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Modelling is like sin. Once you begin with one form of it you are pushed to others. In 

fact, as with sin, once you begin with one form you ought to consider other forms . . . 

But unlike sin – or at any rate unlike sin as a moral purist conceives of it – modelling is 

the best reaction to the situation in which we find ourselves.  

(Morton & Suárez, ‘Kinds of models’, 2001) 
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ABSTRACT  

As the rate of sea-level rise is set to accelerate, there is increasing concern regarding the long-

term sustainability of coastal wetlands. The validity of a model to reliably represent a 

particular wetland system considered to be vulnerable is crucial to support efficient 

management. The primary aim of this study was to examine the adequacy of numerical 

models in predicting the response of a SE Australian wetland to rising sea levels. A 

multistage validation process was employed to assess the operational and conceptual validity 

of three models for the Australian context, with specific focus on the Sea Level Affecting 

Marshes (SLAM) model originally developed for North American wetlands. A second model, 

the Spatially Applied Adjusted Temmerman (SAAT) model, originally developed for a 

Northern European wetland was adjusted and applied in this study. Comparison of the two 

models with a third developed specifically for an Australian context, the Oliver model, 

provides further insight into the adequacy of each model to predict the evolution of SE 

Australian coastal wetlands with rising sea levels.  

Basic verification of the SLAM model revealed a significant flaw in the model code, whereby 

the A1T and A1FI maximum SLR scenarios were interchanged. Predictive validation 

suggested that the SLAM model had the greatest predictive power over decadal timescales. 

Inaccuracies noted between modelled and observed data revealed the potential inability of the 

model to capture important variables influencing the evolution of the Minnamurra site, such 

as rainfall, groundwater and El Niño–Southern Oscillation (ENSO) related environmental 

factors. Overall, however, projected model results and conceptual validation of the SLAM 

model revealed potential conceptual flaws regarding vegetation succession, treatment of 

wetland surface elevation change (SEC) and simulation of tidal water levels, all of which 

have the potential to decrease the predictive ability of the model and increase uncertainty of 

simulated results. The SLAM model was most sensitive to sea-level rise (SLR) and 

parameters pertaining to the inundation of wetlands, such as tidal range. Stochastic 

uncertainty analysis allowed for a richer understanding of possible future wetland 

distributions under rising sea levels but also indicated that the data and conceptual errors 

within the SLAM model propagated a wide range of uncertainty into deterministic model 

outcomes. Specific focus on the digital elevation model revealed high accuracy, obtained 

from expertly refining as-received Light Detection and Ranging (LIDAR) data, was crucial 

for modelling purposes.  
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Each of the models applied in this study generated plausible wetland distributions for future 

scenarios. Comparison of the models indicated that differences were primarily a result of 

model structure and mathematical expression, indicating that the most applicable model to 

the Australian context could not be definitively identified.  

Despite the potentially large error and uncertainty, modelling remains important in a 

manager’s tool kit, providing an understanding of the potential response of wetlands to 

anticipated rising sea levels. It is recommended, however, that stochastic uncertainty analysis 

be conducted so as to encompass a wider range of possible future scenarios in the planning 

and decision-making processes regarding the protection of wetlands for the future. 
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1 INTRODUCTION 

 

Observed and predicted increasing rates of sea-level rise have caused considerable concern 

for the long-term sustainability of coastal wetlands around the world (Reed 1995; Webb et al. 

2013). Saline coastal wetlands occur in low energy, saline environments and lie within 

narrow elevation ranges associated with tidal inundation (Rogers & Woodroffe 2014). These 

environments are essential to the livelihood of many societies around the world and provide a 

range of critical regulating services many of which are of considerable economic value to 

society, including shoreline armouring against storms and erosion, nutrient cycling and 

carbon sequestration (Barbier et al. 2011). These important environments occupy a large area 

globally, with mangroves covering an approximate area of 137 760 -152 308 km
2
  (Spalding 

et al. 2010; Giri et al. 2011) and saltmarshes occurring over more than 45 000 km
2
 

(Greenberg et al. 2006). However, due to their characteristic position within the intertidal 

zone, these extensive areas are considered to be one of the most vulnerable to rises in sea 

level. As coastal wetlands are inextricably linked to sea level and tidal inundation, changes in 

tidal regimes of coastal environments influenced by sea-level rise (SLR) during the twenty-

first Century will likely see a significant influence on the distribution of coastal wetlands and, 

in turn, the valuable services they provide. In order to effectively plan for such situations and 

successfully manage the coastal environments so important to many, the spatial and temporal 

impacts of SLR need to be well understood. The quality and effectiveness of an environment 

management plan is determined by the ability to accurately project the response of coastal 

wetlands to SLR (Martin et al. 2000).  

Over the past few decades, models that attempt to determine the effect of SLR on coastal 

wetlands have been developed as a response to the evident need in planning and management 

(Morris et al. 2002; Temmerman et al. 2005; D’Alpaos et al. 2007; Kirwan & Murray 2008). 

The models are based on the understanding that the persistence of coastal wetlands is 

dependent upon the system’s ability to maintain elevation with respect to rising sea levels 

(Cahoon et al. 2006). Persistence of coastal wetlands is dependent upon a variety of 

interconnected processes that build the wetland surface, such as sedimentation, and those that 

decrease the relative surface elevation, such as soil compaction or inundation resulting from 

rising sea levels. Increases in frequency and duration of inundation caused by SLR disrupts 

the balanced environment of wetlands, leading to increases in sediment deposition and 
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maintenance of wetland position, landward shifts in vegetation distribution or, in cases of 

extreme disequilibrium between wetland surface gains and rate of relative SLR, complete 

submergence of the coastal wetland (Warren & Niering 1993; Kirwan & Murray 2008; 

Rybczyk & Callaway 2009). It is these responses critical to wetland evolution that are 

attempted to be captured in modelling efforts to provide a richer understanding of future 

wetland distributions under accelerated rates of SLR. 

Following the pioneering attempts of modelling wetland evolution (Krone 1987; Allen 1990; 

French 1993), many of the current numerical models are concerned with aboveground, 

depositional processes that successively increase elevation over time without providing due 

consideration of erosional processes on changes in wetland surface elevation (Allen 1995; 

Clough et al. 2012). Other models have explicitly considered erosional and depositional 

processes (Mudd et al. 2004; Kirwan & Murray 2007; Marani et al. 2007) yet neglected to 

incorporate belowground processes. The processes incorporated in a model are partly the 

function of a modeller’s abstraction of the dynamic wetland system, considering the 

processes most important to the particular site under study. However, the manner in which a 

system is abstracted, conceptualised and incorporated in a model has a distinct effect on the 

validity and adequacy of the model to simulate the response of wetland systems to rising sea 

levels.  

Indeed concern has arisen regarding the application of models to systems which display 

distinctly different geomorphic, hydrological and ecological characteristics to the wetland 

environment in which the model was initially conceptualised and validated. This is most 

particularly the case for modelling of SE Australian wetlands. Many of the existing models 

developed to simulate the effect of SLR on coastal wetlands, such as the Sea Level Affecting 

Marshes Model (SLAM Model), have been conceptualised for, calibrated and applied to 

North American or European coastal wetlands, where the geomorphic and environmental 

conditions are somewhat different to those that support coastal wetlands in SE Australia. In 

spite of this, these models are being applied to SE Australian coasts without due 

consideration being given to the efficacy of the models for coastal wetlands in Australia. This 

ultimately affects the understanding of the unique ecosystems gathered from applying such 

models and impacts the effective management of these vulnerable environments. Given the 

significant consequences, it is important to ascertain the validity and reliability of applying 

such models to Australian wetlands in order that managers may more confidently and 

effectively prepare and plan for the uncertain future.  
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1.1 Aims and objectives 

This study aims to consider three existing models initially developed for different 

geographical areas and examine their adequacy in predicting the evolution of SE Australian 

coastal wetlands under accelerating rates of SLR. The Sea Level Affecting Marshes (SLAM) 

model is one of the most widely used spatial landscape models originally developed for North 

American coastal wetlands. Applying the SLAM model to SE Australian coastal wetlands, 

where the geomorphology and ecology differs from that of North America, throws into 

question the efficacy and reliability of the model results. Many, however, have continued to 

implement the model to Australian wetlands without considering the potential impact on 

results obtained. Considering the change in context and the need for reliable information for 

management, a validation of the model for the Australian context.is overdue  

Other numerical models also exist that may be applied to simulate the response of coastal 

wetlands to SLR, some of which have been specifically designed for the Australian context. 

Oliver (2011) developed a statistical model that included the most influential factors affecting 

the evolution of the coastal wetlands of Minnamurra, Australia. Temmerman et al.(2003b) 

proposed a model that described the sedimentation rates over a Northern European wetland. 

Adjustment of the model to represent surface elevation change (herein referred to as SEC) 

and inclusion of a sea level rise component produces a numerical model, the Spatially 

Applied Adjusted Temmerman (SAAT) model, that may potentially be used in describing the 

evolution of Australian wetlands. Comparison of the Oliver, SAAT and SLAM models, each 

developed for a different geographic region, provides further insight into the adequacy of 

each model to predict the evolution of SE Australian coastal wetlands with rising sea levels.  

Modelling the effect of SLR on coastal wetland systems is inherently complex. Not only is a 

natural system inherently unpredictable, but the conceptualisation of the system, structure of 

the model and input data used to implement the model may all contain errors or limitations 

that generate uncertainty in model output. Validation of the SLAM model and examination of 

the adequacy of the three models to simulate the response of Australian wetlands to SLR 

must, therefore, occur parallel to an investigation into errors and uncertainty within data and 

model outcomes.  

Though difficult to simulate the dynamic nature of the wetland system and impacts of SLR 

with absolute precision, creating the most reliable and effective model of future environments 

is critical for planning and management of these vulnerable systems.  
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To fulfil the primary aim a number of objectives are outlined for this study; To:  

1. Examine the importance of expertly generating the highest vertical resolution of 

elevation data possible to when modelling the response of wetlands to SLR; 

2. Ascertain the internal consistency of the SLAM model in a basic verification process; 

3. Investigate the validity of the SLAM model for the Australian context; 

4. Examine the plausibility of future wetland distributions simulated by the chosen 

models; 

5. Assess the effect of model structural flaws and data error on the uncertainty of model 

outcomes; 

6. Compare model results developed for different wetland systems around the world, 

examining their performance when applied to an Australian wetland; 

7. Examine reasons for differences in simulated output between models applied, 

considering the conceptual, structural and data requirements of each; 

8. Determine the model most applicable to the Australian context; 

9. Evaluate the importance of modelling in the management of coastal wetlands. 

 

1.2 Thesis outline and scope 

This thesis presents a review of the current literature relating to mangrove and saltmarsh 

distribution, sea-level rise and the response of coastal wetlands to changes in sea level. It also 

examines the philosophy and process of modelling and model validation and the numerical 

models developed to simulate wetland evolution, with specific reference to the SLAM and 

other models. In Chapter 3, the study site is defined and the processes of data collection and 

generation for model parameterisation are outlined. In addition, each numerical model 

applied within this study is described and its application and analysis explained. Verification 

and validation techniques implemented for the SLAM model and methods of model 

comparison are also defined. Chapter 4 presents the results of DEMs generated and 

associated accuracy assessment. Outcomes of the SLAM model verification and validation 

processes are also reported and model output of the other models within the study are 

examined. The final section of the chapter presents the results of model comparison of the 

three models used in this study. The following chapter, Chapter 5, provides a discussion of 

the results obtained in relation to the appropriate literature and an investigation into the 

conceptual validity of the SLAM model is conducted. The final chapter integrates and 
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presents the conclusions drawn from the study and provides recommendations for the use of 

the SLAM model, in particular, and the choice and application of ecological models in 

general. 

  



 

6 

 

2 LITERATURE REVIEW 

Modelling the effect of sea level rise on southeast Australian wetlands cannot be effectively 

undertaken without a thorough understanding of the relevant previous and current literature. 

Thus, this chapter explores the history of sea level over the Quaternary period, projections of 

sea level into the future, the distribution of saltmarsh and mangroves and the possible 

responses of these wetland environments to sea level rise (SLR). Particular attention is placed 

upon the modelling process and simulating the responses of coastal wetlands relative to 

future sea level fluctuations.  

2.1 Coastal wetlands  

2.1.1 Characteristics and global distributions 

Saltmarshes and mangroves are coastal wetlands situated within the tidal frame of low energy 

coasts. A complex interplay of physical, biological and climatic factors affect the distribution, 

persistence and adaptation of these coastal communities. As intertidal communities, the 

elevation limits of saltmarsh and mangroves are significantly influenced by the local tidal 

range, establishing between highest (HAT) and lowest (LAT) astronomical tides. Mangroves 

are commonly located lower in the tidal frame, with saltmarshes being established in levels 

higher than mean high water neap tide (MHWNT) (Allen 2000).Where mangrove and 

saltmarsh communities coexist, saltmarsh is frequently found in the upper intertidal areas on 

the landward side of established mangrove stands (Wolanski et al. 2009).  

Mangroves cover approximately 137 760 -152 308 km
2 

of the globe and typically develop 

within the middle latitudes, dominating tropical and subtropical coastlines (Spalding et al. 

2010; Giri et al. 2011). The global distribution of mangroves generally correlates with the 

20
°
C isotherm for sea surface temperature (Duke et al. 1998), partly due to the sensitivity of 

mangrove species to cold and frost. Duke et al. (1998) found that factors such as the dispersal 

and establishment of propagules, availability of suitable habitat and climate and tectonic 

events may all be contributing factors to the distribution of mangroves.  At their latitudinal 

extreme, in Australia and New Zealand, the productivity and species diversity of mangroves 

is significantly reduced, which is most likely due to the stress experienced from the lower 

seawater temperatures.  

In contrast, saltmarsh is relatively tolerant of colder seawater temperatures and as such can 

grow in Arctic and sub-Arctic conditions (Mendelssohn & McKee 2000). The productivity 
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and diversity of saltmarsh communities increases with increasing latitude. Globally, it 

appears that saltmarsh establishes in areas where mangroves are not present or are not well 

established (Kangas & Lugo 1990). From such observations, it has been hypothesised that 

mangroves would dominate the coastlines if not for the temperature limitation of the 

tropical/sub-tropical vegetation (Kangas & Lugo 1990). However, evidence from the field 

suggests that salt marsh has encroached upon mangroves in some areas (McKee et al. 2004). 

Coexistence of saltmarsh and mangrove is observed along coastlines in temperate climates. 

Admixtures of these tidally influenced environments are present in Asia, Africa, 

Australia/New Zealand, North America and South America (Saintlan et al. 2014).Whilst 

temperature is certainly a factor influencing the establishment and survival of these wetlands, 

the distribution of mangroves and saltmarsh within these communities is predominately 

determined by the local variations in geomorphology, hydrology and climate. 

2.1.2 Mangrove and saltmarsh communities of NSW 

In southeast (SE) Australia, coexisting mangrove and saltmarsh communities are frequently 

associated with barrier estuaries and infilling drowned river valleys (Roy 1984). According to 

Roy et al. (2001), river valleys of the SE Australian coast drowned during the postglacial rise 

in sea level slowly infill, creating intertidal zones appropriate for mangrove and saltmarsh 

colonisation. Unlike some coastal wetlands, such as those of the northern Gulf of Mexico 

(Patterson & Mendelssohn 1991), mangroves of SE Australia are typically established at 

lower elevations of the intertidal zone, with saltmarsh occupying higher elevation sites within 

the tidal frame (Montague & Wiegert 1990).  

The distribution and vegetation succession within these intertidal, estuarine environments has 

been debated. Contrary to the succession model proposed by Pidgeon (1940), Saintilan 

(1997) suggests that saltmarsh encroaches upon mangroves in SE Australian wetlands whilst 

the seaward boundary of the mangrove forest ‘marches’ forward (Saintilan & Hashimoto 

1999; Saintilan et al. 2009). This is proposed to occur due to successive intertidal zones being 

developed as the maturing drowned valley infills, causing mangroves to colonise the new 

intertidal habitat and the predominantly elevation-determined boundary between saltmarsh 

and mangrove to also prograde seaward. Mangrove peats and root material found beneath 

current saltmarsh communities of SE Australia provide strong evidence for this 

geomorphically controlled vegetation succession model (Saintilan & Hashimoto 1999; 

Saintilan & Wilton 2001).  
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However, contrary to this model, recent observations and evidence suggest that in many areas 

mangrove has ‘marched’ landward, encroaching upon upper intertidal saltmarsh (Harty 2004; 

Rogers et al. 2005, 2006; Saintilan & Williams 2000; Saintilan & Wilton 2001; Saintilan et al. 

2014). In SE Australia, approximately 30% of saltmarsh has been replaced by mangrove 

vegetation (Mitchell & Adam 1989; Straw & Saintilan 2006). Growth of mangroves in 

previously saltmarsh-dominated areas is considered to be driven by environmental changes, 

including elevated levels of atmospheric CO
2
, increased rainfall and higher temperatures 

(Eslami-Andargoli et al. 2009; McKee et al. 2012). Rises in sea level are also cited to cause 

changes in the distribution of salt marsh and mangrove in SE Australia (Rogers et al. 2006). 

With increasing awareness of climate change, numerous studies are focusing upon the 

possible future effects of the environmental changes such as SLR on the distribution and fate 

of coastal wetlands. 
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2.2 Sea level 

In concert with both physical and biological processes, sea level is integral to the long-term 

evolution and ultimate survival of saltmarsh and mangroves. The sensitivity of saltmarsh and 

mangroves to sea level is clearly exhibited in both the geological record and data recorded at 

shorter temporal scales (Allen 2000). In order to model the future response of these 

environments to eustatic trends, it is vital to understand past fluctuations in sea level and the 

change they effected on past environments.  

2.2.1 Quaternary sea levels 

A series of glacial-interglacial cycles characterise the Quaternary period (Alley & Clark 

1999; Lambeck et al. 2002). Drawing from both geological data and recent observations, 

changes in sea level are considered to result from a complex interplay of processes (Van de 

Plassche 1982; Murray-Wallace & Woodroffe 2014). Climate change is considered to be the 

major driver of Quaternary glaciations and consequent changes in sea level. The end of the 

last glacial maximum occurred approximately 20ka and saw a subsequent rise in sea level by 

some 130 m (Lambeck et al. 2002). However, SLR is not recorded to have been uniform 

across the globe. Compilations and comparisons of data collected at a wide range of locations 

quickly reveal that the recorded patterns of SLR differed at individual sites throughout the 

world (Fairbridge 1961; Pirazzoli 1996). These variations in eustatic trends are primarily 

attributed to changes in land height at local or regional scales. These and other similar 

observations gave way to the development of the term relative sea level; the position and 

height of the sea relative to the land. Various processes such as isostatic rebound or land 

subsidence can cause significant changes in the elevation of the land and, in coastal settings, 

can substantially affect the position of sea level relative to the land. 

Substantial differences in relative sea level are evident in the Quaternary records of past 

coastal environments around the world (Clarke et al. 1978; Figure 1). During the LGM large 

expanses of Northern Europe were covered by ice. The melting of these ice sheets led to 

vertical crustal movements due to glacio-isostatic and hydro-isostatic processes. As a result, 

north and north western Europe experienced a drop in relative sea level (Lambeck et al. 

1998). However, only a few hundred thousand kilometres to the south, relative sea level in 

south-southeast Europe rose rapidly, exhibiting a 14 m – 25 m rise from 8ka to 5ka (Lambeck 

1997). More gradual increases in relative SLR occurred to bring the relative sea level to its 

present position. 
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On the other side of the earth, Australia is a relatively tectonically stable continent and has no 

record of having being covered by ice sheets during the LGM. As such, falls in sea level due 

to tectonic processes or isostatic rebound of the earth following the melting of land-based ice 

are not observed. In fact, since the LGM, sea level around the Australian mainland only 

reached a level approximately 1m to 2m higher than present (Lewis et al. 2013) and has 

remained close to its current elevation since the mid-Holocene. The differences in patterns 

Figure 1:Differences in sea level around the world during the Quaternary are clearly displayed 

in the sea level curves of six zones delineated by Clark et al. (1978). Zone I covers formerly 

glaciated areas that experienced classic glacial isostatic rebound succeeding deglaciation. The 

Transition zone between Zone I and Zone II experienced a decrease in sea level, as the land 

emerges from beneath the receding glacier followed by an increase in sea level, as the 

underlying mantle material constituting the forebulge migrated towards the uplifting centre of 

the glacier. Sea level in Zone II continually rose due to the collapse of the forebulge. Zone IV 

also remains submerged with sea level constantly rising to its present position.  In contrast, Zone 

V and Zone VI are characterised by a rise in sea level to 2-4m above present sea level 

approximately 5000 yr BP followed by a gradual decrease in sea level to its present position. 

The differences in past SLR around the globe affect the present day differences in wetland 

geomorphology.  
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and magnitude of SLR have contributed to variations in the geomorphology of natural coastal 

systems, such as wetlands.  

 

2.2.2 Current and future sea level trends 

Relative sea levels recorded in tidal data over the past century suggest that sea level is 

currently rising at an increased rate and has been doing so since the last glaciation. Records 

suggest that after the period of relatively stable sea level during the late Holocene a period of 

more rapid SLR was observed from the mid nineteenth century to present. During the 20
th

 

century an average SLR of 1.7mm per year (mm/yr) was observed (Church et al. 2013). 

Global mean SLR is currently estimated at approximately 3.2 ± 0.4 mm/yr (Krauss et al. 

2013). Rates of SLR are predicted to accelerate in a non-linear fashion (Nicholls & Cazenave 

2010) and are expected to again show local and regional variations across the globe (Figure 

2).Church et al. 2013 suggest that rates of SLR will predominately fall within 20% of the 

global mean.  

The fourth assessment report from the Intergovernmental Panel on Climate Change (IPCC) 

projected a SLR of 0.59m-0.81m by the year 2100 (IPCC, 2007). Projections of future sea 

levels are, by nature, uncertain, however rates of SLR have broadly tracked those simulated 

for scenarios of high sea level changes. Given this, it has been proposed that future sea levels 

are likely to be closer to the upper edge of the IPCC projections (Church et al. 2010), though 

 

Figure 2: Map of deviations from the global rate of sea level rise for the period 1993-2009. 

(Source: Church et al. 2010). Variabilities in the rates of sea level rise are predicted to continue 

throughout the 21
st
 Century.  
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deviations are certainly still considered possible (Rahmstorf 2007; Grinsted et al. 2009). 

Whilst it is generally agreed that sea level will rise over the next century, the degree of 

change is debated. Vermeer and Rhamstorf (2009) consider the IPCC projections to be too 

conservative, instead predicting a 0.75-1.90m rise in sea level by the end of the 21
st
Century. 

Grinsted et al. (2010) also dispute the rates proposed by the IPCC AR4. Extensive debate 

continues to surround predicted levels and rates of SLR. Though determining future sea 

levels remains an active and widely debated area of research, there is general consensus that 

such rapid rises in sea level could have detrimental effects on coastal wetlands. 

2.2.3 Sea Level Trends of the Southeast Australian Coast 

The most recent report on the state of the Australian climate jointly prepared by the CSIRO 

and Bureau of Meteorology reveals that there has been a rise in global mean sea level of 

some 225 mm since 1880 (CSIRO & BOM  2014).Based upon reliable, relatively continuous 

data since 1966, SLR along the Australian coast has been broadly analogous to the global 

average trend (White et al. 2014), with some variation observed (Couriel et al. 2014). 

Similar to global observations, an acceleration in rates of SLR around Australia from the end 

of the last century is calculated, with a rise of 3.1 ± 0.6 mm/yr from 1993 to 2009 (White et 

al. 2014). However, local and regional departures from the global mean sea level trend have 

been observed. Based on satellite altimetry data, sea level trends along the NSW coast range 

from approximately -1mm/yr
 
to +4mm/yr (Couriel et al. 2014). Variabilities in sea level 

trends are attributed to a number of influences working on long term, decadal and inter-

annual timescales (Table 1) (BOM 2010; Church et al. 2006; Feng et al. 2004; Holbrook et al. 

2011; Kolker & Hameed 2007; Woodworth et al. 2009). Such influences are often difficult to 

isolate from sea level trends when calculating rates of SLR (Monselesan et al. 2015; Zhang & 

Church 2012). Multiple studies have noted that tidal records and altimeter data studied need 

to cover a sufficient period of time in order to smooth the effects of these meteorological and 

oceanographic influences and determine the underlying, long-term trends in SLR (Chambers 

et al. 2012; White et al. 2014; Zhang & Church 2012). 

One of the most significant influences on sea levels measured at the SE Australian coast is 

the El Niño Southern Oscillation (ENSO) (BOM 2014; Church et al. 2013; Holbrook et al. 

2011). The large-scale, meteorological phenomenon is a three to eight year natural cycle 

which is characterised by lower sea levels during El Niño events and higher sea levels  
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Driver Sea-level response  Indicative timescales 

Gravitational attraction of 

astronomical bodies 

Tides Hours, with some influences 

extending over multiple years 

Wind Set-up Days 

Changing atmospheric pressure Inverted barometer Days 

Ocean currents Variations  Weeks to months 

Annual temperature cycle Annual cycle One year 

El Niño/Southern Oscillation Interannnual 

oscillations 

Years 

Inter decadal Pacific Oscillation  Interdecadal 

oscillations 

Decades 

Long-term global temperature 

changes 

Long-term sea-level 

change 

Multiple decades to centuries 

Table 1: Factors influencing sea level at different time scales. (Source: OEH 2015) 

 

during La Niña (Boening et al. 2012). Along the NSW coast of Australia, differences in sea 

level of approximately 300mm have been gauged between El Niño and La Niña (Watson 

2011). Though these long-term, natural cycles affecting the Australian mainland are distinct 

from climate change driven sea level fluctuations, their contribution cannot be disregarded 

when considering future sea levels and their effects on coastal wetlands. 

Tide data from Fort Denison, Sydney, provides the longest near continuous tide-gauge record 

on the SE coast of Australia, with data being collected since 1886 (Couriel et al. 2014). 

Though considered a good indicator of long-term sea level, various rates of relative SLR can 

be estimated from the Fort Denison gauge depending upon the time frame analysed. You et al. 

(2009) reported a rate of 0.63 ± 0.14 mm/yr for the period covering the first year during 

which data was collected at Fort Denison until the year 2007. Shortening the time frame 

analysed to 1914 - 2007 raised the rate of SLR to 0.93 ± 0.20 mm/yr whilst further restriction 

of the period examined, 1950 to 2007, resulted in a decrease to 0.58 ± 0.38 mm/yr. Some 

90km south of Fort Denison at Port Kembla, a substantially higher rate of 2.1 mm/yr SLR 

was calculated for the period 1991 to 2010 (BOM 2010).  
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Projections of future sea level trends off SE Australia from the IPCC Fifth Assessment 

(Church et al. 2013) indicate rates of SLR up to 10% greater than the mean global model 

prediction are to be expected. An understanding of the local trends and future projections is 

necessary for modelling ecosystems response to changes in sea levels, such as that of coastal 

wetlands. 

 

2.3 Responses of coastal wetlands to sea level rise 

As saltmarsh and mangrove typically establish within a relatively limited range of the 

intertidal zone, SLR could have a detrimental effect on these coastal communities. The 

persistence and survival of the coastal wetlands is predominantly determined by their ability 

to adapt their surface elevations with respect to the rising sea level. During periods of lower 

SLR, coastal wetlands have historically kept pace with sea levels by accreting sediment and 

thereby building vertically or by migrating across the landscape (McKee et al. 2007; 

Woodroffe 1988). This pattern of past behaviour observed from sediment records is 

supported by relatively recent models and field studies that demonstrate a positive 

relationship between increases in platform water depth and sediment deposition (French 

1993; Friedrichs & Perry 2001; Morris 2002). However, it is widely understood that an 

increase in SLR may result in the drowning of coastal wetlands as accretion within the 

ecosystems may not be sufficient to maintain their existence. Landward migration of these 

ecosystems as a response to sea level changes may also not be a viable option for coastal 

wetlands where anthropogenic transformations and morphology of the surrounding terrestrial 

landscape prevent any lateral movement of the intertidally bound ecosystems. The survival of 

both saltmarshes and mangroves are dependent, therefore, upon the rate of SLR, the 

development of surrounding terrestrial landscapes and the ability of the systems to keep pace 

with the sea level changes by accreting vertically or migrating laterally.  

2.3.1 Principal processes and controls 

Elevation changes within saltmarsh platforms and mangrove forests are influenced by a 

dynamic interplay of physical and biological processes. Sedimentation, erosion, organic-

matter accumulation and decomposition, autocompaction, subsidence and groundwater 

discharge-recharge have been named as the primary processes contributing to wetland 

elevation change (Cahoon et al. 2006). These processes lead to net gains or losses within the 
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coastal wetlands and are fundamental drivers for the evolution and persistence of the 

respective environments. 

One of the most significant factors influencing the persistence or demise of coastal wetland 

communities is sedimentation. Sediment processes contributing to the positive elevation gain 

can be further divided into inorganic and organic sediment types. Organic sedimentation is 

primarily related to litter fall, which can accumulate thick deposits of organic sediment but 

which varies according to tidal flushing and other site-specific processes (Middleton & 

Mckee 2001). Inorganic sediment is usually autochthonous in origin. During flooding of the 

wetland, inorganic sediment carried in the water column  may settle and be deposited on the 

wetland surface (Allen 2000; Marion et al. 2009; Temmerman et al. 2003a,b). Observations 

of sedimentation patterns have led to the understanding that rates of sediment deposition are a 

function of a variety of factors including the frequency and magnitude of inundation 

(Bricker-Urso et al. 1989; Darke & Megonigal 2003; French et al. 1995; Temmerman et al. 

2003b). Sedimentation rates are noted to reduce with increasing wetland surface elevation 

(Cahoon & Reed, 1995) and decreasing inundation frequency (Temmerman et al. 2003b). 

Increased inundation time and magnitude associated with SLR, therefore, will logically 

accelerate deposition rates in coastal wetlands (French, 1993; Kirwan & Murray 2007; Morris 

et al. 2002). This fundamental feedback is considered critical to the ability of the wetland to 

maintain its elevation with respect to rising sea levels (Kirwan & Temmerman 2009). The 

feedback mechanism, however, is dependent on the sediment supply to a wetland, which is, 

in turn, related to the local environmental factors and geomorphology (Cahoon et al. 2006, 

2011; Woodroffe 1990). Wetlands obtaining high inorganic sediment supplies are considered 

more likely to benefit from the feedback response and therefore survive a rise in sea level. In 

direct contrast, where biogenic material is the primary contributor to sedimentation in the 

wetland, only slow rates of SLR are expected to be sustainable.  

Biotic processes also play a significant role in wetland elevation change and subsequent 

survival under rising sea levels. Cahoon et al. (2006) discriminated between biologic 

processes that had a direct and indirect effect on wetland SEC. Direct biotic influences 

include the formation of algal mats and subsurface root production, where the balance of 

plant root growth and decay and associated expansion of soil volume have been found in 

some wetlands to be directly related to elevation change (McKee et al. 2007; McKee 2011). 

Indirect processes of biotic relate to the influence of vegetation on inorganic sedimentation 

processes. Vegetation may enhance sedimentation via direct capture of sediment (Yang et al. 
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2008). In addition, many studies have shown that with increased vegetation above ground 

flow velocities, turbulence and erosion across the wetland surface are reduced, all leading to 

greater sedimentation (Leonard & Luther, 1995; Morris et al. 2002; Mudd et al. 2010). The 

combined effect of these interrelating factors and feedback mechanisms further accelerates 

accretion rates and allows the wetland surface to survive increasing rates of SLR (Kirwan et 

al. 2010; Morris et al. 2002).  

In addition to the positive gains generated by sedimentation-accretion and vegetation, many 

processes cause wetland surfaces to decrease in elevation. Though a wetland may accumulate 

a large body of sediment, autocompaction of the soils can cause the gain to be considerably 

offset (Cahoon & Reed 1995). Compaction of the soil is influenced by the hydrology of the 

wetland, where the weight of increased tidal waters results in the compression of aerated soil 

layers (Cahoon et al. 1995, 2011; Nuttle et al. 1990).  Wetland hydrology has also been found 

to influence the shrink-swell pattern of soils in coastal wetlands (Nuttle et al. 1990; Cahoon 

& Lynch 1997). Decreases in rainfall runoff and the lowering of the soil water table 

effectively leads to soil shrinkage and losses in surface elevation (Cahoon & Lynch 1997; 

Cahoon et al. 2006; Smith & Cahoon 2003). Droughts, too, are observed to result in extended 

periods of soil shrinkage and concomitant losses in wetland surface elevation (van Wijnen & 

Bakker 2001; Rogers et al. 2005). Coastal wetlands of Australia have been found to be 

particularly effected by ENSO related droughts (Rogers et al. 2005). A coastal marsh in 

Louisiana under severe drought conditions also lead to increased substrate consolidation and 

loss in wetlands due to lowered groundwater levels (Cahoon et al. 2011). In contrast, higher 

rainfall periods have resulted in increased groundwater levels and expansion of soils, 

ultimately generating positive elevation changes within the wetlands (Rogers & Saintilan 

2009; Rogers et al. 2014; Whelan et al. 2005). Overall, the changes in water storage and 

resulting shrink-swell responses have been found to generate rapid and short-term impacts 

that can display elevation changes up to five times greater than the long-term trend in wetland 

SEC (Cahoon et al. 2011). At longer time scales, such as is the case for ENSO related 

droughts, these processes may have a lasting impact on the longterm evolution of the coastal 

wetland.  

Subsurface processes have also been demonstrated to contribute to the elevation dynamic in 

coastal wetlands. Decomposition of organic matter inevitably causes a loss in overall surface 

elevation. Root structures influences the total soil volume and, thereby, the wetland elevation. 

The loss of root volume after death therefore causes a collapse of the root structures and 
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further compaction of soils (McKee 2011; Mckee et al. 2007). Increases in flooding appear to 

be linked to an increase in root decomposition rates, most likely a factor of the greater anoxic 

conditions (Mckee et al. 2007). Therefore, accelerating rates of SLR and concomitant 

increases in flooding frequency and magnitude in coastal wetlands may have potentially 

debilitating effects.  

Storms, floods and pulsing events have been observed to affect both surface and subsurface 

processes contributing to the net vertical change of a wetland (Nyman et al. 1995; Cahoon 

2003, 2006). The short-term, high-magnitude perturbations within the system are commonly 

associated with greater turbidities which may result in significant storm deposits or 

redistribution of sediments (Cahoon et al. 1996; Nyman et al. 1995). In contrast, some studies 

have found that storms may cause erosion due to the disturbance of increased flow velocities 

and the impact of rainfall (Pethick 1991; Cahoon et al. 1995).In some cases, subsurface 

collapse of the root zone has caused significant decreases in elevation (Cahoon et al. 2006). 

With increased frequency of storms attributed to climate change predicted for the future, the 

effect of storms may have an increasingly significant impact on the ability of a wetland to 

persist under accelerating rates of SLR.  

Overall, the processes contributing to net elevation changes in wetlands will play a significant 

role in the persistence of coastal wetlands under rising sea levels. Each of the processes is 

affected by geomorphic, hydrologic, biotic and climatic controls occurring at different time 

scales. Examining the ability of wetlands to build vertically, it is apparent that consideration 

of one process only is not possible to ascertain the response of wetlands to SLR. Ultimately, 

it is the dynamic equilibrium between forces which contribute to the wetland elevation and 

controls on its deterioration that govern the long-term evolution of a wetland and drive the 

response of a wetland to SLR (Rybczyk & Callaway 2009).  

2.3.2 Threshold rates of SLR 

Despite the processes and feedbacks known to regulate the ability of a wetland to keep pace 

with rising sea levels (Redfield 1972; Reed 1995; Cahoon et al. 2006), observations and 

modelling of the dynamic system have indicated that there is a limit to the adaptability of 

coastal wetlands (Kirwan et al. 2010; Morris et al. 2002; Nicholls et al. 2007; Reed, 1995). 

The threshold rate of SLR at which vegetation is unable to persist and ecogeomorphic 

feedbacks become inefficient in maintaining wetland surface elevation has been found to vary 

significantly by site. Depending on factors such as the sediment supply, vegetation, 
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geomorphic inheritance and anthropological interference at a specific wetland, threshold rates 

of SLR were found to range from 5mm/yr to 20mm/yr (Kirwan et al. 2010), with a critical 

rate of approximately 10mm/yr being suggested by many authors (Morris et al. 2002; Kirwan 

et al. 2010). 

 

2.4 Modelling  

2.4.1 A philosophical perspective  

Modelling in the earth and environmental sciences involves an abstraction of nature such that 

modelled outcomes may adequately describe the system or process being simulated 

(Mulligan & Wainwright 2013). Natural systems are a complex combination of chemical, 

physical and biological processes, often non-linear in nature and operating at a variety of 

temporal and spatial scales (Young & Leedal 2013). Based on reductionist philosophy that 

permeates the scientific world, modellers attempt to simplify a complex system to its most 

influential components in order to achieve the greatest realism.   

The principle of parsimony, sometimes referred to as Occam ’s razor, applied to a modelling 

context signifies that a model should be no more complex than absolutely necessary (Lark 

2001). Newton, in his first principle of reasoning in philosophy, emphasised the necessity of  

describing natural systems in no more complex a manner than is “….true and sufficient to 

explain their appearances.” (Newton 1687).This guiding principle can be traced back almost 

two millennia to the work of Aristotle who wrote:  

It is the mark of an instructed mind to rest satisfied with the degree of precision which the 

nature of the subject permits and not to seek an exactness where only an approximation of the 

truth is possible. 

In a modelling context, not only do the writings of Aristotle drive a modeller to work by the 

principle of parsimony but also to not seek perfect predictability, where only a representation 

of the complex system can be achieved. Laplace (1820) further warned of the uncertainty of 

the future that would limit the ability of a system to be deterministically and accurately 

defined.  

From a philosophical perspective, then, the concept of the model as ‘truth’ has been 

repeatedly rejected. Some have even gone as far as to define a model as a work of fiction 
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(Cartwright 1983). The model, however, can provide the best representation of a system and 

is considered a powerful tool for developing an understanding of a system in the past, present 

or future (Baker 1998; Oreskes et al. 1994).  

2.4.2 Model complexity 

The complexity of a system is difficult to simplify and often cannot be captured by modelling 

techniques applied. Simple models may adequately describe the complex nature of some 

systems (Mitchell 2009; Scheffer 2009; Waldrop 1992), yet in others fail to sufficiently 

explain key processes that define the system’s appearance (Nihoul 1994). In such cases, 

further parameters may be defined in order to increase the sufficiency of the model’s 

explanation of the system, thereby increasing the model complexity. With increasing 

processing power available, the possibility of more complex models has been explored (Perz 

et al. 2013). In theory, the greater complexity allows for a closer approximation of the truth. 

However, the superiority of more complex models has been questioned, with many 

suggesting that the greater parameterisation allows for increased potential of additional errors 

and uncertainty (Fisher et al. 2002; Snowling & Kramer 2001). Models of low complexity, 

however, may also contain much error as a result of structural uncertainty. It is, therefore, 

debated which type of model is most relevant and useful in modelling of complex 

environmental systems (Muller et al. 2011; Snowling & Kramer 2001). 

2.4.3 Verification and Validation 

Regardless of model complexity, the modelling process involves processes of 

conceptualisation, in which the working of the system is abstracted by the modeller, 

parameterisation, where the important elements to be included in the model are defined, 

calibration, which generally involves the fine tuning of a model to achieve an optimal output, 

sensitivity analysis, where changes in model output with changing model parameters are 

examined to evaluate the logic and robustness of the model structure, verification and 

validation. Verification was first defined by Fishman and Kiviat (1968) as “…a 

demonstration that the model formalism is correct”. With the explosion of computer use in 

science, a refined definition of model verification described a model as being verified “…by 

showing that the computer program is a correct implementation of the logical model” 

(Hoover & Perry 1989). The manner in which the conceptual model is accurately reflected in 

the computer code or mathematical formalisms is therefore the primary concern of 

verification procedures (Rykiel 1996). Some authors, however, have questioned the ability of 
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a model to be verified, indicating that, following the strict sense of the word, a model cannot 

be proved true (Oreskes et al. 1994).  

The concept of model validation has been debated ever since it arose in the 1960s (Rykiel 

1996). A contributing factor to the problem is the lack of a clear definition of validation as it 

pertains to the modelling community. Levins (1966) based his definition of validity on the 

subjective judgment of a modeller, stating that “The validation of a model is not that it is 

‘true’ but that it generates good testable hypotheses”. Other authors, however, expound 

model validation to be a quantitative process, where the predictive ability of a model is 

determined based upon the agreement of the output data with field data (Goodall 1972; 

Jørgensen 1986; Mulligan & Wainwright 2013; Power 1993). In an effort to resolve the 

conflicting perspectives on model validation, Rykiel (1996) and Sargent (1996) specified 

validation techniques that could be employed in modelling. Three main areas of validation 

were identified as important, following the work of Sargent (1986). Operational or whole-

model validation involves the testing of the model’s correspondence with real-world 

observations. Conceptual validation considers the underlying theories and assumptions of the 

model, testing that they are justifiable and reasonably represented and realised in the logic 

and mathematical structure of the model.  Data validation ensures that the data used to 

parametrise, calibrate and test the model are sufficiently accurate. To complete these 

validation tests a number of qualitative and quantitative techniques have been noted within 

the literature (McCarl 1984; Monte et al. 1996; Rykiel 1996;Sargent 1996; Senarath 2000). 

These include: 

 face validation, where the reasonableness of the model logic and input-output 

relationships are tested ‘on the face of it’. 

 Turing tests, in which experts are asked to discriminate between real-world system 

and model outputs. 

 predictive validation, where model predictions are compared against real world 

data. 

 statistical validation, where the range of model behaviour and its error structure 

are tested to ascertain the quantitative fit of the data with the real system and 

whether errors associated with model output fall within certain acceptable limits. 

 extreme conditions tests, whereby extreme or unlikely conditions are set and the 

resulting model output is tested for plausibility. 
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 comparison to other models, which involves comparing the results of the model to 

output from other models.  

 sensitivity analysis, in which the model parameters are tested to ascertain which 

produce the greatest change in output with only small variations in parameter 

value.  

