
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Engineering and Information 
Sciences - Papers: Part A 

Faculty of Engineering and Information 
Sciences 

1-1-2016 

Indefinite Kasparov modules and pseudo-Riemannian manifolds Indefinite Kasparov modules and pseudo-Riemannian manifolds 

Koen van den Dungen 
University of Wollongong, koen@uow.edu.au 

Adam C. Rennie 
University of Wollongong, renniea@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/eispapers 

 Part of the Engineering Commons, and the Science and Technology Studies Commons 

Recommended Citation Recommended Citation 
van den Dungen, Koen and Rennie, Adam C., "Indefinite Kasparov modules and pseudo-Riemannian 
manifolds" (2016). Faculty of Engineering and Information Sciences - Papers: Part A. 6018. 
https://ro.uow.edu.au/eispapers/6018 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/81226741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F6018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F6018&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F6018&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers/6018?utm_source=ro.uow.edu.au%2Feispapers%2F6018&utm_medium=PDF&utm_campaign=PDFCoverPages


Indefinite Kasparov modules and pseudo-Riemannian manifolds Indefinite Kasparov modules and pseudo-Riemannian manifolds 

Abstract Abstract 
We present a definition of indefinite Kasparov modules, a generalisation of unbounded Kasparov modules 
modelling non-symmetric and non-elliptic (e.g. hyperbolic) operators. Our main theorem shows that to 
each indefinite Kasparov module we can associate a pair of (genuine) Kasparov modules, and that this 
process is reversible. We present three examples of our framework: the Dirac operator on a pseudo-
Riemannian spin manifold (i.e. a manifold with an indefinite metric); the harmonic oscillator; and the 
construction via the Kasparov product of an indefinite spectral triple from a family of spectral triples. This 
last construction corresponds to a foliation of a globally hyperbolic spacetime by spacelike 
hypersurfaces. 

Keywords Keywords 
pseudo, riemannian, manifolds, modules, kasparov, indefinite 

Disciplines Disciplines 
Engineering | Science and Technology Studies 

Publication Details Publication Details 
van den Dungen, K. & Rennie, A. (2016). Indefinite Kasparov modules and pseudo-Riemannian manifolds. 
Annales Henri Poincare, 17 (11), 3255-3286. 

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/6018 

https://ro.uow.edu.au/eispapers/6018


Indefinite Kasparov modules and
pseudo-Riemannian manifolds

Koen van den Dungen and Adam Rennie

Abstract. We present a definition of indefinite Kasparov mod-
ules, a generalisation of unbounded Kasparov modules mod-
elling non-symmetric and non-elliptic (e.g. hyperbolic) oper-
ators. Our main theorem shows that to each indefinite Kas-
parov module we can associate a pair of (genuine) Kasparov
modules, and that this process is reversible. We present three
examples of our framework: the Dirac operator on a pseudo-
Riemannian spin manifold (i.e. a manifold with an indefinite
metric); the harmonic oscillator; and the construction via the
Kasparov product of an indefinite spectral triple from a fam-
ily of spectral triples. This last construction corresponds to a
foliation of a globally hyperbolic spacetime by spacelike hyper-
surfaces.

Mathematics Subject Classification (2010). 19K35, 53C50, 58B34.

Keywords. KK-theory; Lorentzian manifolds; noncommutative
geometry.

1. Introduction

Both Connes’ noncommutative geometry [Con94] and Kasparov’s
KK-theory [Kas80, BJ83] deal with noncommutative generalisations
of elliptic, self-adjoint differential operators. As such, these frame-
works are particularly suited to describe Riemannian manifolds. In
this article we aim to extend these frameworks to allow for non-
elliptic and non-symmetric operators, and in particular (normally)
hyperbolic operators. Our motivating example is the Dirac operator
on a pseudo-Riemannian manifold, i.e. a manifold equipped with an



indefinite (but non-degenerate) metric. It is precisely this example
that has inspired the terminology for the indefinite Kasparov mod-
ules we introduce in Definition 3.1.

Our definition of indefinite Kasparov modules is a generalisation of
the usual definition of unbounded Kasparov modules [BJ83]. One of
our main goals is to make sure that this generalised definition still
allows us to remain in touch with all the usual tools of KK-theory
[Kas80]. If (A, EB ,D) is an indefinite unbounded Kasparov module,
we can construct from the (typically non-symmetric) operator D two
symmetric operators given by

D± := ReD ± ImD =
1

2
(D +D∗)∓ i

2
(D −D∗).

We then want to make sure that these operators yield two unbounded
Kasparov modules (A, EB ,D±), and the main challenge here is to
prove self-adjointness for D±.

This article continues in the spirit of our previous paper [DPR13],
where we defined pseudo-Riemannian spectral triples (A,H,D) as a
generalisation of spectral triples, and we showed that the operators
D± defined as above yield spectral triples. Although the motivation
for the present article is the same, there are nonetheless several sig-
nificant differences.

First, we work more generally with Kasparov modules instead of
spectral triples. Second, while the definition of pseudo-Riemannian
spectral triples requires assumptions on the second-order operators
DD∗ + D∗D and D2 − D∗2, the definition of indefinite Kasparov
modules focuses more on first-order operators (namely D, D∗, ReD,
and ImD), which is more natural. Third, the definition of indefinite
Kasparov modules has the advantage that it does not require any
smoothness properties. And fourth, it allows to reverse the proce-
dure D 7→ D±, which means that we can characterise all pairs of
unbounded Kasparov modules that can be obtained from an indefi-
nite Kasparov module in this way.

As mentioned above, the main technical challenge is to obtain self-
adjointness for D±. In [DPR13], this is achieved by assuming that
〈D〉2 := (ReD)2 +(ImD)2 is self-adjoint, and that the anti-commut-
ator {ReD, ImD} is ‘suitably bounded’ relative to 〈D〉2. In this ar-
ticle, we prefer to avoid assumptions on the second-order operator
〈D〉2. Instead, we now impose the condition that the real and imag-
inary parts of D almost anti-commute, which means that the anti-
commutator {ReD, ImD} is relatively bounded by ReD. A theorem
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of Kaad-Lesch [KL12] (quoted in Theorem 2.11) then allows us to
conclude that D± are self-adjoint.

Unfortunately, our main motivating example, namely the Dirac op-
erator /D on a pseudo-Riemannian manifold, does not satisfy this
condition. Indeed, although the anti-commutator {Re /D, Im /D} is a
first-order differential operator, it contains in general both space-
like derivatives and timelike derivatives, and thus it is not rela-
tively bounded by Re /D (nor by Im /D). In order to ensure that
Re /D and Im /D almost anti-commute, we need the timelike part
of {Re /D, Im /D} to vanish identically, which places a restriction on
the geometry of the pseudo-Riemannian manifold (see below). This
asymmetry between the timelike and spacelike parts of {Re /D, Im /D}
is artificial, and indicates that it would be desirable to have a more
general version of Kaad and Lesch’ theorem: we aim to return to this
issue in a future work.

The layout of this article is as follows. In Section 2 we first describe
our approach to dealing with non-symmetric operators, where we em-
phasise the real and imaginary parts of the operator. Subsequently,
we gather some results on almost (anti-)commuting operators which
will be useful later on.

Next, we define indefinite Kasparov modules as well as pairs of Kas-
parov modules in Section 3, and we prove our main theorem, which
states that these definitions are equivalent. We continue in Section
3.2 by discussing the odd version of indefinite Kasparov modules.
As for usual Kasparov modules, it is straightforward to turn an odd
indefinite Kasparov module into an even one by ‘doubling it up’. We
then prove that these odd modules are characterised by pairs of Kas-
parov modules for which the two operators are related via a certain
unitary equivalence.

In Section 4 we discuss several examples. We start in Section 4.1
with the main motivating example, namely the Dirac operator on
a pseudo-Riemannian spin manifold. We show, under certain mild
assumptions on the manifold, that this Dirac operator satisfies all but
one condition in the definition of indefinite Kasparov modules. The
condition that fails (as mentioned above) is the assumption that the
real and imaginary parts of the Dirac operator almost anti-commute
in the sense of Kaad-Lesch. We continue to show that this condition
does hold for the case of Lorentzian manifolds with ‘parallel time’.
This example indicates that further study is required to obtain a
more flexible formulation of indefinite Kasparov modules.

The second example (Section 4.2) considers the harmonic oscilla-
tor in arbitrary dimensions. This example in particular shows that
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manifolds with indefinite metrics are not the only examples of our
framework.

Finally, in Section 4.3 we discuss families of spectral triples (building
upon work by Kaad and Lesch [KL13]), and we show that one can
naturally associate an indefinite Kasparov module to such families.
Our work on families of spectral triples was initially motivated by
the study of spacelike foliations of spacetime from the perspective of
noncommutative geometry.

Acknowledgments The first author acknowledges support from both
the Australian National University and the University of Wollon-
gong. The second author acknowledges the support of the Australian
Research Council. Both authors thank Magnus Goffeng and Bram
Mesland for insightful discussions, and the referee for identifying er-
rors in a previous version. Both authors also thank the Hausdorff
Research Institute for Mathematics (HIM) for their hospitality dur-
ing the Hausdorff Trimester Program Non-commutative Geometry
and its Applications in 2014, where this work was first presented.

2. Preliminaries on unbounded operators on Hilbert
modules

Let B be a Z2-graded C∗-algebra. Recall that a Z2-graded Hilbert
B-module E is a vector space equipped with a Z2-graded right action
E×B → E and with a B-valued inner product (·|·) : E×E → B, such
that E is complete in the corresponding norm. The endomorphisms
EndB(E) are the adjointable linear operators E → E, and the set
End0

B(E) of compact endomorphisms is given by the closure of the
finite rank operators. For a detailed introduction to Hilbert modules
and Z2-gradings, we refer to [Bla98, Lan95].

2.1. Non-symmetric operators

In this section, we describe our approach to dealing with non-symmet-
ric operators, namely by studying the real and imaginary parts of
such operators. Let us start with a useful lemma regarding the ‘com-
bined graph norm’ of two closed operators on the intersection of their
domains.

Lemma 2.1. Let E be a right Hilbert B-module with inner product
(·|·). Let S and T be closed regular operators on E such that DomS∩
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DomT is dense in E. Then DomS ∩ DomT is a right Hilbert B-
module with the inner product

(φ|ψ)S,T := (φ|ψ) + (Sφ|Sψ) + (Tφ|Tψ),

and the corresponding norm ‖ψ‖2S,T = ‖(ψ|ψ)S,T ‖B.

