proposed method had a recall rate of 92.1%, a pre- 

cision rate of 94.9%, and an F-measure of 93.5%. Using the IIS color 

space, it achieved a recall rate of 93.5%, a precision rate of 97.2%, 

and an F-measure of 95.3%. 

The proposed method outperformed the edge-based method 

[16] , which had a recall rate of 62.7%, a precision rate of 65.0% 

and an F-measure of 63.8%. The edge-based method uses only the 

color and orientation properties of lane borders, and it is therefore 

susceptible to background edges. In contrast, the proposed method 

employs the properties of not only lane borders but also lane re- 

gions (appearance and shape). 

The proposed method also had better recall and precision rates 

than the lane-border detection method [26] (recall rate of 89.0%, 

precision rate of 89.7% and F-measure of 89.3%). The lane-border 

detection method finds the lane borders from edges pointing to 

the vanishing point, and hence it only detects straight lanes or the 

straight part of curved lanes. 

Fig. 7 shows pedestrian detection results of different methods. 

The results show the robustness and effectiveness of the proposed 

method compared with the previous methods [16,26] . These 

results also demonstrate that the proposed method using the IIS 

color space is more robust than using the RGB color space. 

Table 7 also shows the average processing time per test im- 

age of the lane detection methods. These processing times were 

recorded for MATLAB implementation and an image size of 100 

× 140 pixel on a PC with 3.4 GHz CPU. The proposed method 

(average time 2.81 s) was 1.08 times faster than the edge-based 

method [16] (average time 3.04 s). The proposed method was 2.60 

times slower than the lane-border detection method (average time 

1.20 s). Note that the proposed method required only 0.95 s on av- 

erage to find the lane border (vanishing point estimation and sam- 

ple region selection); it required the extra time of 1.86 s for lane 

segmentation (i.e. the processing steps described in Section 3.3 ). 

Nevertheless, the processing speed of the proposed method is an 

aspect that needs to be improved in the future. 

Several outputs of the proposed method are shown in Fig. 8 . 

There are some segmentation errors, e.g. in (Row 2, Column 2) 

where there is a strong shadow. However, in most cases the lane 

is segmented correctly. In summary, the experimental results pre- 

sented in this section have shown that the proposed method 

can detect pedestrian lanes with various surfaces, under different 

imaging conditions. 

5. Conclusion 

This paper presents a method for pedestrian lane detection in 

unstructured environments, by combining color, edge, and shape 

features. The proposed method uses the vanishing point to au- 

tomatically determine a sample lane region, from which a lane 

model is adaptively constructed. Evaluation results on a large 

data set have shown that the proposed method is able to de- 

tect various types of unstructured pedestrian lanes, in outdoor 

and indoor scenes under challenging environmental conditions. It 

also has higher accuracy compared to two other existing pedes- 

trian lane detection methods. The paper also presents an effi- 

cient and accurate method based on the color tensor for vanish- 

ing point estimation. The proposed methods for vanishing point 

detection and pedestrian lane detection can have several applica- 

tions, such as assistive navigation for vision-impaired people, in- 

telligent wheelchairs, autonomous robots or vehicles operating on 

open roads. 
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