It is often assumed the greater number of tests a model is able to successfully pass, the more 

reliable and credible the model output (Sargent 1984; Mulligan & Wainwright 2013).  Model 

validation is, thus, considered by some to be achieved when all available validation 

procedures fail to discriminate between real-world and model data (Brown & Kulasiri 1996). 

Goodall (1972) warned, however, that a model may provide adequate predictions for a certain 

domain or complex ecosystem but cannot be assumed ‘valid’ for another. With a change in 

context or environment, a re-validation of the model would be required.  

Contrariwise, according to the Popperian account of falsification, models that fail to 

correspond to empirical data are to be recreated or disregarded. At the heart of the debate 

surrounding validation of models is a philosophical argument. Some believe model validation 

both possible and essential (Gentil & Blake 1981; Rykiel 1996), whilst others suggest that 

full validation is a logical impossibility (Refsgaard & Storm 1996; Senarath et al. 2000). 

Oreskes et al. (1994) argue that it is impossible to establish if a model is ‘true’. They suggest 

that in validating a model problems arise relating to the difficulty of demonstrating the truth 

of open systems (such as the environment), the erroneous acceptance of a model that fits the 

observational data for the wrong reasons, the possibility of obtaining the same output from 

more than one model (non-uniqueness or under determination), the impossibility of 

determining if a principal or additional hypothesis is incorrect when errors occur, the 

presence of unknown factors excluded from the conceptual design and, lastly, the fact that 

assumptions and uncertainty underlie all stages of the observation and measurement of the 

system being modelled.  

Despite the problems in validating a model, many authors maintain that validation remains an 

important part of the modelling process (Anderson & Woessner 1992; Mulligan & 

Wainwright 2013; Power 1993). In line with Box and Draper (1987) who stated “All models 

are wrong, but some are useful”, Burnham and Anderson (2002) argue that while a model 

can never be “truth” nor a prediction certain, a model can be ranked from useful to useless, 

according to its adequacy in describing the system under study. Oreskes et al. (1994) also 
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conclude that, while full validation may be a logical fallacy, models can serve as a heuristic, 

improving understanding and guiding further research or management policies.  

2.5 Modelling the response of coastal wetlands to sea level rise 

Increasing concern regarding the sustainability of coastal wetlands under rising sea levels has 

led to the development of numerous models attempting to understand the potential response 

of these important ecosystems. Most models attempt to incorporate a variety of physical and 

biological factors affecting the sustainability of coastal wetlands and are built upon general 

conceptual frameworks of the evolution of mangroves or salt marshes. However, due to the 

complex, dynamic and generally unpredictable nature of natural processes, modelling the 

response of coastal wetlands to SLR is quite challenging and inherently incorporates errors 

and uncertainty. Incomplete knowledge of the natural system, data used within the model 

building and implementation processes and lack of sufficient measurements in space and time 

of the coastal wetland all contribute to the difficulties of modelling coastal wetlands.  

The evolution of a wetland is the result of numerous interrelating processes operating at a 

range of spatial and temporal scales, complicating the ability to effectively model the long 

term evolution and resilience of the coastal wetlands with SLR (Cowell & Thom 1994). 

Many authors have noted the difficulty of collecting data sufficient in quantity and temporal 

range to capture the full suite of influences acting on the coastal wetlands (Rybczyk & 

Cahoon 2002; Woodroffe 1990). For instance, long term processes such as subsidence, and 

shorter term pulsing events, such as storms, may not be represented in the short-term, 

measurements used in the modelling process (Rybczy & Cahoon 2002). The incomplete 

nature of the parameterising and calibrating data leads to an inadequate description of the 

system’s response during the modelling process, in turn resulting in additional error and 

uncertainty introduced to model predictions (de Vriend 1992). A similar result can occur 

when the factors influencing the response of the system are not exhaustively understood. 

Coastal environments evolve as the result of innumerable processes which are not completely 

understood (de Vriend 1992; Cowell & Thom 1994). The neglect of an influencing variable, 

understood or not, in the conceptualisation of the system has been suggested to cause 

significant uncertainty and flaws in resulting data (Sargent 1996; Perz et al. 2013). Addition 

of variables, surrogate parameters or bulk parameters, which can be included even without an 

exhaustive understanding of all significant processes and interactions within the system, can 

go some way to reducing the effect of such a problem. However, with increasing 
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parameterisation carried out to mitigate the effect of incomplete system explanation within 

the model arise the difficulties associated with increasing model complexity (Perz et al. 

2013;Renard et al. 2013; Waldrop 1992).  

The influences and feedback mechanisms key to the development and persistence of coastal 

wetlands also generate difficulties in modelling the response of these important 

environmental systems to SLR. Phillips (1995) termed systems such as coastal wetlands 

which include complex feedbacks to be ‘state dependent’, since the future response of the 

dynamic system relies upon its prior or initial condition. Furthermore, coastal systems are 

inevitably non-linear as a result of the same feedback mechanisms and interconnected 

processes causing wetland evolution to be cumulative and ever-changing (Phillips 1992; 

Waldrop 1992; Wright and Thom 1977). In examining the effect of SLR on such coastal 

systems it is also necessary to consider the inherent uncertainty of future sea levels. When 

modelling coastal wetlands, boundary conditions equate to the environmental conditions 

influencing the system. SLR thus represents a stochastic boundary condition of the coastal 

wetland, since the environmental condition, SLR, has many possible outcomes, levels, which 

may not be predicted precisely. Cowell and Thom (1994) noted that, given the state 

dependence and non-linearity of the coastal system and the stochastic boundary conditions 

impacting the environment, the exact manner of coastal evolution is “…unpredictable, 

unrepeatable and irreversible…” and is “…largely a question of historical accident.” 

Given such a situation, reducing a system to its component parts and determining a single 

solution to coastal wetland evolution when modelling does little to describe the possible 

future response of the dynamic systems to SLR (Schumm 1991; Wright & Thom, 1977). 

Deterministic methods, however, continue to dominate the modelling of the impact of SLR 

on coastal wetlands. To mitigate the limitations and reduce the uncertainty associated with 

deterministic models, sensitivity and uncertainty analyses can be conducted (Perz et al. 2013). 

Sensitivity analyses systematically examine the changes in model output related to the 

variability of each model parameter and aids in determining the relative importance of each 

variable in the evolution of the coastal wetland system as defined in the model (Saltelli et al. 

2000). Uncertainty analyses provide a method of evaluating to what extent parameter 

uncertainties influence the model output (Monte et al. 1996), thus providing confidence 

intervals for output data and allowing a greater range of potential outcomes to be obtained. 

Even when conducting the sensitivity and uncertainty analyses, however, the exact nature of 

the future condition cannot be specifically determined (Renard et al. 2013). The analyses, 
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instead, provide a manifold of possible outcomes that serve to provide a richer understanding 

of the response of the inherently unpredictable wetland systems to SLR.   

2.5.1 Numerical models of wetland evolution 

Traditionally, rates of accretion within a coastal wetland have been compared to rates of SLR 

to ascertain the future sustainability of wetlands (De Laune et al. 1978; Reed 1995). An 

accretion value greater than the rate of SLR therefore signifies the persistence of the wetland, 

whilst equal rates indicate equilibrium and greater rates of SLR with respect to the accretion 

value suggest eventual submergence of the system (Cahoon 2015; Rybczyk & Callaway 

2009). However, the simplicity and inherent uncertainty of comparing rates of SLR with 

those of sediment accretion in the dynamic, non-linear coastal systems inevitably limits the 

understanding of future responses of coastal wetlands to SLR. Numerical models have been 

developed in an attempt to improve upon such simplistic treatment of wetland sustainability 

and further the understanding of the impact of rising sea levels on coastal wetland 

(Fagherazzi et al. 2012). These models occur at a variety of spatial scales and attempt to 

account for the most relevant processes and interconnected variables affecting the wetland 

evolution with varying success.  

Among the first to pioneer the use of numerical models in determining the response of 

wetlands to SLR were Krone (1987), Allen (1990) and French (1993). The models developed 

were all zero dimensional, signifying that changes were simulated for a single point rather 

than the entire wetland surface, and were primarily concerned with the sedimentation 

processes active within the wetland. Conceptualisation of sediment processes influencing 

coastal wetlands was based upon observations similar to Pethick (1981) who found that 

sedimentation rates decreased with increasing elevations. Mechanistic models break a system 

into its physical component parts to examine the behaviour of a system. Krone (1987) 

mechanistically simulated the change of surface elevation under varying sea levels for a 

coastal wetland of the San Francisco Bay. The model was calibrated to past accretion rates as 

determined by 
14

C data and assumed a steady supply of sediment to the wetland surface. Only 

accretion of sediment was modelled, with autocompaction processes being ignored. Varying 

the rates of sea level, Krone (1987) found that with increasing sea levels, an increase in 

sedimentation occurred.  

Allen (1990), working from the model of Krone (1987), developed a model to examine the 

evolution of a saltmarsh in the Severn Estuary, Great Britain, that allowed the variation of 
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sediment supply and treated autocompaction implicitly. The exploratory model results were 

used to show the relationship between sea levels and sedimentation processes, the outcomes 

revealing a steep increase in sedimentation rates in new wetlands and a gradual decrease in 

rates as the wetland surface increased in height before reaching an approximately stable state 

at an elevation just below highest astronomical tide (Allen 1990). French (1993) implemented 

a similar model calibrated to the North Norfolk barrier coast to evaluate changes in wetland 

surface elevation over time.  

Although only constant rises in sea level were simulated, the methods implemented in these 

first models remain the basis for many current models ofwetland response to SLR. Indeed, 

drawing from the theory and models available at the time, Allen (2000) proposed a generic 

equation for the elevation change at a particular time step in a model to be: 

∆E =  ∆Smin + ∆Sorg − ∆M − ∆P 

where∆E is the change in the wetland surface elevation at a given time step, ∆Smin and 

∆Sorgare the inorganic and organic sediment added to the surface respectively, ∆M is the 

incremental change in mean sea level and ∆P is the adjustment in surface elevation resulting 

fromautocompaction of the sediment. Allen (2000) noted that each of the parameters were 

inherently complex to simulate, especially those that involve the interrelation of other factors 

in feedback loops.  

Modelling the rate at which the marsh builds vertically due to sedimentation has been the 

focus of most numerical models developed. In line with the initial modelling attempts, many 

models simulate the addition of inorganic sediment as a function of sediment supply and 

elevation, the latter being a proxy for the magnitude and frequency of tidal inundation (eg. 

Allen 1995; Morris et al. 2002; Temmerman et al. 2003a). Given the interconnectedness of 

processes affecting sediment flux and deposition in coastal wetlands, different factors and 

methods of simulating sedimentation have been attempted. Moving from zero-dimensional to 

two dimensional models, Temmerman et al. (2003a) simulated sedimentation rates that were 

a function of elevation and distance to the marsh edge and channel in recognition of the 

pattern of decreasing rates of sediment deposition away from the river channel resulting from 

progressive sediment deposition along flow paths. Others, too, included the distance to the 

river or tidal source as a factor when modelling wetland evolution (eg. D’Alpaos et al. 2007; 

Mudd et al. 2004; Oliver 2011; Rogers et al. 2013).  
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Further attempts at simulating the inorganic sedimentation component of wetland evolution 

have focused on the dynamic effect of vegetation and tidal flows on sediment supply and 

deposition. Physical models that simulate the flow paths of sediment and water across the 

wetland impacted by the presence of vegetation have been initialised for a variety of wetlands 

around the world (D’Alpaos et al. 2007;Marani et al. 2004; Mudd et al. 2004;Silvestri & 

Marani 2004; Temmerman et al. 2005).Physical models are “…founded on the laws of 

conservation of energy, momentum and mass and …(have their)…parameters and variable(s) 

defined by means of equations that are at least partly based on the physics of the problem…” 

(Favis-Mortlock 2013). Hydrodynamic models are physical models that employ the laws of 

fluid flow to produce a solution. A number of models utilise the hydrodynamic model of 

Rinaldo et al. (1999), that uses two-dimensional shallow wave equations to simulate flow 

over a tidal marsh, to develop physical models which simulate sediment transport and 

deposition on the coastal wetland (Fagherazzi et al. 2004; D’Alpaos et al. 2006, 2007). These 

models are distinct from previous modelling attempts in their explicit and detailed treatment 

of sediment trapping by plant biomass. Inorganic sediment trapping in these models is a 

function of biomass density, plant stem diameter, height of the plant stems and local flow 

depth. Deposition of trapped sediment was then dependent on the elevation range for 

saltmarsh biomass (D’Alpaos et al. 2007). Though physical models are, in general, 

considered more reliable (Kirkby et al. 1992), models based upon the shallow flow equations 

are suggested to best capture the initial stages of inundation prior to the greater influence of 

sheet flow at higher levels of inundation (Fagherazzi et al. 2012). With due consideration of 

the limitation, results of such studies coupling vegetation, tidal flow and sedimentation 

indicated the important role vegetation plays in the evolution of coastal wetlands. Given the 

outcomes of such simulations, it would seem unusual that the impact of vegetation is not 

consistently considered in modelling efforts.  Certainly, more recent modelling of long term 

evolution of coastal wetlands has seen a focus on the incorporation of biological, 

hydrological and morphodynamic processes.  

Assuming the same impact of vegetation on inorganic sedimentation, Temmerman et al. 

(2005, 2007) attempted to describe the dynamic relationship in a three-dimensional fashion. 

The model explicitly simulates tidal flow and, in addition to parameters incorporated in 

earlier physical models simulating the effect of vegetation on sedimentation, further includes 

the effects of turbulence and friction. Results of the simulations affirmed observations and 

modelling outcomes that suggested that the vegetation canopy has a critical impact on the 
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spatial pattern of sedimentation rates in a coastal wetland. Though the model served to 

improve the understanding of coastal wetland evolution and the associated role played by 

vegetation, the model was not without limitations, signifying that results should be 

considered carefully in full appreciation of the possible inaccuracies (Fagherazzi et al. 2012). 

The effect of plant biomass on sedimentation processes has not only been represented by 

physical models. Morris et al. (2002) developed azero dimensional model, the Marsh 

Elevation Model (MEM), based on empirical observations to relate the sediment accretion 

within a wetland under rising sea levels. MEM accounts for the effects of elevation, platform 

inundation and aboveground plant biomass on sedimentation. Morris et al. (2002) noted that 

wetland species Spartinaalterniflora was most productive at an optimum elevation below 

which the productivity of the species declined. To mathematically explain this relationship, 

biomass productivity was described as a quadratic function of inundation within the MEM 

model. The simulations of Morris et al. (2002) revealed that at an optimal rate of SLR exists 

where elevation and sea level would be in equilibrium, allowing for maximum plant growth. 

At higher rates of SLR, inundation depths would be too great and the plant community would 

submerge. The optimum depth at which the wetland reaches equilibrium with rising sea 

levels was extrapolated to be a function of vegetation, rate of SLR and concentration of 

inorganic sediment. Similar to all zero dimensional models, MEM excels in mechanistically 

simulating processes at a given location but lacks the spatial articulation so important for 

planning (Rybczyk & Callaway 2009). 

The MEM model has formed the basis of several models that simulate the evolution of 

wetlands on a two-dimensional scale (Mudd et al. 2004; D’Alpaos et al., 2005; Morris  2006; 

Kirwan & Murray 2007;Mariotti & Fagherazzi 2010). Models such as these that account for 

both physical and biological effects wetland evolution have been termed by some as 

ecogeomorphic (Fagherazzi et al. 2012). The spatial application of the zero-dimensional 

MEM model is acknowledged by many to provide results primarily exploratory in nature 

(Kirwan & Murray 2007). Though the MEM model includes both physical and biological 

processes, it was created and used to predict responses to sea level for an individual wetland 

species, Spartina alterniflora, at one location, reducing the model’s transferability to other 

wetlands. Interspecific competition among species in a wetland is more commonly present in 

sites around the world (eg. Marani et al.  2010; Silvestri et al. 2005). 
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It is clear that, though the treatment of inorganic sedimentation differs considerably between 

models, it is the common factor incorporated in all models of wetland evolution. The 

feedback mechanisms and interrelated processes included in numerical simulations of 

wetland evolution are considered superior to the simplistic comparisons of SLR and accretion 

rates, with a greater representation of the system usually being obtained. Despite the obvious 

advantages of describing a system in greater detail through the use of numerical models, 

many limitations and sources of error and uncertainty are attributable to each modelling 

method. With due consideration of these problems, however, the numerical model output 

provides an understanding of the past or future systems that would otherwise be unattainable.  

In addition to inorganic sedimentation, the addition of organic sediment to the wetland 

surface can have a significant impact on the long term evolution of a coastal wetland (Mckee 

et al. 2007; Mckee 2011; Morris & Bowden 1986). It is interesting to note that, though the 

organic contribution to wetland elevation change is considered sufficiently significant to 

include in a generic equation of wetland elevation change Allen (2000), few models actually 

explicitly account for this component of the system. Where the organic sedimentation is 

considered, the component is either simulated as a constant rate over time (French 1993; 

Rybczyk & Cahoon 2002; Stolper 1996) or as a function of elevation (D’Alpaos et al. 2007; 

Pizzuto & Schwendt 1997). The frequent absence of an organic sedimentation component 

within many models is partially a result of there being limited information regarding the 

organic sedimentation processes over time (Parkinson et al. 1994).  

Despite widespread agreement that belowground processes such as organic matter production, 

decomposition and sediment compaction can significantly influence the evolution of a coastal 

wetland, few models incorporate these processes. Similar to the problems regarding inorganic 

sedimentation, a paucity of information regarding belowground processes has resulted in 

frequent disregard of such influences in modelling efforts (Rybczyk & Callaway 2009). 

Those models that do explicitly simulate compaction in particular have primarily focused on 

peat wetlands and are often associated with engineering objectives (Hobbs 1986). Pizzuto and 

Schwendt (1997) presented a zero-dimensional physical model that simulated compaction on 

saltmarsh sediments using finite strain theory. Some models have attempted to capture the 

belowground processes implicitly by applying a constant rate of compaction (French 1993; 

Allen 1995; Temmerman et al. 2003b). However, a greater account of the rate of 

autocompaction and its mechanistic simulations is required for a more accurate and reliable 

representation of coastal wetland evolution.  
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Asmall portion of models explicitly account for both organic sedimentation and belowground 

processes (Callaway et al. 1996; Chmura et al, 1992; Day et al. 1999; Rybczyck & Cahoon 

2002; Rybczyk et al. 1998). The majority of these zero-dimensional models adopt a cohort 

approach, signifying that a given ‘cohort’ of sediment is tracked over time as it 

becomesprogressively buried beneath sediment. The cohort approach to modelling wetland 

dynamics was pioneered by Morris and Bowden (1986) to simulate the belowground 

processes active in a tidal marsh on North River, Massachusetts, focussing upon 

decomposition. Following the work of Morris and Bowden (1986), Chmura et al. (1992) 

developed a cohort model for the Barataria Basin wetlands that accounted for organic 

sedimentation and belowground processes in modelling the evolution of the wetlands with 

rising sea levels. Callaway (1996) used a mechanistic cohort approach to simulate the 

belowground production and organic decomposition in wetlands in Mississippi and Great 

Britain, where decomposition was input as a forcing function (i.e. a variable that is not 

simulated but input as an independent variable). Drawing from the previous research and 

modelling, Rybczyk et al. (1998) further incorporated aboveground biomass and organic 

matter production as a function of root biomass and elevation respectively in their model 

simulating the effect of waste water on soil dynamics. This work further stimulated a variety 

of models examining the effect of SLR on coastal wetlands (Day et al. 1999; Rybczyk & 

Cahoon 2002).  

Cahoon et al. (2003) also implemented the model of Rybczyk et al. (1998) in their valiant 

attempt to simulate the effects of storms on coastal wetlands. Simulating storms and pulsing 

events is inherently difficult due to the natural uncertainty surrounding the frequency, 

magnitude and impact of the processes. Very few models have attempted to simulate the 

effects of storms on wetlands, despite empirical data that suggest storms, floods and other 

pulsing events have significant potential to add, move or remove large amounts of sediment 

in coastal wetlands (Cahoon et al. 1996, 2006; Guntenspergen et al. 1995; Nyman et al. 

1995).  

Within the last decade a suite of models have been developed that explicitly account for 

erosional processes affecting the coastal wetland system (Kirwan & Murray 2008; Kirwan et 

al. 2007; Mariotti & Fagherazzi 2010). These models simulate erosion as a function of bed 

shear stress, with some also explicitly considering the effect of wave height and water depth 

(Kirwan & Murray 2008; Mariotti & Fagherazzi 2010). However, following the empirical 

observations of Christiansen et al. (2000), many models assume erosion is negligible within 
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coastal wetlands (D’Alpaos et al. 2007; Temmerman et al. 2005). Whilst the influence of 

erosion is possible to be discounted in some coastal wetlands, the influence of erosional 

processes is significant in others. Especially in process based, landscape-scale models, the 

absence or simplistic treatment of erosion is often the norm rather than the exception. 

Landscape models focus upon simulating trends in a system over large areas allowing the 

response and spatial interrelationships among different environments to become apparent. 

Simulations of the relationships between SLR and coastal wetlands at the landscape level are 

considered important for informing decision and management measures. However, the 

landscape models often do not simulate in a mechanistic fashion the physical and biological 

processes that affect the evolution of coastal wetlands, but instead input the processes as 

forcing functions (Reyes 2000; Clough et al. 2012).  Due to the complexity of introducing 

explicit accountability of smaller scale processes to simulations of large areas, influences 

such as erosion, compaction and belowground processes are, thus, often overlooked, further 

limiting the reliable representation of coastal evolution provided in model output.  

Examining the full suite of numerical models developed over the past half century to simulate 

wetland evolution at a variety of scales it becomes clear that the processes leading to positive 

gains in wetland surface elevation have been the primary focus of numerical modelling 

efforts (also see Appendix A for a simplified overview of numerical models). This may 

primarily be attributable to the greater availability of information that has enhanced the 

understanding of the aboveground processes and fulfilled the necessary data requirements for 

conceptualisation, calibration and validation of numerical models. Nevertheless, the 

incorporation of processes that only account for sediment deposition and vertical growth of 

the wetland surface without sufficient consideration of the processes leading to losses in 

surface elevation results in significant limitations and uncertainties associated with model 

output. At its most basic, ‘deposition-only’ models may overestimate the ability of a wetland 

to increase in elevation and, thus, survive under rising sea levels. Numerical models 

developed over the past decade go some way to mitigate such an effect through their 

consideration of erosion. These models, however, neglect to simulate the effects of 

belowground processes impacting the evolution of coastal wetlands, generating their own 

uncertainties and limitations. Further parameterisation may enhance the ability of the models 

to more adequately represent the dynamic wetland systems, though an associated increase in 

complexity is inevitable. It has also been suggested that the integration of already-developed 

models may advance the simulations of wetland evolution and improve the understanding of 
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the future conditions of these dynamic coastal environments (Rybczyk & Callaway 2009). 

Furthermore, simulating the effect of vegetation on wetland evolution is in its infancy, with 

coupled sediment-vegetation models only being developed since the beginning of the 21
st
 

century. As further understanding of the wetland system evolves it is expected that numerical 

models, too, will change to more accurately incorporate those influences affecting the long-

term persistence of the coastal wetland. Certainly, as the greatest possible description of 

future wetland scenarios is necessary in order for managers to effectively plan for the 

uncertain future, continued investigation and improvement in modelling of the dynamic 

system is required. 

 

2.5.2 The SLAM model 

The Sea Level Affecting Marshes (SLAM) model is one of the most widely used spatial 

landscape models originally developed for North American coastal wetlands. The model, 

created in 1986 and revised numerous times, is a complex, non-hydrodynamic model that 

simulates six primary processes affecting the survival of coastal wetlands with long term SLR. 

These processes include inundation, erosion, overwash, saturation, salinity and accretion, of 

which inundation and accretion are most frequently implemented. The ability of the SLAM 

model to adequately describe the response of wetlands to SLR has been called into question 

by Kirwan and Guntenspergen (2009). It is noted that the ensuing discussion between the 

critics and the creators of the SLAM model related to SLAMM version 5 (Craft et al. 2009). 

Kirwan and Guntenspergen (2009) suggested that the simulation of accretion in the SLAM 

model was incorrect, with the feedback mechanisms considered so important to the 

persistence of wetlands with rising sea levels were not being modelled. Constant rates of 

accretion were simulated where an increase in accretion rates with accelerating SLR has been 

suggested to more comprehensively explain the response of the wetland. Craft et al. (2009) 

defended their model design by emphasising that the broad-scale nature of the model limited 

the capacity of such mechanistic detail of feedbacks to be incorporated. However, with 

further funding, advancements in computer science and renewed model development, 

successive versions of the SLAM model, versions 6 and 6.2, incorporated an accretion 

feedback component, which attempted to provide a flexible model for the simulation of 

accretion dynamics across the wetland under accelerated rates of SLR.  
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Though used primarily to simulate the changes in wetland boundaries and shoreline 

modifications with increasing sea level (Clough et al. 2015; Galbraith et al. 2002; Glick & 

Clough 2006; Linhoss et al. 2015), the SLAM model has been used to simulate the effect of 

SLR on the natural services and regulatory processes offered by coastal wetlands, such as 

species habitats and carbon sequestration and denitrification (Craft et al. 2009; Glick et al. 

2007, 2013; Naughton 2007). In addition, the SLAM model has been coupled with ecological 

models to examine the potential effect of SLR on wetland dependent and threatened species 

(O’Mara 2012; Traill et al. 2011).   

Despite its many uses, applying the SLAM model to coastal wetlands, such as those of SE 

Australia, where the geomorphology and ecology differs from that of North America throws 

into question the efficacy and reliability of the final output.  This ultimately affects the 

understanding of the unique ecosystems around the world and the management of these 

vulnerable environments. In applying the SLAM model to wetlands of north-eastern NSW, 

Akumu et al. (2011) acknowledged that model output could be unrealistic due to the 

differences between North American and Australian wetlands yet continued to conclude that 

the SLAM model generated data which provided useful insight into the possible impacts of 

SLR. Further studies on the impacts of SLR on coastal ecosystems of SE Queensland drew 

unwavering conclusions from the SLAM model output without first examining the reliability 

of the model to adequately describe the system (Traill et al. 2011; O’Mara 2012). 

Considering the change in context, a re-validation of the model is, thus, overdue for the 

Australian context.  
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3 METHODS  

In fulfilling the aims and objectives of this study a number of models were implemented. The 

methods of data preparation for common parameters of the models are first outlined followed 

by more detailed model description and explanation of parameters specific to individual 

models.   

3.1 Collation and preparation of common inputs for modelling  

3.1.1 Empirical data  

Modelling the effect of SLR on coastal wetlands requires a comprehensive understanding of 

past trends in coastal wetlands, which serve to provide insight into past responses to SLR and 

ultimately guide projections of future wetland scenarios  (Woodroffe 1990; Woodroffe & 

Murray-Wallace 2012). Based upon geological and contemporary observations, it is 

hypothesised that the ability of a wetland to survive with increasing sea levels is dependent 

upon its capacity to build vertically, primarily though processes of sedimentation (Redfield 

1972; Reed 1990, Reed 1995). Thus, it is crucial that site-specific accretion and wetland 

elevation change are quantified and temporal trends understood such that more reliable 

projections of the effect of SLR on coastal wetlands to be produced. For the very same reason, 

a quantitative understanding of relative SLR as recorded by a tide gauge is required when 

simulating the changes in coastal wetlands with SLR (Cahoon 2015). Empirical, time-series 

data recorded at the Minnamurra site regarding wetland surface elevation and sea level were, 

therefore, obtained and analysed to ascertain past trends that could inform future projections 

of wetland evolution under rising sea level conditions.  

 

Surface Elevation Table- Marker Horizon data  

A Surface Elevation Table (SET) is a portable device that is used in combination with a 

benchmark pipe fixed in the wetland substrate to obtain surface elevation measurements 

(Cahoon et al. 2002; Callaway et al. 2013; Cahoon 2015).  At the Minnamurra study site a 

total of six SETs were established in 2001 by Rogers (2004); three situated within the 

mangrove community and three within the saltmarsh. Initial measurements were taken on 11 

September 2001 and subsequent measurements were taken on 17 October 2002, 5 August 

2003, 8 September 2009, 28 April 2010, 6 September 2010, 5 October 2010, 1 November 

2010, 1 December 2010, 10 February 2011, 14 March 2011, 11 April 2011, 12 May 2011 and 
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20 May 2013. Increased frequency of measurements between 2010 and 2011 are the result of 

diligent data collection by Oliver (2011) for analysis in his honours thesis. All measurements 

were recorded in millimetres.  

Three marker horizons (MH), established around each SET site at the Minnamurra site by 

Rogers (2004) and Oliver (2011), allow for the calculation of accretion following the 

methods of Cahoon et al. (1995). However, data gaps in the accretion information were 

recorded at the Minnamurra area, especially within the mangrove zone, bioturbation affecting 

the marker horizons established at the site.  

Rates of SEC were calculated from the SET-MH data according to the method applied by 

Rogers (2004). An average rate of SEC for each vegetation type, mangrove and saltmarsh, 

was determined. Considering the data needs for model development (see below), the process 

of calculating the incremental and accumulative elevation changes and determining an 

elevation trend was repeated per individual SET. 

Accretion values utilised in this study were drawn from the work of Oliver (2011). These 

values were implemented in modelling efforts conducted here to allow for meaningful 

subsequent comparison with the simulated data of Oliver (2011) for the Minnamurra site. 

Furthermore, the lack of sufficient accretion information recorded at the study site precluded 

the direct calculation of accurate accretion values for this study.  

Tidal data 

Information on tidal levels over time informs the simulation of wetland evolution impacted 

by SLR. Tidal information for this study was primarily sourced from the Manly Hydraulics 

Laboratory’s tidal plane analysis of the Minnamurra River (MHL 2012). The automatic water 

level monitoring station at Minnamurra River was commissioned in March 2003, meaning 

that tidal data analysed by The Manly Hydraulics Laboratory (MHL) represented an eight-

year period between 2003 and 2010. MHL use the Foreman tidal heights and prediction 

programs (Foreman 1997) to determine tidal ranges and tidal constituents, such as mean high 

water (MHW). Raw tidal information for years subsequent to 2010 was available from MHL 

but not included within this study, as a Foreman analysis was considered beyond the scope of 

the current thesis. Though tidal inundation was a common parameter between the models, 

individual requirements of tidal information for each model are outlined in the relevant 

section below.  
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3.1.2 Digital Elevation Models 

Since the topography of the land determines the potential frequency and magnitude of 

inundation, high-resolution elevation data is arguably the most important component when 

modelling the effect of SLR on coastal wetlands (Morris et al. 2005; Schmid et al. 2011). 

Light Detection and Ranging (LIDAR) data can provide measurements of surface elevation 

of high accuracy (Hopkinson et al. 2004) and have become the most widely used and trusted 

source of elevation information (Franklin 2008). From such data, which are recorded and 

distributed as point elevation heights, a Digital Elevation Model (DEM) of high vertical 

resolution can be potentially derived (Poulter & Halpin 2008). DEMs are a raster or vector-

based representation of surface elevation and are the common, base elevation input for 

spatially applied inundation and SLR models of coastal environments. To explicitly test the 

importance of the elevation information in modelling the effect of SLR on coastal wetlands, 

three elevation models were created and used within this study.  

The primary LIDAR data utilised in the production of all three DEMs for the Minnamurra 

site were acquired by Land and Property Information (LPI) during the March of 2011 as part 

of the Coastal Capture program spanning the coastal area between Nowra and Wollongong. 

The data were collected with an ALS50-II sensor (Leica Geosystems, Heerbrugg, 

Switzerland) at a flying height of 2000 m which yielded a nominal nadir point density of 

1.03m and an overall vertical and horizontal accuracy of 80cm and 30cm respectively. Data 

were projected in metres (Geocentric Datum of Australia 1994, Map Grid of Australia Zone 

56) with elevation values referenced to the Australian Height Datum 1971 (AHD71). The 

LIDAR data was distributed in the popular format of the *.las file. At the time of obtainment 

in 2015, the data had been pre-processed, meaning that ground points had been classified 

from the raw LIDAR data. 

The first DEM created, DEM1, used purely the processed data acquired from LPI as the base 

ground surface height information. This DEM was produced in a relatively simplistic, 

standard fashion, assuming that all elevation heights measured and metadata regarding the 

LIDAR information were accurate and pertinent to the study site. Such an approach was 

deliberately executed to emphasise the importance of exploring and analysing possible errors 

prior to modelling as well as to highlight the necessity of expert judgement and analysis for 

high quality modelling.  Within ArcMap (v 10.2), a LAS dataset was created from the four 

tiles of LIDAR data covering the Minnamurra study site. To maintain a continuous water 

flow pathway in the DEM, bridges on the Minnamurra River were removed manually using 
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the edit tool of the ‘Las Dataset Toolbar’. The ‘Point File Information’ (3D Analyst) tool was 

applied to generate an estimate of the point spacing of ground-classified points, a value 

required to convert the LIDAR data to workable point features in ArcMap. The final ground 

point features produced by applying the ‘LAS to Multipoint’ tool were input as the height 

source in a terrain dataset. A terrain dataset builds a Triangular Irregular Network (TIN), 

multiresolution surface based upon input elevation measurements, 3D features and defined 

boundaries. It provides the ability to create a ground surface at an appropriate level of detail 

integrating different sources of information. The terrain dataset used for the derivation of 

DEM1 was constructed using the point spacing, as calculated above, and surface elevation 

heights as defined by the ground mass points. The area was constrained by enforcing a ‘hard 

clip’ to the boundary of the study site. Applying the ‘Terrain to Raster’ tool with a natural 

neighbour interpolation method, a raster-based DEM was derived from the resulting TIN-

based surface of the Minnamurra site. The raster was developed with a five metre horizontal 

resolution, following the general rule of thumb that the final cell size of a DEM should be 

approximately four times greater than the point density. The final cell size of DEM1 also 

reflects a decision to maintain compatibility for comparison between DEMs within the study, 

DEM3 being an inherited product of five metre spatial resolution. Significant errors were 

noted along the water course of the area and where dense vegetation occurred, such as in 

mangrove dominated areas. However, in view of DEM1’s purpose within the study, no 

further adjustments to reduce the errors were made. 

The second DEM used throughout this study, DEM2, was created with the aim of producing 

an elevation model with the highest possible vertical accuracy from the data available within 

the given time. The process to create this DEM was, thus, more technically demanding and 

required greater expert input and decision-making. Possible vertical error was initially 

explored and identified through the theoretical analysis of the metadata accompanying the 

disseminated LIDAR product, the exploration of the vertical errors of DEM1 and the manual 

analysis of the LIDAR data using the ‘Las Dataset’ toolbar in ArcMap.  

The LIDAR metadata supplied by LPI reported the vertical accuracy of the dataset as 0.3 

metres. Whilst this does provide a submetre accuracy for all elevation measurements, the 

estimate of accuracy also indicates that each individual LIDAR point is potentially displaced 

60cm from its true position. Given that this study is primarily focused upon a low-gradient 

floodplain where centimetre variations in elevation can significantly affect the frequency and 

magnitude of tidal inundation, a possible error of this scale within the elevation information 
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could significantly perturb and alter any analysis or inundation modelling of the area. 

Moreover, the tidal range affecting the intertidal zone of the Minnamurra River has been 

measured by MHL (2012) to be approximately 1.55m (discussed below). An error of 0.3 

metres is effectively increasing or decreasing the elevation of a point by almost one-fifth of 

the tidal range, potentially erroneously excluding or including a point within the intertidal 

zone under study. Consideration of these problems and potential sources of error drove the 

initial effort to increase the vertical accuracy of the elevation model.  

Further problems within the elevation data were identified through the visual and expert 

examination of DEM1. Significant differences in the modelled representation of the surface 

appeared to be clustered in mangrove-dominated areas. In some areas, elevation errors 

reached above one metre. Returning to the LIDAR dataset from which the DEM was derived 

and using the ‘3D View’ and ‘Profile View’ from the ‘Las Dataset’ toolbar in ArcMap it was 

noted that the original, processed las files sourced from LPI contained many vegetation points 

misclassified as ground, especially where vegetation was dense or positioned directly 

adjacent to the Minnamurra River.   

Given the combination of misclassification and spatially clustered vertical error within the 

LIDAR data, further post-processing was considered necessary. Filtering is the process of 

separating ground points from non-ground points and is commonly the first step in post-

processing of LIDAR. Collaborating with experts in the field, the FUSION (v 3.5.0) software 

(McGaughey 2015) was used to post-process the LIDAR data. The ‘Catalog’ program was 

used to re-evaluate the internal quality of the data covering the study site. This program 

provides a report on the important characteristics of the LIDAR data, such as the minimum 

and maximum elevation, total number of returns and nominal point density. The 

‘GroundFilter’ program was then applied to better identify the points that lie on the ground 

surface. The filtering algorithm employed in FUSION is based on that of Kraus and Pfiefer 

(1998). A rough approximation of the surface is first computed using all LIDAR points. From 

this generated surface the residuals, that is the distance and direction of error at each LIDAR 

point from the surface, are calculated. Elevation points are then assigned a weight according 

to their relative residual and a surface is recomputed using the weighted measurements. This 

process is implemented iteratively until all gross errors are eliminated or the maximum 

number of iterations have been completed (Kraus & Pfeifer 2001; McGaughey 2015). The 

final output from the application of the filtering process described above to the LIDAR data 
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of the Minnamurra area was comprised entirely of ground returns and was imported into 

ArcMap for further analysis and DEM2 creation.  

In addition to the filtered ground point data, Real-Time-Kinematic Global Positioning System 

(RTK-GPS) spot heights collected in the same year as the LIDAR data were utilised to 

further increase the accuracy of the elevation model. RTK-GPS equipment use complex 

algorithms that include both differential correction and ambiguity resolution to locate the 

horizontal (x,y; coordinates) and vertical (z) position of a point on the earth. The RTK-GPS 

measures elevation within an accuracy of 1 – 5cm vertically and a mean accuracy of 1cm 

horizontally. The RTK elevation points used in the creation of DEM2 were sourced from data 

collected by Oliver (2011) in April 2011and referenced to AHD71 (see Oliver (2011) for 

further information). These surface heights were used rather than elevation data acquired in 

2015 so that any possible errors arising from differences in surface elevation over time would 

be eliminated. The 300 points collected by Oliver were randomly divided into two subsets, a 

70% subset to be used in the derivation of DEM2 and a 30% subset to aid in a basic accuracy 

assessment.  

Similar to the method of model creation for DEM1, the point density of the ground-filtered 

LIDAR data for the entire area was approximated, the points were converted to multipoint 

features and a terrain dataset was built for DEM2. Both filtered ground points and RTK-GPS 

spot heights were referenced as surface heights within the terrain dataset. A soft replace of 

0m for all elevation heights within the river was defined for the terrain using the Minnamurra 

River polygon prepared as described in Section 3.3.2.6. This was determined based on the 

recognition that elevation points within or near the river were almost consistently positioned 

at 0.5 metres, a value that loosely corresponds to the MHW level at Minnamurra as reported 

by MHL (2012). Laser pulses of LIDAR systems will often be absorbed or reflected off water 

bodies, often resulting in gaps or increased surface elevation in the final data respectively.  

The terrain built from the input features was converted to a raster following the method 

outlined for DEM1. The natural neighbours interpolation technique was again employed 

since it develops a smoother, more continuous surface ideal for the floodplain-dominated 

study site (Webster & Oliver 2001).  

The last DEM used in this study was developed by Oliver (2011) for the floodplain 

referenced in this study as the western floodplain. As the 2011 LIDAR data was not 

processed before the completion of the study by Oliver (2011), ground points were selected 
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that fell within set boundaries for the vegetation communities in addition to those points that 

visually corresponded to ground sites on a high resolution image acquired from Nearmap. 

These selected points were combined with the 300 RTK-GPS points and an Inverse Distance 

Weighting interpolation technique to obtain the final, 5m resolution, raster-based elevation 

surface, here referenced as DEM3. Further explanation of the process of DEM3 derivation 

can be found in Oliver (2011).  

 

DEM 

Name 
Data input  

Interpolation 

technique 

Horizontal 

resolution 

DEM1 
LIDAR ground points 

Study site polygon 
Natural Neighbours 5m 

DEM2 

Refiltered LIDAR ground points 

RTK-GPS points 

River polygon 

Study site polygon 

Natural Neighbours 5m 

DEM3 
Selected LIDAR points 

RTK-GPS points 
IDW 5m 

 

Table 2: Overview of DEMs used within this study and the methods used for their generation. Each 

DEM was developed with the same spatial resolution to allow for a greater strength and credibility of 

subsequent comparisons.  

 

Accuracy assessment 

An accuracy assessment of LIDAR derived DEMs involves the comparison of modelled 

elevation with ground-truth data to determine the error associated with individual DEM 

values. Error within a LIDAR-derived DEM is often the cumulative result of a variety of 

propagated errors, including LIDAR sensor error, ground classification error and 

interpolation error (Liu et al. 2015). Methods developed to assess this error are commonly 

based upon theoretical frameworks such as approximation theory (Liu et al. 2012) and error 

propagation theory (Aguilar et al. 2010; Höhle & Höhle 2009). In this study, accuracy 

assessment is conducted following the method of Schmid et al. (2011), which separates the 

vertical elevation error into two main components, offset and level of precision. 

The 30% subset (72 points) of the RTK-GPS points collected by Oliver (2011) were used as 

the ground control points from which elevation errors were measured.  As these points lay 



 

40 

 

within the western floodplain only and elevation error will vary through space, it was not 

logical to compute the DEM vertical accuracy for the entire study area covered by both 

DEM1 and DEM2. Thus, the aforementioned DEMs were clipped to the boundary of DEM3 

in preparation for the accuracy assessment.  