Proof. We need to show that DomS∩DomT is complete in the norm
‖ · ‖S,T . Since S is closed, we know that DomS is complete for the
graph norm ‖ · ‖S corresponding to the inner product

(φ|ψ)S := (φ|ψ) + (Sφ|Sψ),

and a similar statement holds for DomT . The inequalities

1

2
(ψ|ψ)S +

1

2
(ψ|ψ)T ≤ (ψ|ψ)S,T ≤ (ψ|ψ)S + (ψ|ψ)T

show that convergence in the norm ‖ · ‖S,T is equivalent to conver-
gence in both graph norms ‖ · ‖S and ‖ · ‖T . Denote by WS (respec-
tively WT ) the closure of DomS ∩DomT in the norm ‖ · ‖S (respec-
tively ‖·‖T ). Then the closure of DomS∩DomT in the norm ‖·‖S,T
is contained in the intersection of WS and WT . Since WS ⊂ DomS
and WT ⊂ DomT , this intersection WS ∩ WT is contained in, and
hence equal to, DomS∩DomT , so we conclude that DomS∩DomT
is complete in the norm ‖ · ‖S,T . �

In what follows, we will consider a closed regular operator D on a
right Hilbert B-module E, such that DomD ∩ DomD∗ is dense in
E. The above lemma then tells us that DomD∩DomD∗ is a Hilbert
B-module with the inner product (·|·)D,D∗ .

Definition 2.2. Let D be a closed regular operator on a Hilbert B-
module E, such that DomD ∩ DomD∗ is dense. We define the real
and imaginary parts of D by setting

ReD :=
1

2
(D +D∗), ImD := − i

2
(D −D∗),

on the initial domain DomD ∩ DomD∗. Since these operators are
densely defined and symmetric, they are closable, and we denote
their closures by ReD and ImD as well. Furthermore, we define the
‘Wick rotations’ of D by

D+ := ReD + ImD, D− := ReD − ImD,

on the initial domain Dom ReD ∩ Dom ImD. The term ‘Wick rota-
tion’ is borrowed from physics, and its use is motivated by Proposi-
tion4.8.
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Lemma 2.3. Let D be a closed regular operator on a right Hilbert
B-module E, such that DomD ∩ DomD∗ is dense in E. Then the
norms ‖ · ‖D,D∗ , ‖ · ‖ReD,ImD, and ‖ · ‖D+,D− (defined as in Lemma
2.1) are equivalent on DomD ∩DomD∗.

Proof. An elementary calculation shows that we have the equalities

(φ|ψ)ReD,ImD =
1

2
(φ|ψ) +

1

2
(φ|ψ)D,D∗ , (φ|ψ)D+,D− = (φ|ψ)D,D∗ ,

from which it follows that the three norms ‖ · ‖D,D∗ , ‖ · ‖ReD,ImD,
and ‖ · ‖D+,D− are equivalent. �

Lemma 2.4. Let D be a closed regular operator on a Hilbert B-module
E, such that DomD∩DomD∗ is dense. If DomD∩DomD∗ is a core
for both D and D∗, then DomD∩DomD∗ = Dom ReD∩Dom ImD,
D = ReD + i ImD, and D∗ = ReD − i ImD.

Proof. The operators ReD and ImD are initially defined on DomD∩
DomD∗, so the inclusion DomD∩DomD∗ ⊂ Dom ReD∩Dom ImD
is obvious. Suppose that DomD ∩DomD∗ is a core for both D and

D∗. Consider the closed operator D̃ defined as the closure of ReD+

i ImD on the initial domain Dom ReD∩Dom ImD. Obviously, D̃ and
D agree on DomD∩DomD∗, and since this domain is a core for D, it

follows that D̃ is an extension of D, and we have D̃∗ ⊂ D∗. However,

on DomD∩DomD∗ both D̃∗ and D∗ are given by ReD−i ImD, and

since this domain is a core for D∗, it follows that D∗ ⊂ D̃∗. Hence

D∗ = D̃∗ and therefore D = D̃. By construction of D̃ we have the
domain inclusions

DomD ∩DomD∗ ⊂ Dom ReD ∩Dom ImD ⊂ Dom D̃ ∩Dom D̃∗.

Since we have shown that D = D̃, we conclude that these inclusions
are equalities. �

Definition 2.5. Let D1 and D2 be closed, regular and symmetric op-
erators on a Hilbert B-module E, such that DomD1 ∩ DomD2 is
dense in E. We define the reverse Wick rotation of the pair (D1,D2)
as the closure of

D :=
1

2
(D1 +D2) +

i

2
(D1 −D2)

on the initial domain DomD1 ∩ DomD2 (note that D is closable,
because it is the sum of a symmetric and an anti-symmetric operator,
which ensures that D∗ is densely defined).
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Remark 2.6. We emphasise that the reverse Wick rotation D′ of the
pair (D2,D1) is not equal to the reverse Wick rotation of (D1,D2),
but they are related to each other: D′ is the closure of the restriction
of D∗ to DomD1∩DomD2. In other words, D∗ is a closed extension of
the closure of D′, and they are equal if and only if DomD1∩DomD2

is a core for D∗.

Lemma 2.7. Let D1 and D2 be closed, regular and symmetric op-
erators on a Hilbert B-module E such that DomD1 ∩ DomD2 is
dense in E. Let D be the reverse Wick rotation of (D1,D2). Then
the norms ‖ · ‖D,D∗ , ‖ · ‖ReD,ImD, and ‖ · ‖D1,D2 are all equivalent on
DomD1 ∩DomD2.

Proof. Let us write E := DomD1 ∩DomD2. The operators D1 ±D2

are symmetric on E , so the domain of D∗ also contains E (and in
particular DomD ∩DomD∗ is dense). For ψ ∈ E we can then write

D∗ψ =
1

2
(D1 +D2)ψ − i

2
(D1 −D2)ψ.

Hence on the initial domain E we can write D1 = D+, D2 = D−,
ReD = 1

2 (D1 + D2), and ImD = 1
2 (D1 − D2). From Lemma 2.3 it

then follows that the norms ‖ · ‖D,D∗ , ‖ · ‖ReD,ImD, and ‖ · ‖D1,D2
are

equivalent on E . �

2.2. Almost (anti-)commuting operators

Almost (anti-)commuting operators were considered by Mesland in
[Mes14], and later generalised by Kaad and Lesch in [KL12], for
the construction of the unbounded Kasparov product. Almost anti-
commuting operators play an important role later in proving that the
Wick rotations of indefinite Kasparov modules are (genuine) Kas-
parov modules. In this section, we recall the results from [KL12],
and prove a few further consequences.

Definition 2.8 (see [KL12, Assumption 7.1]). Let S and T be regular
self-adjoint operators on a Hilbert A-module E such that
1) there exists a submodule E ⊂ DomT which is a core for T , and
2) for each ξ ∈ E and for all µ ∈ R\{0} we have the inclusions

(S − iµ)−1ξ ∈ DomS ∩DomT and T (S − iµ)−1ξ ∈ DomS.

The pair (S, T ) is called an almost commuting pair if in addition
3) The map [S, T ](S− iµ)−1 : E → E extends to a bounded operator
in EndA(E) for all µ ∈ R\{0}.
Similarly, the pair (S, T ) is called an almost anti-commuting pair if
instead of 3) we have

7



3’) The map {S, T}(S−iµ)−1 : E → E extends to a bounded operator
in EndA(E) for all µ ∈ R\{0}.
These conditions are summarised by saying that [S, T ](S− iµ)−1 (or
{S, T}(S − iµ)−1) is well-defined and bounded.

Lemma 2.9. Let (S, T ) be a pair of regular self-adjoint operators on
a Hilbert module E satisfying 1) and 2) of Definition 2.8. Then S is
essentially self-adjoint on DomS ∩DomT .

Proof. By assumption we have (S ± i)−1(ξ) ∈ DomS ∩ DomT for
all ξ ∈ E , where E is dense in E. Since S is self-adjoint, the operator
(S±i)−1 is bounded and has range DomS, which is dense in E. Hence
(S ± i)−1E is also dense in E, from which it follows that DomS ∩
DomT is dense in E, so the operator S|DomS∩DomT is symmetric
and densely defined on DomS ∩ DomT . Furthermore, the image of
(S ± i)|DomS∩DomT contains E and is therefore also dense, which
implies that S|DomS∩DomT is essentially self-adjoint. �

Given two regular self-adjoint operators S and T on a Hilbert A-
module E, we consider two new operators on E ⊕ E given by

S̃ :=

(
0 iS
−iS 0

)
, T̃ :=

(
0 T
T 0

)
,

with domains Dom S̃ = (DomS)⊕2 and Dom T̃ = (DomT )⊕2. One
easily calculates that

{S̃, T̃} = i

(
[S, T ] 0

0 −[S, T ]

)
, [S̃, T̃ ] = i

(
{S, T} 0

0 −{S, T}

)
,

whenever these operators are defined. Hence this ‘doubling trick’ al-
lows us to easily switch between almost commuting and anti-commut-
ing operators.

Lemma 2.10. Let S and T be regular self-adjoint operators on a

Hilbert A-module E, and let S̃ and T̃ be given as above. Then the
following statements hold:

1) if (S, T ) is an almost commuting pair, then (S̃, T̃ ) is an almost
anti-commuting pair;

2) if (S, T ) is an almost anti-commuting pair, then (S̃, T̃ ) is an al-
most commuting pair.

Proof. We only prove the first statement, as the second statement
is similar. So suppose that the operator [S, T ](S − iµ)−1 : E → E is

well-defined and bounded. Consider the submodule Ẽ = E ⊕E of the
8



Hilbert module Ẽ = E ⊕ E. An explicit calculation shows that we
can rewrite

(S̃ − iµ)−1 =

(
−iµ iS
−iS −iµ

)−1
=

(
(S − iµ)−1 0

0 (S − iµ)−1

)(
(S − iµ) 0

0 (S − iµ)

)(
−iµ iS
−iS −iµ

)−1
=

(
(S − iµ)−1 0

0 (S − iµ)−1

)(
iµ(S + iµ)−1 iS(S + iµ)−1

−iS(S + iµ)−1 iµ(S + iµ)−1

)
.

The second matrix on the second line is bounded, and it maps Ẽ
to Dom T̃ (by assumption, (S + iµ)−1 maps E to DomS ∩ DomT ,
and S(S + iµ)−1 = 1 − iµ(S + iµ)−1 maps E to DomT ). Since the
submodule E in Definition 2.8 can always be replaced by DomT (see

[KL12, Proposition 7.3]), this shows that Ẽ satisfies conditions 1) and
2). Furthermore, the operator

{S̃, T̃}(S̃ − iµ)−1 = i

(
[S, T ](S − iµ)−1 0

0 −[S, T ](S − iµ)−1

)
×

×
(
iµ(S + iµ)−1 iS(S + iµ)−1

−iS(S + iµ)−1 iµ(S + iµ)−1

)
.

is then well-defined and bounded on Ẽ . �

Theorem 2.11 ([KL12, Theorem 7.10]). Let (S, T ) be an almost com-
muting pair of regular self-adjoint operators on E. Then the operator

D :=

(
0 S + iT

S − iT 0

)
with domain DomD :=

(
DomS ∩DomT

)⊕2
is self-adjoint and reg-

ular.

Combining Theorem 2.11 with Lemma 2.10, we obtain a variant of
Kaad and Lesch’ result.

Corollary 2.12. Let (S, T ) be an almost anti-commuting pair of regu-
lar self-adjoint operators on E. Then the operators S+T and S−T
with domain DomS ± T = DomS ∩ DomT are regular and self-
adjoint.

From the assumption that (S, T ) is an almost commuting pair, it
does not follow that S ± T is self-adjoint on DomS ∩ DomT (the
obvious counter-example is S = ∓T ). However, it does follow that
S ± T is essentially self-adjoint on DomS ∩DomT .

9



Proposition 2.13. Let (S, T ) be an almost commuting pair of regular
self-adjoint operators on E. Then the operator S + T is essentially
self-adjoint on DomS ∩DomT .

Proof. The statement follows from a straightforward adaptation of
the proof of [KL12, Proposition 7.7], which we include here for com-
pleteness. We know that S + T is symmetric on DomS ∩ DomT ,
so it suffices to prove that Dom(S + T )∗ ⊂ Dom (S + T ). Let ξ ∈
Dom(S + T )∗, and define the sequence

ξn :=
(
− i

n
S + 1

)−1
ξ ∈ DomS,

which converges in norm to ξ. For η ∈ DomT , we can calculate

〈ξn, Tη〉 =
〈
ξ,
( i
n
S + 1

)−1
Tη
〉

=
〈
ξ, T

( i
n
S + 1

)−1
η
〉

−
〈
ξ,
( i
n
S + 1

)−1[ i
n
S, T

]( i
n
S + 1

)−1
η
〉

=
〈
ξ, (S + T )

( i
n
S + 1

)−1
η
〉

−
〈
ξ, S

( i
n
S + 1

)−1
η
〉
− 〈ξ,Rnη〉

=
〈(
− i

n
S + 1

)−1
(S + T )∗ξ, η

〉
−
〈
S
(
− i

n
S + 1

)−1
ξ, η
〉
− 〈R∗nξ, η〉,

where Rn := ( inS + 1)−1[ inS, T ]( inS + 1)−1 is defined as in [KL12,
Lemma 7.4]. This proves that ξn is in the domain of T ∗ = T , and
that

Tξn =
(
− i

n
S + 1

)−1
(S + T )∗ξ − Sξn −R∗nξ.

In [KL12, Lemma 7.4] it is shown that Rn → 0 strongly, and hence

(S + T )ξn =
(
− i

n
S + 1

)−1
(S + T )∗ξ −R∗nξ

converges in norm to (S + T )∗ξ, which in particular means that

ξ = limn→∞ ξn ∈ Dom (S + T ). �
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3. Indefinite Kasparov modules

We are now ready to present our framework of indefinite Kasparov
modules, after which we define pairs of Kasparov modules, and show
that these definitions are equivalent.

Definition 3.1. Given (separable) Z2-graded C∗-algebras A and B,
an indefinite unbounded Kasparov A-B-module (A, πEB ,D) is given
by

• a Z2-graded, countably generated, right Hilbert B-module E;
• a Z2-graded ∗-homomorphism π : A→ EndB(E);
• a separable dense ∗-subalgebra A ⊂ A;
• a closed, regular, odd operator D : DomD ⊂ E → E such that

1) there exists a linear subspace E ⊂ DomD ∩ DomD∗ which is
dense with respect to ‖ · ‖D,D∗ , and which is a core for both D and
D∗;
2) the operators ReD and ImD are regular and essentially self-
adjoint on E ;
3) the pair (ReD, ImD) is an almost anti-commuting pair ;
4) we have the inclusion π(A) · E ⊂ DomD ∩ DomD∗, and the
graded commutators [D, π(a)]± and [D∗, π(a)]± are bounded on E
for each a ∈ A;
5) the map π(a) ◦ ι : DomD ∩ DomD∗ ↪→ E → E is compact for
each a ∈ A, where ι : DomD ∩DomD∗ ↪→ E denotes the natural
inclusion map, and DomD ∩ DomD∗ is considered as a Hilbert
B-module with the inner product (·|·)D,D∗ .

If no confusion arises, we will often write (A, EB ,D) instead of
(A, πEB ,D). If B = C and A is trivially graded, we will write E = H
and refer to (A,H,D) as an even indefinite spectral triple over A.

Remark 3.2. If D is self-adjoint, this is just the usual definition of
an unbounded Kasparov A-B-module (or spectral triple if B = C).
In this case, note that assumption 5) is equivalent to the more com-
monly used assumption that the resolvent of D is locally compact
(which means that the operator π(a)(1 + D2)−1/2 is compact for
each a ∈ A).

Property 1) and Lemma 2.4 imply that we have the equality DomD∩
DomD∗ = Dom ReD ∩Dom ImD, which we will use repeatedly.

Definition 3.3. Two indefinite unbounded Kasparov A-B-modules
(A, E1,D1) and (A, E2,D2) are called unitarily equivalent if there
exists an even unitary U : E1 → E2 such that D2 = UD1U

∗ and for
all a ∈ A we have π2(a) = Uπ1(a)U∗, where πi : A → EndB(Ei)
denotes the left action of A (for i = 1, 2).

11



Next, we will show that the linear subspace E in Definition 3.1 can
always be replaced by DomD∩DomD∗. The trickiest part turns out
to be condition 4), for which we prove a separate lemma first.

Lemma 3.4 (cf. [FMR14, Proposition 2.1]). Let D be a closed regular
operator on a Hilbert B-module E such that DomD ∩ DomD∗ is
dense. Let E ⊂ DomD ∩ DomD∗ be dense with respect to the norm
‖ · ‖D,D∗ , and let A ⊂ EndB(E) be a ∗-subalgebra. Suppose A · E ⊂
DomD∩DomD∗, and for each a ∈ A the operators [D, a] and [D∗, a]
are bounded on E. Then A also preserves DomD∩DomD∗, and [D, a]
and [D∗, a], initially defined on DomD∩DomD∗, extend to bounded
endomorphisms on E, for all a ∈ A.

Proof. The proof is a straightforward adaptation of [FMR14, Propo-
sition 2.1], which proves the statement for the case of self-adjoint
operators on a Hilbert space. For completeness we will work out the
details here.

Let ψ ∈ DomD ∩ DomD∗. By assumption there exists a sequence
ψn ∈ E such that ψn → ψ in the norm ‖ · ‖D,D∗ , which is equivalent
to ψn → ψ, Dψn → Dψ, and D∗ψn → D∗ψ, in the usual norm. The
sequence Daψn is Cauchy (in the usual norm), since

‖Daψn −Daψm‖ = ‖aDψn − aDψm + [D, a]ψn − [D, a]ψm‖
≤ ‖a‖‖Dψn −Dψm‖+ ‖[D, a]‖‖ψn − ψm‖,

and similarly D∗aψn is also Cauchy. Hence the sequence aψn ∈
DomD ∩ DomD∗ is Cauchy in the norm ‖ · ‖D,D∗ , so there exists
a ξ ∈ DomD ∩ DomD∗ such that aψn → ξ in the norm ‖ · ‖D,D∗ .
But this implies that aψn → ξ in the usual norm, and since we al-
ready know that aψn → aψ in the usual norm, we conclude that
ξ = aψ, and hence aψ ∈ DomD∩DomD∗. Thus we have shown that
a preserves DomD ∩DomD∗.
To conclude that [D, a] (and similarly [D∗, a]), initially defined on
DomD ∩ DomD∗, extends to a bounded endomorphism, it suffices
to show that its adjoint is densely defined, since then it is closable,
and [D, a] ⊃ [D, a]|E , which is everywhere defined and bounded. For
ψ ∈ DomD and η ∈ E , we have

([D, a]ψ|η) = (Daψ|η)− (aDψ|η)

= (ψ|a∗D∗η)− (ψ|D∗a∗η) = (ψ| − [D∗, a∗]η),

which is well-defined because a∗ ∈ A maps E to DomD ∩ DomD∗.
Hence the domain of [D, a]∗ contains the dense subset E , which im-
plies that [D, a] is closable. The same argument applies to [D∗, a]. �

12



Proposition 3.5. If (A, EB ,D) is an indefinite unbounded Kasparov
A-B-module, then the subset E in Definition 3.1 can be replaced by
DomD ∩DomD∗.

Proof. If E ⊂ DomD ∩ DomD∗ is a core for D and D∗, then so is
DomD∩DomD∗. By construction, DomD∩DomD∗ is contained in
the domains of ReD and ImD, so the operators ReD and ImD are
also essentially self-adjoint on DomD ∩ DomD∗. Using Lemma 3.4
then concludes the proof. �

3.1. Pairs of Kasparov modules

Definition 3.6. We say (A, EB ,D1,D2) is a pair of unbounded Kas-
parov A-B-modules if (A, EB ,D1) and (A, EB ,D2) are unbounded
Kasparov A-B-modules such that:
1) there exists a linear subspace E ⊂ DomD1 ∩ DomD2 which is a
common core for D1 and D2;
2) the operators D1 + D2 and D1 − D2 are regular and essentially
self-adjoint on E ;
3) the pair (D1 +D2,D1 −D2) is an almost anti-commuting pair.
If B = C and A is trivially graded, we will write E = H and refer to
(A,H,D1,D2) as an even pair of spectral triples over A.

Remark 3.7. Since (D1 +D2,D1 −D2) is an almost anti-commuting
pair, it follows from Corollary 2.12 that in fact DomD1 = DomD2.
Similarly to Proposition 3.5, we can then replace E by DomD1 =
DomD2.

Proposition 3.8 (Wick rotation). Let (A, EB ,D) be an indefinite un-
bounded Kasparov A-B-module. Then the Wick rotations D+ and D−
form a pair of unbounded Kasparov A-B-modules (A, EB ,D+,D−).

Proof. By assumption, the operators ReD and ImD are essentially
self-adjoint on Dom ReD∩Dom ImD, and they form an almost anti-
commuting pair (ReD, ImD). By construction, we have the domain
inclusions

Dom ReD ∩Dom ImD ⊂ DomD+ ∩DomD−
⊂ Dom(D+ +D−) ∩Dom(D+ −D−).

Since D+ + D− and D+ − D− are symmetric extensions of the es-
sentially self-adjoint operators 2 ReD and 2 ImD (respectively), we
must have D+ +D− = 2 ReD and D+−D− = 2 ImD, which implies
that the above domain inclusions are in fact equalities. This also
proves properties 2) and 3). By Corollary 2.12 it then follows that

13



D± = ReD ± ImD are self-adjoint on the domain E := DomD± =
Dom ReD ∩Dom ImD, which shows property 1).

To complete the proof that D± yield unbounded Kasparov modules,
first observe that [ReD, a] and [ImD, a] are bounded on DomD± =
Dom ReD ∩ Dom ImD, and hence it follows that [ReD ± ImD, a],
initially defined on Dom ReD∩Dom ImD, extend to bounded endo-
morphisms on E.

Finally, we know from Lemma 2.4 that the domain DomD± =
Dom ReD ∩Dom ImD is equal to DomD ∩DomD∗ (with the same
norm-topology), and by assumption the map π(a) ◦ ι : DomD ∩
DomD∗ → E is compact. Thus the Wick rotations (A, EB ,D±) are
indeed unbounded Kasparov modules. �

Proposition 3.9 (reverse Wick rotation). Let (A, EB ,D1,D2) be a
pair of unbounded Kasparov A-B-modules, and let D be the reverse
Wick rotation of (D1,D2). Then (A, EB ,D) is an indefinite un-
bounded Kasparov A-B-module.

Proof. As mentioned in Remark 3.7, we can pick E = DomD1 =
DomD2. By construction, we have the domain inclusions

E ⊂ DomD ∩DomD∗ ⊂ Dom ReD ∩Dom ImD
⊂ Dom(ReD + ImD) ∩Dom(ReD − ImD).