Elevation values from DEM1 were extracted based upon the position of the RTK-GPS points 

using ‘Sample’ in Arcmap. From these values the root mean square error (RMSE) was 

calculated using the equation: 

 

RMSE𝑧 = √
∑ (𝑧′

𝑖 − 𝑧𝑖)2𝑛
𝑖=1

𝑛
 (1) 

where n is the number of ground control points, 𝑧′ is the DEM elevation, z is the elevation of 

the ground control point at the same position, and i is an integer from 1 to n. The maximum, 

minimum, mean and skewness of the errors were also calculated to provide a greater 

understanding of the distribution of error.  

The RMSE calculated estimated the vertical accuracy for the western floodplain. This value, 

however, represents a global accuracy for the area, masking the spatial variation of error. It is 

well understood that the vertical accuracy of LIDAR data is often dependent upon the land 

cover and vegetation of a particular area (Flood 2004; Schmid et al. 2011). Thus, the RTK-

GPS points were split according to vegetation type, mangrove, mixed, saltmarsh and 

casuarina, and statistical analysis of the error recalculated according to the methodology 

described above.  

The process of DEM sampling and subsequent statistical analysis was repeated for DEM2 

and DEM3. Thus, an understanding of overall and vegetation-specific vertical error was 

gained for each elevation model used in this study. 

 

3.1.3 Vegetation information and land classification maps 

The spatial distribution of vegetation, wetlands and land use is a common requisite 

component when modelling the effect of SLR on coastal wetlands (Akumu 2011). Models 

used in this study displayed basic differences in the delineation of vegetation type and 

approach to wetland vegetation switching with inundation.  However, common to each model 

were the land types principally identified within the land classification, which included:  
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- Mangrove 

- Mixed   

- Saltmarsh 

- Casuarina (swamp oak) 

- Undeveloped land and 

- the Minnamurra River (river channel) 

A mixed zone, consisting of both mangrove and saltmarsh was incorporated in the vegetation 

map where it was considered pertinent given the available data. Further description of 

wetland vegetation identification and modelling are described in the relevant sections below.  

 

3.1.4 SLR Scenarios 

Though not the only factor affecting the distribution of mangrove and saltmarsh, sea level 

plays a crucial role in the persistence of wetlands over time (Saintilan et al. 2013). In 

particular, the rate and magnitude of SLR has been observed as critical to the question of the 

wetland’s persistence or demise (Boesch et al. 1994; Reed 1995).  

In this study, three projected sea level scenarios were used, representing low, intermediate 

and extreme rates of SLR by 2100 (Table 3). Low and intermediate projected sea levels were 

based upon the emission scenarios produced for the fourth IPCC assessment report (AR4).  

IPCC emission scenarios are developed from predictions of future political and  

Scenario Source 

IPCC (2007) 

emission 

scenario 

Implemented in 

model 

Projected sea 

level rise by 

2100 (m) 

Low 
IPCC  AR4 

(2007) 
B1 5%CI 

Oliver model 

SAAT model 

SLAM model  

0.185 

Intermediate 
IPCC  AR4 

(2007) 
A1F1 95%CI 

Oliver model 

SAAT model 

SLAM model  

0.819 

Extreme 
Vermeer and 

Rahmstorf (2009) 
n/a 

SAAT model 

SLAM model  
1.9 

 

Table 3: SLR scenarios used throughout this study. 
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socio-economic trends from which SLR is modelled. Though the observed, eustatic SLR has 

exceeded the lowest limit predicted by the IPCC AR4 (2007), the B1 5% confidence interval 

(CI) SLR was used to defined the low SLR scenario utilised in this study. This scenario was 

primarily chosen for comparison purposes and to investigate the flexibility and validity of 

models examined. Following the same reasoning for scenario choice, the upper limit of SLR 

of the AR4 IPCC (2007), corresponding to the A1FI 95%CI, was also used across all models 

applied in this study.  A last scenario, suggested by Vermeer and Rahmstorf (2009), was used 

to examine the validity of the models under extreme conditions whilst also providing 

information on possible coastal wetland evolution effect of extreme rates of SLR on wetland 

communities.  

Time-series data of projected AR4 IPCC sea levels calculated at 10-year increments were 

sourced from Hunter et al. (2010). Decadal data were not readily available for the sea level 

projection by Vermeer and Rahmstorf (2009). In the absence of data, the SLAM model was 

used to simulate a eustatic SLR of 1.9 metres by the year 2100. Output data of the SLAM 

model include the incremental SLR for a given time step. As such, a SLR of 1.9 metres was 

specified, relative SLR was set as zero, 10-year time steps were defined and a mock 

simulation conducted from the year 1990 to 2100, corresponding to the temporal period of 

Vermeer and Rahmstorf’s (2009) projection of SLR. Modelled SLR values could only be 

visually compared with the graphed data from Vermeer and Rahmstorf (2009) due to the lack 

of exact projected values. It is noted that the SLAM model scales the A1B 95% CI IPCC 

scenario of the third assessment report (TAR) to estimate a specified SLR, in this case the 1.9 

metres. Therefore, output values of SLR would not exactly correspond to those of Vermeer 

and Rahmstorf (2009). However, for this study the values were considered sufficient to 

model the effect of extreme SLR on coastal wetlands.  

Any further SLR information gathered and analysed for individual model verification, 

calibration or application is discussed within the relevant section below.  
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3.2 Modelling wetland evolution  

The previous sections of this chapter outlined the process of preparing input data common to 

models applied within the study. Model description, additional parameter preparation and 

model implementation are further outlined below.  

The first model under investigation in this study was the SLAM model, a model developed 

and calibrated in the United States of America. The second model applied, adjusted from that 

developed by Temmerman et al. (2003b), was selected due to its relative simplicity, 

empirically based structure, non-hydrodynamic and deterministic nature and broad similarity 

to the SLAM model in parameterisation. Comparison of the simulated results from the two 

models was, thus, both possible and justifiable due to the many similarities between the two 

models which, in assessment, also serve to highlight the differences in the model 

performance.  

The third model, only briefly explained in this section, was implemented for the Minnamurra 

site by Oliver (2011). The statistical model is empirically based and developed specifically 

for the Australian context. It, thus, represented the most locally-derived, site-specific model 

of the three chosen for this study.  

 

3.3 The Sea Level Affecting Marshes model 

3.3.1 Model description 

The SLAM model is a complex, non-hydrodynamic model that attempts to simulate the 

response of wetlands to SLR (Clough et al. 2012). Abstraction of the wetland system 

response resulted in the development of six processes being included in the latest version of 

the SLAM model (SLAMM v.6.2, Clough et al. 2012). Inundation, accretion, overwash, soil 

saturation, accretion and salinity are all included as the primary processes that affect wetland 

fate under scenarios of SLR. Certain processes are optionally incorporated in simulations, 

such as overwash and soil saturation, and still others remain in their formative stages and 

have been recommended not to be utilised, such as the salinity module.  

The basic conceptual model upon which the SLAM model is designed is quite simplistic and 

is based on the assumption that wetland categories only inhabit a certain elevation range that 

are a function of tidal range or salinity. The model can simulate changes in 25 different land-
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cover categories under rising sea levels. Wetland categories are based on the National 

Wetland Inventory prepared for the United States of America (Cowardin et al. 1979). The 

structure of the model can be broken into two broad areas pertaining to the wetland elevation 

change with rising sea levels and the subsequent conversion of elevation-defined vegetation.  

The SLAM model divides an area into cells of a custom-defined size and carries out 

calculations and conversions on a cell-by-cell basis. The change in wetlands surface elevation 

of a single cell is a function of SLR and accretion and is defined mathematically as:  

 𝐸𝑡 = 𝐸𝑡−∆𝑡 + ∆𝑡. 𝐴 − 𝑆𝐿𝑅𝑡 (2) 

where E is elevation, A is the site-specific accretion or sedimentation rate, SLR is the SLR 

for a given time step and t is time. The accretion rate can be characterised by vegetation-

specific values or may be defined as a function of elevation using the accretion module. The 

magnitude of SLR follows the IPCC scenarios of the TAR or a custom-defined SLR. In 

addition to the global SLR, the local SLR is simulated from the deviation of the local historic 

SLR trend from the eustatic SLR trend, assuming a linear relationship remains over time. The 

SLR is therefore calculated at each time step as:  

 SLRt = GSLR𝑡 + (𝑡𝑛 − 𝑡0)(𝐻𝐿 − 𝐻𝐺) (3) 

where GSLR is the global mean SLR over a certain time step as custom defined or following 

the TAR (IPCC 2001) scenarios, HL is the local historic trend of SLR and HG is the eustatic 

trend of SLR. The combination of estimated SLR and accretion responses thus drives the 

elevation change of a wetland with respect to mean sea level.  

Subsequent conversion of a wetland category in a cell is driven by the cell’s elevation. Each 

category is assigned a specific elevation, salinity or tidal range within which the particular 

wetland can exist. In any given simulation, if the elevation of the cell falls below the 

elevation range defined for the wetland category contained in the cell, then a fraction of the 

cell is converted to a lower-elevation habitat. The fraction of the cell lost is a function of the 

slope of the land and the magnitude of the fall below the wetland-category’s lowest elevation. 

The lower the cell falls, the greater the fraction converted to a lower wetland category. 

Conversions, thus, occur in one direction only, from one wetland vegetation type to another 

of a lower elevation range. The lower vegetation type to which a category is converted is 

governed by a decision-tree process programmed into the SLAM model from which site-

specific deviations cannot occur.  
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3.3.2 Model setup 

The SLAM model requires a variety of spatial and site-specific parameters to be determined 

prior to its implementation. Figure 3 provides a general overview of the processes followed 

and information gathered for the most accurate implementation of the SLAM model at the 

Minnamurra study site. 

Elevation data and terrain derivatives 

The importance of elevation data within the SLAM model is not to be disregarded. The input 

elevation information is at the heart of almost all constituent modules within the model, 

signifying that high-vertical resolution is critical to the model’s application. DEM1, DEM2 

and DEM3, developed as outlined above, were used as elevation input data for simulations in 

THE SLAM MODEL. The main elevation model used in this study for model validation, 

verification and calibration was DEM2, with subsequent projections being implemented for 

all three DEMs, as described below.  

The SLAM model also requires a layer that represents the slope of the land in degrees, which 

in this study was derived from each DEM using the ‘Slope’ tool in ArcMap. Spatial 

resolution of slope layers corresponded exactly to that of the DEMs, with 5mx5m cells. In the 

SLAM model these slope layers are used in determining the percentage conversion of an 

inundated cell from wetland type to another during model projections. All DEMs and their 

respective slope layers were converted to text layers using the ‘Raster to ASCII’ tool in 

ArcMap as required for the SLAM model.  

 Identification of model subsites 

Within a region, or even within an individual estuary, site characteristics, such as tidal range 

and accretion rates, can vary. Such variation can be partially accounted for in the SLAM 

model by dividing a study area into subsites and applying site-specific parameters to each. 

Though this method is not without its limitations, it was used in this study to maintain the 

effects of tidal attenuation along the Minnamurra River. Division of the entire study area into 

subsites also served to simplify the calibration process. 
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Figure 3: Broad overview and schematic representation of the processes and data collection required for the 

implementation and use of the SLAM model in this study.  

Projections Validation 
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Foulsham et al. (2012) emphasise the importance of tidal attenuation along estuaries when 

modelling SLR. The significance of following the suggestion was fully realised within this 

study when a singular tidal range value was applied to the entire study site. Tidal levels 

demarcate areas of inundation and therefore, are inextricably linked to the distribution of 

wetland vegetation over time. Thus, to account for variance in tidal ranges along the 

Minnamurra River, eight subsites were identified based upon attenuated tidal range values 

derived from Office of Environment and Heritage(OEH) (2014). Subsites approximately 

correspond to those defined in the study by Chafer (1998) (Figure 4). The western floodplain 

lies completely within subsite four. Subsite parameters set for each defined section are 

discussed in successive sections below.  

  

3 

Figure 4: Subsites defined for the study site following Chafer (1998). Subsites 

were utilised to partially account for spatially varying parameters, such as the 

tidal range.  

3 
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Tidal data 

The SLAM model required a range of diverse tidal information for model setup, calibration 

and projection. Tidal information was sourced from MHL (2012), as described in Section 

3.1.1.2. and combined to data drawn from OEH (2014) and the Port Kembla and Fort 

Denison tide gauges.  

Historical sea level rise 

A past trend in SLR, nominated as historical sea level rise in the SLAM model, is used in the 

model currently under discussion to determine the differential rise in local sea level with 

respect to the established eustatic SLR of 1.7mm/yr (IPCC 2007) and to account for the effect 

of local factors on projected SLR. The latter aim is fulfilled by simply summing any 

difference between local and eustatic sea level trends to the global SLR projections being 

used. In this way, a historical sea level rise of 1.8mm/yr being set for a simulation being 

conducted for the period 2000-2100 results in an additional 10mm (0.1mm x 100) of SLR by 

2100. This basic method of accounting for local variations in SLR assumes that any 

differences between local and eustatic trends derive purely from the effect of local subsidence, 

even though other/further/a combination of local factors are commonly cited when 

considering spatial variations of local or relative SLR. 

Local variations in sea level along the NSW coast have been noted by many and are 

considered to be the response of tides to influences such as the local bathymetry, barometric 

effects, changes in hydrodynamic conditions and land subsidence (MHL 2012; Couriel et al. 

2014). Thus, when considering the effect of SLR at a local to regional scale, the most 

relevant, site specific tidal information is required. Minnamurra tidal range and constituent 

data was thus utilised throughout this study, as outlined above. However, as the temporal 

period of tidal data collection did not extend over a full 18.6 year tidal epoch, the typical 

regression of mean sea level over time to establish an approximate relative SLR was not 

completed for the Minnamurra tidal data. Instead, sea level trends calculated for the Port 

Kembla tide gauge, situated approximately 20km South of Minnamurra, and the long-

established Fort Denison tide gauge, located within Sydney Harbour, were used as 

representative values of SLR for the study site. During validation and calibration stages, the 

historical SLR most appropriate was identified and subsequently utilised in projections to 

2100.  
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Tidal range and tidal attenuation 

As discussed above, tidal range and tidal attenuation are significant factors to consider when 

simulating SLR and its effect on coastal wetlands. Most particularly within THE SLAM 

MODEL, assignment of accurately quantified tidal range vales is crucial to the modelling 

process and for the production of informative and logical results. Not only does the tidal 

range define areas of potential inundation, it is also used to establish the distribution of 

wetland vegetation. Based upon the work by McKee and Patrick (1988), individual wetland 

vegetation classes are considered to be a function of their position within a tidal range. Thus, 

a particular vegetation type will only occur within a particular elevation range with respect to 

the tide.  

Given the importance of tidal range in the model, specific attention was paid to assigning the 

most accurate and appropriate tidal ranges for the Minnamurra site. The singular value of 

great diurnal tidal range sourced from MHL (2012) was used but not considered to be 

representative of the parameter throughout the entire study site. Subsites, primarily identified 

for their variations in tidal range, were thus each assigned a tidal range based upon the 

extrapolation of data from OEH (2014) and MHL (2012) (Table 4).   

OEH (2014) developed and documented information regarding tidal planes in NSW estuaries 

as a function distance from the ocean. Analyses were based upon tidal level data from MHL 

(2012), tidal limit data reported in MHL (2006) and ocean tide levels modelled by the authors 

of the OEH risk assessment report (OEH 2014). As tide ranges recorded at ocean gauges can 

be greater than those recorded at estuary entrances MHL (2005), OEH (2014) used the 

Oregon State University Tidal Inversion Software (OTIS 2013) to obtain the tidal water 

levels and ranges at the coast. For the Minnamurra site, the OTIS derived value for the river’s 

entrance represented the greatest tidal range and was assigned to the first subsite. The tidal 

gauge, from which the MHL (2012) data was measured, is situated in Rocklow Creek, subsite 

2, and thus the tidal range for the site was assigned to subsite 2. Subsequent subsites were 

assigned a tidal range value between 1.8m and 1.5m, successive sites decreasing at a rate 

equal to that documented in OEH (2014). In this way, tidal range was set to approximately 

attenuate along the Minnamurra River.  
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Salt elevation 

Within THE SLAM MODEL, the salt elevation parameter defines the boundary between 

inundated and dry lands (Clough et al. 2012) and is often obtained by approximating the 

greatest land elevation that is inundated once every 30 days. Similar to the tidal range 

discussed above, the salt elevation boundary is yet another parameter that is significant in the 

delineation of coastal wetlands and requires accurate, site-specific data in order to maximise 

the performance of the model. In this study the High High Water Solstice Springs (HHWSS) 

reported for the Minnamurra area by MHL (2012) was used to determine the elevation of the 

salt boundary. HHWSS is here used as a proxy for the Highest Astronomical Tide, the 

highest level a tide may reach given any combination of influential factors.  

Logically, as the tide range attenuates, so too does the salt elevation boundary. The standard 

deviation of HHWSS (MHL 2012) was used to determine an estimate of the upper and lower 

limit of the salt elevation boundary. The highest value was assigned to the first subsite, 

closest to the ocean, and the lowest to the final subsite with areas in between being set a value 

proportional to their distance from the ocean (Table 4). 

 

Accretion rates/ rates of surface elevation change 

The ability of a wetland to maintain elevation with respect to a rising sea level defines its 

ability to survive over time.  Though net wetland SEC over time is controlled by a number of 

dynamic processes, including accretion and compaction (Cahoon 2006), only accretion is 

modelled within the SLAM model. To investigate the manner in which SEC is captured 

within the SLAM model, three different methods of defining the accretion parameter were 

used. The first two utilised the vegetation-specific accretion parameter in which a single, 

constant accretion trend was assigned to a vegetation class. Rates of SEC and accretion rates 

as determined from analysis of the SET data used for respective validation runs and 

projections using the SLAM model (Table 5). The process of defining the parameter in the 

 Global Subsite1 Subsite2 Subsite3 Subsite4 Subsite5 Subsite6 Subsite7 

Tidal range 1.8 1.8 1.8 1.65 1.62 1.615 1.56 1.5 

Salt elevation 

boundary 
0.974558 0.974558 0.974558 0.942625 0.936238 0.935217 0.923465 0.910692 

Table 4: Tidal range and value of salt elevation boundary assigned to each subsite in an attempt to 

account for varying water levels throughout the estuary.  
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different manners was aimed at determining which parameter, SEC or accretion, best 

modelled the evolution of the Minnamurra wetlands.  

A third method of defining the accretion parameter was applied to test the ability of the 

SLAM model to simulate wetland elevation dynamics, namely the accretion module. After 

severe criticism of earlier SLAMM versions regarding the ability of the SLAM model to 

successfully capture fundamental feedback systems influencing accretion rates (Kirwan & 

Guntenspergen 2009), SLAMM version 6.2 includes a model-based approach that attempts to 

account for the important, spatially variable feedbacks between accretion and SLR, herein 

called the accretion module.  

The accretion module consists of three main components; accretion, distance to tidal channel 

and salinity. The salinity component of the model was not considered sufficiently robust for 

use at the Minnamurra site (discussed below). Given the distance to tidal channel component 

is still in its formative stage and required data was not available to inform parameterisation, 

this component too was disregarded. Thus, only the accretion component of the module was 

parametrised and applied. 

The accretion component is composed of a flexible cubic equation that relates accretion rates 

within a given wetland type to elevation. The key input parameters required are the maximum 

and minimum accretion rates for the wetland vegetation type and equation coefficients that 

define the curve relating varying accretion rates to elevation. Maximum and minimum 

accretion values assigned to mangrove and saltmarsh communities for this study are 

summarised in Table 5. The lowest accretion rate of the mangrove zone was assigned as the 

highest for saltmarsh to allow a smooth and continuous decrease in accretion rates to be 

modelled. A zero accretion rate was assumed for Casuarina zones.  

A relationship between elevation and accretion rates was derived by calibrating the SLAM 

model accretion curve to the SAAT model equation developed in this study (equation 

outlined in Section 3.4.1). The use of the SAAT model for calibration was attractive for two 

reasons. Firstly, the model defines spatial variability of SEC across a wetland, aligning 

almost perfectly with the purpose of the accretion component of the module. Secondly, 

similarity between the models used in this study allows for more meaningful comparisons. 

  



 

52 

 

Treatment of SEC 
Accretion/module defined 

by: 

Mangrove 

(mm/yr) 

Mixed 

(mm/yr) 

Saltmarsh 

(mm/yr) 

Vegetation-

specific accretion 

parameter 

Constant rate of SEC 0.93 0.76 0.45 

Constant rate of accretion 8.2 5 1.8 

Accretion module 

Maximum accretion rate 10 n/a 5 

Minimum accretion rate 5 n/a 0 

Cubic coefficients; a, b, c 0.8, 0.8, 0 n/a 0.8, 0.8, 0 

 

Vegetation information and mapping 

In THE SLAM MODEL, explicit information on the spatial distribution of wetlands is 

required for model runs. Several data sources were used in this study to establish the land 

cover types at the Minnamurra site (Table 6). To satisfy the spatial data requirements of the 

model for validation, calibration and projection purposes, vegetation maps were prepared for 

the years 1949, 1963, 1986, 1997 and 2011, the former four being primarily based upon the 

work by Chafer (1998) and the latter on the work of Owers et al (2015) and Department of 

Primary Industries (DPI 2006) for the Comprehensive Coastal Assessment (CCA).  

 

Vegetation map 

source 

Use in vegetation mapping 

for this study 
Mapping technique 

Chafer (1998) 1949, 1963, 1986, 1997, 2011 Digitised aerial photography   

CCA (2006) 2011 Digitised aerial photography 

Owers et al. (2015) 2011 
Spectral classification of 

remotely sensed imagery 

Table 6: Sources of vegetation information for the development and adjustments of vegetation maps 

used for projection and validation runs in the SLAM model.  

Table 5: Summary of the methods of treating SEC and the values used to define the parameters for 

mangrove, mixed and saltmarsh vegetation within the SLAM model utilised in this study. The mixed 

values were utilised for those projections in which a mixed zone was delineated within the input 

vegetation map (outlined below). 
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Modification of historical vegetation maps 

‘Historical’ vegetation maps for the Minnamurra area were developed by Chafer (1998) to 

analyse the temporal habitat change of the Minnamurra River estuary. The maps displaying 

wetland vegetation over time were produced by scanning, georectifying to the Australian 

Map Grid, Zone 56 (1966 Australian Geodetic Datum) and digitising aerial photography of a 

2m spatial resolution. Vegetation zones were classified implementing the scheme defined in 

Table 7 and spatially delineated based on an area-based rule that a particular class polygon 

must contain at least 90% of the relevant vegetation. Chafer (1998) acknowledged that this 

method introduced a degree of error, since the natural distribution of vegetation communities 

is not characterised by abrupt, linear changes in plant type as indicated by the vegetation 

maps produced for the Minnamurra River estuary (and indeed all vegetation maps). Rather, 

boundaries between communities are mostly gradual, with one vegetation type coexisting 

with another, producing an ecotone, such as is the case for saltmarsh and mangrove at the 

Minnamurra site. Such boundary interpretation error in addition to the potential error 

associated with digitising areas from aerial photography must be understood and deemed 

appropriate or within a defined error limit before any modelling occurs.  

Using the method described above, Chafer (1988) developed eight vegetation maps for 

certain years between 1938 and 1997. Of these, four were chosen for use in this study, 

primarily to validate the SLAM model as described in Section 3.3.4. Classes defined by 

Chafer (1998) were reclassified for this study as displayed in Table 7. Reclassification rules 

were formulated in response to the requirement of the greatest possible similarity between 

diversely derived vegetation maps for conducting any subsequent comparison or analysis. A 

mixed zone was not demarcated by the author for the historical vegetation maps as aerial 

photography used in the initial analysis by Chafer was not obtained. Furthermore, validation 

of a model logically requires both the input data and comparison data to be created in exactly 

the same manner, signifying that any attempt to create polygons representing ecotones would 

only serve to increase the error inherent in the vegetation data but also decrease the reliability 

of the model validation.  
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 Chafer (1998)  

vegetation class 
Vegetation classification definition 

Vegetation class for 

this study 

Supratidal sands 

Permanently exposed sediments of sandy 

constitution associated with ocean beach and 

river shoals 

Beach Sands 

Mangrove 
Tidally inundated substrates vegetated by 

Avicennia marina and Aegiceras corniculatum 
Mangrove 

Saltmarsh 

Semi-intertidal substrates vegetated in zones 

with Sarcocornia quinqueflora, Sueada 

australis, Sporobulus virginicus and Juncus 

krausii  

Saltmarsh 

Sedgeland/Reedland 

Seasonally inundated poor soils generally 

vegetated with Juncus krausii and Cumbungi 

Typha orientalis 

Saltmarsh 

Swamp Oak 
Forested land on seasonally inundated poor 

soils, primarily vegetated by Casuarina glauca 
Casuarina 

Seagrass 

Submerged aquatic vegetation growing in 

water generally at a height less than one metre 

depth 

River 

Channel 
Low water channel of Minnamurra River and 

Rocklow Creek 
River 

Intertidal Flats 
Muddy or sandy substrates periodically 

exposed with tidal fluctuations.  
River  

 

Table 7: Reclassification of the categories defined by Chafer (1998) for this study.  
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2011 vegetation map creation 

The final vegetation map used within this study was developed to reduce boundary 

interpretation error, test the flexibility and comprehensive nature of THE SLAM MODEL 

and provide a vegetation distribution map which covered the entire study site which was 

temporally consistent with the LIDAR-derived elevation model. Spatial vegetation 

information used to characterise wetland cover was sourced from Chafer (1998), CCA (2006) 

and Owers et al. (2015).  

To decrease the potential error in vegetation mapping and test the flexibility of models in 

predicting future distributions of ecotones, the mixed vegetation community saltmarsh-

mangrove was delineated and classified as a mixed zone within the final vegetation map. 

Both Oliver (2011) and Owers et al. (2015) produced spatial layers that incorporated a 

defined mixed zone in addition to mangrove and saltmarsh. The spatial extent, methodologies 

and final vegetation maps were compared to identify the layer that displayed the most 

accurate spatial delineation of the wetland communities and ecotone.  

Oliver (2011) discriminated between vegetation types, mangrove, mixed, saltmarsh and 

casuarina, based on the wetland vegetation mapping protocols outlined in Wilton (2002). 

Whilst the protocols provide convenient guidelines for spatial delineation of wetland 

communities, their application to the Minnamurra area caused certain areas to be 

misclassified as mangrove, where they would be better described as a mixed zone. This may 

be partially due to the protocols being based on canopy gaps, which are not necessarily 

indicative of the presence or absence of saltmarsh. Indeed, in some areas, saltmarsh has been 

observed thriving beneath mangrove stands. In such locations, the mapping protocols fall 

short of accurate vegetation classification. Thus it was that the vegetation mapping by Oliver 

(2011) was not utilised within this study. The relatively small spatial extent of the map 

produced a further reason for its exclusion from this study.  

Owers et al. (2015) used a complex, spectral analysis of remotely sensed imagery coupled 

with a decision tree process to identify and spatially demarcate three vegetation zones, 

namely the mangrove, mixed and saltmarsh communities. Resulting boundaries between 

vegetation categories were distinct and canopy based. The Owers et al. (2015) vegetation 

map covers the western floodplain and almost a third of the entire wetland area for the 

Minnamurra site. Whilst the method does potentially introduce uncertainty in boundary 

identification, the final output from the classification process was considered to provide the 
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greatest accuracy within the primary study area and to be more suitable for the purposes of 

this study.  

The Owers et al. (2015) vegetation map was combined with wetland vegetation spatial data 

developed for the CCA (2006) to determine the vegetation distribution within the entire 

Minnamurra study site. Seagrass, mangrove and saltmarsh boundaries were digitised for the 

CCA from aerial photographs at a consistent scale of 1:1500, producing a positional accuracy 

of less than 10m. For this study, the seagrass zones were reclassified to river. The CCA 

wetland vegetation map was clipped to that produced by Owers et al. (2015) and merged to 

create a wetland vegetation layer for the study area.  

Working from the casuarina polygon developed by Chafer (1998) for the 1997 vegetation 

map, a casuarina zone was produced and incorporated in the final 2011 vegetation map for 

this study. The casuarina area was extracted from Chafer, edited to represent casuarina 

distribution displayed in the aerial photography and merged with the wetland vegetation layer 

to create one final, continuous spatial layer of wetland distribution at the Minnamurra site. 

In addition to the vegetation distribution, spatial representation of the Minnamurra River was 

required. The polygon feature of this water course developed for the CCA (2006), however, 

was incorrectly positioned. To better identify the river boundary for the study area, 

adjustments to the river shapefile were made during an edit session in ArcMap at a scale of 

1:1000.  

It was deemed a priority to maintain the spatial delineation of the Minnamurra River when 

combining the wetland vegetation and river layers. Therefore, areas of the combined wetland 

vegetation map overlapping the river polygon were erased. Any gaps between vegetation and 

river were removed using the topology tool during an edit session, efficiently filling the small 

voids with the nearest habitat. All areas in the study site that had not been assigned a class 

were defined as undeveloped land. Those areas that were in fact developed were not 

considered in the modelling phase but rather removed after simulations to determine the 

percentage loss of vegetation growth due to coastal squeeze.  

Reclassifications for an Australian setting 

The SLAM model designates wetland vegetation type based upon the Cowardin classification 

system used by NWI (Cowardin et al. 1979; Clough et al. 2012), a system developed 

specifically for the North American context. Alignment of Australian vegetation types with 
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those of NWI classifications was necessary before application of the model to the 

Minnamurra site. Assignment of NWI classes to the Australian vegetation for this study was 

also conducted in consideration of any wetland type conversions in the SLAM model.  

Based on the work by Traill (2011), the Chafer (1998) vegetation maps and 2011 vegetation 

map were reclassified to correspond to NWI wetland classes, as shown in Tables 8 and 9 

respectively. Adaptations were made to the suggested classifications of Traill (2011) for the 

wetlands of SE Queensland in consideration of the decision-tree programmed within the 

SLAM model. The changes were necessary a) to ensure the Minnamurra wetland system was 

not immediately classified as a tropical system within the model and b) to allow the mixed 

zone to move across the land. The SLAMM ID code, used as the vegetation reference within 

the model, relevant to individual class types was assigned to the ‘dissolved’ class polygons of 

each vegetation map in ArcMap. Final, reclassified Chafer (1998) and 2011 vegetation maps 

were then converted to raster layers with identical spatial resolution to the DEMS (5m x 5m 

cells). Rasters were converted to text files using the ‘Raster to ASCII’ tool in ArcMap, 

prepared, as required, for import into the SLAM model.  

 

Chafer  (1998) 

vegetation class 
NWI vegetation class 

SLAMM 

ID code 

Under inundation, converts 

to 

Mangrove  Regularly flooded marsh 8 Mudflat (tidal flat) 

Saltmarsh  Irregularly flooded marsh 20 Regularly flooded marsh 

Casuarina Transitional salt marsh  7 Regularly flooded marsh 

Undeveloped land Undeveloped dry land 2 
Nearest transitional salt 

marsh, mangrove, ocean or 

estuarine beach 

Minnamurra River Riverine tidal open water 16 Estuarine water 

Ocean Open Ocean 19 n/a 

Sandy beach Ocean beach 12 Ocean 

 

Table 8: Reclassification of the Chafer (1998) vegetation classes as defined in this study to match 

NWI vegetation classes coded within the SLAM model.  
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2011 Vegetation map 

class 
NWI vegetation class 

SLAMM 

ID code 

Under inundation, converts 

to  

Mangrove Regularly flooded marsh 8 Mudflat (tidal flat) 

Mixed 
Irregularly flooded 

marsh 
9 Regularly flooded marsh  

Saltmarsh Tidal swamp 20 Irregularly flooded marsh 

Casuarina Transitional salt marsh 7 
Regularly flooded 

marsh/mangrove 

Undeveloped land Undeveloped land 2 
Nearest transitional salt 

marsh, mangrove, ocean or 

estuarine beach 

Minnamurra River 
Riverine tidal open 

water 
16 Estuarine water 

Estuarine Beach Estuarine beach 10 Open water 

Ocean Open ocean 19 n/a 

Beach Ocean beach 12 Ocean 

Rocky Intertidal  Rocky intertidal 14 Ocean 

Table 9: Reclassifications of the wetland and landcover classes of the 2011 vegetation map to 

correspond with the NWI classes required for the SLAM model.  

 

Vegetation elevation ranges 

As previously described, the SLAM model is based on the assumption that wetland 

vegetation classes will exist at a certain elevation or position within the tidal frame. 

Vegetation classes within the SLAM model are each assigned elevation ranges within which 

the class exists. Whenever a cell containing that class falls below the lower boundary of its 

assigned range it is converted to a lower-elevation vegetation class. Given that the elevation 

ranges therefore drive the conversion and evolution of a wetland under rising sea levels, it is 

vital that most accurate delineation of elevation ranges for each vegetation is determined for a  
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Lower boundary 

(m) 

Lower boundary with 

respect to MSL (m) 

Lower boundary as a 

function of tidal range 

(HTU) 

Mangrove 0 -0.1125 -0.125 

Mixed 0.567 0.4545 0.505 

Saltmarsh 0.684 0.5715 0.635 

Casuarina 0.877 0.7645 0.8494 

Table 10: Lower elevation boundary of each vegetation type with respect to the local mean sea level 

(MSL) and tidal range (represented by the HTU).  

 

given site. Within the SLAM model, it is possible to define the elevation ranges for a site by 

elevation, as a function of the tidal range or as a function of salinity.  

Allowing for model comparison, elevation boundaries for wetland categories in this study 

were based on those demarcated for the Minnamurra site by Oliver (2011). As elevation 

ranges of wetland vegetation often change with decreasing tidal levels and differences in 

physiochemical conditions, elevation boundaries relative to the local tidal datum were 

converted to half tide units (HTU). Such a treatment of elevation ranges caused boundaries of 

wetland elevation to vary proportional to defined tidal ranges for each subsite. Table 10 

shows the lower elevation boundaries of each vegetation class defined by Oliver (2011) and 

the method by which they were converted to HTU for the SLAM model. The boundaries 

were first expressed relative to the MSL measured at the Minnamurra site as required for the 

model prior to defining the elevations as a function of the tidal range. Given the tidal range 

defined for the entire study site, one HTU for the Minnamurra site was 0.9m. The elevation 

boundaries were originally defined with respect to this value with the SLAM model 

automatically applying the same proportional definitions of the boundaries to each subsite.  

The final elevation ranges assigned to vegetation classes are displayed in Table 11. 

Vegetation maps created by Chafer (1998) did not include a mixed zone. Therefore, in order 

to partially account for the mixed zone when the Chafer maps were incorporated in the 

SLAM model, the upper value of the mangrove zone and lower boundary of the saltmarsh 

  Lower boundary 

(HTU) 

Upper boundary 

(HTU) 

Mangrove -0.125 0.635 

Mixed 0.505 0.635 

Saltmarsh 0.635 0.849 

Casuarina 0.635 1.083 

 Table 11: Final elevation ranges assigned to each vegetation type. For validation runs, the 

lower elevation boundary of saltmarsh was extended to the lower boundary of the mixed 

zone as outlined above.   
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zone were defined to overlap such that the mangrove and saltmarsh elevation ranges extended 

to the upper and lower limits of the mixed zone respectively. Such a method was applied for 

all validation runs outline below.  

 

3.3.3 Basic verification of the SLAM model 

Verification of models as defined in this study denotes the process of testing the internal 

consistency of a model algorithm and checking that the inbuilt computer code performs as it 

should (Mulligan & Wainwright 2013). Testing of the SLAM model code in the traditional, 

computer science manner was beyond the scope of this study. However, based on the final 

output of models run using default parameters over the entire 1990 to 2100 period, a basic 

verification of the SLAM model was conducted.  

Of particular interest was the verification of projected SLR in the SLAM model. The model is 

programmed to simulate eustatic SLR according to the decadal values reported in the third 

IPCC assessment report (IPCC 2001)  or based upon user-defined values. To check the 

correct projection of SLR was occuring, historic SLR was set to 1.7mm/yr, effectively 

confining any changes in sea level to eustatic factors, default settings were applied and the 

model was run from 1990 to the end of the current century at decadal time steps. The process 

was repeated for each of the TAR IPCC (2001) sea level projections. Model output from 

individual runs was examined for any deviations from the correct, reported values.  

3.3.4 Model validation 

In this study, validation of models refers to the process of testing that modelled results are in 

agreement with a known reality and confirming that the model output can indeed be 

considered plausible and reliable (Fishman & Kiviat 1968). It is generally understood 

amongst modellers that it is logically impossible to achieve full validation of any model 

(Oreskes et al. 1994; Senarath et al. 2000; Mulligan & Wainwright 2013) yet validation must 

be attempted and is still considered an integral part of the modelling process (Gentil & Blake 

1981; Power 1993). With a full appreciation of this, this study attempted to validate the 

SLAM model employing a multistage validation process, which included: 

 conceptual validation, in which the underlying theories and assumptions are 

examined  
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 operational or whole-model validation, where model output is tested for its 

agreement with real-world observations and 

 data validation, where data used to parametrise and/or test the model is 

evaluated (Rykiel 1996). 

Conceptual validation was conducted by examining the model’s structure, logic and treatment 

of component parameters. Operational or whole-model validation of the SLAM model 

conducted for the Minnamurra site incorporated a variety of validation procedures to provide 

a more robust and comprehensive understanding of the model’s validity. The first procedure 

employed was a predictive validation, which involved utilising historical data to test if the 

predicted output from the model corresponded to real-world observations. As it is difficult to 

force changes in system behaviour within the code of the SLAM model, predictive validation 

based on historical data was performed, working with the predefined structure of the model. 

Of the methods trialled, the most successful predictive validation procedure was based upon a 

hindcasting process employed by Geselbracht et al. (2011). Historical vegetation maps by 

Chafer (1998) were used as the input vegetation information for validation runs and final, 

real-world, vegetation distributions for model comparison. Given the lack of accurate 

elevation information for the relevant input years, DEM2 was adjusted within the SLAM 

model using the NAVD88 correction parameter to produce an elevation surface 

representative of the required initial year of validation runs. The NAVD88 correction 

parameter is included in the SLAM model to adjust elevation data from a height datum to a 

tidal datum (Clough et al. 2012). With rising sea levels there is logically a corresponding rise 

in the local tidal datum. Thus, based on the observed SLR at Port Kembla of 2.1mm/yr and 

Minnamurra MSL (MHL 2012), elevation adjustments were defined for each validation run 

using the equation:  

 
MTL − NAVD88 = S̅ − ((2011 − 𝑇0) ∗ (

2.1

1000
)) (4) 

where NAVD88-MSL is the final correction value input into SLAMM to adjust elevations 

and account for SLR, S̅ is mean sea level at 2011 in metres and 𝑇0 is the year of the Chafer 

vegetation map used and consequently the initial year of a validation run.  

Elevation ranges were defined for validation runs as defined above. Site parameters were 

defined for validation runs as displayed in Table 12.  Parameters were calibrated for the year 
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1986, with modelled variations less than 10% considered acceptable for validation runs. The 

first validation run was from 1986 to 1997, with years of simulated output set as 1990  

Parameter 
Validation runs 

1949-1997 1963-1997 1986-1997 

NWI Photo Date (yr) 1949 1963 1986 

DEM Date (yr) 1949 1963 1986 

Direction Offshore East East East 

Historic Trend (mm/yr) 2.1 2.1 2.1 

MTL-NAVD88 (m) -0.01745 0.01195 0.06025 
 

Table 12: Parameters defined for each validation run.  

 

and 1997. The modelled output was then visually and statistically compared with the ‘true’ 

1997 vegetation map by Chafer (1998) to determine the validity, reliability and predictive 

capacity of the model. As the SLAM model may project more than 100 years into the future 

based on user-defined parameters, the ability of the model to project at longer time scales was 

tested by repeating the predictive validation process for the periods 1963-1997 and 1949-

1997, holding all other parameters constant. Each validation run was set to produce simulated 

output for the years 1986, 1990 and 1997 to allow for comparison with Chafer vegetation 

maps and subsequent statistical validation. Confusion matrices were created for 1997 for each 

of the validation runs to examine more closely the performance of the model with respect to 

the observed data.  

Statistical validation was performed to evaluate the fit of the modelled data to the available 

historical data and to test if errors associated with model output were within acceptable limits. 

Deviations of less than 10% from observed vegetation distribution were considered 

statistically valid. Errors were examined in this manner for the final year of modelling, 1997, 

for all validation runs. In addition to analysis for the final year, simulations initiating from 

1949 and 1963 repeated the statistical analysis at the year 1986 to increase the robust nature 

of the validation procedure. Since these statistical tests were based purely on numerical 

deviations in area, further visual analysis accompanied any statistical analysis to ensure that 

modelled spatial distributions of vegetation were indeed similar to those observed.  

Extreme condition tests were also used for validation purposes at the projection stage of this 

study to determine the model’s ability to produce valid, reliable and plausible output under an 

extreme SLR scenario (outlined further below).  
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Perhaps most germane to this study was the validation of the SLAM model based on its 

comparison to other models. In this validation procedure, output of the SLAM model was 

conceptually, visually and statistically compared with that of another two models, as defined 

in Section 3.6. 

3.3.5 Calibration of the SLAM model for projection 

In modelling, calibration is the tuning of defining parameters within acceptable limits to 

enhance the performance of the model.  Calibration for the SLAM model before simulations 

were conducted using a process of optimisation, whereby parameters were iteratively altered 

to optimise the goodness of fit between modelled results for the initial year of a simulation 

and a vegetation map of the same year. Calibration of parameters focussed primarily on the 

tuning of elevation ranges and definition of salt elevation, whilst the measured input rates of 

accretion or SEC were held constant.  

Projections were performed from the 2011 until the year 2100. A calibration procedure was 

implemented for the initial year of projection runs, using the 2011 vegetation layer as the 

calibration dataset for simulations. A time zero step was simulated in the SLAM model to 

produce modelled data for initial years of projections.  Statistical analysis was again used to 

test the goodness of fit between the model output at time zero and the relevant calibration 

dataset. A 10% variance from the calibration dataset was considered to be within acceptable 

limits for projection. In certain instances, where, under visual analysis, the SLAM model 

output appeared to provide refinement to the initial wetland vegetation layers when compared 

to aerial photography, a variance slightly greater than 10% was accepted.  The calibration 

process was repeated iteratively until the interplay between tidal ranges, elevations and 

coastal habitat maps at time zero were deemed satisfactory.  

3.3.6 Implementation of the SLAM model – deterministic projections 

Deterministic projections using the SLAM model were conducted for three main purposes 

within this study; to test the flexibility of the model, to evaluate the plausibility of predictive 

outcomes and, lastly, to simulate data that would allow comparison of models for validation 

purposes. Information regarding the vulnerability of wetlands at the end of the century was, 

therefore, simply a useful by-product of the primary aims.  

Model projections were run using the prepared spatial layers (DEM, slope and relevant 

vegetation map) and calibrated model parameters. Simulations were conducted from 2011, 

corresponding to the year of input vegetation map layers. The 2011 vegetation layer was used 
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for projections rather than Chafer’s 1997 vegetation map to increase projection accuracy as a 

result of greater temporal correspondence between vegetation and elevation data. Projections 

were conducted to test the model’s ability to simulate mixed zones for Australian contexts 

and to produce data suitable for comparison purposes.  

Primary projections used the IPCC AR4 SLR scenarios outlined above. The SLR scenario 

proposed by Vermeer and Rahmstorf (2009) was used in projection runs as an extreme 

condition test, examining the ability of the model to behave reasonably under extreme 

scenarios.   

Projection procedure followed for each SLR scenario was repeated for both DEMs to 

examine the importance of accurate data and expert judgement in the application of the 

SLAM model. All model output was saved as a raster layer, compatible for GIS analysis, and 

the areal extent of vegetation for simulated years was saved for further statistical analysis. 

 

3.3.7 Sensitivity analysis 

Sensitivity analysis is the process of examining how changes in parameter values affect the 

variance in model output (Saltelli 2000). A parameter is considered sensitive if small changes 

in its value cause significant variation in the model output (Tibshirani & Wasserman 1988). 

A sensitivity analysis also provides information on the approximate contribution of 

parameters to model uncertainty (Chu-Agor et al. 2011). Within this study, a sensitivity 

analysis for the SLAM model was performed by iteratively varying selected parameters by 

±10%, keeping all other parameters unaltered (Clough et al. 2012). The magnitude of 

variation was chosen such that changes in parameters analysed did not exceed appropriate or 

plausible values for the wetland system. Parameters chosen for analysis included great 

diurnal tidal range, historic trend in SLR, NAVD88-MSL value, salt elevation, mangrove and 

saltmarsh accretion or SEC rates and amount of SLR by 2100. Since all IPCC SLR 

projections could not be tested in the one sensitivity analysis, the process was repeated for 

each SLR scenario examined in this study. A sensitivity statistic for individual parameters 

analysed was calculated by relating the percentage change in the parameter (10%) to the 

proportional change in individual vegetation types modelled for the year 2100. Results were 

used to investigate the robustness of simulations, to further an understanding of the behaviour 

of the model and contribution of parameter error or variation to model uncertainty.  
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3.3.8 Uncertainty analysis – stochastic analysis of results 

The SLAM model is a deterministic model that produces a single, time-dependent simulation 

according to the set of input parameter values utilised. Any uncertainties or error in the 

original input, therefore, introduces potential sources of error and uncertainty in the final 

output.  Uncertainty analysis provides a method of assessing to what extent parameter 

uncertainties influence the model output (Monte et al. 1996), thus providing confidence 

intervals for output data and allowing a full range of potential outcomes to be obtained.  

The SLAM model employs a Monte Carlo analysis to test uncertainty, where uncertainty 

surrounding a chosen parameter is characterised by a probability distribution (normal, log-

normal, triangular and uniform) related to key statistics for the variable (eg. mean, standard 

deviation etc.). Using the Latin Hypercube method (McKay et al. 1979), sample values are 

drawn from the probability distribution and a defined number of runs are simulated to obtain 

an array of likely projections.  

Uncertainty is associated with the measured, site-specific data required by the SLAM model, 

including the elevation data, wetland vegetation distribution, tidal range, rates of accretion or 

SEC and local historic sea level rise. Since errors or uncertainty in any one of these errors can 

propagate into model simulations and output, an uncertainty analysis was conducted for each 

parameter to gain insight into model behaviour, test the effect of potential measurement 

errors on final output and establish whether a sufficient degree of belief in the validity of the 

model could be obtained given the uncertainty, such that the model could be applied in 

research-based decision-making.  

Eight parameters were identified to be incorporated in the Monte Carlo analysis, seven of 

which were identified from the sensitivity analysis to have the greatest effects on the 

modelled areas of wetland vegetation. In addition, a spatially autocorrelated error field was 

generated for DEM2 based on the RMSEz of the elevation layer. This was then used to 

generate a number of equally likely DEMs from which 500 iterations were run to assess the 

effects of elevation errors and uncertainties possibly incorporated and propagated throughout 

the model. For each parameter used in the uncertainty analysis an uncertainty distribution was 

defined based upon the available data (see Appendix B). Given the temporal restrictions, an 

uncertainty analysis was not conducted for all SLR scenarios, DEMs and characterisations of 

the accretion parameter. Instead different SLR scenarios were incorporated in the probability 
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distribution function for the SLR and accretions rates were utilised to characterise the 

accretion parameter and its related error distribution.  
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3.4 The SAAT Model – a spatio-temporal, empirical model  

3.4.1 Model description and adjustment for long-term wetland evolution 

Based on empirical data, the original Temmerman model was developed to explain the 

relationship between sedimentation rates and a number of controlling, morphometric 

parameters on saltmarsh platforms along the Scheldt Estuary situated in the northwest of 

Belgium and southwest of The Netherlands (Temmerman et al. 2003b). The point-based, 

empirical relationships were applied spatially to simulate the varying patterns of 

sedimentation over the entire platform. Based on the common understanding that 

environmental processes are interconnected and can act synergistically, the sedimentation 

rate of each cell-defined point on the saltmarsh platform was calculated using the equation: 

 SR = k × elH × emDc × enDe (5) 

where SR is the sedimentation rate, H is the intensity of tidal inundation estimated as the 

surface elevation with respect to the mean high tidal water, D𝑐 is the linear distance to the 

nearest tidal channel, De is the distance to the marsh edge measured along the closest tidal 

creek and k, l, m, and n are parameters estimated by a multiple non-linear regression 

procedure, as explained further in Section 3.4.2.  

The basic conceptual structure and form of Temmerman model was used in this study to aid 

in simulating wetland evolution at Minnamurra. Initial adjustments to the structure of the 

model were made based upon availability of site-specific data and its overall applicability to 

the final objective of this study. Lack of data regarding the volume of sediment supply and 

deposition at the study site rendered the calculation of the Temmerman model’s dependent 

variable illogical. Measurements of wetland SEC at Minnamurra, calculated from SET data, 

were, however, available for statistical analysis. Since sedimentation is a process that 

contributes to the overall change in wetland surface elevation, it was considered justifiable to 

replace the original dependent variable of the Temmerman model, sedimentation rate, with 

SEC. This substitution altered Equation 5. to:   

 SEC = k × elH × emDc × enDe (6) 

where SEC is the surface elevation change of the wetland. The slight modifications to the 

model effectively increased its applicability in simulating long-term wetland evolution. 

Modelling of coastal wetland evolution is fundamentally complex and requires a full 

appreciation of the numerous, interconnected processes acting on the system and the resulting 
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feedback loops between form, surface topography, and process that drive the change in 

coastal wetlands (Cowell & Thom 1994).The combined effect of these numerous processes 

culminates in topographic changes, be they positive or negative in nature. Therefore, wetland 

SEC, which captures both surface and subsurface processes influencing the system (Cahoon 

2015), is an appropriate variable to be incorporated when modelling wetland evolution, more 

so than a simple sedimentation rate that accounts for but one morphodynamic process 

attributable to the long-term change.  

As coastal wetlands of SE Australia are comprised of both saltmarsh and mangrove 

communities, the exponential relationships observed on the saltmarsh platforms along the 

Scheldt Estuary are not necessarily present along the Minnamurra River. To counteract this 

potential problem, empirical relationships between model variables were examined and 

analysed prior to the application of the adjusted Temmerman model. Furthermore, unlike the 

saltmarsh environment of northwestern Europe (Belgium/The Netherlands), the SE 

Australian coastal wetlands do not characteristically have channel networks that act as 

conduits for water flow to the main tidal channel. Instead, ebb and flow of tides occur in a 

relatively sheet flow manner. This being the case, the parameter, distance to edge, used by 

Temmerman et al. (2003b) in the original model is set to zero in its application here, 

effectively excluding the variable from the model.  

The adjusted Temmerman model resulting from the above modifications was used as a 

parameter in modelling the wetland surface evolution to the end of the century. Evolution of 

coastal wetlands is inherently time dependent and is the natural result of the system’s 

response to changes in external conditions (Wright & Thom 1977; Cowell & Thom 1994) 

Changes in sea level, itself a response to changing external conditions, therefore has a 

significant influence on the evolution of coastal wetlands. The adjusted Temmerman model, 

as a surrogate of the system’s response to change, was thus used in combination with 

estimated sea level changes modelled by the IPCC (2007) to simulate wetland evolution to 

the year 2100. Following the zero-dimensional models of Allen (1990, 1995, 1997), French 

(1993) and Cowell and Thom (1994) and maintaining wetland surface heights relative to 

mean high water (MHW) as required by the adjusted Temmerman model, elevations at a 

given time step were calculated as: 

 ET = ET−1 + SEC − ∆M (7) 
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where  ET is the elevation at a given time step,  ET−1 is the elevation at the previous time step, 

SEC is the surface elevation change as estimated by Equation 6 and ∆M is the incremental 

rise in sea level.  

Based on the relationship of surface elevation with wetland evolution and work by Oliver 

(2011), a simple vegetation model calibrated to site-specific data was used in this study to 

delineate between wetland communities at any given time step thereby simulating the time-

dependent evolution of coastal wetland vegetation. Surface elevation can be said to control 

coastal wetland evolution in two important ways. Firstly, it determines the spatial boundary 

of tidal inundation and hence the boundary conditions of the responding, interconnected 

morphodynamic processes (Cowell & Thom 1994).  Secondly, it governs the accommodation 

space within the wetland that, in turn, allows further sedimentation to occur and the surface to 

build upward (Allen 2000). The combined effect of these dynamic, interrelated processes 

represented in wetland surface elevation determines the development, distribution and 

persistence of vegetation communities within the coastal wetland environment. Working 

from an understanding of this relationship between morphodynamic changes and vegetation 

persistence, the simple vegetation model applied within this study was achieved by assigning 

a wetland vegetation type based on vegetation-specific elevation ranges to each cell of the 

surface elevation layer developed from the cell-based, spatial application of equation 6. In 

applying the entire model as described above, the resulting spatially applied adjusted 

Temmerman (SAAT) model simulated the process of wetland evolution, effectively 

determining the morphodynamic evolution (represented by surface elevation) and subsequent 

vegetation change at each time step until the year 2100.  

 

3.4.2 Model setup 

Model input parameters and coefficients for the SAAT model were based on the preparation, 

assessment and statistical analyses of relatively short-term field measurements recorded at the 

study site. Empirical data used for analysis included the eleven-year SET record introduced 

above, tidal plane data documented by MHL (2012) and RTK-GPS spot heights measured in 

2011 by Oliver (2011). 

Data preparation 

 ‘True’ surface elevation heights through time were needed for model parameter calculation 

and subsequent time-series analysis. As the primary elevation information for the site was 
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derived from LIDAR collected in March 2011 (as outlined in Section 3.1.2), RTK-GPS 

elevations as recorded by Oliver in the same year at each of the SETs were used as the basis 

for determining ‘true’ surface elevations through time. Incremental changes in surface 

elevation recorded by SETs between the years 2001 and 2011 were calculated relative to 

2011 and subtracted from the RTK spot heights at the respective SET. Changes in surface 

elevation for years subsequent to 2011 were summed to the base RTK elevation height.  

The SAAT model requires surface elevation heights to be expressed relative to the local 

MHW level. To produce such time series elevation information, the local MHW level 

recorded at the Minnamurra River was subtracted from the final elevation values calculated at 

the SETs. To capture the tidal conditions of each year as truly as possible, the yearly-

averaged MHW levels of the Minnamurra River as reported by MHL (2012) were used for 

the period 2003-2010, a temporal period corresponding to the establishment of the tidal gauge 

at the Minnamurra River and final year analysed in the MHL (2012) report.  For years not 

within the 2003-2010, an eight-year time-averaged MHW level as reported by MHL (2012) 

was used. Given that the small variabilities in MHW data displayed no significant trend over 

time, the constant, averaged value was considered to be sufficiently representative of the 

mean high water level at the Minnamurra site. To ensure this was the case, further analysis 

was conducted at relevant stages during model preparation, as discussed below.  

To obtain the distance to tidal channel parameter required for the SAAT model, the distance 

from each SET to the Minnamurra River was calculated using the ‘Euclidean Distance’ tool 

in ArcMap. Final elevation and distance to channel information were recorded before being 

exported to JMP Pro (SAS v.11).  

 Exploratory data analysis and temporal patterns of elevation change 

Exploratory analysis of site-specific data was conducted to understand the primary processes 

at work in the Minnamurra wetlands, verify parameter relationships used in the SAAT model 

and ensure model parsimony. Given the modifications to the original model and its 

application to an area displaying obvious differences in site characteristics to that of the 

Scheldt estuary, statistical analysis was necessary to ensure the exponential relationships 

remained between the environmental variables used in the original model and wetland surface 

elevation changes, the new dependent variable of the adjusted Temmerman model.  

Using the same method employed in Section 3.1.1, trends in SEC were calculated for each 

individual SET. Further factors calculated to test their significance in explaining SEC over 
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time included values of HHWSS, elevation values with respect to HHWSS, time in years 

since the previous SET measurement and since the initial SET measurement. All data was 

collated with the time series elevation data and distance values in Excel and imported to JMP 

for further statistical investigation and determination of model coefficients.  

To ensure model parsimony, the relationships of all measured parameters with surface 

elevation trends were examined in JMP. Those parameters that displayed a weak or non-

existent relationship with SEC were disregarded. Non-linear regressions were conducted and 

a goodness of fit examined to ensure an exponential relationship existed between SEC and 

absolute elevations relative to MHW and distance to channel values respectively.  

Statistical analysis for model coefficients 

Coefficients for the SAAT model were determined using a non-linear regression in JMP. 

Each regression model was set to iterate 1 000 000 times or until convergence was reached. 

The fit of the modelled data to the established elevation trends was calculated using a linear-

regression. Factors for analyses included absolute elevations relative to MHW and distance to 

channel values.  

Non-linear regression analyses were completed for the entire period of SET data, 2001-2013, 

and for the period in which real-world, non-averaged observations of elevation and tidal data 

were coincident, that is 2003-2010. This method was employed to evaluate the variation in 

model fit caused by the introduction of averaged data. Modelled data for both the entire and 

coincident period regression analyses were linearly regressed against the established 

elevation trends to calculate the fit of the model to the real world. A coefficient of 

determination, r
2
, greater than 0.85 was deemed to provide a sufficient explanation of the 

observed data.  Given the method of evaluating the 2003-2010 period significantly reduced 

the amount of data from which the relationship was being extrapolated yet did not produce a 

considerable difference in model fit, the averaged data was considered suitable for the 

determination of the coefficients to be used in the modelling process. 

Spatial data preparation 

Elevation layers covering the western floodplain and entire study area were prepared as 

described in Section 3.1.2.The eight year time-averaged MHW level (MHW=0.50825) 

calculated by the MHL (MHL 2012) was subtracted from each cell of the DEMs using the 

‘Raster Calculator’ tool in ArcMap to create an elevation layer relative to MHW, effectively 

producing the spatial representation of parameter H.  
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The ‘Euclidean Distance’ tool in ArcMap was implemented to create a spatial layer that 

established the distance from each point in the landscape to the nearest tidal water source, as 

required by the SAAT model. A polygon of the Minnamurra River, developed following the 

methods of section), was used as the basis for the derivation of this 5mx5m cell-based spatial 

layer. The position of the tidal channel, Minnamurra River, was assumed to be constant over 

the period modelled. Though the river is likely to change slightly over the course of the next 

century, the simplistic abstraction of the river system for this model was considered relatively 

justifiable based on the small variation in channel position observed for the 62 years captured 

by vegetation maps used in this study.  

3.4.3 Spatial application of the adjusted Temmerman model 

The SAAT model was spatially implemented in ArcMap to simulate wetland elevation 

change as a response to SLR for the period 2011-2100. SLR scenarios used in model 

projections were equivalent to those outlined in Section 3.1.4. In keeping with the original 

Temmerman model, the Minnamurra River was extracted from the initial elevation layer, 

thereby excluding it from model simulations. The model variables, elevation, distance to 

channel and incremental SLR for a given time step, were used to simulate wetland surface 

elevation at annual or decadal time steps. The resulting elevation layer at a specific time step 

was input as the temporally-adjusted elevation layer, parameter H, for the subsequent 

calculation of wetland surface elevation.  The process was repeated iteratively for individual 

DEMs at decadal time steps until the year 2100.  

As decadal time steps were implemented in this study, the annually-based SEC parameter 

was multiplied by ten to simulate elevation changes at the appropriate temporal scale. As the 

initial elevation layer represents wetland surface heights at 2011, calculation of the surface 

elevation at 2020 utilised a nine-year SEC and SLR value, with subsequent time steps 

following the method defined above. 

For each time step to the year 2100, the wetland vegetation distributions were modelled based 

on the approximate elevation references of each wetland community type at the Minnamurra 

site. Wetland elevation boundaries defined by Oliver (2011) were implemented in the 

classification process, further aiding in subsequent model comparability. For DEM1, 

classifying vegetation based on elevation ranges produced significantly disparate wetland 

distributions to that observed from 2011 aerial photography and vegetation map. A 

calibration process was therefore employed to allow a modicum of increased model 
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performance. The vegetation classification process was conducted for each simulated 

elevation layer using the ‘Reclassify’ tool in ArcMap.  

 

3.5 The Oliver model 

3.5.1 Model description 

The model implemented by Oliver (2011), herein referred to as the Oliver model, is an 

empirically based spatial model that simulates wetland surface elevation and vegetation 

distributions under conditions of rising sea levels. Based on the significance of factors in an 

initial stepwise regression, a factorial analysis of variance was conducted to develop a 

numerical model that provided the best fit with site-specific accretion trend data. Factors 

considered significant to the dependent variable and employed in the model include time 

(days from first SET measurement), average rainfall for the previous month, 6-month average 

water level , distance to shore, 3-month averaged Southern Oscillation Index value and the 

mean sea level. Full description of the model is reported in Oliver (2011).  

3.5.2 Model implementation 

The model was implemented by Oliver in 2011 and results documented in his honours thesis 

(Oliver 2011). Simulations of wetland evolution under SLR were conducted at decadal time 

increments from 2011 until the end of the current century. SLR increments were in 

accordance with the IPCC AR4 projections, namely the A1FI 95%CI and B1 5%CI. The 

initial elevation surface utilised was that named DEM3 for this study. Subsequent elevation 

surfaces were calculated using the equation derived from factorial analysis and relevant 

values for each significant factor at given time steps. The distance to shore was adjusted 

during model runs according to the SLR scenario investigated. 

Elevation layers developed were used to model the response of wetland vegetation to SLR. 

The same simple vegetation model described above for the SAAT model was employed to 

demarcate wetland categories. Elevation boundary values were adjusted proportional to the 

SLR scenario used for each model projection. 
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3.6 Comparison of models 

Comparisons between model outputs provide a means of evaluating the validity and 

performance of models. Focusing upon the western floodplain common to all the models 

output, the similarities and differences between the areal extent of wetland vegetation and 

flooded areas simulated by the SLAM, SAAT and Oliver models were analysed.  To obtain 

the greatest strength in comparison results, those SLR scenarios common to output of all 

three models were utilized, namely the B1 and A1FI SLR scenarios. Using the same 

reasoning, only predictions based upon DEM3 elevation information were utilised in the 

comparison process.  

Visual and statistical comparison of the simulated output of the different models was 

conducted. Variations in model results by overall output, vegetation and SLR scenario were 

tested for significance using a factorial analysis of variance (ANOVA) in JMP. Where an 

effect was noted between models, a one-way ANOVA was applied to determine more 

precisely where the variance occurred.  

Differences and similarities between model output identified, both visual and statistical in 

nature, were examined closely to determine the source of variations. In doing so, the 

scientific principles and assumptions upon which each model was based were considered. In 

addition, the treatment of influential factors, the mathematical definition and conceptual 

abstraction of the wetland system were examined and compared in attempt to evaluate the 

performance of the models and determine if a specific model were more appropriate for the 

simulation of Minnamurra wetland evolution with rising sea levels.  
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4 RESULTS 

 

4.1 Digital Elevation Models and Vertical Accuracy 

Baseline elevation information is essential to all models applied within this study. The 

validity of model output, therefore, partially relies upon the input elevation information being 

sufficiently accurate. The accuracy of the three DEMs utilised within this study are presented 

below, accounting for the source of vertical errors identified within the spatial layers.  

DEM1 

DEM1, generated using the ground points from the as-received, vendor-supplied LIDAR data, 

was produced to explicitly display the need for accurate, expert-derived elevation information 

when modelling the effect of SLR on wetlands. Results indicated that, as expected, hasty and 

unconsidered generation of a DEM yielded elevation information insufficiently accurate for 

the production of valid model results. 

Errors within DEM1 were primarily a result of propagated inaccuracies from the LIDAR data. 

Visual inspection of the elevation surface revealed stark inaccuracies where dense mangrove 

vegetation predominated.  Inspection of the original LIDAR data confirmed that DEM1 

elevation errors corresponded with misclassified LIDAR points, most specifically where low 

vegetation or dense mangrove canopies had been classified as ground. These errors are 

considered to be a manifestation of both physical limitations of LIDAR systems and 

classification errors attributable to the data processing stage. 

Inaccurate representation of the main water body in the study site is also considered 

attributable to such limitations and errors. DEM1 elevations within the river channel ranged 

from 0.472 m to 3.195 m AHD with an average elevation of 0.822m. Investigation of the 

errors revealed three potential sources of the inaccuracies. Firstly, low mangrove vegetation 

fringing the river had been misclassified as bare earth points, causing significant problems 

when interpolating elevations across the river. This was particularly the case in the upper 

reaches of the Minnamurra River, where overhanging vegetation obstructed LIDAR signals 

from reaching the bare earth or water surface. Secondly, given the lack of elevation data 

within the river zone, accuracy of interpolation decreased in these areas as a result of 

decreased point resolution. Thirdly, water surfaces may have been misclassified as ground, 
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erroneously increasing ground surface heights where water was inundating the land. 

Considering the mean height of the water channel in DEM1 approximately corresponds to the 

high water level recorded for the Minnamurra River, it is possible that the LIDAR was 

collected during high tide. No metadata was provided on the LIDAR collection time, 

therefore this particular source of error can only be considered as a valid hypothesis. 

Global descriptive statistics of the LIDAR data indicate an overall vertical accuracy of 0.3m. 

In the absence of ground control points for the entire study site, this statistic was considered 

to be the most approximate vertical accuracy of the DEM able to be determined. However, in 

light of the significant errors in the representation of surface elevation discussed above, it is 

understood that the reported value does not provide a comprehensive assessment of DEM 

accuracy. 

Elevation errors in the western floodplain were quantified from 72 RTK-GPS points. It was 

considered important to understand the spatial variation of vertical errors according to species 

type, allowing for a comprehensive appreciation of possible errors per vegetation type when 

modelling. Table 13 reports the vertical accuracy statistics for the ground control points as 

grouped by vegetation class type. The RMSEz and standard deviation of errors for all land 

cover types in the western floodplain suggest that the overall vertical accuracy is less than 

that reported for the LIDAR data. As expected, the greatest elevation errors occurred within 

the mangrove area, with the largest overall accuracies in both the positive (maximum) and 

negative (minimum) direction occurring in mangrove dominated locations. Skewness of 

measured errors in mangrove areas indicates vertical inaccuracies are predominately greater 

than the mean value, with most errors being the result of overestimation in surface elevation.  

The RMSEz values are similar to the calculated averages, indicating the significant bias in 

LIDAR data collected.  

Land 

Cover 

No. of 

Points 

RMSEZ 

(m) 

Mean 

(m) 

Minimum 

(m) 

Maximum 

(m) 
Skew 

Standard 

Deviation 

(m) 

All 72 0.42 0.27 -0.62 1.21 0.96 0.32 

Mangrove 22 0.68 0.54 -0.62 1.21 -0.63 0.42 

Mixed 30 0.23 0.16 -0.28 0.81 1.44 0.17 

Saltmarsh 12 0.20 0.15 -0.01 0.51 1.80 0.13 

Casuarina 8 0.24 0.14 -0.15 0.54 0.95 0.21 

Table 13: Vertical accuracy statistics by vegetation for DEM1.  
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The mean of elevation errors in swamp oak zones were the smallest of all classes in the 

western floodplain. However, considering the small sample, the calculated values are not 

thought to be fully representative of the vegetation class.  

Greatest vertical accuracy was measured for saltmarsh areas, with RMSEz, standard deviation 

and range of errors all calculated as being considerably less than other classes such as 

mangrove. The overall vertical accuracy of DEM1 and error statistics by species type were 

used in the considered development of DEM2. Full awareness and appreciation of the 

significant vertical errors within DEM1 also contributed to understanding sensitivity of 

models applied in this study.   

 

DEM2 

DEM2, derived from the combination of 2011 LIDAR data and RTK-GPS points, was used 

to assess the importance of accurate input elevation information when modelling coastal 

wetland evolution under SLR and to stress the significance of expertly refining as-received 

data for valid model application.  

Applying a filtering algorithm to the LIDAR dataset prior to the generation of DEM2 resulted 

in a considerable increase in the accuracy of surface elevations within wetland areas (Figure 

5). Visual inspection of DEM2 revealed a notable decrease in elevation errors within 

mangrove zones, most particularly within the western floodplain. Furthermore, a significant 

increase in vertical accuracy was observed at each meander bend of the Minnamurra River 

(subsites 3, 5 and 6), indicating DEM2 provides a more realistic representation of the 

floodplain and wetland areas at these sites. Though elevations of wetland areas included 

fewer errors, some inaccurate representations of surface elevation remained, particularly 

along the river bank within subsites 5 and 6. Again, the limitations of LIDAR systems and 

classification algorithm applied are considered primarily responsible for the propagated errors 

evident within DEM2.   

Water bodies were more clearly defined in the elevation model with respect to DEM1. 

Misrepresentation of surface elevation within the river resulted primarily from the 

interpolation technique applied.  Interpolation errors along the tidal channel decrease 

proportional to the width of the Minnamurra River.  
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Figure 5: Digital Elevation Models of the entire study site: a) DEM1 and b) DEM2. The two models 

represent the surface elevation of the site outlined in c). A considerable increase in the vertical 

accuracy can be observed in the river and floodplains of the Minnamurra river represented in DEM2.  

  

a) b) 

c) 
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Quantifying the accuracy of DEM2 was conducted using the 72 RTK-GPS ground reference 

control points. Similar to DEM1, values describing elevation error derived from the accuracy 

assessment provide relative confidence in vertical accuracy for the western floodplain only. 

Extrapolation of the error statistics to the entire site was therefore not a reliable method of 

quantifying vertical error for the study site. Instead, vertical error statistics were considered to 

provide a basic understanding of the spatial variation of inaccuracies throughout the area.  

Statistics regarding the magnitude of elevation error associated with the western floodplain 

within DEM2 is reported in Table 14. Elevation error for all land cover types and for each 

vegetation zone was characterised by calculating the RMSEZ. The author acknowledges that 

the explanatory power of the RMSE is limited given the error metric requires stationarity of 

variance within the data.  

 The overall vertical accuracy within the western floodplain was approximately consistent 

with that reported for the LIDAR dataset and indicated a 14cm increase in vertical accuracy 

when compared to DEM1. Of particular note was the reduction in elevation error within the 

mangrove zone, with an RMSEZ of 45cm. The largest elevation errors were recorded again 

where mangrove vegetation predominated.  

Measured inaccuracies of surface elevation in saltmarsh zones remained the same as DEM1, 

suggesting that the errors were more likely a result of LIDAR system limitations rather than 

from classification or interpolation techniques applied. Whilst the magnitude of surface 

elevation errors in saltmarsh zones are commonly less than within mangrove forests, potential 

elevation errors arise from the resolving threshold of the LIDAR being at or near the 

elevation of the short saltmarsh vegetation, meaning that the bare earth surface cannot be 

Table 14: Vertical accuracy statistics by vegetation for DEM2.  

Land Cover 
No. of 

Points 

RMSEZ 

(m) 

Mean 

(m) 

Minimum 

(m) 

Maximum 

(m) 
Skew 

Standard 

Deviation 

(m) 

All 72 0.31 0.15 -0.62 1.65 2.51 0.28 

Mangrove 22 0.45 0.20 -0.62 1.65 2.06 0.42 

Mixed 30 0.22 0.12 -0.30 0.80 1.34 0.19 

Saltmarsh 12 0.20 0.15 -0.01 0.51 1.80 0.13 

Casuarina 8 0.26 0.13 -0.29 0.54 -0.06 0.24 
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clearly distinguished from the top of the saltmarsh within the LIDAR system. Given the 

magnitude of the saltmarsh RMSEZ, it is likely the errors are a consequence of a situation. 

 

DEM3 

As the subset of RTK-GPS points used in accuracy assessments of DEM1 and DEM2 were in 

fact used for the generation of DEM3, it was not logical to characterise elevation errors based 

on the 72 point dataset. Instead, the 9.3cm RMSE reported by Oliver (2011) for DEM3 was 

treated as the vertical accuracy of the elevation model. This measurement of error is 

significantly less than that calculated for either DEM1 or DEM2.The lowest elevation of 

DEM3 was recorded at -0.255m and the highest at 2.704m, the greatest elevation being 

approximately two metres less than that of DEM1 and DEM2.  

Spatial variation of error in DEM3 based on vegetation type was not quantifiable, however 

the elevation layer was examined visually to gather useful supplementary information on 

DEM3 elevation error by vegetation. Based on in-field observations, it appears that the 

floodplain is well represented, with few elevation errors occurring in the mangrove zone. 

Given the use of selected LIDAR ground points in the generation of DEM3, it is likely that 

similar errors of DEM1 and DEM2 in this zone are also present. Significant differences 

between DEM3 and the other two DEMs generated for this study occur in surface elevations 

for areas populated by Casuarina. Variations between DEMs in this zone commonly fall 

within 0.3m of each other at any given point, an error equal to the vertical accuracy reported 

for the LIDAR data used to generate the surface elevations of the Casuarina zone for all 

elevation models.  
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4.2 The SLAM model 

4.2.1 Model Verification  

Verification is an important process in assessing the performance of a model. The simplistic 

process applied in this study to verify the SLAM model focussed on ensuring that the 

computer programming and implementation of SLR scenarios within the model were correct.  

SLR scenarios incorporated in the SLAM code are based on the IPCC TAR (2001) emission 

scenarios. SLR is programmed at 25 year increments within the model, despite the 

accumulative SLR values for each scenario being reported at decadal time steps in the TAR. 

Applying the model for the period 1990 - 2100 at 25 year increments confirmed that the 

eustatic SLR is modelled as it is designed according to the computer code. However, closer 

inspection of model output and related programming revealed a significant systematic error in 

the code design. The maximum magnitude of SLR modelled for the A1T and A1FI emission 

scenarios were incorrectly identified in the code or, more specifically, the timeseries data of 

these two SLR scenarios had been interchanged. This systematic error appears to have 

occurred during SLAM model development and programming due to an unquestioning use of 

SLR timeseries data presented in the TAR. That is, the error within the SLAM model 

corresponds exactly to an inexplicable error in reporting on the part of the IPCC, whereby the 

upper limit timeseries data of SLR under the A1T emission scenario has been erroneously 

replaced by A1FI values and vice versa. The timeseries data of A1T and A1FI reported in 

IPCC TAR table II. 5.1 do not correspond with either the within text discussion or the 

graphical representation (figure 11.12; IPCC, 2001) of projected SLR for the same scenarios 

(Figure 6). Furthermore, the TAR table of SLR values and hence the programmed SLR 

scenarios in the SLAM model would suggest an increase in sea level of 0.859 metres and 

0.671metres for the A1T and A1FI scenarios respectively over the period 1990-210 0. 

However, logically, a future scenario in which there is a technological emphasis on fossil 

fuels (A1FI) would be associated with a greater rise in sea level than a scenario in which non-

fossil energy sources predominate (A1T). 
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The SLAM model code was not tested for further errors as computer science methods of 

verification were beyond the scope of this study. It was therefore assumed that required 

model verification conducted by the model development team was sufficient. 

 

4.2.2 Predictive validation 

Predictive validation involves modelling a system’s behaviour and comparing the output with 

the real system to determine if they are the same (Sargent 1996). This validation technique 

was implemented utilising the Chafer vegetation maps as the comparison data. Validation 

runs were conducted at three time scales, namely 1986-1997, 1963-1997 and 1949-1997. In 

testing the predictive validity of the SLAM model at each temporal period, two methods of 

simulating elevation changes were applied. The first utilised accretion rates specified for each 

wetland vegetation type and the second used rates of SEC set per land cover type. A selection 

of the data is presented herein.  

 

Year 

A1T 

SLR 

(m) 

A1FI 

SLR 

(m) 

1990 0 0 

2000 0.029 0.029 

2010 0.063 0.065 

2020 0.104 0.110 

2030 0.153 0.164 

2040 0.214 0.228 

2050 0.291 0.299 

2060 0.386 0.375 

2070 0.494 0.453 

2080 0.612 0.529 

2090 0.735 0.602 

2100 0.859 0.671 

 

Figure 6: Table II.5.1 and Figure 11.12 of the IPCC TAR (IPCC 2001). Projection results reported in Table 

II.5.1 (presented on the right) do not correspond with the in text discussion or graphical presentation of the 

same results (graph presented to the right). It is clear the A1T and A1FI maximum SLR scenarios 

(corresponding to the upper limit of the coloured bars in the figure) have been interchanged. The reporting 

error is transferred as an error in the SLAM model, which directly sourced values from table II.5.1 to define the 

SLR scenarios programmed within the model. 

javascript:history.back()
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Validation run: 1986-1997 

Validation runs over this temporal period resulted in a generally good fit of model output 

with real world observations (Figure7; Table 15). Characterising vertical increases in wetland 

surface heights by vegetation-specific rates of SEC resulted in less than 10% error in the areal 

extent of almost all wetland classes. Of the wetland vegetation classes modelled, saltmarsh 

areas produced the least fit with observed, 1997 vegetation data. Areal extent of saltmarsh 

zones was underestimated at time zero, 1986, and overestimated in the final year simulated. 

Visual analysis and interpretation of the confusion matrix generated for the final year 

suggested that overestimation was a result of mangrove areas being erroneously simulated as 

saltmarsh zones. For this period, a larger decrease in the distribution of saltmarsh was noted 

in the observed data than in that modelled.  

Mangrove areas were simulated relatively well by the SLAM model, with model errors 

associated with this class falling below 5% (Table 15). Statistically, the small errors in 

modelled mangrove areas were the result of consistent overestimation in the spatial extent of 

mangrove zones. Visual analysis suggests that, with respect to the Chafer vegetation 

comparison data, mangrove zones were indeed overestimated within subsite 8, especially 

along the banks of the river. In other areas, however, the distribution of mangrove vegetation 

was considerably underestimated, such as within the western floodplain (Figure 8). This 
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Figure 7: Modelled and observed total areas of mangrove, saltmarsh and Casuarina for the 

period 1986-1997.  
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observation is confirmed by interpretation of the confusion matrix, where the greatest errors 

in simulated output occur within the mangrove zone (Table 16)  

 Modelled Casuarina zones were slightly overestimated at time zero and underestimated for 

the final year of simulation (Table 15). Casuarina zones were observed to increase between 

1986 and 1997 yet a decrease in area was simulated by the SLAM model. Greatest errors in 

model simulation of Casuarina zones occurred in subsite 8 where the vegetation had been 

replaced by mangrove zones in model output.  

 Areas of undeveloped land were relatively well simulated by the SLAM model, being 

associated with an approximately consistent underestimation of its area by 2% (Table 15).  

 

 

Mudflat 

(ha) 

Mangrove 

(ha) 

Saltmarsh 

(ha) 

Casuarina

(ha) 

Undeveloped 

land (ha) 

Total 

observed 

area (ha) 

Mangrove 0.21 88.16 2.47 0.88 0.25 91.97 

Saltmarsh 0.05 1.16 26.98 0.65 0.07 28.90 

Casuarina 0.00 4.53 1.85 84.18 4.28 94.85 

Undeveloped 

land 
0.03 2.79 0.37 3.48 521.23 527.90 

Total modelled 

area (ha) 
0.29 96.65 31.66 89.19 525.83 

 

Table 16: Confusion matrix of modelled (vertical) vegetation at the year 1997 against observed 

(horizontal) data of the same year showing areas that are accurately simulated. More than the simple 

error statistic, the matrix also provides an understanding of where vegetation has been inaccurately 

simulated with respect to observed distributions. The greatest overall errors are observed for the 

mangrove zone.  

 

Table 15: Total areas modelled and observed for each vegetation type and respective error statistics. 

Results are drawn from the validation run utilising rates of SEC to define the accretion parameter over the 

period 1986-1997. 

 

 

 
Mudflat Mangrove Saltmarsh Casuarina 

Undeveloped 

land 

1986 

Observed Area (ha) 0.00 90.60 32.41 90.38 538.08 

Modelled Area (ha) 0.44 94.37 31.72 92.89 526.84 

Percentage error 43.99 4.16 -2.12 2.78 -2.09 

1997 

Observed Area (ha) 0.00 93.92 28.93 95.06 536.62 

Modelled Area (ha) 1.70 96.98 31.64 89.45 525.93 

Percentage error 169.64 3.26 9.37 -5.90 -1.99 
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 The small percentage error is partially due to the initial extent of the land cover class being 

considerably large. The greatest loss in hectares between modelled and observed data in fact 

was calculated for the undeveloped land. Visual analysis suggests this is a result of beach 

areas being correctly simulated in the southernmost land extent of the study site (Figure 8). 

The rate of decrease in the area of undeveloped land is approximately equal for both the 

modelled and observed undeveloped land zones.  

Mudflat areas were simulated in the model output of the validation run. For the year 1997, 

1.694 hectares of mudflat were modelled, resulting in a 169% increase in mudflat area. 

Though a substantial error statistic, it should be noted that a mudflat class was not included in 

the Chafer vegetation maps utilised in this study. Simulated mudflats occurred primarily in 

the areas of lower elevation within the mangrove zone of the western floodplain.  

Characterising vertical increases in wetland surface heights by vegetation-specific accretion 

rates resulted in relatively similar statistical and spatial patterns of error in modelled output. 

Use of accretion rates marginally decreased the ability of the model to simulate mangrove 

and saltmarsh zones (Table 17). Use of accretion rates also significantly reduced the area of 

Figure 8: a) Modelled and b) observed wetland distributions for the year 1997. Modelled 

data was generated for the validation period 1986-1997 utilising rates of SEC. 
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Table 17: Total areas modelled and observed for each vegetation type and respective error statistics. 

Results are drawn from the validation run utilising rates of SEC to define the accretion parameter over the 

period 1986-1997. 

 

mudflat simulated by the year 1997 (Table 17), thereby decreasing the error statistic 

associated with this class.  

Validation run: 1963-1997 

Validation runs for the longer temporal period 1963-1997 using both accretion and SEC rates 

produced greater errors overall in the model output. At time zero, 1963, errors associated 

with modelled distributions of saltmarsh, Casuarina and undeveloped land all fell below 5% 

for both predication validation runs (Table 18 and Table 19).Mangrove and mudflat areas 

were less accurately simulated at time zero, resulting in an error of 10.9% and 17.75% 

respectively.  

Characterising vertical increases in wetland surface heights by vegetation-specific rates of 

SEC resulted in underestimation of mangrove, Casuarina and undeveloped land and a 

considerable overestimation of saltmarsh zones within the model output for both 1986 and 

1997 (Table 18; Figure 9.). Considerable errors in modelled data first occurred at 1986, 

where the SLAM model did not simulate the observed increase in mangrove areas and 

corresponding decrease in saltmarsh zones between 1963 and 1986.Visual comparison of 

modelled and observed vegetation distributions for 1986 suggest that the error statistics 

associated with each class do not entirely account for the distribution of error across the study 

site. Overall mangrove error indicates an underestimation of the class at 1986. However, 

overestimation of mangrove areas with respect to the 1986 Chafer vegetation map was 

observed in subsites 5, 6and 8 and mangrove zones were underestimated within the western 

floodplain in subsite 4 and nearby Rocklow Creek in subsite 2. Casuarina zones simulated 

for 1986 were underestimated, with saltmarsh being simulated in its place.  