The operators D+ = ReD + ImD and D− = ReD − ImD are sym-
metric extensions of the self-adjoint operators D1 and D2, and hence
D1 = D+ and D2 = D−. This implies that the above domain inclu-
sions are in fact equalities. By definition, E is a core for the reverse
Wick rotation D. On this domain we can write

ReDψ =
1

2
(D1 +D2)ψ, ImDψ =

1

2
(D1 −D2)ψ.

Thus by assumption the operators ReD and ImD are essentially
self-adjoint on E , and they form an almost anti-commuting pair
(ReD, ImD). Since D1 and D2 have bounded commutators with A,
it follows immediately that ReD and ImD also have bounded com-
mutators with A. We observe that the identity map (E , ‖ · ‖D1,D2)→
(DomD1, ‖ · ‖D1

) is continuous, because the graph norm of D1 is
bounded by the norm ‖ · ‖D1,D2

on E (and similarly for D2). Since
D1 (or D2) has locally compact resolvent, it then follows that the
map π(a) ◦ ι : E ↪→ E → E is compact for each a ∈ A. Finally, it
remains to show that E is a core for D∗. Since (ReD, ImD) is an al-
most anti-commuting pair, we can use the ‘doubling trick’ and apply
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Proposition 2.13 to conclude that(
0 i(ReD − i ImD)

−i(ReD + i ImD) 0

)
is essentially self-adjoint on E⊕E . Thus D∗ = (ReD+i ImD)∗ equals
the closure of ReD − i ImD on E , so E is indeed a core for D∗. �

Remark 3.10. Let (A, EB ,D) be an indefinite unbounded Kasparov

module with Wick rotations D+ and D−. Denote by D̃ the reverse
Wick rotation of (D+,D−). By construction we then have the domain
inclusions

DomD ∩DomD∗ ⊂ Dom ReD ∩Dom ImD ⊂ DomD+ ∩DomD−
⊂ Dom D̃ ∩Dom D̃∗.

As in the proof of Lemma 2.4, the assumption that DomD∩DomD∗
is a core for both D and D∗ implies that D̃ = D. Thus, this assump-
tion ensures that our procedure of Wick rotation is reversible.

We can consider unitary equivalences of indefinite Kasparov modules
or pairs of Kasparov modules as in Definition 3.3, and one easily sees
that Wick rotations and reverse Wick rotations respect such unitary
equivalences.

Combining these observations with Propositions 3.8 and 3.9, we can
summarise our results as follows:

Theorem 3.11. The procedure of (reverse) Wick rotation implements
a bijection between indefinite unbounded Kasparov A-B-modules and
pairs of unbounded Kasparov A-B-modules. This bijection also de-
scends to the corresponding unitary equivalence classes.

3.2. Odd indefinite Kasparov modules

We introduce an odd version of indefinite Kasparov modules, where
all Z2-gradings are trivial, and the operator D is (of course) no longer
assumed to be odd.

Definition 3.12. Given trivially graded C∗-algebras A and B, an odd
indefinite unbounded Kasparov A-B-module (A, EB ,D) is given by

• a trivially graded, countably generated, right Hilbert B-module E;
• a ∗-homomorphism π : A→ EndB(E);
• a separable dense ∗-subalgebra A ⊂ A;
• a closed, regular operator D : DomD ⊂ E → E such that

1) there exists a linear subspace E ⊂ DomD ∩ DomD∗ which is
dense in the norm ‖ ·‖D,D∗ and which is a core for both D and D∗;

15



2) the operators ReD and ImD are regular and essentially self-
adjoint on E ;
3) the pair (ReD, ImD) is an almost commuting pair ;
4) we have the inclusion π(A) · E ⊂ DomD ∩ DomD∗, and the
commutators [D, π(a)] and [D∗, π(a)] are bounded on E for each
a ∈ A;
5) the map π(a) ◦ ι : DomD ∩ DomD∗ ↪→ E → E is compact for
each a ∈ A, where ι : DomD ∩DomD∗ ↪→ E denotes the natural
inclusion map, and DomD ∩ DomD∗ is considered as a Hilbert
module with the inner product (·|·)D,D∗ .

If B = C, we will write E = H and refer to (A,H,D) as an odd
indefinite spectral triple over A. If D is self-adjoint, we recover the
definition of an odd unbounded Kasparov module (or odd spectral
triple).

Remark 3.13. We emphasise that, in the odd case, (ReD, ImD)
is assumed to almost commute (instead of almost anti -commute).
This assumption can be reinterpreted as saying that the commuta-
tor [D,D∗] is relatively bounded by the sum D+D∗; in this sense D
is ‘almost normal’.

It follows from 3) and Theorem 2.11 that in fact we have DomD =
DomD∗, and as in Proposition 3.5 we can then always replace E by
DomD.

Given an odd indefinite unbounded Kasparov module (A, EB ,D), we
can again consider its Wick rotations

D+ := ReD + ImD, D− := ReD − ImD,
on the initial domain Dom ReD∩Dom ImD. The following example
shows that these Wick rotations are not as well-behaved as in the
Z2-graded case.

Example 3.14. Let (A, EB ,D) be an odd unbounded Kasparov mod-

ule, and consider the operator D̃ := (1 + i)D. Then (A, EB , D̃) is an
odd indefinite unbounded Kasparov module, and its Wick rotations

are D̃+ = 2D and D̃− = 0. The problematic one is obviously D̃−,
as it is not closed on DomD, and it does not have locally compact
resolvent.

Hence the assumptions of an odd indefinite unbounded Kasparov
module do not imply that the Wick rotations yield odd unbounded
Kasparov modules. However, by Proposition 2.13 we do know that
D+ and D− are essentially self-adjoint, and we will denote their self-
adjoint closures by D+ and D− as well.
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Given an odd unbounded Kasparov module (A, EB ,D), it is straight-

forward to construct an (even) Kasparov module (A, ẼB , D̃) by defin-

ing the Z2-graded Hilbert module Ẽ := E ⊕E (where the first sum-
mand is considered even and the second summand odd) and the odd
operator

D̃ :=

(
0 D
D 0

)
.

The following theorem gives a similar ‘doubling trick’ for the indefi-
nite case.

Theorem 3.15. Given trivially graded C∗-algebras A and B, let EB be
a trivially graded, countably generated right Hilbert B-module with a
∗-homomorphism π : A→ EndB(E), let A ⊂ A be a separable dense
∗-subalgebra, and let D : DomD → E be a closed, regular operator.
Consider (the closures of) the operators

D+ := ReD + ImD, D− := ReD − ImD,

D̃ :=

(
0 D+

D− 0

)
, D̃+ :=

(
0 D∗
D 0

)
, D̃− :=

(
0 D
D∗ 0

)
.

Then the following are equivalent:
1) (A, EB ,D) is an odd indefinite unbounded Kasparov A-B-module;

2) (A, (E⊕E)B , D̃) is an indefinite unbounded Kasparov A-B-module;

3) (A, (E ⊕ E)B , D̃+, D̃−) is a pair of unbounded Kasparov A-B-
modules.

Proof. One easily sees that the reverse Wick rotation of (D̃+, D̃−)

equals D̃, and the equivalence of 2) and 3) then follows from Theo-
rem3.11. Hence it suffices to prove the equivalence of 1) and 3).

1)⇒3):. Let (A, EB ,D) be an odd indefinite unbounded Kasparov A-
B-module. From Remark 3.13 we have DomD = DomD∗, and from
Lemma 2.4 we then know that DomD = Dom ReD ∩ Dom ImD,
and we can write D = ReD+ i ImD and D∗ = ReD− i ImD. Thus
the operators

D̃+ =

(
0 D∗
D 0

)
, D̃− =

(
0 D
D∗ 0

)
are self-adjoint on (Dom ReD ∩ Dom ImD)⊕2. For all a ∈ A, we

know that [D, a] and [D∗, a] are bounded, and therefore [D̃+, a]

and [D̃−, a] are also bounded. Furthermore, the inclusion of the
domain (Dom ReD ∩ Dom ImD)⊕2 in E ⊕ E is locally compact,
because the inclusion Dom ReD ∩ Dom ImD = DomD ↪→ E is
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locally compact by assumption. Thus both (A, (E ⊕ E)B , D̃±) are
unbounded Kasparov A-B-modules.

The operators D̃+ ± D̃− are essentially self-adjoint on the do-
main (Dom ReD∩Dom ImD)⊕2, because ReD and ImD are essen-
tially self-adjoint on Dom ReD ∩ Dom ImD. Since (ReD, ImD) is

an almost commuting pair, it follows from Lemma 2.10 that (D̃+ +

D̃−, D̃+ − D̃−) is an almost anti-commuting pair. Thus (A, (E ⊕
E)B , D̃+, D̃−) is indeed a pair of unbounded KasparovA-B-modules.

3)⇒1):. Suppose (A, (E⊕E)B , D̃+, D̃−) is a pair of unbounded Kas-

parov A-B-modules. The property Dom D̃+ = Dom D̃− (see Re-

mark 3.7) then implies that DomD = DomD∗. Since D̃+ ± D̃− are
essentially self-adjoint, it follows that ReD and ImD are essentially

self-adjoint on DomD. Since (D̃++D̃−, D̃+−D̃−) is an almost anti-
commuting pair, it follows from Lemma 2.10 that (ReD, ImD) is

an almost commuting pair. For all a ∈ A, we know that [D̃+, a]

and [D̃−, a] are bounded, and therefore [D, a] and [D∗, a] are also
bounded. Finally, since the inclusion (DomD)⊕2 ↪→ E⊕E is locally
compact, it follows that the inclusion DomD ↪→ E is also locally
compact. Thus (A, EB ,D) is indeed an odd indefinite unbounded
Kasparov A-B-module. �

We point out that the indefinite Kasparov module (A, (E⊕E)B , D̃),
given (as defined above) by the operator

D̃ =

(
0 D+

D− 0

)
,

is a very special type of indefinite Kasparov module. For instance, its
entries D+ and D− are both essentially self-adjoint, and they have

a common core (namely DomD). The special nature of such D̃ is
reflected by the following property of the Wick rotations.

Given a Hilbert A-B-bimodule πEB , recall that the opposite module

πopEop
B is defined as the Hilbert module EB with the opposite grad-

ing (i.e. (Eop)0 = E1 and (Eop)1 = E0), and with the left action
πop(a) := π(a0)− π(a1) for a = a0 + a1 ∈ A0 ⊕A1 = A.

Proposition 3.16. Let (A, EB ,D) be an odd indefinite unbounded
Kasparov A-B-module, and consider the corresponding pair of Kas-

parov modules (A, (E ⊕ E)B , D̃+, D̃−) (as in Theorem 3.15). Then

(A, (E ⊕ E)B , D̃+) is unitarily equivalent to (A, (E ⊕ E)opB ,−D̃−),

and for their KK-classes we therefore have [(A, (E ⊕ E)B , D̃+)] =

−[(A, (E ⊕ E)B , D̃−)] ∈ KK(A,B).
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Proof. First, the operators D̃+ and −D̃− are unitarily equivalent:(
0 1
−1 0

)(
0 D∗
D 0

)(
0 −1
1 0

)
=

(
0 −D
−D∗ 0

)
.

However, we also find that(
0 1
−1 0

)(
1 0
0 −1

)(
0 −1
1 0

)
=

(
−1 0
0 1

)
,

so under this unitary equivalence the Z2-grading becomes the op-

posite. Thus, we have the unitary equivalence (A, (E ⊕ E)B , D̃+) ∼
(A, (E⊕E)opB ,−D̃−). Recalling that the class of (A, (E⊕E)opB ,−D̃−)

is the negative of the class of (A, (E ⊕E)B , D̃−), the last statement
follows immediately. �

We would like to characterise the types of indefinite Kasparov mod-
ules that are obtained from odd indefinite Kasparov modules, and
for this purpose we prove a converse to the above proposition.

Proposition 3.17. Let A and B be trivially graded C∗-algebras. Let
(A, EB ,D1,D2) be a pair of unbounded Kasparov A-B-modules such
that (A, EB ,D1) is unitarily equivalent to (A, Eop

B ,−D2) via an anti-
self-adjoint unitary (

0 −U∗
U 0

)
,

where U is a unitary isomorphism E0 → E1 and we identify Eop '
E = E0 ⊕ E1 as ungraded modules. Then (A, E0

B , U
∗D1|E0) is an

odd indefinite unbounded Kasparov A-B-module.

Remark 3.18. Suppose that D1 = D2, so we just have an unbounded
Kasparov module (A, EB ,D1). The anti-self-adjoint unitary oper-
ator given above can be seen as the generator of the Clifford al-
gebra Cl1. Since it is odd and anti-commutes with D1 = D2, this
means that (A, EB ,D1) extends to an unbounded Kasparov module
(A⊗Cl1, EB ,D1) and thus represents a class in the odd KK-theory
KK1(A,B) = KK(A ⊗ Cl1, B). If D1 6= D2 however, the anti-self-
adjoint unitary does not anti-commute with D1 (nor D2), so the pair
of Kasparov A-B-modules does not extend to a pair of Kasparov
A⊗ Cl1-B-modules.

Proof. Using the isomorphism Eop ' E = E0 ⊕ E1 as ungraded
modules, any even unitary isomorphism E → Eop can be written in
the form (

0 −V ∗
U 0

)
,
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where U and V are unitary isomorphisms E0 → E1. The assumption
that this unitary isomorphism is anti-self-adjoint implies that U = V .
If we write the self-adjoint operator D1 on E0 ⊕ E1 as

D1 =

(
0 D∗0
D0 0

)
,

the unitary equivalence of D1 and −D2 then yields

D2 = −
(

0 −U∗
U 0

)(
0 D∗0
D0 0

)(
0 U∗

−U 0

)
=

(
0 U∗D0U

∗

UD∗0U 0

)
.

The algebra A is trivially graded, so its representation on E and Eop

is the same. Writing a = a0 ⊕ a1, we find that a1 = Ua0U
∗. Hence

the representation of A on E is determined by its representation on
E0. Using the identification E1 = UE0, we can rewrite a, D1, and
D2 as operators on E0 ⊕ E0 as

a =

(
a0 0
0 a0

)
, D1 =

(
0 D∗0U

U∗D0 0

)
, D2 =

(
0 U∗D0

D∗0U 0

)
.

By defining D := U∗D0 : DomD0 → E0, this can be rewritten as

D1 =

(
0 D∗
D 0

)
, D2 =

(
0 D
D∗ 0

)
.

Hence it follows from Theorem 3.15 that (A, E0
B ,D) is an odd indef-

inite unbounded Kasparov module. �

We point out that our constructions are well-defined and reversible
up to unitary equivalence (where we need to allow for unitary equiv-
alence because of the freedom in the unitary isomorphism U : E0 →
E1). Combining the previous two propositions with Theorem 3.15,
we thus obtain:

Theorem 3.19. Let A and B be trivially graded C∗-algebras. The
constructions of Propositions 3.16 and 3.17 implement a bijection
between unitary equivalence classes of odd indefinite unbounded Kas-
parov A-B-modules (A, EB ,D) and unitary equivalence classes of
pairs of unbounded Kasparov A-B-modules (A, EB ,D1,D2) such that
(A, EB ,D1) is unitarily equivalent to (A, Eop

B ,−D2) via an anti-self-
adjoint even unitary.
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4. Examples

4.1. Pseudo-Riemannian spin manifolds

In this section we describe the main example for indefinite Kasparov
modules, namely pseudo-Riemannian spin manifolds. We briefly re-
call the construction of the canonical Dirac operator on a pseudo-
Riemannian spin manifold, and for more details we refer to [Bau81].

Let (M, g) be an n-dimensional time- and space-oriented pseudo-
Riemannian spin manifold of signature (t, s), where t is the number of
time dimensions (for which g is negative-definite) and s is the number
of spatial dimensions (for which g is positive-definite). We consider an
orthogonal decomposition of the tangent bundle TM = Et⊕Es, which
always exists but is far from unique. We will consider elements of Et
to be ‘purely timelike’ and elements of Es to be ‘purely spacelike’.
Given our choice of decomposition TM = Et⊕Es, we have a timelike
projection T : Et ⊕ Es → Et and a spacelike reflection r := 1 − 2T
which acts as (−1)⊕ 1 on Et ⊕ Es.

Let Cl(TM, g) denote the real Clifford algebra with respect to g,
and denote the Clifford representation TM ↪→ Cl(TM, g) by γ. Our
conventions are such that γ(v)γ(w)+γ(w)γ(v) = −2g(v, w). We shall
denote by h the map T ∗M → TM which maps α ∈ T ∗M to its dual
in TM with respect to the metric g. That is:

h(α) = v ⇐⇒ α(w) = g(v, w) for all w ∈ TM.

We assume that M is equipped with a spin structure. We consider
the corresponding spinor bundle S→M and its space of compactly
supported, smooth sections Γ∞c (S). We denote by c the pseudo-
Riemannian Clifford multiplication Γ∞c (T ∗M ⊗ S) → Γ∞c (S) given
by

c(α⊗ ψ) := γ
(
h(α)

)
ψ.

Let∇ be the Levi-Civita connection for the pseudo-Riemannian met-
ric g, and let ∇S be its lift to the spinor bundle. The Dirac operator
on Γ∞c (S) is defined as the composition

/D : Γ∞c (S)
∇S

−−→ Γ∞c (T ∗M ⊗ S)
c−→ Γ∞c (S).

Locally, we can choose a (pseudo-)orthonormal frame {ej}nj=1 corre-
sponding to our choice of decomposition TM = Et ⊕ Es, such that
ej ∈ Et for j ≤ t and ej ∈ Es for j > t. In terms of this frame, the
metric can be written as

g(ei, ej) = δijκ(j), κ(j) =

{
−1 j = 1, . . . , t;

1 j = t+ 1, . . . , n.
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Let {θi}ni=1 be the basis of T ∗M dual to {ej}nj=1, so that θi(ej) = δij .

We then see that h(θj) = κ(j)ej . In terms of the local frame {ej},
we can then write the Dirac operator as

/D := c ◦ ∇S =

n∑
j=1

κ(j)γ(ej)∇S
ej .

4.1.1. The Hilbert space of spinors. Given the decomposition TM =
Et ⊕ Es, there exists a positive-definite hermitian structure [Bau81,
§3.3.1]

(·|·) : Γ∞c (S)× Γ∞c (S)→ C∞c (M),

which gives rise to the inner product 〈ψ1|ψ2〉 :=
∫
M

(ψ1|ψ2)dvolg,
for all ψ1, ψ2 ∈ Γ∞c (S), where dvolg denotes the canonical volume
form of (M, g). The completion of Γ∞c (S) with respect to this inner
product is denoted L2(S). We can define an operator JM on L2(S)
by setting

JM := it(t−1)/2γ(e1) · · · γ(et),

where {ej} is a local orthonormal frame corresponding to the decom-
position TM = Et⊕Es. This operator is self-adjoint and unitary, and
is related to the spacelike reflection r via

JMγ(v)JM = (−1)tγ(rv).

The space L2(S) then becomes a Krein space with the indefinite inner
product 〈·|·〉JM

:= 〈JM · |·〉 and with fundamental symmetry JM .

4.1.2. The Dirac operator and its Wick rotations. Using the space-
like reflection r, we can define a ‘Wick rotated’ metric gr on M by
setting

gr(v, w) := g(rv, w)

for all v, w ∈ TM . One readily checks that gr is positive-definite, and
hence (M, gr) is a Riemannian manifold. Throughout the remainder
of this section we make the following assumption:

Assumption 4.1. Let (M, g) be an n-dimensional time- and space-
oriented pseudo-Riemannian spin manifold of signature (t, s), and
let r be a spacelike reflection, such that the associated Riemannian
metric gr is complete.

Consider the Dirac operator /D := c ◦ ∇S on the Hilbert space L2(S)
with initial domain Γ∞c (S). From [Bau81, Satz 3.17] we know that
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the adjoint of the Dirac operator /D =
∑n
j=1 κ(j)γ(ej)∇S

ej takes the
form

/D
∗

=

n∑
j=1

γ(ej)JM∇S
ejJM =

n∑
j=1

(
γ(ej)∇S

ej + γ(ej)JM
[
∇S
ej ,JM

])
.

For the real and imaginary parts of /D we thus find

Re /D =

n∑
j=t+1

γ(ej)∇S
ej +

1

2

n∑
j=1

γ(ej)JM
[
∇S
ej ,JM

]
,

Im /D = i

t∑
j=1

γ(ej)∇S
ej +

i

2

n∑
j=1

γ(ej)JM
[
∇S
ej ,JM

]
.

The assumption that gr is complete implies that Re /D and Im /D are
essentially self-adjoint [Bau81, Satz 3.19]. For the Wick rotations we
then obtain the formula

/D± = ±i
t∑

j=1

γ(ej)∇S
ej +

n∑
j=t+1

γ(ej)∇S
ej + 1±i

2

n∑
j=1

γ(ej)JM
[
∇S
ej ,JM

]
=

n∑
j=1

γ±(ej)∇S
ej + 1±i

2

n∑
j=1

γ(ej)JM
[
∇S
ej ,JM

]
,

where we have defined the ‘Wick rotated’ Clifford representations γ±
as

γ±(v) := ±iγ(vt) + γ(vs) (1)

for any v = vt + vs ∈ Et ⊕ Es = TM . Since γ±(v)2 = −γ(vt)
2 +

γ(vs)
2 = g(vt, vt) − g(vs, vs) = −gr(v, v), we see that γ± (for either

choice of sign) is a Clifford representation associated to the Riemann-
ian metric gr.

Proposition 4.2. Let (M, g, r) be as in Assumption 4.1. Then the
Wick rotations /D± yield spectral triples (C∞c (M), L2(S), /D±) such
that Dom /D+∩Dom /D− is a common core for D+ and D−, and such
that /D+ ± /D− is essentially self-adjoint on this domain.