 

 
Mudflat Mangrove Saltmarsh Casuarina 

Undeveloped 

land 

1986 

Observed Area (ha) 0.00 90.60 32.41 90.38 538.08 

Modelled Area (ha) 0.44 94.37 31.72 92.89 526.84 

Percentage error 43.99 4.16 -2.12 2.78 -2.09 

1997 

Observed Area (ha) 0.00 93.92 28.93 95.06 536.62 

Modelled Area (ha) 0.98 97.23 31.68 89.86 525.93 

Percentage error 98.10 3.53 9.54 -5.47 -1.99 

 



 

87 

 

 
 Mudflat Mangrove Saltmarsh Casuarina 

Undeveloped 

land 

1963 

Observed Area (ha) 0.00 66.37 57.20 78.66 538.73 

Modelled Area (ha) 0.18 73.59 54.37 80.16 529.70 

Percentage error 17.75 10.88 -4.95 1.91 -1.67 

1986 

Observed Area (ha) 0.00 90.60 32.41 90.38 538.08 

Modelled Area (ha) 0.62 77.09 53.85 77.26 528.54 

Percentage error 61.74 -14.92 66.17 -14.51 -1.77 

1997 

Observed Area (ha) 0.00 93.92 28.93 95.06 536.62 

Modelled Area (ha) 1.21 77.97 53.21 76.96 527.47 

Percentage error 120.58 -16.98 83.97 -19.04 -1.54 
 

Table 18: Total area, observed and modelled, and error statistics associated with each vegetation/land 

cover type of the validation run 1963-1997 utilising rates of SEC. 

 

Similar errors to those reported above occurred within the model output for the final year of 

simulation, 1997. All errors in the areal extent of classes were greater than 10%, excepting 

the undeveloped land class which saw only a marginal underestimation of 1.54% (Table 18) 

Though an increase in mangrove and Casuarina zones was simulated between 1986 and 1997, 

the magnitude of area increase did not reflect that observed in the real system, resulting in a 

further underestimation of these two vegetation zones at 1997. Spatially, approximately 73% 

of mangrove vegetation was modelled in the correct position. Inaccuracies of mangrove areas 

with respect to the observed data occurred within subsite 8 where mangrove vegetation was 

simulated in place of Casuarina (Figure 9).Further visual inspection and interpretation of the 

confusion matrix revealed that underestimation of mangrove areas was directly related to an 

overestimation of saltmarsh zone, especially within subsites 2, 4 and 6 (Figure 9). 

Simulated saltmarsh zones replaced areas observed to be covered by mangrove, Casuarina 

and undeveloped land and were associated with the greatest error. Whilst the total area 

observed for saltmarsh zones almost halved over the period 1963-1997, simulated 

distributions indicated a loss of only 1.15 ha, equating to an approximately 2% change in 

areal extent.  

Mudflat zones simulated produced a large error in model output at the final year of the 

validation run. Areas of mudflat were simulated in place of certain mangrove vegetation and 

zones of undeveloped land (Figure 9).  
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Figure 9: Comparison of a) modelled and b) observed data for the year 1997 for the validation period 

1963-1997. Modelled distributions were simulated utilising rates of SEC.  

Characterising vertical increases in wetland surface heights by accretion rates very slightly 

improved the fit of the modelled data to the observed wetland distributions (Table 19). 

Marginal variations in each class with respect to the model output when implementing rates 

of SEC were produced at both 1986 and the final year, 1997. Though the magnitude varied, 

spatial patterns of error were congruent to those generated in modelled data when utilising 

vegetation specific rates of SEC.  

Mangrove zones were consistently underestimated, more so than when SEC was used as a 

parameter in the model. This was particularly notable in the western floodplain and 

surrounding Rocklow creek (Figure 9). The confusion matrix indicated that approximately 72% 

of modelled mangrove vegetation was situated in the correct position, a positional accuracy 

slightly less than that calculated for simulations utilising rates of SEC (72%). 

Inaccuracies in the simulation of saltmarsh areas were greater when using accretion rates than 

for the first validation run reported here for the temporal period 1963-1997. Saltmarsh was 

again significantly overestimated, with the SLAM model only simulating a change of 0.6% 

by 1997, where a loss of almost 50% had been observed and mapped by Chafer. Analysis of 

the confusion matrix and vegetation distributions at 1997 suggested that a significant 
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proportion of this error was attributable to the inaccurate simulation of mangrove zone 

growth over the temporal period 1963-1997.  

Casuarina zones modelled using accretion rates rather than rates of SEC displayed greater fit 

with the observed vegetation distribution data, though errors greater than 10% still occurred 

(Table 19). Errors associated with mudflat zones were almost a quarter of those in model 

output simulated using rates of SEC, indicating a significantly greater increase in model fit 

for these zones.  

With respect to the SLAM model’s performance for the first predictive validation period, 

1986-1997, greater errors were associated with mangrove, saltmarsh and Casuarina zones of 

the simulated vegetation distributions over the period 1963-1997. Comparing model output of 

simulations using the same characterisation of vertical increases between the two validation 

periods suggested that the longer temporal period produced a more accurate representation of 

mudflat zones, but that all other wetland vegetation was more accurately represented at 

shorter time scales.   

 

 
Mudflat Mangrove Saltmarsh Casuarina 

Undeveloped 

land 

1963 

Observed Area (ha) 0.00 66.37 57.20 78.66 538.73 

Modelled Area (ha) 0.18 73.59 54.37 80.16 529.70 

Percentage error 17.75 10.88 -4.95 1.91 -1.67 

1986 

Observed Area (ha) 0.00 90.60 32.41 90.38 538.08 

Modelled Area (ha) 0.23 76.47 54.16 77.87 528.64 

Percentage error 22.67 -15.60 67.11 -13.84 -1.75 

1997 

Observed Area (ha) 0.00 93.92 28.93 95.06 536.62 

Modelled Area (ha) 0.39 76.82 54.03 77.90 527.69 

Percentage error 38.62 -18.20 86.78 -18.06 -1.53 

 

Table 19: Total area, observed and modelled, and error statistics associated with each vegetation/land 

cover type of the validation run 1963-1997 utilising accretion rates. 

 

Validation run: 1949-1997 

Predictive validation runs for the period 1949-1997 produced model output that varied in its 

fit with the comparison data for the simulated years, 1963, 1986 and 1997. However, at time 

zero, 1949, errors in the modelled output for validation runs using SEC and accretion rates 
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respectively were congruent. Error statistics evaluated by land cover type were consistently 

less than 10% for all validation runs (Table 20 and Table 22). Saltmarsh and undeveloped 

land zones were underestimated but the simulated land cover types displayed the greatest fit 

with the available observed data. Simulated areas of the Casuarina zone at time zero were 

greater than those observed and mapped by Chafer for the year 1949, with incorrectly 

simulated areas of Casuarina appearing in subsite 2, near Rocklow Creek, and subsite 8, at 

the back of the already extensive Casuarina zone. Modelled mangrove zones, too, covered a 

greater area at 1949 than those observed due to the simulation of mangrove vegetation within 

the Casuarina zone of subsite 8. Mudflat zones presented the greatest positive error in 

modelled output at time zero, yet represented the smallest areal extent of mudflat generated 

throughout all validation runs. Subsequent model output for the  

Examining the model output for validation runs which characterised the vertical increases of 

wetland surface over time by rates of SEC revealed a good fit of simulated data for the 

succeeding time step of the validation run, 1963, with all errors between modelled an 

observed data falling below 10%. The mangrove zone at 1963 was the most accurately 

modelled, displaying a 1.13% variance from the observed data. The inaccuracies associated 

with modelled saltmarsh zones changed from negative at 1949 (an underestimation) to 

positive at 1963(an overestimation) due to a greater rate of observed saltmarsh zone change  

 
 Mudflat Mangrove Saltmarsh Casuarina 

Undeveloped 

land 

1949 

Observed Area (ha) 0.00 58.30 65.16 80.39 541.13 

Modelled Area (ha) 0.11 63.72 62.45 85.41 530.79 

Percentage error 11.39 9.29 -4.17 6.25 -1.91 

1963 

Observed Area (ha) 0.00 66.37 57.20 78.66 538.73 

Modelled Area (ha) 0.36 67.32 62.32 81.96 530.19 

Percentage error 36.43 1.43 8.94 4.20 -1.58 

1986 

Observed Area (ha) 0.00 90.60 32.41 90.38 538.08 

Modelled Area (ha) 0.74 67.85 62.06 81.77 529.11 

Percentage error 74.27 -25.12 91.50 -9.52 -1.67 

1997 

Observed Area (ha) 0.00 93.92 28.93 95.06 536.62 

Modelled Area (ha) 0.99 68.86 61.56 81.50 528.06 

Percentage error 99.01 -26.68 112.82 -14.26 -1.59 

 
Table 20: Error statistics of the modelled data for the validation period 1949-1997. Total areas modelled are 

derived from simulations conducted when characterising the accretion parameter by rates of SEC. Considerable 

errors in the simulated data are calculated for the mangrove and saltmarsh zones. 
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in comparison to that modelled. Casuarina zones in the observed data decreased over this 

period at a slower rate than that modelled, producing a reduced error statistic for this 

simulated zone at 1963 (Table 20) 

Excepting undeveloped land zones, considerable error was noted in the model output for the 

succeeding time step, 1986(Table 20). The mangrove and Casuarina zone within the 

comparison data increased significantly over the 23-year period, 1963-1986, however a 

corresponding increase in the simulated vegetation areas was not observed. As a result, 

considerable overestimations of the zones were noted at 1986, the greatest of which measured 

within the mangrove zone. Similarly, the error associated with modelled saltmarsh zones was 

an order of magnitude greater than the previous time step due to the SLAM model’s not 

capturing the observed substantial decline in saltmarsh areas.  

The final modelled output for the predictive validation run involved considerable visual and 

statistical errors. Whilst areas of undeveloped land remained well modelled, all other 

simulated land cover type sat 1997 exhibited significant variations from the ‘true’ system. 

Further reduction in mangrove zones was simulated from 1986 to 1997, during which time an 

opposite trend in mangrove distribution was noted in the comparison data. Thus, a significant, 

overall underestimation of mangrove areas occurred within the final model output, as is 

evident in Figure10.  Visual analysis indicated that model errors were spatially distributed 

throughout the study site. Overestimated mangrove zones in subsite 8 were, however, 

outweighed by the substantial underestimation of the vegetation type in all other subsites of 

the study area. Analysis of the confusion matrix for the validation run confirmed this visual 

observation, with incorrect modelling of mangrove within Casuarina zones and large errors 

resulting from saltmarsh simulated in place of mangroves.  

More than a third of simulated saltmarsh areas (37.8%) were located within observed 

mangrove zones, predictably causing the vegetation type to be associated with a significant 

degree of model error (Table20). Only 43.1% of saltmarsh simulated was accurately 

simulated in space. These errors were blatantly apparent when visual comparison of modelled 

and observed reference data was conducted (Figure 10).  

The overall error statistic relevant to modelled Casuarina zones at 1997 revealed the model’s 

underestimation of the vegetation type (Table 20). Similar to mangrove areas, the error in 

simulated Casuarina zones is greatest at 1997 with the observed change in the comparison 

data not being accurately modelled. Visual analysis indicates that modelled Casuarina zones 
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have exceeded the area displayed in the ‘true’ data for 1997 within subsite 8. This is reflected 

in the confusion matrix, where 10.6 ha of observed undeveloped land were recorded as being 

simulated as Casuarina.  

An increase in predicted mudflat areas in the 1997 model output caused a directly 

proportional rise in the overall model error statistic for this vegetation type (Table 20). 

Spatially, these errors are situated in areas which, within the observed comparison data, are 

defined as mangrove or undeveloped land (Table 21). 

Examining the model output for validation runs which characterised the vertical increases of 

wetland surface over time by accretion rates revealed very similar results to those simulated 

when using rates of SEC. Time zero simulations were congruent to that of the SEC validation 

run as described above. A good fit of modelled data to the available reference data was again 

noted at 1963, with overall errors in simulated areas of vegetation being within 5% of the 

observed data. In comparison to the 1963 simulated output for the validation run using rates 
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Figure 10: Observed and modelled data over the period 1949-1997. Similar to the validation runs 1986-

1997, at short temporal periods (1949-1963) the modelled data displays a relatively good fit with the 

observed data. However, at larger temporal scales the modelled data shows significant deviations from 

the ‘real-world’ data. The SLAM model was unable to capture the large increase in mangrove 

vegetation and loss of saltmarsh. (Data pertains to the validation run in which accretion rates were used 

to define the accretion parameter. Similar deviations, however, were noted when accretion rates were 

utilised). 
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of SEC, undeveloped land, Casuarina and mudflat zones were more accurately modelled. In 

contrast, errors associated with mangrove and saltmarsh zones were greater when accretion 

rates were used as a parameter within the SLAM model.  

Significant errors in model output at 1986 again occurred as a result of the considerable 

growth of mangrove and Casuarina areas and substantial reduction in saltmarsh zones not 

being accurately modelled.  The large error associated with simulated mangrove vegetation 

did in fact decrease slightly when the SLAM model utilised accretion rates. Conversely, 

saltmarsh and Casuarina zone simulation errors increased marginally with respect to model 

output from the validation run using rates of SEC.  

Final simulated output at 1997 when implementing accretion rates as a factor within the 

model presented significant errors, most especially within the mangrove and saltmarsh zones 

(Figure 11.; Table22).Though modelled mangrove areas increased at a greater rate over the 

period simulated when using accretion rates, the total area simulated as being covered by 

mangrove vegetation remained substantially underestimated with respect to available 

reference data. Furthermore, of the mangrove area simulated, only 85% was accurately 

modelled. The remaining 15% of simulated mangrove zone was incorrectly modelled in place 

of Casuarina, undeveloped land and, in a few instances, saltmarsh zones. Visual analysis and 

interpretation of the confusion matrix indicated that a significant proportion of mangrove 

zone (25.4%) has been modelled as saltmarsh (Figure 11), especially within 

 

Mudflat 

(ha) 

Mangrove 

(ha) 

Saltmarsh 

(ha) 

Casuarina 

(ha) 

Undeveloped 

land (ha) 

Total 

observed 

area  

Mangrove 0.11 59.48 23.09 4.50 0.45 87.64 

Saltmarsh 0.00 0.68 26.66 0.72 0.77 28.83 

Casuarina 0.00 3.18 9.60 65.46 16.26 94.50 

Undeveloped 

land 
0.02 2.44 2.23 10.58 510.34 525.61 

Total modelled 

area  
0.13 65.78 61.59 81.25 527.82  

 

Table 21: Confusion matrix of the observed and modelled data for the year 1997 when rates of SEC 

were utilised. Significant errors in simulated position of wetlands can be identified from the matrix, such 

as the a significant proportion of mangrove area erroneously simulated as saltmarsh (23.09ha). 

 



 

94 

 

 subsites 2, 4, 5 and 6. This model error was reflected within the error associated with 

simulated saltmarsh zone, where 38.2% of simulated saltmarsh was erroneously modelled as 

mangrove. Subsequently, modelled saltmarsh zones at 1997 were more than double that 

observed and mapped by Chafer (1998). In comparison to the predictive validation run 

utilising rates of SEC, simulated saltmarsh areas when implementing accretion rates included 

marginally greater inaccuracies.  

Casuarina zones at 1997 were underestimated when accretion rates were used to characterise 

vertical increases in the wetland surface (Table 22). The error statistic describing the 

inaccuracy of modelled Casuarina zones was greater than that calculated of the respective 

vegetation type for the validation run in which rates of SEC were implemented. This appears 

to be the result of a greater decrease in the area of modelled Casuarina with respect to the 

increased Casuarina zone observed in the comparison data.  

Figure 11: a) Modelled and b) observed distributions of the Minnamurra wetlands at 1997 for the 

validation period 1949-1997. Modelled distributions represent the final output from simulations 

using accretion rates to define the accretion parameter. Distinct differences can be quickly 

identified between the modelled and observed data, most particularly in subsites 2 (Rocklow 

Creek) and 4 (the western floodplain). Similar deviations from the observed data were noted when 

rates of SEC characterised the accretion parameter.  
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Mudflat areas modelled using accretion rates were almost a fifth of those simulated when 

utilising rates of SEC. This corresponded with a significant decrease in the error statistic 

noted for the land cover type. Once again, mudflats were simulated in position of a small 

proportion of the mangrove and undeveloped land zones. 

Comparing model output generated from prediction validation runs utilising rates of SEC 

with those implementing accretion rates indicated that neither method of characterising 

vertical increases over time produced a consistently greater fit of simulated data with the 

comparison data.   

Simulations using accretion rates produced greater accuracy in undeveloped land, Casuarina 

and mudflat zones with respect to those modelled using rates of SEC as a parameter. 

However, greater accuracy was obtained in mangrove and saltmarsh zones when rates of SEC 

were defined as a parameter for predictive validation runs at each temporal period. Visual 

analysis and comparison of model output generated using the different methods indicates 

rates of SEC were able to more accurately produce spatial distributions of wetland vegetation, 

especially within the western floodplain. Despite the greater accuracies or inaccuracies 

attributable to output using different methods of calculating wetland surface change, 

 

 
Mudflat Mangrove Saltmarsh Casuarina 

Undeveloped 

land 

1949 

Observed Area (ha) 0.00 58.30 65.16 80.39 541.13 

Modelled Area (ha) 0.11 63.72 62.45 85.41 530.79 

Percentage error 11.39 9.29 -4.17 6.25 -1.91 

1963 

Observed Area (ha) 0.00 66.37 57.20 78.66 538.73 

Modelled Area (ha) 0.18 67.16 62.42 82.20 530.19 

Percentage error 17.96 1.19 9.12 4.51 -1.58 

1986 

Observed Area (ha) 0.00 90.60 32.41 90.38 538.08 

Modelled Area (ha) 0.24 67.23 62.38 82.53 529.15 

Percentage error 23.70 -25.80 92.49 -8.68 -1.66 

1997 

Observed Area (ha) 0.00 93.92 28.93 95.06 536.62 

Modelled Area (ha) 0.23 67.55 62.29 82.59 528.31 

Percentage error 23.49 -28.07 115.36 -13.12 -1.55 

Table 22: Error statistics of the modelled data for the validation period 1949-1997 when 

accretion rates are used to define the accretion parameter. Considerable errors in the simulated 

data are calculated for the mangrove and saltmarsh zones. 

 



 

96 

 

significant model errors remain in all modelled data.  

In comparing all six predictive validation runs across the three simulation periods, it was 

evident that, with the exception of mudflat zones, errors in model output increased with 

increasing temporal periods of simulations. Greatest errors for each validation run were 

consistently associated with overestimated saltmarsh vegetation, which, in turn, was linked to 

underestimated areal extents of modelled mangrove zones. In contrast, simulated areas of 

undeveloped land varied little from the observed data, with errors across all validation runs 

never exceeding 2%. Increased errors over time associated with Casuarina zones appeared to 

be primarily related to the incorrect trend of areal change being simulated by the SLAM 

model. That is, where Casuarina zones were observed to increase over each temporal period, 

the model simulated a loss in the vegetation type over the same period. Spatial distributions 

of vegetation-specific inaccuracies were relatively similar within model output of each 

validation run. The magnitude of these errors, however, varied according to the input data 

and temporal period simulated.  
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4.2.3 Projections: 2011-2100 

Simulations of the effect of SLR on wetland distributions from the year 2011 to the end of the 

century were conducted to examine the plausibility of the output under extreme conditions, to 

produce output suitable for comparison with other models,  to investigate the ability of the 

SLAM model to simulate plausible distribution of wetlands under varying SLR scenarios and 

to consider the effects of using different input elevation information or method of 

characterising the accretion parameter within the model. For these purposes, 18 different runs 

were performed producing 180 maps. Selected model output and associated data are 

presented herein. See Appendix C for model output for all model projections.  

Calibration  

The SLAM model required calibration before projections were initiated so as to ensure the 

initial wetland distribution as defined by the model coincided with the available wetland 

vegetation map and aerial photography of the same year. The SLAM model immediately 

converts cells that fall below the minimum elevation range to a lower wetland category. Due 

to this definition of vegetation switching functions within the model, certain vegetation types 

were misclassified at time zero. The elevation ranges of wetland vegetation were required to 

remain as similar as possible to those utilised for the Oliver and SAAT model. Thus, only 

minor adjustments of minimum elevations of wetland categories were made to correct the 

errors within the simulated vegetation map for the initial year of modelling.  Adjustments 

resulted in significantly refined time zero model output, as reported in Table 23. Variations 

greater than 10% were accepted for the mixed zone due to the simulated area more accurately 

representing the distribution at 2011 distinguished from the aerial photography. By default, 

 
Table 23: Results of calibration at time zero (2011).  

Land cover type 

Initial 

coverage 

(ha) 

Modelled 

coverage 

(ha) 

Change 

(ha) 
% Change 

Mudflat 0 1.39 1.39 139.43 

Mangrove 90.67 90.66 -0.01 -0.01 

Mixed 7.22 8.35 1.14 15.75 

Saltmarsh 26.59 25.42 -1.18 -4.43 

Casuarina 89.62 95.62 6.00 6.69 

Undeveloped Dry Land 523.89 514.73 -9.16 -1.75 
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any mudflat simulated by the SLAM model resulted in a large percentage error being 

calculated for the class as the original vegetation map had not included mudflats as a category. 

The small area of mudflat modelled in subsite 4 at time zero was accepted as the sole method 

for reducing the zone was by adjusting the minimum mangrove elevation boundary to an 

unrealistic value. To preserve the plausibility of the modelling, it was considered prudent to 

accept the minor deviation in model output from the original vegetation map.  

 

Model output under various scenarios of SLR  

Examination of the model output for projections from the year 2011 to 2100 showed that the 

magnitude of change in the areal extent of each vegetation or land cover type increased with 

increasing predicted levels of SLR (Table 24). For all SLR scenarios, undeveloped land and 

saltmarsh classes decreased in coverage by the year 2100. In general, a loss in Casuarina 

zones and increases in mixed zones were also predicted by the same year. Modelled 

vegetation and associated change in vegetation areal extent compared to the year 2011 varied 

according to the DEM utilised and the method used to define the accretion parameter within 

the model. General trends and differences between SLR scenarios are, therefore, noted within 

this section, with a further focus on differences between projections attributable to treatment 

of the accretion parameter and original input elevation data being reported in greater detail 

below.  

 

 

Table 24: The magnitude of change by the year 2100 when characterising the accretion parameter by 

rates of SEC. The pattern of greater change with increasingly larger rises in sea level is observed in 

each of the projections conducted for this study even with the changes in the definition of the 

accretion parameter or variation in the input elevation information. Positive values indicate an 

increase in area covered by the vegetation whilst negative values indicate a loss of the vegetation type. 

Vegetation 

Type 

Percentage change (%) 

Low 

SLR 

Intermediate 

SLR 

Extreme 

SLR 

Mudflat 4.48 -4.77 -7.99 

Mangrove 4.83 82.85 -54.61 

Mixed 0.01 17.87 137.48 

Saltmarsh -4.84 -24.13 -25.72 

Casuarina 2.85 -36.18 -80.24 

Undeveloped -7.93 -37.60 -67.10 
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Variations in areal extent of each vegetation type modelled under the SLR scenarios were 

evident by the year 2100. Total areas of mangrove zones reduced with increasing SLR and 

produced significant differences in its distribution within the final model outputs (F(2,5) = 31.3, 

p < 0.0098). Though saltmarsh suffered losses across all modelled SLR scenarios, the 

variation of the vegetation distribution was also significant by the year 2100 (F(2,5) = 494.23, 

p < 0.0001). The significance of differences in modelled mudflat zones was also great by the 

final year (F(2,5) =114.95, p < 0.0001).  

The distribution of simulated wetland vegetation under the low scenario of SLR, B1, was 

little altered by the year 2100 compared to that at 2011 (Figure 12a), with changes less than 

10 hectares (ha) being calculated for all model output. Of these, the greatest changes in areal 

extent were losses recorded for zones of undeveloped dry land due to an encroachment inland 

of Casuarina modelled in subsites 6 and 7. Increases in mangrove  areas were a result of 

marginal landward migration being simulated, causing concomitant losses in saltmarsh and 

Casuarina zones (Appendix C). Mixed and mudflat zones increased at approximately the 

same rate until the year 2100 (Figure 12a).  

The general patterns modelled under a low SLR scenario were magnified when an 

intermediate level of SLR, A1FI, was simulated. Casuarina zones decreased due to 

encroaching mixed and mangrove areas. Approximately 36ha of undeveloped land were lost 

to Casuarina or mangrove zones. The large loss was not reflected in the percentage change 

recorded in the areal extent of undeveloped zones, where the considerable original area 

reduced the significance of the almost entire loss of undeveloped zones in subsites 6 and 7 by 

the year 2100.  

Under the intermediate scenario of SLR a loss of greater than 90% was modelled for 

saltmarsh zones, with little more than 1 ha left throughout the study site by 2100. The rate of 

saltmarsh loss was greatest over the period 2030-2080, the same temporal period over which 

a substantial increase in mangrove zones was modelled (Figure 12b). Visual analysis 

indicated that this relationship was due to a landward growth of the mangrove zone at the 

expense of upland wetland classes, such as saltmarsh.  

Simulated mangrove proliferated throughout the study site under the A1FI SLR scenario and 

recorded the largest areal extent of all wetland vegetation by the year 2100 (Figure 12b)  

Small changes were noted in the distribution of the mangrove zone over the first half of the  
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Figure 12: Patterns of wetland change under varying rates of SLR: a) low (B1) b) intermediate (A1FI) and c) 

extreme (Vermeer and Rahmstorf 2009) rates of SLR. Distinct difference in wetland areas can be seen between the 

three scenarios of SLR.  Graphs presented here are derived from the timeseries data generated by using DEM2 as 

the input elevation information and rates of SEC defining the accretion parameter in the projections of wetland 

change from 2011 to 2100. The general patterns, however, were similar throughout all projections. With 

increasingly greater rates of SLR, an increase in the areal extent of mudflats and loss of wetland vegetation is 

observed.  

 

a) 

b) 

c) 
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century followed by a significant increase in the rate of mangrove growth and resulting areal 

extent from approximately 2050 or 2060. 

An increase of mixed zone until the latter half of the century was associated with the A1FI 

scenario. Visual analysis indicated that a growth in the vegetation class at subsite 6 was 

primarily responsible for the increase in areal extent recorded, especially since the zone was 

lost to mangrove vegetation at subsite 4 over the same period. The predicted decrease in the 

distribution of the mixed zone was attributable to the proliferation of mangroves across all 

subsites. The final change in areal extent by the year 2100 varied according to the treatment 

of the accretion parameter (outlined below). 

Under the extreme SLR scenario all simulated wetland vegetation was predicted to suffer 

significant losses (Figure 12c). Saltmarsh and mixed zones covered close to no area by the 

year 2100. Saltmarsh zones were quickly lost over the first 50 years, whereas an initial 

increase was simulated for mixed zones before its demise. A growth in mangrove zones was 

also simulated, reaching a maximum areal distribution of the category in the middle of the 

century (2050-2070 depending on the method of characterising the accretion parameter) 

before it too was simulated to experience a significant and rapid decline until the year 2100. 

Loss and growth of zones were the result of the same relationships and patterns of 

distribution noted for simulated wetlands under the A1FI SLR scenario. It is noted, however 

that the patterns of growth and decline and the rate of wetland conversions were significantly 

increased under the extreme SLR scenario. In fact, the wetland change and distribution up to 

the year 2060 associated with the 1.9m rise in sea level is similar to that modelled over the 

entire period of simulations under the A1FI SLR scenario (Figure 12b and 12c) indicating 

that, with respect to the latter SLR scenario, the wetland change almost doubled under the 

extreme SLR scenario.  

The mudflat zone was the only land cover category simulated to increase in extent by the end 

of the century. A significant increase in mudflat zones was associated with the decline of 

mangrove zones in the study area. The rate of change was observed to increase with even 

greater rates of SLR modelled for the second under the extreme SLR scenario. 

The extent of inundation increased with increasing SLR. Under the B1 SLR scenario, little to 

no inundation was simulated in the study site. The increased level of SLR associated with the 

A1FI scenario also produced only a small area of land being inundated within all model 
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output. In contrast, widespread flooding and inundation of wetland zones was simulated 

under the extreme SLR scenario (Figure 13).   

 

Figure 13: a) Initial wetland distribution at 2011 and modelled wetland areas for 2100 under b) low 

(B1), c) intermediate (A1FI) and d) extreme rates of SLR. An increase in the level of SLR produced 

successively larger areas of land to be inundated. (Note: results presented in this figure relate to the 

projection run in which rates of SEC defined the accretion parameter. The trend of increasing rates of 

sea level leading to increased loss of vegetation and greater inundation is, however, noted in each 

projection [Appendix C]).  
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Comparison of simulations modelled using different treatment of the accretion 

parameter 

Three different methods were used to characterise the accretion parameter in this study, two 

of which involved applying individual values of SEC or accretion rates to entire areas of 

wetland categories and the last defined by the use of a numerical model to simulate spatially 

varying rates of accretion. The latter method will be referred to as the accretion module.  

Assessment of visual and numerical model output indicated that, though patterns of simulated 

wetland distribution over time between SLR scenarios were similar, the magnitude and rate 

of wetland vegetation change varied with differing treatment of the accretion parameter. 

Landward migration of mangroves occurred at a faster rate when utilising rates of SEC within 

the SLAM model and low wetlands were rapidly converted into mudflat zones. For the same 

reason, under extreme SLR scenarios, a larger area of the vegetated floodplain was inundated 

with respect to that modelled using accretion rates or the accretion module. The difference in 

utilising rates of SEC to define the accretion parameter is clearly demonstrated by 

considering the mudflat zone modelled under the intermediate SLR scenario. By the year 

2100, 56.86 ha of mudflat were modelled using rates of SEC in comparison to 1.9ha and 

0.6ha simulated using accretion rates and the accretion module respectively.  

Defining the accretion parameter for each vegetation type by an individual accretion rate 

resulted in an overall greater persistence in the upper wetland categories, a related decrease in 

the rate of mangrove landward migration and significantly less inundation by the year 2100. 

Mudflat zones were greatly reduced when accretion rates were utilised (Figure 14a). 

Similarly, accretion rates applied in the mixed zone reduced the rate of mangrove 

proliferation and simulated a greater persistence of upland wetland vegetation. Indeed, in 

applying accretion rates the greatest growth in the mixed zone was simulated. Under the 

intermediate SLR scenario, the SLAM model simulated a growth in the mixed zone of 

100.4% when accretion rates were used in complete contrast to a simulated 64.7% loss when 

rates of SEC were applied and a 45.5% reduction in the zone’s area when the accretion 

module was utilised. Under an extreme rate of SLR, the same pattern was observed, with 

model output simulated using rates of SEC producing the only growth in the mixed zone.  

The greatest effect of applying the accretion module within the SLAM model was the 

increased persistence and proliferation of the mangrove zone. The varying accretion rates 

defined by the module were based on the elevation and accretion ranges of each wetland  



 

104 

 

 

 

vegetation type and, when applied, produced a decrease in accretion rates with decreasing 

distance from the Minnamurra River. Under an intermediate SLR scenario (A1FI), such a 

definition of the accretion parameter generated a substantial increase in the mangrove area 

(119.9%) with respect to that simulated when applying rates of SEC (51.1% change) or 

vegetation-specific accretion rates (36.3%) . Application of the accretion module under the 

intermediate SLR scenario produced the only loss in mudflat zones simulated for all 
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Figure 14: Areal extent of certain vegetation types modelled when using different methods to define the 

accretion parameter under a) intermediate (A1FI) and b) extreme SLR scenarios. Distinct differences can be 

seen in the modelling of mangrove and saltmarsh when the accretion parameter is characterised differently. 

In contrast, saltmarsh areas simulated are relatively similar regardless of the definition of the accretion 

parameter.  

 



 

105 

 

combinations of SLR scenarios and accretion parameter definitions. This was a result of the 

largest defined accretion rate at the river causing elevations of the mangrove zone’s lowest 

boundary to be maintained with respect to the modelled SLR, thus allowing no conversion of 

mangrove to mudflat to occur and little inundation of the land to be simulated.  

Flooding of the land was greatest when rates of SEC were used, most noticeable in model 

output for 2100 under extreme SLR scenarios (Figure 15). Rates of SEC applied under a 

simulated SLR of 1.9m generated an almost complete loss in wetland extent of subsites 3 and 

4. In contrast, when accretion rates characterised the accretion parameter, flooding associated 

with extreme SLR was less extensive, with simulated areas of inundation using rates of SEC 

remaining as mudflat when accretion rates were applied. Similar patterns of inundation were 

observed in model output produced from runs in which the accretion module was applied 

(Figure 15). For the extreme SLR scenario, a relationship was evident between inundated 

lands simulated when using rates of SEC and areal extent of mudflat zones when using 

accretion rates. Differences in mudflat zones, and thereby areas inundated, when the 

accretion parameter was defined in a different manner were significant under extreme sea 

level scenarios. 

Wetland vegetation distributions within each scenario generally displayed significant 

variation. As is clearly shown in Figures 14 and 15, mangrove distributions varied 

significantly under different scenarios of SLR according to the manner in which the accretion 

parameter was defined. Simulated mudflat zones, too, showed distinct variation within each 

SLR scenario modelled as described in detail above. Though variations occurred between 

modelled areas of upland vegetation under the extreme SLR scenario, no statistical difference 

was found for the overall or final model output generated utilising different accretion 

parameter definitions. This is primarily a result of upland wetland vegetation being 

significantly reduced in all model output for the extreme scenario, regardless of the definition 

of the accretion parameter.  
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Varying the method by which the accretion parameter was characterised produced no 

statistical difference in modelled areas of saltmarsh zones within all SLR scenarios. This is 

also evident in considering the percentage area change calculated for the saltmarsh zone 

under the extreme SLR scenario where a 99.9% loss was recorded since 2011 when rates of 

SEC were utilised, a 99.85% reduction in area was simulated when accretion rates were 

applied and a 99.91% decrease in saltmarsh areal extent was modelled when the accretion 

module was implemented.  

Figure 15: a) Initial wetland distribution and vegetation extent at 2100 under an extreme SLR 

scenario when utilising b) rates of SEC c) accretion rates and d) accretion module to define the 

surface elevation change in the SLAM model. Differences in the magnitude and spatial pattern of 

inundation can be seen between figures b) – d).  
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Analysis of model output defined by differing input elevation information 

Projections which utilising DEM1 as the base input elevation information produced varying 

model output with respect to that generated when DEM2 was utilised within the SLAM 

model. Assessing the percentage change in areal extent of each vegetation type within 

individual SLR scenarios indicated that the lower wetland areas were most affected by the 

use of the two different input elevation layers. In addition, variations in model output from 

projections defined by different elevation information were most noticeable when rates of 

SEC or accretion rates characterised the accretion parameter. This was most evident under the 

extreme SLR scenario. Mangrove areas modelled utilising accretion rates saw a 26.5% 

change by the year 2100 when DEM1 was used as the input elevation with respect to a 7.1% 

growth in the mangrove area when DEM2 was utilised. Visual analysis of the model output 

indicated that the difference in simulated mangrove areas was a result of greater persistence 

of mangrove vegetation in subsites 2, 4 and 6. It was noted that areas where vegetation was 

observed to persist in projections using DEM1 coincided with distributions of dense 

mangrove vegetation in 2011. Specifically within subsite 4, the additional mangrove zones 

simulated using DEM1 were located in areas calculated to contain the greatest elevation 

errors. An analysis of model output indicated that the variations in the areal extent of 

mangrove simulated using DEM1 and DEM2 were significant within all SLR scenarios and 

projections utilising different accretion parameters. 

As elevations of lower wetlands were generally greater within DEM1 than DEM2, slower 

conversion and landward migration of the mangrove zone was noted in projections utilising 

DEM1 as the base elevation layer. As a result, a significant difference in the spatial 

distribution of simulated mangrove and Casuarina zones were observed, the latter vegetation 

type simulated to persist in subsites 6 and 7 by the year 2100 when using DEM1 in 

comparison to the proliferation of mangroves in the same areas modelled when utilising 

DEM2 as the base elevation information. Across all scenarios the total areal extent modelled 

for the Casuarina vegetation was significantly different when different elevation information 

was used (F(1,16) = 110.41, p <0.001). 

Utilising different elevation information resulted in significant variation in mudflat areas 

being simulated, especially under extreme SLR conditions. Comparing model output from 

DEM1 to that of DEM2 indicated that under the extreme SLR scenario a further 19ha were 

simulated when utilising rates of SEC and a 25 ha increase was calculated from output 
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produced from using the accretion module. Similar to the locations of persisting mangrove 

vegetation, additional mudflat zones simulated using DEM1 were situated in areas associated 

with significant elevation errors (Figure 16). 

Areas of mudflat simulated are related to the extent of inundation and conversion of wetland 

to estuarine water. Therefore, it is not unsurprising that simulations utilising DEM2 as the 

base input elevation information produced substantially greater areas of wetland inundation 

for all SLR scenarios.  

It is noted that, although variation in output was statistically significant when utilising 

different base elevation information, simulations of the effect of SLR on wetland vegetation 

did not greatly vary in subsite 7 (Figure 16). 

 

Figure 16: Modelled wetland distributions for the year 2100 when simulating the effect of extreme 

SLR using a) DEM1 and b) DEM2 as the input elevation information while holding all other 

parameters constant. Mudflat areas simulated on the western floodplain when utilising DEM1 

approximately correspond to the position of vertical errors within the elevation layer. In comparison, 

when using DEM2, these same areas are simulated as being inundated. It is apparent that the base 

elevation information has a distinct impact on final projections. 
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4.2.4 Sensitivity  

Running models in which parameters were individually varied by 10%, whilst holding all 

other parameters constant provided insight into the sensitivity of the SLAM model. From the 

multiple outputs of sensitivity runs, a sensitivity statistic was calculated such that a 100% 

sensitivity was defined if the 10% change in a particular parameter resulted in a 10% change 

in the areal extent of simulated vegetation (Clough et al. 2012). Results showed that, of the 

parameters tested, SLR, tidal range, salt elevation boundary, NAVD88-MTL and historic sea 

level rise trend were the most sensitive factors of the SLAM model. Accretion rates were also 

calculated to be sensitive parameters regardless of the manner in which they were defined. 

Numerical results of the sensitivity analysis are presented in Appendix D and reported within 

this section.   

The SLAM model was most sensitive to the SLR defined in any projection run. An increase 

in the magnitude of SLR resulted in a greater sensitivity of the model when simulating the 

areal extent of each vegetation type considered in this study. Evaluating the sensitivity of the 

model to SLR, when different methods were used in characterising the accretion parameter, 

indicated that the model was least sensitive to SLR when the accretion module was utilised, 

whilst the greatest sensitivity to the factor occurred when the accretion parameter was defined 

by rates of SEC. 

The great diurnal tide range and salt elevation boundary also produced significant variation in 

model output . The tidal range was used in this study to define the elevation ranges of 

vegetation classes, which also defines the point at which one class will switch or convert to 

another. A 10% variation in the great diurnal tidal range, therefore, produced a considerable 

effect on all vegetation classes whose elevation ranges were defined in half tide units, namely 

mudflat, mangrove, mixed, saltmarsh and Casuarina. The salt elevation boundary defines the 

highest elevation that is regularly inundated by water. It follows, therefore, that the upland 

vegetation class, Casuarina, was most sensitive to changes in the salt elevation parameter. 

The greatest effects of changes in the salt elevation boundary occurred when high levels of 

SLR were defined, regardless of the treatment of the accretion parameter. Variations in the 

salt elevation boundary had no effect on mixed and saltmarsh zoned for all SLR scenarios 

and accretion parameter method utilised.  

Within the SLAM model, the historic sea level trend parameter contributes to determining the 

magnitude of inundation over time. Unlike the effects of altering the salt elevation boundary, 
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the lower elevation vegetation zones were most sensitive to variations in the historic sea level 

trend, specifically the mudflat, mixed and saltmarsh zones. The sensitivity to the parameter 

within saltmarsh and mixed zones increased with increasing magnitude of SLR by 2100.  

Overall sensitivity of the model to SLR, great diurnal range and salt elevation boundary 

parameters indicated that the definition and magnitude of inundation were the most important 

factors affecting the model output. Errors in the characterisation of these parameters would, 

therefore, cause possibly significant inaccuracies in model output.  Further investigation of 

the potential errors was conducted within the uncertainty analysis reported below.  

Variations in the accretion parameters, characterised either by rates of SEC, accretion rates or 

the accretion module, resulted in variations of areal extent for certain wetland vegetation 

zones modelled within the SLAM model. Simulations of mangrove and mudflat were most 

effected by the 10% variation in the mangrove accretion parameter in all SLR scenarios, 

whereas the sensitivity statistics associated with the defined mixed accretion rates indicated 

that modelled mixed and mangrove zones were most affected by this variable.  

Focusing upon the model’s sensitivity, when the accretion module was utilised indicated that 

the maximum mangrove accretion parameter of the module caused the greatest variation in 

model output, especially under high levels of SLR. In contrast, the model was not as sensitive 

to variations in the mangrove minimum accretion rate defined. Sensitivity statistics associated 

with the mangrove elevation coefficients, b and c, indicated that the SLAM model was little 

affected by their definition even under extreme scenarios of SLR. A similar pattern of 

sensitivity was noted for the mixed accretion module, whereby the maximum value defined 

showed the greatest sensitivity, the minimum value had little effect and the coefficients 

produced marginal to non-existent variations in the model output. Compared to the mangrove 

accretion module, however, the mixed and mangrove zones simulated by the SLAM model 

were most affected by variations in the mixed accretion module, most specifically by the 

defined maximum accretion rate.  
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4.2.5 Uncertainty 

The Monte Carlo uncertainty-analysis provides confidence statistics for model results whose 

accuracy and precision are proportional to the number of iterative simulations completed. For 

this study, 500 uncertainty simulations were thus run in order to increase the confidence of 

statistical elements derived from the model output. A conservative treatment of the results is 

reported herein, with all graphical representation of model output being bound by the 5% 

(lowest) and 95% (highest) confidence intervals. 

Results are representative of the errors and uncertainties introduced to the model from input, 

defined parameters, namely the elevation information, great diurnal tide range, salt elevation 

boundary, NAVD88-MTL, mangrove accretion, mixed accretion and saltmarsh accretion 

parameters. It is noted that uncertainties resulting from the model structure itself are not 

incorporated in the stochastic, time series data produced from the uncertainty model runs.  