Proof. The essential self-adjointness of /D± on Γ∞c (S) follows from the
completeness of gr (see e.g. [HR00, Proposition 10.2.11]). Commu-
tators of /D± with functions f ∈ C∞c (M) are bounded because /D±
is a first-order differential operator, whose coefficients are smooth
and hence bounded on any compact set. For a vector v ∈ TM , the
principal symbol of /D± is given by iγ±(v). Since the square of the
principal symbol equals the positive-definite metric gr(v, v), this im-
plies that /D± is elliptic, and hence it has locally compact resolvent
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(see e.g. [HR00, Proposition 10.5.2]). Thus we indeed have spectral
triples (C∞c (M), L2(S), /D±).

For the domains of the Wick rotations we have Dom /D+∩Dom /D− ⊃
Dom /D ∩ Dom /D

∗
. Since this domain contains Γ∞c (S), it is a core

for both /D+ and /D−. The operators Re /D and Im /D are essentially
self-adjoint on Γ∞c (S) by [Bau81, Satz 3.19], and since they can be

extended to symmetric operators on Dom /D ∩ Dom /D
∗
, it follows

that these symmetric extensions are also essentially self-adjoint. Thus
Re /D = 1

2 ( /D+ + /D−) and Im /D = 1
2 ( /D+ − /D−) are essentially self-

adjoint on Dom /D+ ∩Dom /D−. �

Remark 4.3. The above proposition shows that (under only mild
assumptions) a pseudo-Riemannian spin manifold gives rise to two
spectral triples satisfying the first and second conditions in Defi-
nition 3.6. From the reverse Wick rotation of Proposition 3.9, we
then almost obtain an indefinite spectral triple (C∞c (M), L2(S), /D),
except that Re /D and Im /D do not almost anti-commute. Indeed,
although the anti-commutator {Re /D, Im /D} is a first-order differen-
tial operator, it contains in general both spacelike derivatives and
timelike derivatives, and thus it is not relatively bounded by Re /D.
In order to ensure that Re /D and Im /D almost anti-commute, we
need the timelike part of {Re /D, Im /D} to vanish identically. In the
next subsection, we will provide sufficient conditions on a Lorentzian
manifold to ensure that Re /D and Im /D almost anti-commute.

As mentioned in the introduction, we emphasise however that the
main reason for imposing this almost anti-commuting condition is
to prove self-adjointness of the Wick rotations D±. For the Dirac
operator /D, we can simply prove the self-adjointness of /D± directly
(as we did in Proposition 4.2), and this condition is therefore not
necessary for describing pseudo-Riemannian manifolds.

4.1.3. Lorentzian manifolds with parallel time.

Definition 4.4. Let (M, g, r) be as in Assumption 4.1. We say that
(M, g, r) has bounded geometry if (M, gr) has strictly positive in-
jectivity radius, and all the covariant derivatives of the (pseudo-
Riemannian) curvature tensor of (M, g) are bounded (with respect
to gr) on M . A Dirac bundle on M is said to have bounded geometry
if in addition all the covariant derivatives of ΩS, the curvature tensor
of the connection ∇S, are bounded (w.r.t gr) on M . For brevity, we
simply say that (M, g, r, S) has bounded geometry.

We will now restrict to Lorentzian signature, and impose additional
assumptions on the geometry:
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Assumption 4.5. Let (M, g) be an even-dimensional time- and space-
oriented Lorentzian spin manifold of signature (1, n−1), with a given
spinor bundle S → M . Let r be a spacelike reflection, such that the
associated Riemannian metric gr is complete. Assume furthermore
that (M, g, r, S) has bounded geometry. Lastly, we assume that the
spacelike reflection r is parallel (i.e. the unit timelike vector field
e0 ∈ Γ(Et), corresponding to the decomposition TM = Et ⊕ Es, is
parallel: ∇e0 = 0).

We choose a local orthonormal frame {ek}n−1k=0 corresponding to the
decomposition TM = Et ⊕ Es (i.e. e0 is timelike and ek is spacelike
for k > 0). The assumption that e0 is parallel then implies that
[∇S, γ(e0)] = 0. The expressions for the real and imaginary parts of
/D and its Wick rotations then simplify to:

Re /D =

n−1∑
j=1

γ(ej)∇S
ej , Im /D = iγ(e0)∇S

e0 , /D± =

n−1∑
k=0

γ±(ek)∇S
ek
,

where we recall from Eq. (1) the Wick rotated Clifford representa-
tions γ±(v) := ±iγ(vt) + γ(vs) (for v = vt + vs ∈ Et ⊕ Es = TM).

Lemma 4.6. Let (M, g, r, S) be as in Assumption 4.5. The operators
Re /D and Im /D yield an almost anti-commuting pair (Re /D, Im /D).

Proof. We observe that the space E := Γ∞c (S) of smooth compactly
supported sections satisfies conditions 1) and 2) in Definition 2.8.
Since γ(e0) commutes with ∇S and anti-commutes with γ(ej) (for
j 6= 0), we calculate (on E)

{Re /D, Im /D} = i

n−1∑
j=1

(
γ(ej)∇S

ejγ(e0)∇S
e0 + γ(e0)∇S

e0γ(ej)∇S
ej

)

= i

n−1∑
j=1

(
γ(ej)γ(e0)∇S

ej∇
S
e0 + γ(e0)γ(ej)∇S

e0∇
S
ej

+ γ(e0)
[
∇S
e0 , γ(ej)

]
∇S
ej

)
= i

n−1∑
j=1

(
γ(e0)γ(ej)

[
∇S
e0 ,∇

S
ej

]
+γ(e0)

[
∇S
e0 , γ(ej)

]
∇S
ej

)

= i

n−1∑
j=1

(
γ(e0)γ(ej)∇S

[e0,ej ]
+ γ(e0)γ(ej)Ω

S(e0, ej)

+ γ(e0)
[
∇S
e0 , γ(ej)

]
∇S
ej

)
. (2)
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By the assumption of bounded geometry, the curvature ΩS(e0, ej)
and the commutator [∇S

e0 , γ(ej)] are bounded . Hence, on the last
line of Eq. (2), the second term is bounded and the third term is
relatively bounded by Re /D. Since e0 is parallel, we have [e0, ej ] =
∇e0ej −∇eje0 = ∇e0ej . Since e0 and ej are orthogonal (for j > 0),
we find that

g(∇e0ej , e0) = −g(ej ,∇e0e0) + e0
(
g(ej , e0)

)
= 0,

and hence [e0, ej ] = ∇e0ej ∈ Es. This means that the first term in
Eq. (2) also only has spacelike derivatives, and is therefore relatively
bounded by Re /D as well. �

Combining this with Proposition 4.2, and applying the reverse Wick
rotation of Proposition 3.9, we obtain:

Corollary 4.7. Let (M, g, r, S) satisfy Assumption 4.5. The operators
/D± yield an even pair of spectral triples (C∞c (M), L2(S), /D+, /D−),
and hence the triple (C∞c (M), L2(S), /D) is an even indefinite spectral
triple.

Finally, we relate the Wick rotations /D± of the Lorentzian Dirac op-
erator on (M, g) to the canonical Dirac operator on the Riemannian
manifold (M, gr). Since M is even-dimensional, recall that the spinor
bundle S is Z2-graded with the grading operator given by

ΓM := i−t+
n(n+1)

2 γ(e0) · · · γ(en−1), (3)

where for the Lorentzian signature we of course have t = 1.

Proposition 4.8. The Wick rotations /D± of the Lorentzian Dirac
operator /D on (M, g, r, S) are the two canonical Dirac operators on
the Wick rotated Riemannian spin manifold (M, gr, S) corresponding
to the two possible choices of orientation Γ±M on S. In other words,
the following diagram commutes.

(M, g, r, S,ΓM )
Wick rotate−−−−−−−→ (M, gr, S,Γ

±
M )y y

/D
Wick rotate−−−−−−−→ /D±

Proof. In Eq. (1) we have given two Clifford representations γ± cor-
responding to the Riemannian metric gr. The grading operators cor-
responding to these Clifford representations are given by

Γ±M := in(n+1)/2γ±(e0) · · · γ±(en−1)

= ±i1+n(n+1)/2γ(e0) · · · γ(en−1) = ∓ΓM ,
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where ΓM is given by Eq. (3). Hence the choice of sign for the Wick
rotation of γ corresponds to the choice of orientation for the spinor
bundle S (in the terminology of [Ply86, §2.7], the choice (S,Γ−M ) is

the reverse spin structure of (S,Γ+
M )). Next, the assumption that

the spacelike reflection r is parallel implies that the Levi-Civita con-
nection ∇ of g is also the Levi-Civita connection for the Riemannian
metric gr. Hence the canonical Dirac operators corresponding to each
of the orientations are given by /D± =

∑n−1
j=0 γ±(ej)∇S

ej , which are

precisely the Wick rotations of the Lorentzian Dirac operator /D. �

The above proposition motivates our use of the term ‘Wick rotations’
for /D±, as they are precisely the Dirac operators corresponding to
the ‘Wick rotated’ metric gr.

4.2. The harmonic oscillator

The d-dimensional harmonic oscillator has been discussed in [GW13,
§2.1] (see also [Wul10]), where the harmonic oscillator is ‘deformed’
to obtain a description of the spectral geometry of the (noncommuta-
tive) Moyal plane with harmonic propagation. Here, we only consider
the classical (commutative) case.

On L2(Rd) we consider the bosonic annihilation and creation opera-
tors with canonical commutation relations:

aµ := ωxµ + ∂µ, a∗µ = ωxµ − ∂µ,
[aµ, aν ] = [a∗µ, a

∗
ν ] = 0, [aµ, a

∗
ν ] = 2ωδµν ,

for µ, ν = 1, . . . , d. Here we have also introduced a frequency parame-
ter ω > 0. On the exterior algebra Λ(Cd), we introduce the fermionic
partners bµ, b

∗
µ satisfying the anti-commutation relations

{bµ, bν} = {b∗µ, b∗ν} = 0, {bµ, b∗ν} = δµν .

Denote by |0〉f the fermionic vacuum satisfying bµ|0〉f = 0 for all µ.
By repeated application of the creation operators b∗µ one constructs

out of this vacuum the 2d-dimensional Hilbert space Λ(Cd) ' C2d ,
yielding the standard orthonormal basis elements (b∗1)s1 · · · (b∗d)sd |0〉f
(with sµ ∈ {0, 1}). The fermionic number operator Nf :=

∑d
µ=1 b

∗
µbµ

naturally defines an N-grading Λ(Cd) =
⊕d

p=0 Λp(Cd) such that

bµ : Λp(Cd) → Λp−1(Cd) and b∗µ : Λp(Cd) → Λp+1(Cd). The induced

Z2-grading Γ on Λ(Cd) then satisfies

Γ = (−1)Nf , Γ2 = 1, Γ∗ = Γ, Γbµ = −bµΓ, Γb∗µ = −b∗µΓ.
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Thus we obtain a Z2-grading on the Hilbert space L2(Rd) ⊗ Λ(Cd)
given by 1 ⊗ Γ, which we will also simply denote by Γ. On this
Z2-graded Hilbert space L2(Rd) ⊗ Λ(Cd) we then consider the odd
operators

D1 :=

d∑
µ=1

(
aµ ⊗ b∗µ + a∗µ ⊗ bµ

)
, D2 :=

d∑
µ=1

(
aµ ⊗ bµ + a∗µ ⊗ b∗µ

)
.

Their squares are of the form

D2
1 = H ⊗ 1 + ω ⊗ Σ, D2

2 = H ⊗ 1− ω ⊗ Σ,

where the Hamiltonian H and the spin matrix Σ are defined as

H :=

d∑
µ=1

(
ω2x2µ − ∂2µ

)
, Σ :=

d∑
µ=1

[b∗µ, bµ].

Remark 4.9. Note that in [GW13] the operator D2 is defined instead

as D2 :=
∑d
µ=1

(
iaµ ⊗ bµ − ia∗µ ⊗ b∗µ

)
. However, our definition and

theirs yield the same square

D2
2 =

(
d∑

µ=1

(
aµ ⊗ bµ + a∗µ ⊗ b∗µ

))2

=

(
d∑

µ=1

(
iaµ ⊗ bµ − ia∗µ ⊗ b∗µ

))2

=

{
d∑

µ=1

aµ ⊗ bµ,
d∑

µ=1

a∗µ ⊗ b∗µ

}
.

Proposition 4.10. The data (S(Rd), L2(Rd)⊗Λ(Cd),D1,D2) defines
an even pair of spectral triples.

Proof. The operator H is well-known to be essentially self-adjoint on
S(Rd) and to have compact resolvent. Since ω⊗Σ is only a bounded
perturbation of H ⊗ 1, it follows that D2

1 and D2
2 are essentially self-

adjoint on S(Rd)⊗Λ(Cd) and also have compact resolvent. Since D1

and D2 are symmetric and their squares are essentially self-adjoint, it
follows (see e.g. [RS75, exercise 28, Chapter X] or the proof of [Ber68,
Lemma 3]) that D1 and D2 are also essentially self-adjoint. Likewise,
compactness of their resolvents follows from the compactness of the
resolvents of their squares. Furthermore, commutators of D1 and D2

with Schwartz functions are bounded. Hence D1 and D2 indeed yield
even spectral triples.

To show that these spectral triples in fact form an even pair, we need
to check the axioms in Definition 3.6. Since D2

1 − D2
2 is bounded, it
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follows that DomD1 = DomD2. Furthermore, the operators

D1 +D2 =

d∑
µ=1

(aµ + a∗µ)⊗ (bµ + b∗µ) =

d∑
µ=1

2ωxµ ⊗ (bµ + b∗µ),

D1 −D2 =

d∑
µ=1

(a∗µ − aµ)⊗ (bµ − b∗µ) =

d∑
µ=1

−2∂µ ⊗ (bµ − b∗µ),

are essentially self-adjoint on S(Rd) ⊗ Λ(Cd) ⊂ DomD1 = DomD2.
Since the graph norm of D1 ±D2 is bounded by the norm ‖ · ‖D1,D2

(cf. Lemma 2.7), it follows that the domain of the closure of D1±D2

contains DomD1 ∩DomD2, so that D1 ±D2 is also essentially self-
adjoint on DomD1 = DomD2. Lastly, the domain E := S(Rd) ⊗
Λ(Cd) satisfies properties 1) and 2) in Definition 2.8, and the operator
{D1 +D2,D1−D2} = D2

1 −D2
2 is bounded on this domain, so (D1 +

D2,D1 −D2) is an almost anti-commuting pair. �

From Proposition 3.9 we then obtain:

Corollary 4.11. The operator

D :=
1

2
(D1 +D2) +

i

2
(D1 −D2)

=

d∑
µ=1

(
ωxµ ⊗ (bµ + b∗µ)− i∂µ ⊗ (bµ − b∗µ)

)
yields an even indefinite spectral triple (S(Rd), L2(Rd)⊗ Λ(Cd),D).

We remark that this operator D still encodes all the information of
the d-dimensional harmonic oscillator. In particular, the Hamiltonian
H and the spin matrix Σ can be recovered via

1

2
(DD∗ +D∗D) =

1

2
(D2

1 +D2
2) = H ⊗ 1,

− i
2

(D2 −D∗2) =
1

2
(D2

1 −D2
2) = ω ⊗ Σ.

Example 4.12. Suppose that d = 1. We then have the operators

a := ωx+
d

dx
, a∗ = ωx− d

dx
, b :=

(
0 1
0 0

)
, b∗ =

(
0 0
1 0

)
,

acting on the Hilbert space L2(R)⊗C2. These operators give rise to
two self-adjoint operators D1 and D2 and their reverse Wick rotation
D given by

D1 := a⊗ b∗ + a∗⊗ b =

(
0 a∗

a 0

)
, D2 := a⊗ b+ a∗⊗ b∗ =

(
0 a
a∗ 0

)
,
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D =

(
0 ωx− i ddx

ωx+ i ddx 0

)
.

From Theorem 3.15 we then see that the 1-dimensional harmonic
oscillator yields an odd indefinite spectral triple (S(R), L2(R), ωx+
d
dx ).

4.3. Families of spectral triples

Next we study families of spectral triples {(A, πx
H,D1(x))}x∈M para-

metrised by a Riemannian manifold M . We use these families to
construct examples of pairs of spectral triples and thus of indefinite
spectral triples. Our approach is largely based on and inspired by
work of Kaad and Lesch [KL13, §8], who studied the spectral flow of
a family of operators {D1(x)}x∈M .

4.3.1. The family of spectral triples. Let us start with a brief dis-
cussion of families of operators parametrised by the manifold M .

Definition 4.13. A map S(·) : M → L(H1,H2), x 7→ S(x), is said
to have a uniformly bounded weak derivative if the map is weakly
differentiable (i.e. the map x 7→ 〈S(x)ξ, η〉 is differentiable for each
ξ ∈ H1 and η ∈ H2), the weak derivative dS(x) : H1 → H2 ⊗ T ∗x (M)
is bounded for all x ∈ M , and the supremum supx∈M ‖dS(x)‖ is
finite.

We gather a few statements from [KL13, §8] into the following lemma.

Lemma 4.14. Let S(·) : M → L(H1,H2) have a uniformly bounded
weak derivative. Then:
1) If x, y ∈M lie in the same coordinate chart, then∥∥S(x)− S(y)

∥∥ ≤ sup
z∈M
‖dS(z)‖ · dist(x, y),

where dist(x, y) denotes the geodesic distance between x and y;
2) If supx∈M ‖S(x)‖ ≤ ∞, then S(·) yields a well-defined operator
C0(M,H1)→ C0(M,H2) by setting(

S(·)ψ
)
(x) := S(x)ψ(x),

for ψ ∈ C0(M,H1).

Proof. We refer to [KL13, Remark 8.4, 2.] for a short proof of 1). For
2) we need to check that S(x)ψ(x) is continuous in x. We have the
inequality∥∥S(x)ψ(x)−S(y)ψ(y)

∥∥≤∥∥S(x)−S(y)
∥∥∥∥ψ(x)

∥∥+
∥∥S(y)

∥∥∥∥ψ(x)−ψ(y)
∥∥.

As y → x, each of these terms approaches zero; the first term by the
first statement of this lemma, the second by continuity of ψ. �
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Definition 4.15. A weakly differentiable family of spectral triples para-
metrised by the manifold M is a family of spectral triples

{(A, πx
H,D1(x))}x∈M

such that the following conditions are satisfied:

• there exists another Hilbert space W which is continuously and
densely embedded in H such that the inclusion map ι : W ↪→ H is
locally compact, i.e. the composition πx(a) ◦ ι is compact for each
x ∈M and a ∈ A;

• the domain of D1(x) is independent of x and equals W , and the
graph norm of D1(x) is uniformly equivalent to the norm of W (i.e.
there exist constants C1, C2 > 0 such that C1‖ξ‖W ≤ ‖ξ‖D1(x) ≤
C2‖ξ‖W for all ξ ∈W and all x ∈M);

• for each a ∈ A, the maps D1(·) : M → L(W,H) and π·(a) : M →
L(H) have uniformly bounded weak derivatives, and the commu-
tator [D1(·), π·(a)] : M → L(H) is continuous.

Remark 4.16. 1) The unbounded operator D1(x) : DomD1(x)→ H
is considered a bounded operatorW → H, whereW = DomD1(x)
is a Hilbert space with respect to the graph inner product of
D1(x). Since the graph norms of D1(x) are equivalent for all
x ∈M , it follows that the bound on the operator norm of dD1(x)
is thus a relative bound with respect to D1(y), for any y ∈M .

2) The requirement that the graph norm ofD1(x) is uniformly equiv-
alent to the norm of W implies that supx∈M ‖D1(x)‖ is finite.

3) The case where A = C and πx is scalar multiplication brings us
back to the case of a family of operators {D1(x)} as studied in
[KL13, §8].

Consider the Hilbert C0(M)-module C0(M,H). The family of rep-
resentations πx : A → L(H) determines a representation π : A ⊗
C0(M) ' C0(M,A) → C0(M,L(H)) ' EndC0(M)(C0(M,H)) by
setting

(π(a)ψ)(x) := πx(a(x))ψ(x),

for ψ ∈ C0(M,H) and a ∈ C0(M,A). The family of operators
{D1(x)} on the Hilbert space H defines a new operator D1(·) on
the C0(M)-module C0(M,H) with domain C0(M,W ) by setting

(D1(·)ψ)(x) := D1(x)ψ(x).

The assumption of weak differentiability is more than sufficient to
ensure that π and D1(·) are well-defined (see Lemma 4.14, part 2).
The operator D1(·) : C0(M,W ) → C0(M,H) is densely defined and
symmetric.
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Remark 4.17. In [KL13, §8] the family {D1(x)}x∈M is used to con-
struct a class in the odd K-theory K1(C0(M)) = KK1(C, C0(M))
of C0(M). In order to ensure that D1(·) has compact resolvent (as
an operator on the right C0(M)-module C0(M,H)), it is then nec-
essary to replace D1(·) by f−1D1(·), for a strictly positive function
f ∈ C1

0 (M). In our approach we aim to construct instead a class in
KK1(C0(M,A), C0(M)), for which introducing this function f is not
necessary, as now we only need the resolvent to be locally compact
(for the left action by C0(M,A)).

Proposition 4.18 (cf. [KL13, Prop 8.7]). If {(A, πxH,D1(x))}x∈M
is a weakly differentiable family of spectral triples, then the triple
(A�C∞c (M), C0(M,H)C0(M),D1(·)) is an odd unbounded Kasparov
C0(M,A)-C0(M)-module.

Proof. The operator D1(x) is self-adjoint for each x ∈ M . It then
follows from the local-global principle [KL12, Theorems 4.2, 5.6, and
5.8] that D1(·) is self-adjoint and regular. However, this can also be
seen directly. First, observe that the resolvent (D1(x)± i)−1 depends
continuously on x, since by the resolvent identity and the first state-
ment of Lemma 4.14 we have∥∥(D1(x)± i)−1 − (D1(y)± i)−1

∥∥
=
∥∥(D1(x)± i)−1(D1(y)−D1(x))(D1(y)± i)−1

∥∥
≤
∥∥(D1(x)± i)−1

∥∥ ∥∥D1(y)−D1(x)
∥∥ ∥∥(D1(y)± i)−1

∥∥
≤
∥∥D1(y)−D1(x)

∥∥ ≤ sup
z∈M
‖d(D1(z))‖ · dist(x, y).