Assessment of uncertainty analysis results suggested that, when utilising accretion rates, 

mangrove and Casuarina areas were the most uncertain categories modelled overall. 

Analysing the statistics associated with the iterated model output for the year 2050 (Table 25) 

and 2100 (Table 26) clearly indicated that the error associated with simulated vegetation 

zones increased over time, with uncertainty intervals widening by 2100 (Figure 17).Based 

upon the uncertainty analysis statistics, saltmarsh and mixed zones were least effected by 

errors and uncertainties incorporated in the SLAM model.  

Analysing the deterministic output with respect to the uncertainty prediction, time series data 

indicated that modelled mangrove areas were below the overall mean for the vegetation 

Land cover 

type 
Minimum 5% CI Mean 95%CI Maximum Standard 

Deviation 

Mudflat 1.53 4.32 6.63 10.44 14.97 1.89 

Mangrove 89.73 92.41 103.48 120.67 140.51 8.56 

Mixed 6.96 9.06 12.83 16.88 18.71 2.37 

Saltmarsh 5.57 10.15 15.87 21.46 24.41 3.49 

Casuarina 71.62 85.72 95.34 103.82 107.73 5.64 

Table 25: Uncertainty results for the year 2050 for simulations utilising accretion rates. Statistics 

are calculated in hectares.  
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category calculated from the uncertainty analysis (Figure 17). Errors and uncertainty 

propagated through the model over time produced a variation of 119.04 ha, from 88.22 ha to 

207.26 ha, by the year 2100.  

 Similar to the mangrove category, positioning of deterministic output within the possible 

extents to be modelled was generally observed below or only slightly above the mean for 

each vegetation and land cover category (Appendix E). A special case was observed for 

Land cover type Minimum 5% CI Mean 95%CI Maximum 
Standard 

Deviation 

Mudflat 0.02 0.88 13.09 43.89 70.88 14.07 

Mangrove 88.22 97.99 138.95 185.41 207.26 27.53 

Mixed 0.56 2.02 10.05 21.20 28.11 5.98 

Saltmarsh 0.11 0.58 5.19 14.13 21.16 4.33 

Casuarina 21.40 42.36 83.93 113.31 122.91 22.31 

Undeveloped Land 453.80 459.33 475.22 490.13 499.49 9.46 

Table 26: Uncertainty results for the year 2100 for simulations utilising accretion rates. Errors associated 

with simulated vegetation zones increased with respect to those at 2050 reported in Table25, indicating an 

increase in uncertainty associated with simulations of greater temporal periods 
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Figure 17: Results of the uncertainty analysis for a) mangrove and b) mudflat zones. Descriptive and inferential 

statistics of model output from the 500 iterations provide an indication of the possible outcomes and display the 

uncertainty associated with future projections. 
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simulated mudflat zones whereby deterministic output lay at or only slightly above the 

minimum values simulated within the uncertainty runs (Figure 17b).  

Distributions of model output generated from the 500 iterations of the uncertainty analysis 

provided additional information about the areal extent of each vegetation type by the year 

2100. From Figure 18a.it can be understood that large areas of mangrove are likely to be 

modelled and present in  the study site by the year 2100. Similar distributions are observed 

for the Casuarina zones, whilst the likelihood of retaining only a fraction or no saltmarsh 

zone by the year 2100 is indicated in Figure 18c. 

  

 
 

Figure 18: Histograms for a) mangrove, b) mixed, c) saltmarsh and d) Casuarina for the year 2100.  

The distributions of results from the uncertainty analysis provide insight into the likelihood of certain 

areal extents occurring by the year 2100. The skewness of saltmarsh areas simulated by the SLAM 

model suggests that the vegetation zone is most likely to be represented by low acreages in 2100.  
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4.3 The SAAT model 

4.3.1 Numerical equation and basic model validation 

The final equation developed and implemented in this study was derived from the entire 

available SET dataset and the combined true and averaged tidal data from MHL (2012). 

Values of SEC modelled using this equation compared relatively well to those calculated 

from SET data (R
2
 = 0.862122). The fit of the modelled data was slightly less than that 

obtained when only true, non-averaged numerical information for the years 2003, 2009 and 

2010 was used to develop the equation (R
2
 = 0.86304). However, given the small difference 

in the fit of the data and the problems associated with defining an equation and system 

utilising only a small dataset, effectively three, non-consecutive years, the equation derived 

from the full SET dataset and averaged data was considered to provide the most suitable 

representation of wetland SEC over time. Thus, the numerical equation derived from non-

linear regression and deemed to provide the most adequate explanation of the wetland system 

was:  

 SEC = 0.00112762606907659 ∗ 𝑒−5.12615410987054∗H ∗ 𝑒−0.00378438213262039∗𝐷𝑐 (8) 
 

where SEC is surface elevation change (m/yr), H is the elevation with respect to local mean 

high water (m) and Dc is the distance to the most proximal tidal source (m). It was to the 

value calculated from this equation that wetland surface elevation was added and incremental 

SLR subtracted to determine the wetland elevation at a given time step during the 

implementation of the SAAT model.  

Basic validation of the SAAT model was conducted by comparing surface elevations 

modelled for singular points in space with the observed SET based data. Repeating the 

process of modelling and comparison at each SET location confirmed that the model 

simulated wetland elevation change relatively well (Figure 19). It was noted that, for the 

particular points modelled, variations were perceptible in comparison to observed data. 

Greatest variations occurred in modelled surfaces within the mangrove zones, where 

simulated elevations were underestimated by 2 - 10mm (Figure 19). However, simulated 

surfaces in saltmarsh zones obtained a relatively good fit with the observed data, modelling 

within millimetre variations. The differences, or errors, noted in saltmarsh and mangrove 

zones at individual points in space provided a basic understanding of the performance of the 
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model within respective zones. Such errors were considered when examining and interpreting 

surfaces developed from the spatial application of the model. 

 

Figure 19: Comparison of observed and modelled trends in SEC for two points in space; SET2 and 

SET5. The former SET is situated amongst mangrove vegetation, whilst SET5 is located within the 

saltmarsh zone. Deviations and similarities of the modelled and observed data are indicative of the 

goodness of fit and validity of the SAAT model for the study site. 
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4.3.2 Projections under varying SLR conditions: 2011-2100 

General patterns of wetland vegetation distribution under varying conditions of SLR were 

similar across projections utilising different base elevation information. This section, 

therefore, discusses the patterns with respect to those modelled using DEM2.Variations 

between model output utilising DEM1 and DEM2 are discussed in detail below. 

B1 5%CI sea level rise scenario  

Dramatic changes in distribution of wetland classes were not observed for model output over 

the period 2011-2100. The small growth or decline of classes that was simulated occurred in 

an almost linear fashion (Figure 20),  indicating an almost constant, low rate of wetland 

change for this SLR scenario.  Mangrove, mixed and saltmarsh zones increased in areal 

extent by the year 2100, the greatest growth being associated with mangrove vegetation (116% 

change). By contrast, the Casuarina zone was predicted to be subjected to minor losses over 

the same temporal period (-11%). 

Under the low SLR scenario, only 0.39 ha of land was simulated to be inundated by the year 

2100, representing an overall decrease in inundated areas with respect to 2011 (-96.5%). 

Between 2030 and 2040, a perceptible decrease in river areas appeared to be directly related 

to an increase in mangrove zones. Closer examination of spatial layers generated by the 

model indicated that the loss in river area was indeed due to the establishment of mangrove 

vegetation in previously inundated areas (Figure 21). It should perhaps be noted here that, 

based on preliminary investigations, if the model were to include the Minnamurra River in its 
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Figure 20: Areal extent of each vegetation class simulated for the period 2011-2100. 

The small growth or decline in each class can be seen to occur in an almost linear 

fashion.  
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simulations, the same pattern of mangrove establishment in river zones would likely occur.   

An examination of the spatial patterns of mangrove growth indicated both a landward 

encroachment and internal expansion (for example, on the western floodplain) of  mangrove 

clearly reflected in the large percentage change and increase in areal extent of the vegetation 

type (Table 28; Figure 21).  Though simulated mangrove saw the greatest overall increase in 

area, Casuarina remained the wetland class whose distribution across the study site was 

greatest. 

Mixed zones were predicted to increase by the end of the 21
st
century. A growth in mixed 

areas was only evident when modelling the lowest level of SLR used for this study. 

Table 27: Percentage change in the total area of each vegetation or land 

cover type by the year 2100 under low rates of SLR.  

  

Vegetation/Land 

cover type 

Areal extent of vegetation  (ha) 

2011 2100 %Change 

River 11.17 0.39 -96.53 

Mangrove 27.49 59.64 116.91 

Mixed 21.80 29.00 33.03 

Saltmarsh 43.36 52.48 21.03 

Casuarina 105.25 93.53 -11.14 
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Figure 21: SAAT model output for the period 2011-2100 under a low SLR scenario (B1).  

Note: all main waterbodies were excluded from analysis. 
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A1FI 95% CI SLR scenario 

Under the intermediate scenario of SLR distinct changes in vegetation distribution were 

modelled throughout the site. Assessment of vegetation change over time indicated that, by 

the year 2100, substantial losses of saltmarsh and Casuarina areas would be sustained (34% 

and 70.3% respectively). In contrast, the areal extent of inundated land (river), mangrove and 

mixed zones increased by the final year of model output.  

With respect to its initial distribution, areas dominated by mangrove vegetation more than 

tripled over the period modelled, 2011-2100. Spatially, this related to the landward growth of 

the zone at the expense of both Casuarina and saltmarsh zones located behind mangrove 

forests (Figure 22). A peak areal extent of mangrove vegetation (98.9ha) was simulated at the 

year 2090 prior to lower ranges of the vegetation zone being inundated at a relatively fast rate, 

amounting to an overall decrease in the total area of mangrove over the last decade.  An 

examination of numerical and spatial data of model output indicated that a significant 

proportion of land was inundated under a SLR of 0.819 m. The rate of inundation of land 

began to increase substantially at 2060, with a dramatic, exponential increase of river areas 

modelled for subsequent years until 2100. Flooding of land was particularly apparent at 

subsites 2, 3 and 4.  

Decreases in areal extent of saltmarsh zones occurred from 2050. Simulated mixed zones 

replaced the areas once covered by saltmarsh, resulting in an overall growth of the mixed 

vegetation zone between 2050 and 2070. The decline-growth relationship between saltmarsh 

and mixed zones was visually evident in subsites 6 and 7, where the presently undeveloped, 

pastures were slowly converted to Casuarina, which was followed by saltmarsh, in turn 

replaced by mixed vegetation and finally populated by mangrove vegetation before certain 

areas were inundated as a result of rising sea levels. A limited zone of Casuarina remained in 

these subsites by 2100. Within subsites 2, 3 and 4, inundation and conversion of wetlands to 

mangrove predominated by the final year modelled, with little persistent saltmarsh, mixed 

and Casuarina zones.  
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Figure 22: SAAT model output for the period 2011-2100 under an intermediate SLR scenario 

(A1FI). Note: All main waterbodies as delineated for 2011 were excluded from analysis. River 

areas simulated are, in most cases, an extension of the river zone.  
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Extreme SLR scenario- Vermeer and Rahmstorf (2009) 

Modelled output indicated that with an extreme rise in sea level there was widespread 

flooding in all subsites by the year 2100 and a concomitant loss in wetland vegetation (Figure 

23 and Figure 24f). Mangrove areas initially gained in area, replacing saltmarsh, Casuarina 

and mixed zones, until the peak areal extent of mangrove vegetation at 2050. Simulated 

mangrove zones decreased in area over subsequent years as a result of a significant rise in the 

rate of flooding, recording only 18.77ha of persistent mangrove areas remaining by the end of 

the century. Hence, only under the extreme condition was a decline in mangrove areas 

simulated.  

By the year 2100, all wetland vegetation was simulated to sustain significant losses (Table 

29). In contrast, inundated areas increased by 2326.86% by the end of the century. It should 

be noted that the large percentage change is partly a function of there being only a small area 

of river zone accounted for at 2011, water bodies being excluded from analysis of the SAAT 

model.  

Figure 23 clearly show a significant and consistent loss of Casuarina zones in simulated 

output for the entire projection period. A similar pattern was recognised for saltmarsh and 

mixed zones following an initial increase in the respective areas. Considering rates of change 

for each wetland type for the period 2011-2100, it was apparent that rates of conversion from 

one class to another were accelerated under conditions of extreme SLR. 

Modelling vegetation distribution under a 1.9-metre rise in sea level doubled as an extreme 

condition validation for the SAAT model. It was concluded that, as much as is possible to 

understand, given the characteristically unpredictable nature of the future, the vegetation 

distributions modelled using the SAAT model were plausible and in keeping with expected 

outcomes. 

 

 

Vegetation/ Land 

cover type 

Areal extent  (ha) Percentage 

change 

(%) 2011 2100 

River 11.17 271.08 2326.86 

Mangrove 27.49 18.77 -31.73 

Mixed 21.80 5.09 -76.63 

Saltmarsh 43.36 9.41 -78.30 

Casuarina 105.25 19.76 -81.23 

 Table 28: Percentage change in the total area of each vegetation or land 

cover type under intermediate rates of SLR. 
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Figure 23: Simulated changes in the Minnamurra wetland under an extreme SLR scenario as 

modelled by the SAAT model. Significant losses are sustained by all vegetation types by the year 

2100.  
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Brief comparison of vegetation distribution patterns under varying SLR scenarios 

The effect of different sea level rises on wetlands is clearly demonstrated by considering the 

change in areas simulated to be flooded, represented by the river class included in the model 

output. By the year 2100, the SAAT model simulated a decrease in inundated areas of 96.5% 

associated with the B1 scenario, an increase of 856.6% under an intermediate SLR scenario 

(A1FI) and, with a 1.9m rise in sea level, a dramatic 2326.9% increase in inundated areas. 

The effect of different SLR scenarios on model output was further noted from the values of 

percentage change calculated for each vegetation type.  

Within all scenarios, a relationship was observed between mangrove growth and decline and 

simulated river zones. Increases in mangrove and the maximum areal extent of vegetation in 

all SLR scenarios were observed to precede greatest increases in flooded areas (i.e. increases 

in simulated river zones). An examination of patterns of growth and decline for all vegetation 

under different rates further indicated a common pattern in the succession of vegetation 

decline whereby Casuarina zones declined from the year 2011, saltmarsh began to decline a 

few years after, followed by the mixed zone and, finally, mangrove vegetation. The pattern 

held true for vegetation under intermediate and extreme SLR conditions (Figure 24). 

Analysis of SAAT model output generated from different basal elevation information  

Analysis of model output of the initial year simulated using DEM1 was necessary to identify 

potential problems, 2011 being a year at which real world observations can be compared to 

the simulated output. Comparison of vegetation distributions simulated for the year 2011 

using DEM1 with aerial imagery and the vegetation layer previously derived for the same 

year indicated a significant overestimation of saltmarsh and Casuarina areas, most especially 

in subsites 2, 3 and 4. These inaccuracies in modelled data were directly related to elevation 

errors and resulted in an underestimation of mangrove areas. Further upstream, at subsites 5, 

6 and 7, simulated saltmarsh zones appeared to be modelled in place of observed mangrove 

zones. These errors in the initial information were most likely responsible for many of the 

variations noted between model output using different basal elevation information. 

Modelled vegetation distribution generated using DEM1 as the initial surface elevation 

information varied significantly to that produced using DEM2. Figure 24 clearly displays the 

differences in total areal extent of wetland vegetation modelled when utilising different basal 

information. Though the initial extent of vegetation varied between simulations for the year  
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Figure 24: Areal extent of vegetation in hectares modelled under varying rates of SLR utilising 

different elevation information. The time series data represent simulated results under a) a low SLR 

using DEM1 as base elevation information, b) a low SLR using DEM2 as base elevation information, 

c) an intermediate SLR (A1FI) using DEM1 as base elevation information, d) an intermediate SLR 

(A1FI) using DEM2 as base elevation information, e) an extreme SLR using DEM1 as base elevation 

information and f) an extreme SLR using DEM2 as base elevation information.  
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2011, model output incorporating DEM1 revealed almost consistently greater distributions of 

each wetland vegetation under all SLR scenarios. Of particular note was the significant 

difference in mangrove areas (Figure 25). For intermediate and extreme SLR 

Figure 25: Modelled vegetation distributions at 2100 when utilising different elevation information in the SAAT 

model. Modelled output presented here represent the simulated wetland distributions when utilising a) DEM1 under 

a low SLR scenario, b) DEM2 under a low SLR scenario, c) DEM1 under an intermediate SLR scenario and d) 

DEM2 under an intermediate SLR scenario. Large discrepancies between simulations utilising DEM1 and those 

using DEM2 as the base elevation information can be clearly seen on the western floodplain and in the vicinity of 

Rocklow Creek. In most cases, the discrepancies are a result of mangrove and saltmarsh being simulated to persist 

when using DEM1 yet modelled as inundated areas when using DEM2. The persisting vegetation correlates almost 

exactly with the position of large vertical errors within DEM1.  

 



 

126 

 

scenarios, output derived from DEM1 saw greater rates of increase and decline in the 

mangrove areas and the maximum area simulated was consistently higher than that found 

when utilising DEM2 in the modelling process, as can be quickly understood from Figure 24. 

By the year 2100, under the low SLR scenario mangrove areas were 43.52 ha less when using 

DEM1, 124.5 ha greater under an intermediate SLR scenario and a slight, 2.34 ha difference 

when modelling the effect of an extreme SLR on wetland vegetation with DEM1 input as the 

initial elevation data. The pattern of the greatest differences occurring within the intermediate 

scenario held for all vegetation types. Under an extreme scenario of sea level rise widespread 

flooding was modelled to occur when either DEM was utilised as the base information, 

thereby reducing the variation in respective model output in the final year of simulation. 

In contrast to the increased vegetation areas simulated when using DEM1, river areas were 

less under all sea level scenarios. Where flooding had been simulated to occur in DEM 2, 

model output from DEM1 generated mangrove, saltmarsh or Casuarina zones, contributing 

to the greater areal extent of wetland vegetation generated when using DEM1 as the basal 

elevation information.  
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4.4 Model comparison 

An analysis of deterministic results from each of the models indicated that the models 

produced different areal extents of vegetation for different scenarios and different vegetation 

types (F(8,25) = 3.3742, p = 0.0092). Restriction of analysis to the final year of model output, 

however, revealed that no significant variation was detected  between modelled vegetation 

distributions overall (F(8,25) = 1.1884, p = 0.3449).  

Under the B1 SLR scenario, simulated extents of wetland vegetation were affected by the 

model used (F(8,5) = 27.57, p = 0.001). Further testing by vegetation type, however, indicated 

that no wetland vegetation type differed greatly between the model output for the SLAM, 

SAAT and Oliver models. Differences existed between modelled saltmarsh zones under the 

low SLR scenario (Table 29), however they were not calculated to be statistically significant 

((F(2,1) = 167.38, p = 0.0546).  

Though, statistically, there was no significant variation between model outputs under the B1 

SLR scenario, visual analysis suggests otherwise. The SLAM model predicts a proliferation 

of mangrove into the Casuarina zones where both the Oliver and SAAT models have 

predicted a slow encroachment of predominately mixed and saltmarsh areas. This primarily 

arose as a result of the differences in the programming of vegetation conversion incorporated 

in each mode. Variations in the modelling of inundated areas were also noted and are outlined 

further below.  

Scenario Model  
Areal extent (ha) 

River Mangrove Mixed Saltmarsh Casuarina 

B
1

 

Oliver model 2.04 17.32 7.91 11.27 1.70 

SAAT model 0.00 23.05 9.21 6.85 1.11 

SLAM model-accretion 0.02 18.31 7.17 3.17 10.08 

SLAM model -rates of 

SEC 
0.02 22.48 7.40 1.68 5.58 

A
1
F

I 

Oliver model 19.95 19.75 0.13 0.16 0.24 

SAAT model 12.75 27.06 0.11 0.13 0.18 

SLAM model-accretion 1.07 35.58 1.49 0.00 1.18 

SLAM model -rates of 

SEC 
1.07 17.29 0.01 0.00 0.32 

Table 29: Total areal extent of each vegetation type by the year 2100 as simulated by each model 

incorporated in this study for the low (B1) and intermediate (A1FI) SLR scenarios. SLAM model-

accretion and SLAM model- rates of SEC refer to modelling of wetland distributions within SLAM 

when utilising accretion rates and rates of accretion respectively. 
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Under the A1FI SLR scenario, the choice of model had a significant effect on vegetation 

distribution (F(8,5) = 5.6250, p = 0.0366). Considering each vegetation type separately it was 

found that simulated saltmarsh and flooded (river) zones were, overall, significantly different 

according to the numerical model applied. (F(2,1) = 766.28, p = 0.0255 and (F(2,1) = 6.521e
15

, p 

< 0.0001 respectively). Casuarina, mixed and mangrove areas simulated, in comparison, 

were not significantly affected by the model used.  

Figure 25 provides further insight into the differences in vegetation distribution between the 

SLAM, SAAT and Oliver model output under the A1FI future scenario. As is clearly shown 

in Figure 25c simulated mixed zones were relatively similar between models. By the year 

2100, Casuarina zones, too, covered similar areal extents regardless of the model applied. 

Though variation in saltmarsh was significant, when considering the entire time series data of 

each model, it is noted that all three models predicted between a 95% and 100% loss of the 

saltmarsh zone by the year 2100. By the year 2060, only small variations were evident 

between the models. The considerable initial difference recorded for the saltmarsh zone is a 

result of the mode in which vegetation distributions were defined for the year 2011, the 

SLAM model utilising a vegetation map as the base vegetation information, whilst the SAAT 

and Oliver model simulated initial wetland distributions based on vegetation-specific 

elevation ranges. Casuarina areas, too, were affected by the differences in initial definition of 

the input vegetation layer. Similar to saltmarsh zones, Casuarina areas displayed significant 

variation at the year 2011 yet simulated Casuarina distributions of each model converged by 

the year 2100 (Figure 25e). 

Further investigation into the variance between model outputs suggested that, though no 

significant variance was calculated for the mangrove zones under the A1FI SLR scenario, 

differences in vegetation distributions did occur (Figure 25a). An examination of percentage 

change in mangrove vegetation distributions showed that under the intermediate SLR 

scenario the SAAT model simulated a loss in mangrove areas (18.6%) by the year 2100, the 

Oliver model predicted a moderate increase in the zone (26.9%) and the SLAM model using 

accretion rates modelled a 94.7% growth. In contrast, the SLAM model, characterising the 

accretion parameter by rates of SEC, produced a loss of 5.4% by the year 2100 (Table 30). 

From this it was clear that the simulation of mangrove vegetation varied considerably 

according to the numerical model applied.  
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Simulation of wetland flooding and conversion to open water over the period 2011-2100 

differed between models under all SLR scenarios examined. Under the B1 SLR scenario, 

where inundated land was predicted by the Oliver model, mangrove was simulated using the 

SAAT model and mudflat areas coincided exactly when the SLAM model was applied 

(Figure 26). The similarity in the spatial position of inundated areas in the Oliver model  

  

  

 

 

 

 

 

 

Figure 26: Areal extent of a) mangrove, b) river, c) mixed, 

d) saltmarsh and e) Casuarina zones simulated by the 

Oliver, SAAT and SLAM models using an intermediate 

rate of SLR  (A1FI) for the period 2011-2100.  
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output and predicted mudflat areas in the SLAM model output was particularly apparent with 

a greater rise in sea level. The pattern of conversion for each model was similar over time, 

with changes from mangrove to mudflat (SLAM) or mangrove to river (Oliver) initiating at 

the far northeastern border of the western floodplain and spreading throughout the area in a 

southerly direction.  

River areas derived from the SAAT model did not follow the same pattern of conversion over 

time. Under the A1FI scenario, no river was simulated until the year 2080. Initial conversion 

of mangrove to river areas was not observed from the northeastern boundary but rather at a 

point approximately 100m from the river. Simulated inundated areas expanded until the year 

2100, yet a mangrove stand, on average 40m wide, remained between the original position of 

the river and the predicted inundated wetland (Figure 26). This was distinctly different to the 

flooded areas generated in both the SLAM and Oliver models.  

Despite the differences in flooded wetlands simulated, the SAAT model generated output that 

was similar to data produced by the Oliver model, with no significant difference found 

between the overall means of modelled vegetation zones (F(4,10) = 0.7304, p = 0.5914). Figure 

25 shows that only small variations in simulated mixed, saltmarsh and Casuarina zones 

occurred between the SAAT and Oliver models. The larger differences displayed in the 

mangrove and river areas are related to the distribution of flooded areas  

 Percentage change (%)  

Vegetation/land 

cover type 

Oliver 

Model 
SAAT model 

SLAM model-

accretion 

SLAM model- 

rates of SEC 

River 1297.4 1508.5 4660.4 4660.4 

Mangrove 26.9 -18.6 94.7 -5.4 

Mixed -97.7 -95.9 -77.6 -99.8 

Saltmarsh -98.9 -95.8 -100 -100 

Casuarina -93.3 -95.6 -88.3 -96..9 

Table 30: Percentage change in areal extent by the year 2100 of each vegetation class within the 

Oliver, SAAT and SLAM model output. SLAM model accretion denotes the simulations complete 

using accretion rates to define the accretion parameter, whilst the final column of the table reports 

percentage change in vegetation extent of the model output when rates of SEC were utilised.  

Negative values indicate an overall loss of the vegetation by the year 2100 whilst positive values 

indicate an overall gain.  
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 Figure 27: Model output from the SAAT, Oliver and SLAM models under the intermediate SLR 

scenario clearly showing the similarities and differences in simulated vegetation zones at discrete 

points in time for the period 2011-2100.   
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noted previously. It can be observed that the differences between the mangrove and river 

areas simulated using the two models are approximately equal, with overestimation in 

simulated mangrove areas when using the SAAT model with respect to the Oliver model 

being almost identical to the underestimation of river areas.  

Analyzing the growth and demise of wetland vegetation over time within SLR scenarios 

revealed a common pattern between models. Though the magnitude and temporal occurrence 

of losses varied between models, in all model output Casuarina was the first wetland 

vegetation to experience substantial losses sequentially followed by saltmarsh, mixed and 

mangrove zones. It was further noted that at the greater level of SLR mangrove areas 

consistently reached a maximum total areal extent between 2060 and 2080 before decreasing 

until the year 2100.  
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5 DISCUSSION 

The current study has incorporated a wide range of validation techniques for models that 

predict the effect of sea-level rise on coastal wetlands, with the understanding that the greater 

number of tests a model successfully passes, the greater the validity and reliability of that 

model for the context under study. It is emphasised here that the validation of the SLAM 

model conducted and discussed in this study is specific for the Australian context, and more 

particularly for the Minnamurra coastal wetlands. It therefore does not indicate a validation or 

invalidation of the model for the context in which it was originally conceptualised. Rather, 

given the change in context, the process could be considered a re-validation of the model to 

ascertain the usefulness and applicability of the model in SE Australian wetlands.  

The discussion of the multistage validation procedure presented in this chapter follows the 

basic structure of the results section. The accuracy of elevation information is first discussed, 

followed by in depth examination of the SLAM and SAAT model validity. The conceptual 

and operational validity of the SLAM model is examined, with reference to the predictive 

validation test, extreme conditions tests and model output under varying sea levels. The final 

section of this chapter compares the structure and output of the SLAM model to that of the 

SAAT and Oliver models, investigating the usefulness of each model in simulating the effect 

of SLR on the coastal wetlands of SE Australia.  

 

5.1 Digital Elevation Models 

The validity of any model or prediction is related to the accuracy of the input information. As 

the old adage warns, ‘garbage’ input will produce ‘garbage’ output. Thus, it follows that the 

accuracy of the input elevation information is essential for determining the ability of a model 

to simulate the effect of SLR on coastal wetlands, especially as small errors in elevation for a 

low-lying, shallow gradient area can propagate significant errors in wetland inundation 

simulations (Gornitz et al. 2002; Pugh 2004).  

Uncertainty is inherent in spatial data (Leon et al. 2014), therefore it was not unexpected that 

each DEM utilised in this study was found to be subject to some elevation error. The greatest 

vertical accuracy was obtained by DEM3, with an RMSEz of approximately 9.3cm. The small 

overall error calculated for the elevation layer is likely a result of the method used for DEM 

generation. Unlike DEM1 and DEM2, the third elevation layer used in this study was 
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predominately created from the interpolation of point elevation data collected at very high 

vertical resolution (Oliver 2011). Theoretically, the vertical accuracy of DEM3 suggests the 

elevation model is the most suitable for modelling purposes.  However, in practical terms, 

this is not the case, as DEM3 did not provide elevation information for the entire study site. 

Furthermore, generation of an elevation surface at the scale required by certain models 

applied in this study was not practically possible, given that the method of rigorous RTK-

GPS sampling of elevations used for the derivation of DEM3 could not be efficiently 

employed at landscape or even estuary-scales. 

LIDAR data provided the opportunity to determine wetland surface elevations at the larger 

spatial scale. DEM2 and DEM1 were both primarily derived from LIDAR data and contained 

considerably greater error than DEM3. The overall vertical accuracy calculated for each of 

the elevation layers was above that reported by the LIDAR data provider. This finding is in 

accordance with a large body of literature, which report global error statistics accompanying 

disseminated LIDAR data to not necessarily reflect the accuracy of a specific study area due 

to vertical accuracy being calculated from the best-performing ground reference areas within 

an entire dataset (Flood 2004; Hohle & Potockova 2006; Aguilar & Mills 2008; Coveney & 

Fotheringham 2011).  

Further to this, local variation and spatial dependency in elevation errors is not reflected 

within the overall error statistics as calculated by either the LIDAR producer or by the author 

within this study (Flood 2004; Bater & Cooper 2009; Schmid et al. 2011). Calculation of 

vertical accuracy by wetland vegetation for both DEM1 and DEM2 revealed vegetation-

specific variations in elevation error. These inaccuracies were primarily related to limitations 

of the LIDAR system, errors in the separation of ground points from non-ground points and 

uncertainties generated during the interpolation process; three errors commonly associated 

with DEMs derived from LIDAR data (Liu et al. 2015). 

Greatest vertical errors were calculated for mangrove areas, proposed to result from both 

systematic limitations of LIDAR and ground filtering errors. Arguably the greatest vertical 

inaccuracies associated with the mangrove areas were propagated from the filtering process 

applied to the LIDAR data. The filtering process involves identifying the bare-earth points 

from non-ground points in a LIDAR dataset and is considered one of the most critical steps 

for DEM generation from LIDAR data (Liu 2008; Meng et al. 2010; Liu et al. 2015;). 

Misclassifications of LIDAR points have been proposed to have the greatest impact on DEM 
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accuracy (Liu et al. 2015). The error statistics associated with mangrove areas for DEM1 and 

DEM2 affirm such suggestions. Application of a more stringent filtering algorithm to the 

LIDAR data resulted in a significant reduction in vertical errors in mangrove zones of DEM2 

in comparison to DEM1, subsequently generating a greater overall accuracy for DEM2. 

Though a significant reduction in error was calculated for DEM2 after the application of the 

filtering algorithm, inaccuracies in derived elevations remained. These are partially 

attributable to the limitations of the LIDAR system. Coastal wetlands are, by definition, 

heterogeneous mixtures of vegetation species that are typified by varying degrees of dense 

vegetation cover (Lotze et al. 2006). Intuitively, as the vegetation density increases, the 

ability of the LIDAR laser pulse to penetrate the vegetation is reduced, increasing the 

associated elevation error. An examination of this relationship, through the quantification of 

vertical errors by vegetation, indicated that mangrove areas, presenting the densest canopy of 

the vegetation types, were consistently associated with the largest elevation errors. In contrast, 

saltmarsh areas, commonly populated by low-growing herbs, grasses and sedges interspersed 

with non-vegetated patches, displayed the lowest RMSEz, reflecting the greater opportunity 

of LIDAR pulses reaching the true ground surface. 

Though saltmarsh zones were associated with the least vertical error, measured inaccuracies 

of surface elevation in saltmarsh zones remained the same in DEM2 as DEM1, suggesting 

that the errors were more likely a result of LIDAR system limitations rather than from 

classification or interpolation techniques applied. Whilst the magnitude of surface elevation 

errors in saltmarsh zones are commonly less than within mangrove forests, potential elevation 

errors arise from the resolving threshold of the LIDAR being at or near the elevation of the 

short saltmarsh vegetation, meaning that the bare earth surface cannot be clearly 

distinguished from the top of the saltmarsh within the LIDAR system (Wagner et al. 2004). 

Populus et al. (2001) also found that errors increased due to difficulties in separating LIDAR 

pulses reflected from saltmarsh vegetation in the saltmarshes of the Baie del’Aguillion, 

France.  

In addition to systematic limitations and ground-filter derived errors, interpolation errors 

were also associated with the DEMs generated. This was most evident in the representation 

of water bodies in DEM1, where the limited point density of the Minnamurra River resulted 

in interpolation of surrounding higher ground points and subsequent overestimation of the 

river’s elevation. Effective application of a breakline reduced this error within DEM2. 
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Moreover, in accordance with the work of Lichtenstein and Doytsher (2004) and Worstell et 

al. (2014), the inclusion of the soft breakline appeared to increase the reliability of the DEM 

and improved the accuracy with which hydrological pathways or waterways were defined in 

the study area. It is noted that some error may have been introduced with the assignment of a 

new elevation value for the Minnamurra River. In some cases, the assigned elevation fell 

substantially lower than the surrounding terrain, possibly introducing errors into the data 

(Worstell et al. 2014) and likely misrepresenting the elevation.  

Evaluation of the accuracy assessments for each elevation layer demonstrates the need for 

expert, or at least closely considered, use of LIDAR data for generating DEMs. Time 

limitations, budget constraints and difficulties associated with LIDAR acquisition and expert 

processing often result in ‘as-received’ data being used in DEM creation (Flood 2004; 

Coveney et al. 2010; Liu et al. 2015). Vertical errors associated with DEM1, however, warn 

against such an imprudent use of LIDAR data. By comparison, DEM2 provides a more 

reliable and accurate elevation surface, with respect to vegetation type and the intertidal zone 

of the Minnamurra River. The considerable reduction in error associated with the mangrove 

zone, increased accuracy in the representation of water bodies and greater overall accuracy of 

wetland surface elevations of DEM2 suggest that application of a more technically 

demanding process in the derivation of a DEM is necessary to obtain reliable, 

morphologically correct and hydrologically enhanced elevation information. An expertly 

conducted process to reduce elevation error is most especially required when modelling the 

effect of SLR on shallow-gradient coastal wetlands, where even small elevation errors can 

propagate error and uncertainty through model output, significantly impacting the validity of 

models.   
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5.2 The SLAM model 

5.2.1 Verification 

In the development and dissemination of any computer-based model, a verification process is 

undertaken to ensure the conceptual model has been accurately translated into computer code 

(Rykiel 1996). Results from further verification of the complex code of the SLAM model 

conducted in this study revealed a significant error in the mechanical realisation of the SLR 

scenarios within the model. It is noted that, with strictest adherence to the definition of 

verification, the SLAM model passes the verification test as the model does indeed perform 

in the manner in which it is coded to do. However, broadening the term verification to 

include how “…faithfully and accurately ideas are translated into computer code…” (Rykiel 

1996) indicates that the model was not verified under certain circumstances, namely when the 

maximum A1T or A1FI SLR scenarios are utilised. Within the SLAM code, the A1T Max 

SLR projection corresponded to the A1FI Max reported in the IPCC TAR and vice versa. The 

systematic error within the SLAM model appears to be a result of erroneous reporting of SLR 

in Table II.5.I of the IPCC TAR.  

To the author’s knowledge, no other research or project-based findings have recognised the 

error inherent within the model, though the reversal of the SLR values for the two scenarios 

appears to have been coded within the SLAM model since the release of version 4.1 in 2005. 

The inversion of SLR values between the A1T and A1FI maximum SLR scenarios may have 

far reaching effects on any conservation project or management plan formulated on the basis 

of SLAM model output utilising these scenarios.   

As the SLR scenarios are based on the findings of the TAR (IPCC 2001) and the current 

version of the SLAM model allows for SLR values to be defined, it is less likely that this 

error will affect research being conducted using site-specific values. As neither the A1T nor 

A1FI scenarios of the TAR (IPCC 2001) were utilised in this study, validation tests 

conducted remain unaffected by the errors coded within the SLAM model.  

5.2.2 Validation  

Predictive validation  

Predictive validation involves modelling a system’s behaviour and comparing the output with 

the real system to determine if they are the same (Sargent 1996). Outcomes of such 

validations are indicative of the predictive ability of models. Results from predictive 
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validation runs in this study suggest that at decadal timescales the SLAM model is able to 

simulate system behaviour reasonably well, with only small errors pertaining to model output 

over the periods 1949-1963 and 1986-1997. At longer timescales exceeding 10 years, it 

appears that the predictive power of the SLAM model is significantly reduced. The 

substantial errors associated with final model output, from simulations spanning 

approximately half a century (1949-1997), cast doubt upon the SLAM model’s ability to 

reliably predict the behaviour of a system over even longer-term periods of 100 years or 

greater and contrasts with the perceived capacity of the SLAM model to simulate SLR effects 

to the end of the 21
st
 century. 

Potential data errors affecting model performance 

Given the implications of the predictive validation results, it is pertinent to examine the 

potential reasons for which the model appears to be inefficient at explaining the wetland 

system for periods greater than a decade. Errors between modelled and observed data, such as 

that noted for the mangrove and saltmarsh areas during validation runs, are often attributed to 

the model’s failure to adequately describe aspects or processes acting on the system in the 

real world (Mulligan & Wainwright 2013). Such a case is made here in addition to giving due 

consideration to possible errors inherent to input data.  

It is incorrect to assume that observed data accurately represents the real system as all data, 

being an abstraction of reality, contains a degree of error and uncertainty (Monte et al. 1996; 

Mulligan & Wainwright 2013). Inaccuracies and imprecision of data used in the predictive 

validation process most likely contributed in some manner to the poor performance of the 

SLAM model. Spatial data, elevation and vegetation layers, and measurements used to 

characterise the model parameters all contain some error and uncertainty. While the errors 

associated with each input data or variable may be small, the resulting error and uncertainty 

propagated through the model may cause significant deviations of model output from the 

‘true’ system (Oreskes et al. 1994; Monte et al. 1996).  

The base elevation layer utilised in predictive validation runs must be first cited as a source of 

potential error in the predictive validation runs. Elevation data specific to the initial years of 

validation runs were not accessible, signifying that an alternative method of obtaining an 

input elevation layer was needed. The method chosen within this study follows that of 

Geselbracht et al. (2011), which adjusts elevations of the 2011, LIDAR-based elevation layer 

(DEM2) to approximate wetland surface elevations at initial years of validation runs. 
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However, adjustments were made based on assumptions of constant SLR and steady-state of 

wetland environments. As it is known that SLR accelerated during the last century (Church & 

White 2006) and much evidence suggests wetlands tend towards but generally do not obtain 

equilibrium with SLR (Cahoon et al. 2006; Kirwan & Murray 2008), it is questionable 

whether the elevation surface generated for predictive validation runs indeed represent the 

wetland surface heights for the relevant years. Furthermore, the 2011 elevation layer used in 

the adjustment process is known to contain vertical errors (as discussed above). Thus, the 

substantial differences noted between observed and modelled data of predictive validation 

runs may be largely due to propagated error from input elevation data.  

Vegetation layers are an additional source of error. Input vegetation layers and comparison 

data alike were developed from the interpretation and digitisation of aerial photography 

(Chafer 1998). The derivation of the maps, therefore, incorporated interpretation errors, 

spatial errors and inaccuracies associated with the abrupt delineation of vegetation types 

where a gradual gradient between habitat types occurs in the real system (Chafer 1998). Such 

errors associated with mangrove, saltmarsh and Casuarina zones of each map utilised were, 

however, all estimated by Chafer (1998) to fall below 5%. Thus, though both the initial and 

comparison vegetation data contain a degree of error and uncertainty which contributes to the 

error associated with predictive validation runs, it is unlikely that it accounts for the 

substantial underestimation of mangrove areas and overestimation of saltmarsh areas 

determined from SLAM model output. 

Perhaps of greater import, the input data used to characterise the accretion parameter may 

have affected the ability of the model to describe the behaviour of the wetland under rising 

sea levels. Not only do natural errors in measurement impact the accuracy of accretion or 

elevation values extrapolated from the SET dataset, rates of SEC and accretion rates were 

derived from relatively short-duration datasets which do not necessarily capture longer-term 

processes or the range of conditions possible in the wetland system (Rybczyk & Callaway 

2009). In addition, the short-term datasets do not correspond to the temporal scale at which 

the SLAM model operates. Therefore, whilst the rates derived from the SET data are 

relatively high precision for the timescale and period over which the data was collected, 

extrapolation of the short-duration datasets to larger time frames limit the ability of the model 

to describe the natural variations in the dynamic wetland environment, with unanticipated 

changes and infrequent events being poorly incorporated. The potential implications of such 

data limitations are observed in the predictive validation runs. It is noted that the timescale 
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over which (the) predictive model output (or outputs) displayed adequate agreement with 

observed data approximately corresponded to that of SET measurements and observations of 

SEC, yet at larger temporal scales model predictions were poor. Such observations are noted 

in a number of studies across many disciplines, where the use of data describing system 

behaviour over short temporal scales has led to a reduction in the predictive reliability of 

models (Anderson & Woessner 1992; Konikow 1995; Weaver et al. 1996). 

Potential errors in applying the SLAM model to the SE Australian context 

The inadequacy of models to reliably extend into the future often signifies that the 

conceptualisation of the system within the model is flawed (Oreskes et al. 1994; Rykiel 1996; 

Sargent 1996). We, thus, turn now to the possibility of errors in predictive validation runs 

resulting from the inadequacy of the model to describe the Australian site. Over the period 

1949-1997, a considerable increase of mangrove area (61%) and substantial loss of saltmarsh 

(56%) was observed in the Minnamurra wetlands as a result of mangrove zones expanding 

landward, displacing saltmarsh in doing so (Chafer 1998). Significant discrepancies between 

modelled and observed vegetation distributions are primarily related to these vegetation 

dynamics, with the model underestimating mangrove extent and overestimating saltmarsh 

extent. In order to understand the flaws within the conceptualisation of the model, it is 

necessary to inspect the possible factors contributing to the changes in wetland vegetation not 

accounted for within the SLAM model. Numerous possible reasons have been posited to 

contribute to the trend of mangrove encroachment on saltmarsh observed within NSW 

(Saintilan & Williams 2000).  

Clarke and Hannon (1967) linked changes in coastal wetlands to changes in rainfall patterns. 

Increases in rainfall were directly related to decreases in soil and surface water salinity in 

wetlands which, in turn, increased the ability of mangroves to survive and expand into 

previously-hypersaline saltmarsh zones. Though some have found no link between rainfall 

and mangrove encroachment (Wilton 2002; Saintilan 2004), many studies have related the 

proliferation of mangrove to increases in rainfall along the SE Australian coast (Saintilan & 

Wilton 2001; Eslami-Andargoli et al. 2009, 2010; Rogers et al. 2014). With full appreciation 

of this fact, the 10-14% increase in rainfall along eastern Australia observed over the period 

1946-1978 (Pittock 1984) may have contributed to the proliferation of mangrove vegetation 

at the Minnamurra site between 1972 and 1981 (Chafer 1998). As it is the considerable 

growth of mangrove vegetation that the SLAM model was unable to simulate, it is feasible to 
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suggest that model is unable to capture the importance of increased rainfall or freshwater 

inputs on the evolution of SE Australian wetlands. This suggests the existence of a 

conceptual flaw within the model, where the exclusion of rainfall as a significant parameter 

in modelling decreases the adequacy with which it describes and simulates SE Australian 

wetlands.  

The inability of the SLAM model to account for compaction in wetland soils is posited to 

also have been a source for the major discrepancies between modelled and observed output. 

Measurements from the SET network established along the NSW coastline have highlighted 

the frequent differences between SEC and accretion rates (Rogers et al. 2006), which can be 

attributed to the processes of compaction, and organic matter decomposition (Cahoon 2006, 

2015; Rogers et al. 2006; Lovelock et al. 2011). Amongst many site specific factors, 

compaction of wetland soils in SE Australia has been associated with groundwater 

fluctuations and the Southern Oscillation Index (Rogers et al. 2008). These factors are, in 

turn, affected by ENSO-related drought conditions, which cause greater soil shrinkage and 

compaction (Rogers et al. 2006; White et al. 1997). As compaction affects the wetland 

surface elevation, it can also be considered an important factor in the distribution of wetland 

vegetation, wetland habitats often being limited to certain ranges within the tidal frame 

(Clarke & Myerscough 1993; Kim et al. 2010). The absence of a compaction parameter or 

module within the SLAM model, therefore, may have added to the significant errors being 

simulated during the validation runs. An addition of a compaction parameter, even simply 

defined within the model, would result in elevations calculated at each time step being 

slightly lower than currently simulated within the SLAM model. With repeated application of 

the hypothetical compaction model, however, the final wetland surface elevation at larger 

time frames would possibly be significantly different to that currently modelled. This is 

particularly pertinent to the validation runs conducted within this study, where an overall 

lower wetland surface would have allowed greater conversion of saltmarsh zones to 

mangrove. The outcomes of the thought experiment would be a greater predictive ability 

obtained by the SLAM model. As it stands, the behaviour of the Minnamurra wetlands over 

time appear to be inaccurately described by the SLAM model, possibly as a result of no 

compaction parameter being included. It is noteworthy, that included in the factors affecting 

compaction are processes specific to the Australian and the central and eastern Pacific 

context, such as ENSO related factors. Addition of such variables within the SLAM model 

would likely increase the validity of the model for the Australian context.  
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Continuing in this vein, it is pertinent to consider the influences of pulsing events or sudden, 

infrequent sediment deposition events from major storms and floods that are not considered 

within the SLAM model. It is inherently difficult to model such events, their unpredictability 

in terms of frequency, duration, return interval and intensity being a defining characteristic. 

Storms and floods have the potential to greatly affect coastal wetlands, disrupting and 

redistributing sediment within the wetland (Cahoon et al. 1995; Guntenspergen et al. 1995) 

or even depositing large quantities of sediment, as a result of increased runoff and erosion 

instigated by the extreme precipitation associated with storms (Cahoon et al. 2003). The 

influence on the wetland forms part of a negative feedback process, whereby the greater 

sedimentation may result in a change in elevation which affects patterns of inundation, which 

in turn influences the rate of sedimentation, decomposition and wetland surface elevation and 

so the cycle continues. The extreme scenarios (storms and floods etc.) and related feedback 

mechanisms are suggested to play a possibly significant role in the development and 

dynamics of wetlands and their ability to survive with rising sea levels (Rybczyk & Cahoon 

2002; Cahoon 2006). Over the period 1949 – 1997, floods and associated increases in rainfall 

are recorded to have occurred in the Minnamurra study site in the late 1950’s and throughout 

the 1970’s. Presumably, an increase in sediment deposition and freshwater flows would have 

accompanied such events, changing the dynamics of the wetland system and possibly 

facilitating the colonisation and growth of saltmarsh areas by mangrove vegetation. Flooding 

events and their effects were not, however, modelled within the predictive validation runs, 

further increasing the error associated with the model output. Though an overwash parameter 

is included in the SLAM model, its conceptualisation and realisation within the model is not 

pertinent to the Australian context. Thus, the inability of the model to capture well significant 

flood and storm events remains a limitation of the conceptual SLAM model.  

Coastal wetlands are a complex dynamic system in which numerous processes are continually 

at play. Adequate description of the wetland systems within numerical models is difficult to 

obtain as can be seen by the limitations of the already complex SLAM model in predicting 

the evolution of Australian wetlands over time. However, perhaps the greatest introduction of 

error to the predictive validation runs is the influence of humans themselves. Ironically, 

anthropological influences can be one of the most unpredictable influences on coastal 

wetlands. Chafer (1998) reports clearing of land in subsite 2 of the Minnamurra study site for 

grazing, development of a railway and the introduction and expansion of the Kiama Waste 

Disposal Depot. These activities resulted in an overall loss of mangrove and Casuarina areas 
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for significant periods of time. By 1972, however, mangrove and Casuarina had begun to 

expand into former saltmarsh and grazing areas, with a significant increase in their total area 

being noted by 1981. The considerable increase of mangrove at this subsite at the expense of 

saltmarsh may be a major contributor to the substantial increase in mangrove zones unable to 

be replicated in predictive validation runs. Due to the unpredictable and complex nature of 

human influence on coastal wetlands, it is not suggested here that the SLAM conceptual 

model should be adjusted to include anthropogenic influences. It is noted, however, that such 

influences were unable to be captured within the SLAM model output and, by extrapolation, 

could cause significant problems in any predictive output.  

Capturing the response of wetlands to SLR by considering all the relevant processes 

operating at the appropriate time scales and incorporating all feedback mechanisms working 

within the system causes an explosion of complexity in the model structure and mechanical 

expression of the relevant concepts (Mulligan & Wainwright 2013). The exclusion from the 

SLAM model of certain factors commonly observed to play a role in vegetation distribution 

dynamics along the NSW coastline has been proposed here to contribute to the inadequacy of 

the model’s predictive ability displayed in the validation runs. A hypothetical solution to such 

limitations in the predictive power of the model would be the addition of parameters or 

modules pertaining to factors such as soil compaction or ENSO-related processes. However, 

further parameterisation of the model, though it may increase its predictive power over a 

certain domain, may cause further uncertainty and possible failure over other domains. 

Furthermore, it would make the model even more complex than currently and, in so doing, 

further reduce the comprehensibility of the model.  

The question remains, though, as to how reliable the predictive output of the SLAM model 

actually is. Based purely on how well the observed data was modelled in the predictive 

validation runs, it could be concluded that the SLAM model has the potential to predict 

responses of wetlands at decadal timescales but has little predictive power at greater time 

frames. Furthermore, given the limitations posited in this discussion, possible underlying 

conceptual problems could be said to reduce the validity of the model for the Australian 

context, specifically, the Minnamurra site. However, though these conceptual problems 

remain, the considerable errors identified within the input data of the validation runs make it 

difficult to disentangle the inaccuracies due to model flaws from the uncertainty attributable 

to data error. Thus, for this study, a complete predictive validation of the model is not 

possible, a result not uncommon within the modelling community, where it is generally 
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understood that absolute validation of a model is virtually impossible (Refsgaard & Storm 

1996; Senarath et al. 2000). Even for those models whose agreement of output with past 

observational data would suggest a strong predictive ability, post-audits of model predictions 

often determine that predictive validation of the model was essentially invalid (Anderson & 

Woessner 1992, Konikow 1995). Such findings cast doubt on the validity of predictive 

validation tests and emphasises the fact that there is no guarantee that a model will perform in 

the same manner that is indicated by a validation tests.  Therefore, rather than a test of 

predictive power, the predictive validation tests of the SLAM model conducted in this study 

effectively served as a means to identify potential conceptual problems and closely examine 

input data error.  

5.2.3 Plausibility of model outcomes – projections under varying SLR scenarios 

Determining the accuracy of a prediction is a logical impossibility (until the time modelled 

comes to pass, at which point it is no longer a prediction). By invoking the principle of 

uniformitarianism, however, some idea as to the plausibility and reliability of model output 

can be obtained. Relying heavily upon this principle and despite the poor performance of the 

model in predictive validation tests, SLAM model outputs generated in this study could be 

said to be plausible. 

With increased rates of SLR observational and modelled evidence suggests that there is a 

limit to the wetlands ability to adjust to rising sea levels (Kirwan & Murray 2008). The 

modelled output of SLAM under varying SLR scenarios is in step with the current 

understanding of the response of coastal wetlands to increasing sea levels and as such can be 

considered to provide plausible representations of wetland vegetation until the end of the 

century. Under low rates of SLR, the SLAM model simulates little change in the wetland 

distribution indicating the system’s ability to maintain surface elevation with respect to the 

increasing water level. At intermediate and extreme rates, however, a greater proportion of 

wetland was inundated. Such model results reflect the findings of numerous studies 

suggesting that increasing rates of SLR lead to deepening of the wetland surface elevation, 

increasing soil anaerobia and a decline in plant productivity past the point at which vegetation 

can survive (Kearney & Stevenson 1991; Reed 2002; Kirwan et al. 2008, 2010). 

In considering the threshold of wetland resilience with rising sea levels, Kirwan et al. (2010) 

found that though threshold rates of SLR varied according to the sediment availability and 

geomorphic characteristics of the individual site. SLR projections indicate that increases 
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greater than 10mm/yr may be experienced by the end of the century (Vermeer & Rahmstorf 

2009; Grinsted et al. 2010). At such rates, despite the feedback mechanisms that allow 

coastal wetlands to increase elevation with rising sea levels, many models indicate that most 

wetland systems will begin to be submerged, their threshold rate of SLR being reached. The 

extreme conditions test conducted in this study utilised such projections to test the 

plausibility of model outcomes under such extreme rates of SLR. Model output affirmed the 

findings of many, displaying significant losses to wetland by the year 2100 under high rates 

of SLR (Kearney & Stevenson 1991; D’Alpaos et al. 2007; Kirwan & Murray 2008; Kirwan 

et al. 2008, 2010). Furthermore, the maximum wetland resilience and threshold rate of SLR 

were simulated by the SLAM model to occur in the middle of the century when rates of SLR 

are projected to accelerate. It could be argued that, by considering the point at which the 

threshold occurred with the time at which the rate of SLR surpassed 10mm/yr, the SLAM 

model output records a potential geomorphic lag of approximately 30 - 50 years in the 

response of the wetland system to the threshold SLR conditions, in keeping with many 

modelling results previously reported (see Fagherazzi et al. 2012 and references therein).  

Modelled results of wetland vegetation distribution simulated by the SLAM model indicate a 

proliferation of mangroves and a concomitant reduction in saltmarsh and Casuarina zones by 

the year 2100 under all SLR scenarios. Observations of wetland vegetation patterns over the 

past century along the SE Australian coastline indicate a landward encroachment of 

mangrove and decline of saltmarsh vegetation extent (Saintilan & Hashimoto 1999; Saintilan 

& Williams 1999; McLoughlin 2000; Rogers et al. 2005) As previously discussed, many 

potential causes for the landward incursion have been posited, with a growing body of 

evidence suggesting SLR plays a significant role in the pattern of vegetation change (Rogers 

et al. 2006; Gilman et al. 2007; Williamson et al. 2011). The combination of SLR, increased 

temperatures, atmospheric CO2, rainfall, and frequency of storm events all associated with 

projected climate change may cause the current trend of mangrove proliferation into 

saltmarsh zones to be exacerbated (Adam 2002; McKee et al. 2012). The results of the 

SLAM output under each SLR scenario tested, therefore, correspond to observational 

evidence of mangrove expansion over the 20
th

 century and predicted patterns in vegetation 

change for the next century (Lovelock et al. 2015).  

Despite the plausibility of SLAM model outcomes, a potential problem in model structure is 

recognised in examining the decadal model output. The SLAM model implements switching 

functions, whereby the vegetation of a cell is converted to a lower wetland class when it falls 
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below the elevation range assigned to its vegetation type. A cell must pass through each 

sequentially lower wetland category according to a pre-defined succession sequence 

programmed within the decision-tree of the SLAM model. It is this predefined succession and 

conversion which could cause potential problems in modelling Australian coastal wetlands. 

In this study, significant areas of saltmarsh were lost with simulations of rising sea level. 

Whilst this trend is in step with many studies heralding the demise of saltmarsh (Adam 1990; 

Chafer 1998; Saintilan 1998; Saintilan & Williams 1999; Adam 2002; Rogers et al. 2005, 

2006) the magnitude of the decline may be severely overestimated. Due to the set decision 

tree controlling conversion in the SLAM model, saltmarsh, as defined in this study, is unable 

to migrate upland. This is in contrast to many observations of wetlands along the NSW coast, 

where evidence of saltmarsh occurring beneath Casuarina and Casuarina dieback in 

saltmarsh zones suggest a landward shift of saltmarsh sometime in the past (Rogers, 2015, 

pers.comm). The SLAM model, however, is unable to adjust its programmed vegetation 

succession to allow such changes to be simulated for wetlands within the Australian, nor 

indeed any other, coastal wetlands.  

The problems in defining succession relate to the long-standing debate regarding wetland 

successional changes over time (Vaughan 1909; Davis 1940; Thom 1967;  Spackman et al. 

1969; Lugo 1980; Grindrod 1985). The SLAM model could be said to conceptually follow 

the proposed succession of Bird (1988), where a retrogression of zones (i.e. more seaward 

zones replacing land zones) is seen with transgressing sea levels. The distinct flaw in the 

SLAM model, however, is that diversion from such succession as required by a particular site 

is not possible. The structure of the model precludes conversion of water to any vegetation 

class, signifying that any sites in which mangroves are observed to expand in a seaward 

direction or ‘build land’ are inadequately simulated by the SLAM model. Such a problem is 

particularly pertinent to wetlands of Northern Australia, where more landward zones have 

replaced lower wetlands (Grindrod 1985; Woodroffe 1990).  

 

5.2.4 Treatment of surface elevation change in the SLAM model 

The SLAM model provides two different methods for characterising the accretion dynamics 

within a wetland system. The first is defined by applying an empirically-based measurement 

of accretion to the entire area of each vegetation type. The second is a model-based approach, 

the accretion module, where a relationship between elevation and accretion rates is defined 
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for each vegetation type in order to approximate the spatial variability of accretion in coastal 

wetlands (Clough et al. 2012).  This section first discusses the conceptual validity of the 

accretion parameters programmed within the SLAM model before discussing the model 

output resulting from their use within this study.  

The first treatment of the accretion parameter programmed within the SLAM model is 

conceptually simple and has been noted to inadequately describe the dynamics within a 

wetland system with rising sea levels (Kirwan & Guntenspergen 2009). Coastal wetlands are 

dynamic systems that are expected to adjust to rising sea levels, as they have been observed 

to do in geological records (Reed 1995). With increased inundation, greater sediment supply 

is anticipated for systems where sediment supply is not constant, leading to higher rates of 

sedimentation and accretion (Morris et al. 2002). This feedback mechanism so important to 

the evolution of wetlands under rising sea levels is not, however, accounted for within the 

first method of defining the accretion parameter in the SLAM model. The method of 

assigning constant, empirically-based accretion rates to each vegetation type therefore leads 

to underestimation of wetland persistence with fluctuating sea levels. Furthermore, using 

individual rates of accretion to represent an entire vegetation type neglects to account for the 

spatial variation in sedimentation and accretion that has been commonly observed to occur 

within coastal wetlands (Morris et al. 2002; Temmerman et al. 2003b).  

The accretion module was introduced in version 6 of the SLAM model in an attempt to 

account for the spatial distribution of accretion rates and the ecogeomorphic feedbacks within 

wetlands that contribute to the persistence of wetlands over time (Kirwan et al. 2010; Clough 

et al. 2012). The accretion module defines accretion in a given cell as a function of elevation, 

salinity and distance to the mouth of the nearest river. The distance to river parameter of the 

module assumes a linear relationship between sedimentation and the distance of a point from 

the sediment source, the river channel. Though the basic concept behind such an assumption 

is not unfounded, it does not hold true for all coastal wetlands where marine influences are 

greater than riverine. Indeed, sediment input in an estuary, and thereby accretion rates, can 

vary according to whether riverine, wave or tidal energy dominates the system (Roy et al. 

2001; Rogers et al. 2012). Thus, use of the distance to channel parameter in the accretion 

module is questionable, especially when modelling accretion rates for estuaries such as that at 

Minnamurra.  



 

148 

 

The SLAM model attempts to simulate the effect of turbidity maximum zones on accretion 

rates in an estuary by inclusion of the salinity parameter within the accretion module. The 

salinity parameter remains an experimental variable as the data required to validate the model 

have not been available (Clough et al. 2012). However, the theory behind its inclusion is that 

maximum turbidity zones are often associated with high concentrations of sediment and 

sediment deposition. As the maximum turbidity zone is related to the position in the estuary 

where fresh and salt water interact, it was assumed that the influence of the zone on accretion 

could be related to the salinity level at which the interaction and maximum accretion rate 

occurs. Most likely for simplicity, the numerical expression of the concept is developed 

assuming a salt-wedge estuary. However, many estuaries of the NSW coast are mixed rather 

than salt-wedge estuaries meaning that a turbidity maximum zone as defined in the model is 

not relevant to these environments. This, in addition to the hypothetical nature of the model, 

all indicate that the salinity parameter within the SLAM model does not adequately describe 

accretion dynamics of coastal wetlands in NSW estuaries and should be excluded from use in 

the Australian context until such time that the model has been improved and validated based 

on empirical evidence.  

The final parameter included in the accretion module relates accretion rates to elevation 

ranges of vegetation zones in an attempt to account for feedback mechanisms active within 

coastal wetlands such as that previously discussed. The SLAM model expresses this 

numerically as a cubic equation which can be calibrated to site-specific data. The relationship 

between elevation and accretion based on biomass and sedimentation observations created in 

Morris’ Marsh Elevation Model (MEM) can, thus, be reproduced in the SLAM model. 

Clough et al. (2012) have emphasised the greater applicability of the SLAM model with 

respect to MEM due to the accretion module’s ability to simulate elevation-accretion curves 

for sites that do not follow the assumptions and characteristics of Morris’ model (2002). 

Furthermore, where site-specific data, such as suspended sediment concentration or biomass 

density, is not available the more theoretical approach to the elevation-accretion relationship 

in the SLAM model is advisable. However, attached to any theoretical definition of a 

parameter in modelling is the possible introduction of considerable uncertainty. Even in areas 

where accretion rates and surface elevation changes have been well documented, the point-

based measurements used to define the theoretical elevation-accretion relationship do not 

necessarily capture the spatial variation of accretion characteristic to a particular site 

(Mulligan & Wainwright 2013). In addition, the strength of the feedback mechanism 



 

149 

 

attempting to be modelled by the accretion module may vary over time depending upon a 

number of interconnected factors such as the availability of sediment, nutrients and fresh 

water pulses to the system (Day et al. 1999). The temporal and spatial variability of accretion 

patterns within the wetland under SLR may, thus, be inefficiently modelled. Despite the 

limitations of the module, the elevation-accretion relationship simulated has the potential to 

improve the modelling of the response of coastal wetlands to SLR. However, given the 

possibility of introducing even greater uncertainty to the model, expert judgement and an in 

depth understanding of the wetland system in general and the spatial pattern of accretion in 

particular is required before the accretion module can be applied with reasonably agreement 

with the module assumption. 

A flaw in the conceptualisation of the SLAM model arises in both treatments of SEC. The 

definition of accretion in the model appears to assume that accretion equates to SEC within a 

wetland system. Numerous studies have shown that incremental changes in the elevation of 

wetland surfaces often do not follow the accretion trends of the system (Nuttle et al. 1990; 

Cahoon et al. 1995, 1999, 2006, 2011; Rybczyk & Cahoon 2002; Cahoon 2015). Processes 

such as compaction and erosion and influences of short-term perturbations are cited as 

possible causes for the deviation of elevation change from vertical accretion trends. Yet, 

despite the considerable evidence to the contrary, the SLAM model disregards the numerous 

processes contributing to negative vertical changes in the coastal wetland, accounting only 

for processes of accretion. It is noted that an erosion parameter is coded within SLAM, but is 

only implemented when there is a 9km fetch for a particular cell, an attribute not applicable 

to SE Australian wetlands within estuaries. The flaw that arises, therefore, in which only 

depositional processes are incorporated would imply that the SLAM model commonly 

overestimates the ability of coastal wetlands to build vertically under rising sea levels. Using 

rates of SEC derived from SET time-series data may potentially ameliorate the conceptual 

flaw by implicitly accounting for autocompaction and other processes contributing to 

decreases in wetland surface elevation. 

 It is interesting to note that the basic numerical expression of the vertical growth of a 

wetland under rising sea levels was defined by Allen (2000) to be the net effect of 

sedimentation, both organic and inorganic, sea level and autocompaction. While some 

models account for erosion and compaction mechanistically (Kirwan & Murray 2008; Mudd 

et al. 2009) and others implicitly, as in the initial models developed to simulate wetland 

response to rising sea level by Krone (1987), Allen (1990) and French (1993), most attempt 
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to make allowances for the negative elevation changes observed to occur in coastal wetlands. 

The absence of a compaction parameter within the SLAM model is, therefore, all the more 

conspicuous.  

The limitations of the treatment of SEC in the SLAM model must be considered when 

interpreting any model output. Three different methods were applied in this study to 

characterise the accretion parameter, two of which utilised the vegetation-specific accretion 

rates and the last implementing the accretion module. In utilising the various methods of 

characterising the accretion parameter the magnitude and rate of wetland vegetation change 

varied considerably. This could be said to attest to the differences in the mechanical structure 

of the various methods used to define vertical accretion trends within the SLAM model and 

to show the limitations of their conceptualisation.  

Characterising the vegetation-specific accretion parameter by rates of SEC is a method by 

which both positive and negative components of elevation change can potentially be 

incorporated in the SLAM model, with the rate of SEC implicitly incorporating site-specific 

compaction processes. Model output for the Minnamurra site indicates that when compaction 

processes are incorporated significantly greater inundation and loss of wetlands occurs than if 

accretion only is simulated to affect the elevation change in wetlands under rising sea levels. 

Furthermore, the rate of wetland loss is substantially increased. Though the rates of SEC 

determined from the SET dataset may contain a degree of uncertainty and potentially be an 

inaccurate representation of wetland elevation change through time, it could be concluded 

that the neglect of compaction within the accretion parameter results in an underestimation of 

wetland loss under rising sea levels. However, the strength of this conclusion is affected by 

the limitations inherent in the structure of the model. That is, the constant rate of SEC 

simulated when using the vegetation-specific accretion parameter is an inadequate description 

of the response of the dynamic wetland system to rising sea levels, as previously discussed.  

If the values used to define the accretion parameter and their mathematical realisation in the 

SLAM model are considered, results obtained in this study using different methods of 

characterising the accretion parameter are quite logical and consistent with a large body of 

literature pertaining to the resilience of wetlands with increasing sea levels (Cahoon et al. 

2006; Kirwan et al. 2010; Rogers et al. 2014). Application of sub-centimetre rates of SEC to 

each vegetation type effectively reduces the ability of the simulated wetland to build 

vertically over time in comparison to when accretion rates, almost an order of magnitude 
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greater than rates of SEC, are utilised. Kirwan et al. (2010) proposed that when wetlands 

receive relatively low levels of sediment and, by extension, experience potentially low rates 

of accretion, even under low rates of SLR the resilience of a wetland would be significantly 

reduced. Rybczyk and Cahoon (2002) also found that lower rates of SEC critically increased 

the potential for wetland submergence with rising sea levels. Moreover, abundant empirical 

and modelled evidence suggest that higher rates of sedimentation and associated rates of SEC 

increase the ability of wetlands to persist under scenarios of increasing SLR (Allen 2000; 

Cahoon et al. 2006; Kirwan et al. 2010; Fagherazzi et al. 2012).The results of this study are, 

thus, in accordance with previous observations within the literature, where model output 

using rates of SEC suggest a significant loss in wetland area in comparison to simulated 

results utilising higher rates of ‘elevation change’ (i.e. accretion rates). 

Given the limitations of the vegetation-specific accretion parameter discussed previously it is 

pertinent to compare the output of the SLAM model when the vegetation-specific accretion 

parameter is utilised with that when the accretion module is calibrated and applied. Within 

this study, only the accretion variable was utilised within the accretion module, the salinity 

and distance to channel parameters being considered to contain too many flaws and 

uncertainties to be applied to the Minnamurra site. Applying the module resulted in 

significant differences in the modelling of some wetland vegetation, whilst simulations of 

other zones, such as saltmarsh, remained relatively similar regardless of the treatment of SEC. 

The similarities and differences can mostly be related to the manner in which the accretion 

rates were characterised and defined within the SLAM model. The single accretion rate 

values applied to the entire area of a wetland vegetation category effectively produced a large 

elevation change per year, with respect to applying rates of SEC. The lower boundary of the 

mangrove area, therefore, was not modelled to fall below the lowest elevation of the defined 

mangrove elevation range, greatly reducing the area of mudflat zone simulated. A similar 

trend was seen when the accretion module was used. The maximum accretion rate defined in 

the module for the mangrove zone, being larger again than that of the accretion value, 

similarly caused greater elevation change in the mangrove zone, signifying a reduction in 

mudflat zones in model output associated with the accretion module in comparison to that 

simulated when the accretion parameter was utilised. Proliferation of the mangrove zone and 

greater persistence of the mixed zone can also be attributed to the progressively greater 

accretion rates of each method of SEC used within this study. In contrast, the similarities of 

the areal extent of saltmarsh by the year 2100 were not a function of the different treatment of 
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SEC but rather a product of the decision tree programmed within SLAM to characterise the 

conversion between wetland vegetation, as discussed above.  

The greatest perceptible difference in applying the accretion module was the increased 

persistence and proliferation of the mangrove zone and, thereby, an overall greater ability of 

the wetland to maintain its elevation with respect to rising sea levels.  If the uncertainties and 

potential errors associated with calibrating the accretion module for a particular site are 

disregarded, the results indicate that the accretion parameter potentially underestimates the 

ability of wetlands to build vertically under SLR. This would suggest that it is important to 

model the feedback mechanisms, in SLAM included within the accretion module, in order to 

gain a fuller understanding of the potential persistence or demise of a wetland with 

fluctuating sea levels. However, given the uncertainty involved in the calibration process, a 

greater quantity of site-specific empirical data would be needed to better understand the 

spatial and temporal variability of the feedbacks being modelled before the use of the 

accretion module in the SLAM model could be reliably supported. Such conclusions affirm 

those drawn from observations and modelling recorded in the literature (Murray et al. 2008). 

Considering the conceptual and mathematical limitations and sources of uncertainty 

contained within each treatment of SEC in the SLAM model, it is likely that the ability of a 

wetland surface to build vertically and vegetation to change accordingly under rising sea 

levels is overestimated, especially when site-specific accretion values are used. Nevertheless, 

the possibility of SEC being underestimated within the model cannot be discounted. As 

extreme climatic conditions, such as flooding and storms, are not incorporated in the model, 

the substantial influence such large magnitude, short-term perturbations have on the wetland 

elevation is not being simulated. Storms can have a significant impact on geomorphic change 

in coastal wetlands (Cahoon et al. 2003; Cahoon 2006; Smith et al. 2009; Rogers et al. 2013). 

As mentioned previously, a variable effect of storms can be observed in coastal wetlands 

(Rogers et al. 2013) where storm events have the potential to cause erosion and further 

compaction of sediments (Pethick 1991; Cahoon 2006) or deposit or redistribute large 

quantities of sediment within the wetland (Cahoon et al. 1996; Whelan et al. 2005). 

Exclusion of the former elevation changes resulting from storm events would exacerbate the 

overestimation of wetland change suggested above in reference to compaction processes. 

Exclusion of significant storm deposits in modelling, however, may result in an overall 

underestimation of wetland persistence with time. Given that high-magnitude storm events 

are projected to occur more frequently with climate change over the next century, the 
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inclusion of storm events is increasingly relevant to modelling the response of wetlands to 

SLR.  

Overall, examination of the treatment of SEC and associated results of this study indicate that 

there are many conceptual flaws in the definition of wetland elevation change that would 

indicate that the SLAM model may more typically overestimate changes in wetlands. 

However, use of rates of SEC may mediate these inaccuracies to some degree. In addition, 

use of the accretion module, theoretically, allows for a greater description of wetland 

evolution with rising sea levels as feedback mechanisms are simulated, accounting for the 

spatial variability of accretion trends. However, limitations and considerable uncertainty and 

error are associated with the definition and use of each model. Caution should be exercised, 

therefore, in the choice and characterisation of SEC as it is conceptualised within the SLAM 

model. Moreover, any model output should be interpreted with a full understanding of the 

limitations and associated uncertainties of the treatment of SEC used within the SLAM model.  
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5.2.5 Error and uncertainty in the SLAM model  

Errors inevitably occur in all processes and the modelling process is no exception (Monte et 

al. 1996; Saltelli et al. 2000; Renard et al. 2013). Similar to many other numerical models 

attempting to simulate the complexity of dynamic environments, the SLAM model contains 

considerable error and uncertainty generated as a result of conceptual flaws, measurement 

and data errors and, of course, the complexity of predicting a system that is inherently 

complex, evolving over time and continuing to do so into the future.  

Conceptual flaws and limitations of the SLAM model each have the potential to generate 

uncertainty within simulations and resulting model output. When the conceptual model does 

not contain certain variables or processes considered to be crucial to the system under study, 

the chance that the system is adequately described and simulated in the model is considerably 

decreased (Renard et al. 2013). The absence of the parameters or incomplete expression of 

the processes within the model therefore can produce significant uncertainty in model output. 

Of the conceptual flaws and limitations of the SLAM model the greatest contributors to error 

and uncertainty in model output are most likely the treatment of SEC and the programmed 

switching functions associated with wetland conversion within the SLAM model, as 

discussed in detail in previous sections. 

In addition to the conceptual realisation of the system, model output is only as reliable and 

valid as the input information used to define the SLAM model. Numerous limitations and 

errors exist in association with the input data of the SLAM model.  

For the most part, the SLAM model is characterised by empirical data collected over a 

relatively short time period. Based on the principle of uniformitarianism, simulations are then 

conducted over larger time scales. However, the factors and interrelated processes driving 

wetland evolution over time and, by extension, under rising sea levels occur over a broad 

range of temporal and spatial scales (Wright & Thom 1977; Cowell & Thom 1994; 

Woodroffe 2002; Rybczyk & Callaway 2009). For instance, eustatic SLR adjustments 

influencing the geomorphic changes of coastal wetlands operate at geological timescales 

whilst pulsing events, such as storms and floods, occur at event scale temporal periods. Both 

processes, however, are known to affect the evolution of coastal wetlands over time. It is 

unlikely that the short-duration data used to characterise, and indeed initially parametrise and 

calibrate, the SLAM model is thus able to capture the full suite of interrelated processes 

influencing the response of wetlands to rising sea level. Measurements utilised in 
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characterising model variables, such as the accretion parameter or degree of historic sea level, 

which only represent subsamples of the real-world coastal wetland system result in a certain 

amount of error being inherently contained within the SLAM model output.  

Considering the inherent heterogeneity of the wetland system, further problems arise in the 

characterisation of spatially and temporally variable processes represented within the SLAM 

model (disregarding for the moment those processes that have been overlooked in the 

conceptualisation of the model). This is particularly pertinent to the definition of the accretion 

parameter. In this study, accretion rates and rates of SEC were generated from SET 

measurements, which represent discrete point data in time. However, the extrapolation of the 

point measurements to the entire study area may be a poor estimate of the true spatial 

representation of the accretion parameter (Mulligan & Wainwright 2013; Li & Heap 2014).  

Moving from the problems associated with the spatial and temporal variability of data, the 

accuracy and precision with which measurements are recorded may significantly affect the 

error and uncertainty in the SLAM model output. The SLAM model is a deterministic model 

and as such provides unique output for a given set of unique input parameters (Renard et al. 

2013). Small differences in the initial values of parameters can lead to considerable variation 

in the model output. In this way, even small errors contained within the measurements used 

to define the SLAM model can produce large errors in output. Considerable care is required, 

therefore, in obtaining the most reliable and accurate site-specific data before the application 

of the SLAM model.  

Accuracy of elevation layers used within the SLAM model, for instance, can have a large 

impact on the simulated wetland distributions and response to rising sea levels. Using a DEM 

known to have significant elevation errors, model output under all sea level scenarios was 

observed to overestimate the persistence of wetland over time. Similar to the findings of Chu-

Agor et al. (2011), modelled results showed that the lower wetlands were most affected by 

the differences of the input elevation data. The importance of utilising a superior 

representation of wetland surface elevation when modelling was clear when considering the 

areas inundated and wetland lost by the end of the century. When utilising the elevation 

model that displayed considerable vertical inaccuracies in the lower wetlands, DEM1, 

considerably less wetland area was inundated. Given that mudflat and lower wetland areas 

simulated when utilising DEM1 almost exactly corresponded with the spatial distribution of 

significant vertical errors in the DEM, it is suggested that utilising inaccurate elevation data 
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results in underestimation of inundation risk. Indeed, though it is impossible to ascertain the 

absolute accuracy of the prediction, it could be concluded that the accuracy in representation 

of the present allows for greater reliability of simulated representations of the future. Such 

results and conclusions mirror those drawn by Coveney and Fotheringham (2011) who found 

significant advantages in higher accuracy DEMs for the prediction of land inundation. Leon 

et al. (2014) also concluded that vertical errors inherent in DEMs propagate into inundation 

mapping.  

Examining results from the sensitivity analysis, it becomes even more imperative that certain 

parameters do not contain considerable error. Sensitivity analyses conducted in this study 

revealed that SLR, tidal range, salt elevation boundary, NAVD88-MTL and historic SLR 

trend were the most sensitive factors of the SLAM model. Accretion rates also had a 

vegetation-specific effect on modelling outcomes. As slight changes to these parameters 

results in proportionally larger variations in model output, it is important that they be defined 

as accurately as possible. Within this study, however, a degree of error could be attributable 

to each of the sensitive parameters identified, no doubt increasing the uncertainty of model 

output.  

Similar to most models simulating wetland change (Kirwan & Murray 2008; Mariotti & 

Fagherazzi 2009), sea-level rise was found to have the greatest impact on the SLAM model 

output. Considering inundation is a driving function of wetland change within the SLAM 

model, such a finding is to be expected. However, given the sensitivity of the model to the 

SLR defined, results suggest that, if possible, SLR projections determined for a particular 

region or site should be applied rather than the global SLR value defined by the IPCC. This is 

especially true for areas that are experiencing rates of SLR significantly above or below the 

global eustatic trend. Modelled projections by Church et al. (2013) suggest that SLR for 

NSW deviate from the global mean by 0 - 10%, therefore choice of SLR projection to be used 

in the SLAM model should occur on a site by site basis according to the requirements of the 

project or study. Despite the increase in accuracy of model output if local SLR projections are 

utilised, uncertainty is not eliminated from the model parameter and simulated results. Indeed, 

all projections are uncertain (Oreskes et al. 1994; Church et al. 2010) and use of the uncertain 

projections in further modelling processes may simply amplify the uncertainty within the end 

modelled product (Monte et al. 1996; Mulligan & Wainwright 2013). 



 

157 

 

Uncertainty amplification may also occur according to the characterisation of the tidal range 

and salt elevation boundary parameters within the SLAM model. Erroneous definition of 

these sensitive parameters may result in considerable error within the final output. Within this 

study, vegetation-specific elevation ranges were defined as a function of subsite tidal ranges.  

Therefore, conversions of wetland vegetation were based on these two parameters and any 

uncertainty in the input tidal data potentially propagated error throughout the entire modelling 

process. The ability within the SLAM model to define the tidal range on a subsite basis rather 

than applying the one value to an entire, landscape-scale area allows spatial variation of tides 

within estuaries to be incorporated in a rudimentary manner. Tidal levels in NSW estuaries 

are observed to attenuate or amplify according to estuary type and shape (Roy et al. 2001; 

Foulsham et al. 2012; OEH 2014). The variation in tidal levels influences the magnitude of 

inundation and distribution of wetland vegetation in the estuary. Use of subsites, as applied in 

this study, simply accounts for tidal attenuation. However, applying a spatial average to a 

subsite describes poorly the true tidal levels within the estuarine-wetland system. Following 

encouraging results from previous studies and modelling (Foulsham et al. 2012; OEH 2014), 

it is posited that incorporating a model of the site-specific tidal plane in the SLAM model 

may improve the reliability and accuracy of model output. Addition of the spatial parameter 

may increase the complexity and computational load of the model however the advantages of 

reduced uncertainty and increased accuracy may outweigh these disadvantages.  

Historic levels of sea-level rise were found to greatly affect the model output. Within the 

SLAM model this parameter defines the deviation of the site-specific rate of SLR from the 

global mean, assuming that all deviations are a result of geological subsidence specific to the 

study area (Clough et al. 2012). Conceptually, such an assumption is incorrect, with many 

studies clearly citing a number of different factors influencing the rate of relative sea-level 

rise (Woodroffe & Murray-Wallace 2012). Mathematical expression of the concept, however, 

is simplistically defined. In addition to the errors introduced from the model structure, 

definition of the parameter for a site is also difficult as described previously. A record of at 

least 18 years is required for a reliable trend in SLR to be defined. In this study, the lack of 

adequate data at this temporal scale precluded the use of site-specific tidal data to characterise 

the historic SLR. The value, instead, is drawn from trends in the region, which may not 

represent those of the system under study. The error introduced from the data combined with 

the conceptual errors suggest the historic SLR has the potential to propagate additional error 

within the modelling process.  
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The expression of error and uncertainty within model output is clear when considering the 

stochastic data generated from the Monte-Carlo uncertainty analysis. Most of the sensitive 

parameters and potential sources of error, both conceptual and data related, affect the 

magnitude of inundation and thus the persistence or demise of wetlands under rising sea 

levels. Mangrove areas, being the lowest wetland vegetation and the first greatly affected by 

inundation, were found in this study to be associated with the greatest errors and uncertainty 

in model output. Though areal extent of mangrove vegetation was found to vary considerably 

in the final year of output, statistical distribution of possible mangrove areas suggested that it 

is likely greater areas of mangrove zones could exist by 2100 than is indicated by 

deterministic model output. Similarly, conclusions could be drawn for the simulated mudflat 

zone. In contrast, stochastic data from the uncertainty analysis suggest that the uncertainty 

and errors within the model do not significantly affect the mixed and saltmarsh zones. The 

combined interpretation of the uncertainty analysis indicates that the deterministic SLAM 

model output should always be accompanied by an uncertainty analysis, with results being 

analysed in full appreciation of the possible error and uncertainty inherent within the data. 

Many have suggested and promoted the need for uncertainty analysis or stochastic 

investigation into the error associated with model output (Monte et al. 1996; Hunter & 

Goodchild 1997; Saltelli et al. 2000; Clough et al. 2012; Renard et al. 2013; Zhang et al. 

2013). This study simply adds to the combined voices of these many before that question the 

trust placed in deterministic models, especially considering the constant presence of 

uncertainty in defining and describing the dynamic wetland system. It is important to note, 

however, that such a conclusion does not negate the plausibility of the deterministic SLAM 

model output. It simply implies that the model results are but one possibility of wetland 

distributions under rising sea levels and the flaws, limitations and uncertainties should be 

considered and treated with due care when interpreting simulated outputs from the 

SLAM model. 
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5.3 The SAAT model 

5.3.1 Model outcomes 

As much as is possible to understand given the characteristically unpredictable nature of the 

future, the vegetation distributions modelled using the SAAT model were plausible and in 

keeping with expected outcomes. Under low levels of sea-level rise, little vegetation loss was 

simulated for the Minnamurra wetlands. Indeed, mangrove zones were projected to translate 

both landward and seaward over the century, leading to a significant increase in their 

modelled extent. A similar trend of landward migration was noted in all sea-level scenarios, 

with mangrove vegetation replacing saltmarsh over time. This trend of mangrove 

encroachment into saltmarsh zones follows that observed for the past few decades along the 

SE Australian coast (Saintilan & Williams 1999, 2000). 

The overall patterns of vegetation loss associated with each modelled SLR scenario also 

follow the observations and modelling outcomes of previous studies (Reed 1995; Rybczyk & 

Cahoon 2002; Temmerman et al. 2004; Marani et al. 2007; Kirwan et al. 2008). Kirwan et al. 