Since D1(x)±i is surjective for each x ∈M , this implies that D1(·)±i
is also surjective, and hence D1(·) is self-adjoint and regular.

The algebraic tensor product A�C∞c (M) is dense in C0(M,A), and
for a⊗ f ∈ A� C∞c (M) the commutators[

D1(·), π(a⊗ f)
]
(x) = f(x)

[
D1(x), πx(a)

]
are bounded for each x. By assumption such commutators are con-
tinuous, and the compact support of f then ensures that they are
globally bounded.

It remains to show that π(a⊗f)(D1(·)±i)−1 is compact (as an opera-
tor on the C0(M)-module C0(M,H)) for each a ∈ A and f ∈ C0(M).
The compact operators on C0(M,H) are given by C0(M,K(H)). The
operator πx(a)(D1(x) ± i)−1 is compact and bounded by ‖a‖ for
each x ∈ M (since (A, πxH,D1(x)) is a spectral triple). Hence the
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map M → K(H), x 7→ πx(a)(D1(x) ± i)−1 is continuous and glob-
ally bounded by ‖a‖, so if we also multiply by f ∈ C0(M) we get
π(a⊗ f)(D1(·)± i)−1 ∈ C0(M,K(H)). �

4.3.2. The Kasparov product. We would like to use the Kasparov
product to ‘glue together’ our family of spectral triples. For this pur-
pose, we need to consider a spectral triple on the manifold M , which
we construct as follows. From here on we will assume that the Rie-
mannian manifold M is complete. Consider a first-order symmetric
elliptic differential operator D2 : Γ∞c (M,F ) → Γ∞c (M,F ) on a her-
mitian vector bundle F →M , which has bounded propagation speed,
i.e. the principal symbol σD2

: T ∗M → End(F ) satisfies

sup
{
‖σD2

(x, ξ)‖
∣∣ (x, ξ) ∈ T ∗M, g(ξ, ξ) ≤ 1

}
<∞.

Proposition 4.19 (cf. [KL13, §8]). The operator D2 yields an odd
spectral triple (C∞c (M), L2(M,F ),D2).

Proof. The completeness of M and the bounded propagation speed
ensure the essential self-adjointness of D2 on Γ∞c (M,F ) (see e.g.
[HR00, Proposition 10.2.11]). Since D2 is a first-order differential
operator, the commutator with a smooth, compactly supported func-
tion is bounded. Lastly, ellipticity of D2 ensures that its resolvent is
locally compact (see e.g. [HR00, Proposition 10.5.2]). �

We are now ready to construct the odd unbounded Kasparov prod-
uct of the C0(M,A)-C0(M)-module (A� C∞c (M), C0(M,H),D1(·))
with the C0(M)-C-module (C∞c (M), L2(M,F ),D2). On the internal
tensor product of the Hilbert modules C0(M,H)⊗C0(M)L

2(M,F ) '
L2(M,H⊗ F ) we consider the operator D1(·)⊗ 1, which we simply
denote as D1(·) on L2(M,H⊗F ). Using the identification L2(M,H⊗
F ) ' H⊗L2(M,F ), we also consider the operator 1⊗D2, which we
simply denote as D2.

Theorem 4.20. Let M be a complete oriented Riemannian manifold
of dimension m, and let H be a separable Hilbert space. Let D2 be a
closed first-order symmetric elliptic differential operator on a hermit-
ian vector bundle F →M , which has bounded propagation speed. Let{

(A, πxH,D1(x))
}
x∈M be a weakly differentiable family of spectral

triples. Then the following statements hold:

1) the operator

D1 ×D2 :=

(
0 D1(·)− iD2

D1(·) + iD2 0

)
:
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(Dom(D1(·)) ∩Dom(D2))
⊕2 → L2(M,H⊗ F )⊕2 (4)

yields an even spectral triple (A�C∞c (M), L2(M,H⊗F )⊕2,D1×
D2) which represents the odd unbounded Kasparov product of (A�
C∞c (M), C0(M,H)C0(M),D1(·)) with (C∞c (M), L2(M,F ),D2);

2) the triple (A � C∞c (M), L2(M,H ⊗ F ),D1(·) + iD2) is an odd
indefinite spectral triple.

Proof. For the first statement, we need to show that we have a
correspondence (as defined in [KL13, Definition 6.3]) from (A �
C∞c (M), C0(M,H)C0(M),D1(·)) to (C∞c (M), L2(M,F ),D2), so that
we can apply [KL13, Theorems 6.7 & 7.5]. For a family of operators,
this has been shown in [KL13, Proposition 8.11]. For a family of spec-
tral triples, the only difference is that we now consider a left action
by C0(M,A) (instead of C) on C0(M,H). Thus we need to check
the third condition in [KL13, Definition 6.3], which requires that
the commutator [D2, π(a ⊗ f) ⊗ 1] : Dom(D2) → C0(M,H) ⊗C0(M)

L2(M,F ) ' L2(M,H⊗F ) is well-defined and bounded for all a⊗f ∈
A� C∞c (M).

The commutator with f ∈ C∞c (M) simply yields [D2, f ] = σD2
(df),

which is bounded because f ∈ C∞c (M) implies that df is bounded,
and because σD2

is completely bounded by [KL13, Proposition 8.2].
Similarly, the commutator [D2, πx(a)] = σD2(d(πx(a))) is bounded,
because by assumption the weak derivative of πx(a) is uniformly
bounded. Thus we indeed have a correspondence, and the first state-
ment then follows from [KL13, Theorems 6.7 & 7.5].

For the second statement, consider the operator D := D1(·)+ iD2 on
DomD = DomD1(·) ∩ DomD2. We know from [KL13, Proposition
8.11] that (D1(·),D2) is an almost commuting pair, so it follows from
Theorem 2.11 that D∗ = D1(·) − iD2 on DomD∗ = DomD1(·) ∩
DomD2, and therefore we have ReD = D1(·) and ImD = D2 on this
domain.

The operators D1(·) and D2 are both essentially self-adjoint on the
domain DomD1(·)∩DomD2 (for D1(·) this follows from Lemma 2.9,
and for D2 this follows from the completeness of the Riemannian
manifold). The domain DomD1(·) ∩ DomD2 is preserved by A �
C∞c (M), and both D1(·) and D2 have bounded commutators with
A � C∞c (M). Lastly, we observe that the inclusion ι : DomD1(·) ∩
DomD2 ↪→ L2(M,H ⊗ F ) is locally compact because (by the first
statement) D1 ×D2 has locally compact resolvent. �

Remark 4.21. In the construction of the operator D1 × D2 we may
replace D2 by −D2, without affecting the first statement of the above
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theorem. We thus obtain two different spectral triples with the op-
erators(

0 D1(·)− iD2

D1(·) + iD2 0

)
and

(
0 D1(·) + iD2

D1(·)− iD2 0

)
.

The second statement of the theorem could have been proved alterna-
tively by showing that these two spectral triples form a pair of spec-
tral triples. It then follows from Theorem 3.15 that D = D1(·) + iD2

yields an odd indefinite spectral triple.

4.3.3. Generalised Lorentzian cylinders. Dirac operators on gener-
alised pseudo-Riemannian cylinders have been studied in [BGM05].
Here we will specialise to the Lorentzian case, and we will show that
this provides an example of a family of spectral triples parametrised
by the real line R.

Let Σ be an (n− 1)-dimensional smooth spin manifold, and let gt be
a smooth family of complete Riemannian metrics on Σ parametrised
by t ∈ R. Consider the generalised Lorentzian cylinder (M, g) :=
(Σ × R, gt − dt2). The vector field ν := ∂t is a unit timelike vector
field which is orthogonal to the hypersurfaces Σt := (Σ× {t}, gt).
Since each hypersurface Σt is a complete Riemannian spin manifold,
we obtain for each t ∈ R a spectral triple(

C∞c (Σ), L2(Σt, St), /D(t)
)
,

where St is the spinor bundle over Σt, and /D(t) = γt ◦ ∇St is the
canonical Dirac operator on Σt.

For x ∈ Σ and t0, t1 ∈ R, parallel transport along the curve t 7→
(t, x) ∈M (i.e. an integral curve of the vector field ν) yields a linear
isometry τ t1t0 : (St0)x → (St1)x. The Hilbert spaces Ht := L2(Σt, St)
of square-integrable spinors on Σt can be identified via this parallel
transport, and we shall write H := H0. Under this identification, the
action of C∞c (Σ) on Ht ' H (given by pointwise multiplication) does
not depend on t.

A local orthonormal frame {e1, . . . , en−1} on Σ0 can be extended to
an orthonormal frame {ν, e1, . . . , en−1} on M via parallel transport
along ν, and this extended frame then satisfies ∇νej = 0. Conse-
quently, the Clifford multiplication γ on (M, g) satisfies[

∇Sν , γ(ej)
]

= γ(∇νej) = 0,

so γ is parallel along the vector field ν. Under the identification
τ0t : Ht → H0, the Clifford multiplication γt on Ht is mapped to
τ0t ◦ γt(τ t0X) ◦ τ t0 = γ0(X) on H0 (see also [BGM05, §5]). Thus, upon
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identifying Ht ' H0, the Clifford multiplication becomes indepen-
dent of t.

Proposition 4.22. Let (M, g) be an even-dimensional generalised Lor-
entzian cylinder as constructed above. Suppose that the smooth fam-
ily of metrics gt has derivatives of all orders (both in t and along
Σ) which are globally bounded. Then the family of spectral triples{(
C∞c (Σ), L2(Σt, St), /D(t)

)}
t∈R forms a weakly differentiable family

of spectral triples (as in Definition 4.15) parametrised by the real line
M = R.

Proof. We define the Hilbert space W := Dom /D(0) equipped with
the graph inner product of /D(0). Then W is continuously and densely
embedded in H := L2(Σ0, S0). Since /D(0) is elliptic, this embedding
is locally compact.

Using the fact that γt is independent of t under the identification
L2(Σt, St) ' H, we can write /D(t)− /D(0) = γ0◦(∇St−∇S0), which is
a smooth endomorphism on S0. The assumption that gt has globally
bounded derivatives ensures that /D(t) − /D(0) is globally bounded,
and therefore the graph norms of /D(t) are uniformly equivalent.

For f ∈ C∞c (Σ), the commutator [ /D(t), f ] is given by Clifford mul-
tiplication with df . Hence, under the identification L2(Σt, St) ' H,
both f and [ /D(t), f ] are independent of t. Lastly, since gt has globally
bounded derivatives, it follows from [BGM05, Theorem 5.1] that the
time-derivative of /D(t) is relatively bounded by /D(t) (and hence by
/D(0)). �

By considering D2 = −i∂x on L2(R), Theorem 4.20 then yields the
odd indefinite spectral triple(

C∞c (Σ× R), L2(R,H), /D(·) + ∂t
)
,

describing the Dirac operator on the foliated spacetime Σ×R. In fact,
this example provided our initial motivation to consider families of
spectral triples, and we intend to study this approach to foliated
spacetimes in more detail in a future work.
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