(2010), using simulations from five different models applied to various sites around the world, 

found that by increasing accretion rates wetlands were able to persist under conservative sea 

level acceleration scenarios. At increased rates of SLR, however, submersion and widespread 

demise of wetlands was simulated, with vegetation unable to maintain elevation with respect 

to the accelerating sea levels. The same trends were observed in this study, where simulated 

vegetation loss increased with increasing rates of SLR. This is particularly noticeable under 

the extreme SLR scenario where high inundation rates resulted in a substantial portion of the 

coastal floodplains being permanently inundated and a concomitant loss or, in some cases, 

migration of wetland vegetation being simulated for the Minnamurra area. The output of the 

SAAT model reported here could be said to affirm the conclusions of many studies that 

suggest a critical threshold in the rate of SLR exists past which accretion rates will not be 

able to compensate for the effects of SLR on the survival of wetland vegetation (DeLaune et 

al. 1994; Fagherazzi et al. 2006; Kirwan et al. 2010).  

In further consideration of simulated wetland distributions, model output of the intermediate 

SLR scenario, A1FI, showed a shallow waterbody developing behind a mangrove stand on 

the western floodplain. It had been assumed that, with rising sea levels, wetland inundation 

would increase, forcing vegetation to migrate landward, each zone replacing the others as it 

translated upland. By 2100, therefore, the sequence of zones from seaward to landward would 
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approximately mirror that of the present day zonation. Vegetation distributions under the 

A1FI SLR scenario modelled in this study, however, displayed a deviation from such 

expectations. It has been proposed that the long-term evolution of a wetland may be 

controlled by the geomorphological features of a wetland (Thom et al. 1975; Thom 1984;  

Cowell & Thom 1994; Woodroffe 1995). Simulation of a lake within the mangrove zone on 

the western floodplain, therefore, is potentially a reflection of the underlying geology and 

geomorphology of the area. Alternatively, the mangrove stand may be indicative of a flaw 

within the conceptualisation, calibration or mechanical realisation of the SAAT model. 

Further simulations at the Minnamurra and other sites would need to be conducted to clearly 

ascertain the true source of the interesting deviation from expected vegetation distributions in 

model output.  

 

5.3.2 Model uncertainty and limitations 

Many limitations exist in the implementation of the SAAT model, some of which pertain to 

the underlying assumptions of the model design and others attributable to the information 

used to calibrate and apply the model. Errors and uncertainty within this model may thus be 

significant.  

Similar to most numerical models simulating the effect of SLR on coastal wetlands, the 

SAAT model in this study was based on the assumption of uniformity. Though such 

assumptions have been observed to be relatively robust (Woodroffe & Murray-Wallace 2012) 

and has allowed for great progress in the field, with changing environmental conditions over 

the next century the assumption does not necessarily hold true. This is particularly 

problematic when the measurements used to calibrate and apply the model are only based on 

a short-term, sub-sample of real events, as has occurred in this study. In such a case, the 

timescale of the data collection is not sufficient to allow a full understanding of past wetland 

behaviour under rising sea levels which in turn reduces the reliability of any extrapolation of 

past events in determining future responses. The issue of timescales of influencing factors not 

being captured by SET data has been discussed previously in relation to the error and 

uncertainty attributable to the SLAM model output. This same problem arises in the use of 

the SAAT model.  

Model calibration using only six points within the study area is also flagged as a potential 

problem of the SAAT model as implemented in this study. Though accurate, the SET time-
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series data all pertained to the western floodplain. The assumption that the sparse data could 

explain the spatial and temporal variation of SEC may, therefore, be unfounded and the 

model output a potentially inaccurate representation of the dynamic system and its response 

to sea level. A greater number of SET sites situated throughout the site would be ideal to 

improve the understanding of the patterns of elevation change, their strength and variability 

over time.  

The SAAT model is not a hydrodynamic model and as such does not mechanistically take 

into account the influence of complex flows of water and suspended matter over the wetland 

surface. Many models simulating the response of wetlands under changing conditions, 

including the SLAM model, are not hydrodynamic in nature. However, the potential problem 

of surface flow not being included in the numerical model cannot be disregarded. The impact 

of the flows not being incorporated may be said to be expressed in the modelling of river 

zones and immediately surrounding areas, potentially evidenced by the persisting mangrove 

zone of the A1FI scenario modelled. 

In this study, the river boundary was assumed stable over time, resulting in little loss of 

wetland at the shoreline. However, it is possible that the shoreline will change over time with 

adjustments of wetland distribution to environmental influences. Inclusion of a changing 

shoreline, such as in the Oliver model, may simulate wetlands that better represent future 

conditions.  

Turning to error and limitations introduced by the input data, the basal elevation information 

data (the DEM) plays a considerable role in producing reliable output and could be said to be 

a sensitive parameter of the model. Experimentation with inaccurate elevation data when 

applying the SAAT model showed that inaccurate basal elevation information significantly 

amplifies the error in model output. Perceptible errors in model output directly related to 

vertical errors within the DEM. The significant positive errors in vertical elevation 

information precluded the cell from being inundated and falling within a lower wetland 

vegetation range. Thus, where errors occurred, vegetation conversion and associated 

migration or inundation was underestimated. It is noted that under extreme conditions the 

differences in model output when accurate or inaccurate DEMs were used is not significant. 

Under extreme sea-level rise, the rate of inundation was such that even the erroneously higher 

elevations were inundated, causing less impact on modelling when extreme rates of sea-level 

rise were simulated.  
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Perhaps the greatest limitation of applying the SAAT model in this study was the lack of 

stochastic analysis of model error and uncertainty. All stages of the data collection, statistical 

analysis, model calibration and model implementation for scenarios of increasing SLR 

inevitably contained error. Failure to incorporate an uncertainty analysis therefore reduces the 

understanding of the workings of the model and the wetland distributions simulated for the 

end of the century.  
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5.4 Comparison of numerical models  

The numerical models compared within this study, the SAAT, Oliver and SLAM models, are 

all deterministic models that attempt to simulate the response of wetlands to rising sea levels 

by accounting for the major physical processes considered to be most influential in its 

evolution. As the models were conceptualised by different people and for different 

environments, namely the Australian (Oliver), Northern European (SAAT) and American 

(SLAM) wetlands, the factors considered crucial to the wetland system vary somewhat. The 

effects of these differences in system abstraction within respective models are examined here, 

further comparing the ability of each to adequately describe an Australian wetland system 

and its evolution over time.  

Analysis of model output suggests that differences occur according to the numerical model 

applied. Simulations of some vegetation types were more significantly different than others 

when different modelling approaches were implemented. This may be attributable to the 

varying expression of accretion within each model affecting the pattern of SEC simulated, in 

turn impacting the height of vegetation and conversion over time within the study area. The 

Oliver model implements a linear model to describe the spatial pattern of SEC in the wetland, 

whereas the SAAT model defines an exponential relationship between inundation and SEC 

and the SLAM model applies constant rates by vegetation or simulates the spatial variation of 

accretion within a site.  

Application of rates of SEC to an entire vegetation zone within the SLAM model produced 

relatively similar output to the Oliver model by the year 2100. In contrast, applying accretion 

rates by vegetation and as spatially varying values defined by the accretion module in the 

SLAM model generated output that varied significantly from the Oliver and SAAT model. 

Though the predicted outcome using accretion rates cannot be disregarded, the deviation 

from the other model may affirm conclusions drawn earlier regarding the importance of 

including compaction processes when modelling the response of wetland systems to rising 

sea levels. In consideration of both these findings and the numerous studies indicating the 

importance of compaction processes, it is strongly suggested that rates of SEC be utilised 

when implementing the SLAM model.  

The initial definition and modelling of vegetation change within each model also appeared to 

cause differences to be observed in the model output. Significant differences calculated for 

the initial year of modelling, 2011, were the result of initial vegetation distributions being 
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simulated in different styles. The Oliver and SAAT models define vegetation by discrete 

elevation ranges from the initial year, whereas the SLAM model utilises a vegetation map to 

ascertain the initial distribution of vegetation. For time zero, vegetation distributions of the 

SLAM model could therefore be considered the most accurate. By extrapolation, this would 

indicate the final output from the SLAM model also obtains the highest accuracy, however 

such an assumption can certainly not be made. Error and uncertainty propagated throughout 

the complex modelling process may in fact generate data that does less accurately represent 

the wetland by the year 2100. This could equally be considered for the Oliver and SAAT 

models, especially as the accuracy of any future prediction cannot logically be obtained.  

The conversion of wetlands in the Oliver, SAAT and SLAM models are all based on the 

concept that specific vegetation types thrive within certain elevation ranges. Considering the 

work by Clarke and Myerscough (1993), Clarke (1995), Adam (2002) and comments by 

Saintilan and Rogers (2009), an assumption of a vegetation-elevation relationship for 

modelling purposes is somewhat justified in the Australian context, though other factors, such 

as physiochemical characteristics, may be more relevant to the wetland distribution in some 

wetlans.  

The style of conversion within the models examined in this study may, however, not be 

adequate for coastal wetlands of SE Australia. The SAAT and Oliver models allow 

conversion to occur in the same simplistic manner. Any cell within the entire study site that 

falls within a certain range is classified as the associated wetland type. In this way, output of 

the two models displayed vegetation zones expanding landward and, in some cases, seaward. 

This is consistent with observations of vegetation change within SE Australian coastal 

wetlands (Chafer 1998; Saintilan & Williams 1999). In contrast, the SLAM model does not 

allow the conversion of any water to wetland vegetation as a result of the decision-tree based 

conversion set within the SLAM code, as discussed above. Furthermore, conversion of 

vegetation types occurs in a set succession, resulting in saltmarsh zones being unable to 

expand upland. As discussed previously, the combined effect of this one-way succession and 

set conversion of vegetation based on a defined decision-tree potentially causes problems in 

the modelling of vegetation distributions, especially for those sites where a seaward 

translation of mangrove areas is observed with rising sea levels. Within the comparison 

process, the differences in model output are particularly obvious over the first half of the 

century. 
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Simulation of wetland flooding and conversion to open water over the period 2011-2100 

differed between models under all SLR scenarios examined. This is partially a function of the 

differences in vegetation conversions as described above. Within the SLAM model, the 

lowest vegetation (mangrove) must pass through a mudflat class before being converted to 

river. In contrast, the Oliver model does not simulate mudflats, with mangroves being 

simulated as river following irreversible inundation. In comparing model output it was noted 

that the SLAM model simulated mudflat that corresponded almost exactly with the spatial 

proliferation of inundated land in the Oliver model. Though this could be considered 

evidence of a significant difference, due to the style of vegetation conversion realised in the 

two models such a conclusion cannot be legitimately drawn as within the inundated land of 

the Oliver output, mudflats may be present. Inundated areas of the SAAT model were 

different again from the Oliver and SLAM models. Reasons for the development of a small 

lake in the western floodplain under study have been discussed previously.  

Comparison of model output revealed that, under the intermediate SLR scenario, mangrove 

consistently reached a maximum total area by 2060 to 2080 before decreasing until the year 

2100. As the rate of SLR increases exponentially after the middle of the century (Church et al. 

2013), the modelled maximum likely corresponds to the critical threshold of SLR at which 

mangrove begin to decline.  

Interestingly, other than slight variations in mangrove and river simulations, model output 

from the SAAT and Oliver models are relatively similar. Such similar results may be partially 

due to the respective model structures. In the abstraction of the system, both models attempt 

to account for the feedback mechanisms that increase the capacity of the wetland system to 

adjust to changes in SLR. In addition, in the calibration of the model, almost identical time-

series data were implemented. Furthermore, the treatment of vegetation and conversion 

between wetland classes was performed in precisely the same manner. The main difference, it 

appears, between the Oliver and SAAT model is in the processes included in the 

mathematical realisation of the respective conceptual models. The Oliver model, incorporates 

factors such as rainfall, SOI values (relate to ENSO events), distance to the river, surface 

elevation and accretion derived from factorial analysis of empirical data. In contrast, the 

SAAT model is derived from and implements fewer parameters, not incorporating the site-

specific variables such as rainfall or ENSO related factors. However, examination of the SOI 

and rainfall values implemented within the Oliver model indicated that the average rainfall 

and SOI from the past record was used due to their being a lack of reliable information on 
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future projections for the SOI and rainfall along the SE Australian coast. The SOI and rainfall 

values were therefore, in effect, kept constant though time. Thus, upon proper consideration, 

it could be inferred that the variables included in the SAAT and Oliver models are relatively 

similar. With such an understanding, the similarities between model outputs are more likely a 

function of the effective similarities in the mathematical structure of the models than an 

indication of underdetermination. This conclusion is supported by the primary difference 

between the SAAT and Oliver models. That is, the SAAT model, defining accretion by an 

exponential relationship as a function of the distance from the channel, simulates greater SEC 

near the rivers before tapering at progressively greater distances from the channel. This 

causes areas nearby the river to accrete more quickly and thereby allows greater persistence 

of mangrove areas with rising sea levels whilst areas further inland are more susceptible to 

inundation, as can be seen by the development of a lake like structure behind a mangrove 

stand in the SAAT model output. In comparison, the Oliver model simulates accretion as a 

linear function with distance from the channel, allowing areas further inland to build 

vertically at a faster rate. As noted, then, the differences between the SAAT and Oliver 

models could also be attributed to the mathematical structure. 

In comparing the three models, it becomes clear that each contains error and uncertainty that 

affect the final realisation of vegetation distributions under rising sea levels. Given the 

uncertainty of the future and general unpredictability of the dynamic coastal wetland system 

(Carter & Woodroffe 1995) it is difficult to ascertain which model is most valid and which 

most accurately describes wetlands in the Australian context. In some cases, the SLAM 

model is not appropriate for the Australian context, yet in others the three models may 

perform in an equally plausible manner. Thus, it could be that expertise is the deciding factor 

in which model to apply. The SLAM model is quite complex and requires a large amount of 

accurate data to be generated and collected to obtain a reliable output. The SAAT and Oliver 

models, though comparatively more simplistic, require a greater statistical skill in their 

application. It may be that subjectivity in the choice of a model for wetlands of a particular 

site along the SE coastline plays a more important role than would generally be 

acknowledged in scientific research. In all cases, however, the limitations of each model, as 

has been presented throughout this study, characteristics of the study site, availability and 

accuracy of site-specific data and the final purpose of the project should all be considered 

before a decision is made. In all cases, however, stochastic analysis of the error and 
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uncertainty associated with deterministic model is crucial to ensure a more holistic 

understanding of future wetland conditions is obtained.  
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6 CONCLUSIONS  

With projections of accelerated SLR for the twenty first century, there is increasing concern 

regarding the long-term sustainability of coastal wetlands. Managers are tasked with the 

responsibility of planning for future scenarios, responding to the potential vulnerability of the 

important coastal environments. Models provide opportunities to explore future scenarios 

under varying levels of SLR and thereby become an important instrument in a manager’s 

toolkit. However, the validity of a model used to support decision-making is crucial for a 

plausible and more reliable representation of the future system to be obtained.  

Elevation data is the basis of all spatial modelling techniques used to examine the impact of 

SLR on coastal wetlands. Results of this study emphasise the importance of generating the 

most accurate DEM possible for modelling purposes. This is especially true in modelling of 

low-lying wetlands where small errors in the surface representation result in large variations 

in the hydrological properties, geomorphic adjustments and simulation of wetland persistence 

or demise. Given the necessity of accurate elevation information, this study strongly 

advocates the expert processing of as-received LIDAR data and considered derivation of the 

elevation model in order to obtain an elevation surface that best represents the initial 

conditions of the system to be modelled. Furthermore, given the inherent uncertainty of 

spatial data, an accuracy assessment of a DEM generated is required so as to obtain an 

understanding of potential error and uncertainty in subsequent modelling efforts.  

Modelling efforts of this study were conducted to examine the adequacy of three models in 

predicting the evolution of SE Australian coastal wetlands under accelerating rates of SLR. A 

specific focus was placed on validating the SLAM model, originally developed for North 

American wetlands, for the Australian context.  

Basic verification of the SLAM model revealed a significant flaw in the model code, whereby 

the A1T and A1FI maximum SLR scenarios were switched. This disrupts the internal 

consistency of the model and has potential impacts on previous studies and management 

plans that have implemented these IPCC TAR scenarios. 

The multistage validation technique employed suggested that simulations of the wetland 

response to SLR were plausible, however certain conceptual limitations and error and 

uncertainty are associated with the application of the model to the Minnamurra site and, by 

extrapolation, to coastal wetlands of SE Australia. Predictive validation results suggest that 
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the SLAM model is most effective at simulating wetland responses to SLR at decadal time 

scales. Though model projection results were plausible, even under extreme conditions, 

conceptual flaws identified during the multistage validation process potentially limit the 

efficiency with which the SLAM model simulates the responses of Australian wetlands. 

These flaws include: 

 potential problems of vegetation succession. The inability to diverge from the 

predefined, successional conversions of the SLAM model result in saltmarshes, 

as defined for the Australian context, being unable to convert or expand upland 

in contrast to real-world evidence. Inclusion of a mixed zone in simulations may 

mitigate the effect of the conceptual limitation. Furthermore, the inability to 

invert vegetation succession programmed within the model make it inadequate 

for sites in which seaward translation of mangrove areas is observed with rising 

sea levels.  

 inadequate treatment of wetland SEC. The SLAM model accounts for accretion 

processes only, without due consideration of processes that may lead to the loss 

of wetland elevation, such as compaction. This potentially results in the 

overestimation of wetland persistence under the impact of rising sea levels. Use 

of rates of SEC that implicitly account for compaction processes may go some 

way to ameliorate this problem.  

 insufficient simulation of tidal water levels. The variation of tidal waters within 

Australian estuaries in which coastal wetlands are situated is not efficiently 

captured by partitioning discrete tidal values to subsites delineated in the SLAM 

model. Incorporation of a modelled tidal plane that accounts for tidal attenuation 

or propagation could potentially improve the theoretical accuracy and reliability 

of model output. 

 potential failure to include factors influencing the Australian wetland system. 

Inaccuracies noted between modelled and observed data during the predictive 

validation runs potentially indicate the inability of the model to capture 

important variables influencing the evolution of the Minnamurra site, such as 

rainfall, groundwater and ENSO related environmental factors. 

The conceptual flaws identified within this study limit the efficiency of the SLAM model to 

describe not only Australian wetlands, but also coastal wetlands around the world.  
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Conceptual flaws and limitations of the SLAM model each have the potential to generate 

uncertainty within simulations and resultant model output. In addition to these, the input data 

contains numerous limitations and errors that may significantly affect the model output. 

Indeed, similar to all modelling efforts, the accuracy of the data used is paramount when 

applying the SLAM model for the prediction can only be as good as the data upon which it is 

based. It is critical, therefore, that, if the model is to be applied, the most accurate, site-

specific data that captures an appropriate temporal period is collected and utilised.   

Results of the sensitivity analysis of the SLAM model further highlight the importance of the 

recommendation for high accuracy of input data. The SLAM model was found in this study 

to be most sensitive to errors and variations in SLR in addition to those parameters affecting 

the magnitude of inundation and thus the persistence or demise of wetlands under the 

influence of rising sea levels. Errors, therefore, contained within these parameters amplify the 

uncertainty inherent in the SLAM model output. The uncertainty analysis conducted in this 

study captures the impact of some of this error and reveals the wide range of possible wetland 

distributions responding to SLR simulated by the deterministic SLAM model. 

Given the plausibility of output data, the SLAM model can be said to provide an 

understanding of the response of wetland systems to rising sea levels. However, application 

of the model to an Australian wetland system must be conducted with full appreciation of the 

possible errors and limitations inherent in the model output. Inclusion of an uncertainty 

analysis is critical when implementing the SLAM model, in order to understand and 

communicate the possible uncertainty associated with the deterministic output. 

A similar process is necessary when applying the SAAT model to the Australian wetlands. 

For the Minnamurra wetlands, the SAAT model simulated plausible responses of the wetland 

to rising sea levels. However, similar to the SLAM model, error and uncertainty are 

propagated through the modelling process. The stochastic analysis of error and uncertainty, 

therefore, would ensure that a more holistic understanding of future wetland conditions was 

obtained.  

Determining the accuracy of predictions is logically impossible, therefore, in comparing the 

SAAT, Oliver and SLAM models, it is not possible to conclude that one model is definitively 

better than another at simulating the response of the Minnamurra coastal wetlands to SLR, 

nor that one model is more valid than another. However, the results of this study show that 

the differences and similarities between the models were primarily a result of the 
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conceptualisation and mathematical realisation of each of the models. The decision, then, of 

researchers and modellers alike is to ascertain which model should be applied in simulating 

the response of a wetland to SLR. The author advocates that a multimodel approach would be 

a most appropriate solution, where trends and patterns can be explored from a variety of 

different methods. In addition, inferences would be more robust and a more holistic 

understanding of the future wetland would be gained. However, where time and resources do 

not permit such an approach, some guidelines on model choice and application are proposed: 

 Determine the availability and accuracy of data for the chosen system, ensuring that 

the temporal range of the empirical information is sufficient for modelling purposes.  

 Consider the site-specific factors most influential on the long-term evolution of the 

particular wetland system under study. 

 Examine the suite of models available. 

 Select the model whose conceptual basis and parameter requirements best fit the data 

determined as available and the informed understanding of processes influencing the 

dynamic system under study.  

 Validate the chosen model for the specific site under examination, following 

techniques outlined by Sargent (1996) or Rykiel (1996). 

 Apply the model according to the various scenarios needing to be explored. 

 Conduct sensitivity and stochastic uncertainty analyses to provide an understanding of 

error and uncertainty associated with deterministic results. Considering the inherent 

uncertainty of the future and large uncertainty associated with natural systems, this 

step is particularly important to capture the myriad of possible outcomes for effective 

understanding and management of the coastal wetland environments.  

If time and resources permit, a repetition of the process is recommended for a multimodel 

approach. 

Overall, given the great uncertainty associated with much of the data and model outcomes, an 

argument could be made surrounding the futility of modelling the dynamic wetland systems 

and, indeed, if any worthwhile information is obtained from the modelling process. These 

same arguments, however, are not constrained to the modelling of the impact of SLR on 

coastal wetlands but could be extrapolated to encompass any modelling effort. Whilst the 

argument is not unfounded, managers need to plan for the uncertain future and models 

provide one way of assisting the process. Modelling, therefore, appears to be the best 
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response to explore an uncertain future and examine the possible scenarios for which we need 

to prepare.  
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APPENDIX A – Brief overview of models 

The following table provides a brief overview of some models available to model wetland evolution.  

 

Year 

Model/ 

Modeller[s] 

(Author[s]) 

Dimension/ 

Scale 
Sedimentation-accretion 

Organic 

sedimentati

on 

Erosion Autocompaction Vegetation Other SLR 
Physical 

base 

Hydro-

dynamic 

Cohort 

model 

Initialised 

for 

vegetation 

type 

Application Zone 

1987 Krone 1D 
Yes -sediment supply; 

constant value 
No No No No No 

Constant 

trend 

Yes- 

mechani

stic 

No No Saltmarsh 
San Francisco 

Bay 

North 

America 

1990 Allen 1D 
Yes -SSC and settling 

velocity 

Yes- as a 

function of 

elevation 

No Implicit No No 
Constant 

trend 

Yes- 

mechani

stic 

No No Saltmarsh Severn Estuary Great Britain 

1992 Chmura et al 0D 

Yes- accretion rate-diectly 

coupled with SLR to 

determined limit 

No No 

Explicitly - 

function of depth 

of cohort 

No 
Subsidence-

constant rate 

Constant 

trend 
No No Yes Saltmarsh 

Barataria Basin, 

Louisiana 

North 

America 

1993 French 1D 
Yes - sediment supply; 

function of elevation 

Yes - 

constant rate 
No 

Treated 

implicitly-

Constant rate of 

autocompaction 

No 
Explicit treatment 

of eustacy 

Constant 

trend 

Yes- 

mechani

stic 

No Yes Saltmarsh 
North Norfolk 

barrier coast 
Great Britain 

1995 Allen 1995 0D 
Yes -SSC and settling 

velocity 

Yes- as a 

function of 

elevation 

No Treated implicitly No No Fluctuating 
 

No No Saltmarsh Severn estuary 
Great 

Britain 

1996 
Callaway et 

al 1996 
0D 

Yes -sediment supply; 

function of elevation 
Yes No 

Treated explicitly-

function of depth 

below surface 

No No 
Constant 

trend 

Yes- 

mechani

stic 

No Yes - 
Mississipi; 

Great Britain 

North 

America, 

Great Britain 

1996 Stolper 1D 

Yes- sedimentation rate; 

function of elevation and 

tidal range 

Yes- rates as 

a function of 

elevation 

No No No No 
Constant 

trend 
No No No Mangrove 

Hunter River, 

NSW 
Australia 

1997 
Pizzuto and 

Schwendt 
0D 

Yes -sediment supply; 

function of elevation 

Yes -

function of 

elevation 

No 
Treated explicitly-

finite strain theory 

Yes- perrenial 

aboveground 

biomass 

No 
Constant 

trend 
Yes No Yes 

Freshwater 

wetlands 

and 

saltmarsh 

Delaware 
North 

America 

1998 
Rybczyk et 

al 1998 
0D 

Yes -sediment supply; 

function of elevation 

Yes- 

function of 

elevation 

No 

Treated explicitly-

function of 

density of 

sediment above 

cohort 

Yes- function 

of root 

biomass 

No 
Constant 

trend 

Yes- 

mechani

stic 

No Yes Saltmarsh 

Pointe au 

Chene , 

Louisiana 

North 

Americz 

2000 
Reyes et al 

2000 

2D-

landscape 

Yes - SSC - function of 

elevation and settling 

velocity 

Yes - volume 

of 

belowground 

organic 

Yes- 

function of 

bottom shear 

stress and 

wave action 

Treated implicitly 

- part of soil 

volume value 

Yes- function 

biomass 

production 

(aboveground 

and 

belowground) 

Subsidence-

constant rate; wind 

stress; friction; 

diffusion wave; 

salinity, function of 

elevation; 

waterlogging 

Constant 

trend 

Yes-

mechani

sitic 

Yes No 

Saltmarsh, 

brackish 

marshes, 

forested 

wetlands 

Barataria 

Basin, 

Louisiana 

North 

America 

2002 
Morris et al 

2002 (MEM) 
1D 

Yes- SSC; constant can be 

varied mechanically 

Yes-

Empirical 
No Treated implicitly 

Yes- function 

of biomass 

density and 

inundation 

No 

Constant 

(vary 

manually) 

No No No Saltmarsh 

North Inlet 

estuary, S 

Carolina 

North 

America 

2002 Rybczyk and 0D Yes - sediment supply - Yes - No Treated explicitly- Yes- function No Constant Yes- No Yes Saltmarsh Bayou North 
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Cahoon function of elevation function of 

elevation 

function of 

density of 

sediment above 

cohort 

of root 

biomass 

trend mechani

stic 

Chitigue; Old 

Oyster Bayou, 

Louisiana 

America 

2003a 
Temmerman 

et al 
1D 

Yes- sedimentation rate; 

function of SSC, settling 

velocity and elevation 

No No 
Treated implicitly  

- constant rate 
No No 

Constant 

trend 
Yes No No Saltmarsh 

Scheldt 

Estuary, 

Belgium 

Northern 

Europe 

2003b 
Temmerman 

et al 
2D 

Yes- sedimentation rates, 

function of elevation, 

distance to tidal channel 

No No No No No 
 

No 
  

Saltmarsh 

Scheldt 

Estuary, 

Belgium 

Northern 

Europe 

2004 
Mudd et al 

2004 
1D 

Yes- function of SSC, 

settling velocity, 

sedimentation rate;  related to 

biomass density, plant stem 

diameter and flow dynamics 

Yes- 

function  of 

biomass 

No 
Treated implicitly  

- constant rate 

Yes-function 

of depth below 

spring high 

tide 

No 
Constant 

trend 
Yes Yes No Saltmarsh 

North Inlet 

estuary, South 

Carolina 

North 

America 

2005 
Temmerman 

et al 2005 
3D 

Yes- sedimentation rates; 

function of elevation and 

friction force 

No No No Yes- 

Friction force, 

function of flow 

velocity and 

vegetation stem 

diameter, height 

and density 

Constant 

trend 
Yes Yes No Saltmarsh 

Scheldt 

Estuary, 

Belgium 

Northern 

Europe 

2007 
D'Alapos et 

al 2007 
2D Yes- SSC, trapping rates 

Yes- 

constant net 

production 

Yes- 

function of 

bottom shear 

stress 

No 
Yes-function 

of elevation 

Depth averaged 

flow velocities 

Constant 

trend 
Yes Yes No Saltmarsh 

San Felice, 

Venice 

Mediterra

nean 

2007 
Kirwan and 

Murray 2007 
2D 

Yes- function of SSC and 

biomass 
No 

Yes- 

function of 

bottom shear 

stress 

No 

Yes- function 

of biomass 

productivity 

No 

Constant 

trend; 

fluctuating 

Yes Yes No Saltmarsh Hypothetical - 

2008 
Kirwan et al 

2008 
2D 

Yes- function of SSC, 

distance to channel and 

biomass 

No 

Yes- 

function of 

bottom shear 

stress 

No 

Yes- function 

of biomass 

productivity 

No 

Constant 

trend; 

fluctuating 

Yes Yes No Saltmarsh 

Wesham Island, 

British 

Columbia 

North 

America 

2008 
Kirwan and 

Murray 2008 
3D 

Yes- SSC; function of 

elevation 

Yes-function 

of elevation 

and biomass 

Yes - 

function of 

wave height, 

water depth 

and bed 

shear stress 

No 

Yes-function 

of depth below 

spring high 

tide 

No 
IPCC 

projections 
Yes No No Saltmarsh 

Fraser River 

Delta, British 

Columbia 

North 

America 

2010 

Mariotti and 

Fagherazzi 

2010 

1D 

Yes- sediment supply; 

function of elevation and 

biomass 

Yes - 

function of 

biomass 

Yes - 

function of 

bottom shear 

stress, 

biomass, and 

waves 

No 
Yes- function 

of elevation 
No Constant Yes Yes No 

Saltmarsh, 

Tidal flat 
Hypothetical - 

2011 Oliver et al 2D 

Yes - accretion rates; 

function of elevation, 

rainfall, sea level, SOI value 

and distance to channel 

No No No No SOI, Rainfall Fluctuating No No No 

Mangrove 

and 

saltmarsh 

Minnamurra 

River 
Australia 

2012 

Clough et al 

(The SLAM 

model v.6.2) 

2D Yes-accretion rates No 

Yes- 

constant rate 

(conditional 

No No Salinity, Overwash 

Fluctuating

; IPCC 

projections 

No No No 

NWI 

wetland 

types 

Numerous 
North 

America 
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9km fetch) 

2012 
Rogers et al 

2012 
2D 

Yes - accretion rates; 

function of elevation, 

rainfall, sea level and 

distance to channel 

No No No No Rainfall Fluctuating No No No 

Mangrove 

and 

saltmarsh 

Hunter River, 

Australia 
Australia 
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APPENDIX B - Uncertainty analyses and probability distribution functions  

 

The uncertainty analysis drew from the results of the uncertainty analysis to delineate those 

parameters that caused the greatest variations in model output. Errors in such parameters have 

the ability to greatly affect the final outcome of modelling projections, with errors 

propagating through the simulations. Model parameters naturally contain a degree of error 

and uncertainty. For each chosen input parameter an uncertainty distribution was defined 

based on the measured and literature-based information available, as described below.  

Uncertainty analyses were undertaken for simulations that utilised rates of SEC and those that 

used accretion rates to define the accretion parameter. Model parameters, such as the DEM 

error, tidal range, salt elevation and NAVD88-MTL, are common to both modelling methods. 

The uncertainty distribution derived for these parameters were used in the uncertainty 

analysis of projections utilising rates of SEC as those utilising accretion rates. Distributions 

of the accretion parameter, however, were altered according to the method used to define the 

parameter as outlined in Table A1 and A2. 

Choices of uncertainty distribution were confined to normal, uniform or triangular 

distributions within the SLAM model. 

Parameter Distribution 
Global 

value 
Minimum Mean Maximum 

Standard 

deviation 

Mangrove 

accretion rates 
Triangular 8.2 mm/yr 0.609756 1 1.21951  

Mixed accretion 

rates 
Normal 5 mm/yr  1  0.3 

Saltmarsh 

accretion rates 
Triangular 1.8 mm/yr 0 1 2.7  

Mangrove rates 

of SEC 
Normal 0.93 mm/yr  1  0.1613 

Mixed 

rates of SEC 
Triangular 0.76 mm/yr 1.184 1 0.5921  

Saltmarsh rates 

of SEC 
Normal 0.45mm/yr  1  0.644 

Salt elevation 

boundary 
Normal 0.97156 m  1  0.032765 

NAVD88-MTL Normal 0.11275 m  1  0.20112 

Great Diurnal 

Tidal Range 
Normal 1.8 m  1  0.13403 

SLR by 2100 Triangular 0.819 m 0.4884 1.089 1.9158  

Table B1: Overview of uncertainty distributions defined for each parameter. The global value 

represents the value used in deterministic projections to define the given parameter. The mean, 

minimum, maximum and standard deviations used to describe the uncertainty distribution of the 

parameter are calculated with respect to the global value as required by the SLAM model. Derivation 

of the values is further described in Table B2 below.  
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Table B2: Uncertainty distributions of each parameter with explanations regarding its 

derivation.  
P

a
ra

m
et

er
 

Uncertainty distribution 
Explanation and description of values 

defining the uncertainty distribution 

M
an

g
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v
e 
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n
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A triangular distribution was chosen for 

the mangrove accretion parameter to 

allow the available data to be described. 

The accretion rate as defined by Oliver 

(2011) was set as the most likely 

outcome. An upper value of accretion 

selected as a plausible maximum 

accretion rate based on the literature. 

The lower value of the pdf corresponds 

to the accretion rate of the mixed zone 

where mangrove vegetation is still 

present.  

 

M
ix
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n
 r
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The mixed zone was assumed to have a 

large range of possible accretion rates 

given its typical position on the tidal 

floodplains and variable vegetation 

coverage. The mean accretion value is 

derived from accretion value reported 

by Oliver (2011).  A large standard 

deviation was calculated in order to 

incorporate sedimentation rates of both 

saltmarsh and mangrove zones.  

S
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A triangular distribution was chosen for 

the saltmarsh accretion rates, where the 

most likely value was set as that from 

the Oliver (2011) thesis. The minimum 

value was assigned a value of zero in 

the assumption that little accretion 

would occur at the back of saltmarsh 

zones, where the saltmarsh transitioned 

into Casuarina.  The maximum value 

for the distribution was set to the most 

likely accretion within the mixed zone. 
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A normal distribution was chosen for 

the uncertainty associated with the 

mangrove accretion rates as the 

measured rates were coupled with 

standard error calculations. Therefore, 

the mean rate of SEC was defined as 

that calculated from the SET data and 

the standard deviation followed the 

standard error calculated for the same 

data.  

M
ix

ed
 r
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f 

S
E

C
 

 

A triangular distribution was chosen, 

where the mean value remained that 

assigned in the model. Considering the 

mixed vegetation of this zone the 

maximum value was set to the average 

mangrove accretion and the minimum 

set to the average rate of SEC for the 

saltmarsh zone.  
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Similar to the mangrove uncertainty 

distribution, a normal distribution was 

chosen which was defined by a mean 

value equal to the rate of SEC 

calculated from the SET data. The 

associated error of the measurement 

was used to define the standard 

deviation of the uncertainty distribution.  
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The salt elevation was partially defined 

by the MHL (2012) MHW data. 

Therefore, the standard deviation of the 

yearly averaged MHW value was used 

to describe the uncertainty distribution. 

N
A

V
D

8
8
-M

T
L

 

 

The NAVD88-MTL is defined by the 

MTL of the study site. As likelihoods of 

tidal levels were not reliably known, a 

normal distribution was assumed, 

whose standard deviation was defined 

by the standard deviation of the yearly-

averaged tidal data reported by MHL 

(2012). 

T
id

al
 r

an
g
e 

 

The tidal range in this study was 

defined using a variety of sources, each 

with their own error. A normal 

distribution was chosen for the 

uncertainty distribution of the tidal 

range due to data limitations. The 

standard deviation of the tidal range as 

reported by MHL (2012) was scaled up 

to include the errors developing from 

assigning subsite tidal levels. the final 

value was used as the standard deviation 

of the uncertainty distribution.  
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Future SLR is inherently uncertain. 

Given the information available, a 

triangular distribution was chosen to 

define the uncertainty. The most likely 

value was set as 0.9m, drawing from the 

Climate Impact Profile for NSW 

(DECCW 2010) developed by the OEH 

The minimum value for the PDF was 

drawn from the lowest SLR projection 

of the same report. The maximum value 

was sourced from modelling by Hunter 

(2011), which simulated SLR for a 

number of points around the world. 

Simulations for Sydney defined the 

maximum value of the pdf. 

 
 

Accounting for uncertainty associated with the input elevation information 

The input elevation information also contained a degree of error. However, the uncertainty 

associated with DEM2 was not defined by a probability distribution function. Instead, the 

SLAM model follows Heuvelink’s method  of assessing the effects of elevation data 

uncertainty (Heuvelink 1998) whereby a host of equally likely elevation maps are developed 

on the basis of a given error statistic and autocorrelation strength defined by a p-value. For 

this study, the elevation uncertainty was defined by the overall RMSEz calculated for DEM2 

and a p-value of 0.2495, suggesting a strong autocorrelation of errors. An error field is 

created that is applied to the DEM in successive simulations. Applying the process iteratively, 

an understanding of the range of uncertainty generated by elevation error can be gained.  

 

Figure B1: An error field generated in the SLAM model using the RMSEz and p-value representing 

the strength of autocorrelation of errors.  
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APPENDIX C – All SLAM model output for projections 2011-2100

 
Figure C1: SLAM model output under a low rate of SLR, utilising accretion rates and 

DEM2 as the base input elevation information 
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  Figure C1: SLAM model output under an intermediate rate of SLR, utilising accretion 

rates and DEM2 as the base input elevation information 
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Figure C2: SLAM model output under an extreme rate of SLR, utilising accretion rates 

and DEM2 as the base input elevation information. 
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  Figure C3: SLAM model output under a low rate of SLR, utilising accretion rates and 

DEM1 as the base input elevation information. 
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  Figure C4: SLAM model output under an intermediate rate of SLR, utilising accretion 

rates and DEM1 as the base input elevation information 
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Figure C5: SLAM model output under an extreme rate of SLR, utilising accretion rates 

and DEM1 as the base input elevation information 
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Figure C6: SLAM model output under a low rate of SLR, utilising the accretion module 

and DEM2 as the base input elevation information. 
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Figure C7: SLAM model output under an intermediate rate of SLR, utilising the 

accretion module and DEM2 as the base input elevation information. 
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Figure C8: SLAM model output under an extreme rate of SLR, utilising the accretion 

module and DEM2 as the base input elevation information. 
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Figure C9: SLAM model output under a low rate of SLR, utilising the accretion module 

and DEM1 as the base input elevation information. 
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Figure C10: SLAM model output under an intermediate rate of SLR, utilising the 

accretion module and DEM1 as the base input elevation information. 
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Figure C11: SLAM model output under an extreme rate of SLR, utilising the accretion 

module and DEM1 as the base input elevation information. 
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Figure C12: SLAM model output under a low rate of SLR, utilising rates of SEC and 

DEM2 as the base input elevation information. 
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Figure C13: SLAM model output under an intermediate rate of SLR, utilising rates of 

SEC and DEM2 as the base input elevation information. 



 

20 

 

 

 

  

Figure C14: SLAM model output under an extreme rate of SLR, utilising rates of SEC 

and DEM2 as the base input elevation information. 
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Figure C15: SLAM model output under a low rate of SLR, utilising rates of SEC and 

DEM1 as the base input elevation information. 
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Figure C16: SLAM model output under an intermediate rate of SLR, utilising rates of 

SEC and DEM1 as the base input elevation information. 



 

23 

 

 

 

 

Figure C17: SLAM model output under an extreme rate of SLR, utilising rates of SEC 

and DEM1 as the base input elevation information. 
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APPENDIX D – Further sensitivity analyses results 

Results presented herein are the derived sensitivity and associated descriptive statistics for the sensitivity analyses. Results are presented first for 

sensitivity analyses conducted when utilising rates of SEC to characterise the accretion parameter, followed by accretion rates and projections 

using the accretion module. Within each group, the three SLR scenarios and associated sensitivity statistics are reported. All values reported are 

percentages, where 0 indicates no effect occurs with variation in the parameter, positive values indicating a gain in vegetation areas and negative 

values indicating a loss. It is noted that SLR is consistently calculated to have a significant effect on model output, with 10% variation in the 

parameter resulting in significant losses or growth of certain vegetation zones.  

 

 

 

Sensitivity results when rates of SEC were utilised 

Parameter 
Undeveloped 

Dry Land 
Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean 

Standard 

Deviation 

Historic sea level trend  4 -4 -8 -253 -76 82 -253 82 -43 114 

NAVD88 - MTL  2 -1 -5 -151 -49 49 -151 49 -26 69 

Salt Boundary Elevation  22 -110 0 -1 0 0 -110 22 -15 47 

Mangrove Accretion  0 0 -7 109 0 0 -7 109 17 45 

Mixed Accretion  0 -6 8 0 -19 0 -19 8 -3 9 

GT Great Diurnal Tide Range  0 44 -67 140 -272 220 -272 220 11 172 

SLR by 2100 3 -3 -7 -222 -68 72 -222 72 -37 101 

Table D1: Sensitivity statistics for projections utilising rates of SEC under a low rate of SLR (B1).  
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Parameter 
Undeveloped 

Dry Land 
Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean 

Standard 

Deviation 

Historic sea level trend  2 72 9 -117 299 118 -117 299 64 140 

NAVD88 - MTL  1 42 5 -69 175 71 -69 175 38 82 

Salt Boundary Elevation  11 -97 7 -1 0 0 -97 11 -13 41 

Mangrove Accretion  0 0 -19 46 0 0 -19 46 4 22 

Mixed Accretion  0 -25 9 7 -39 0 -39 9 -8 19 

GT Great Diurnal Tide Range  0 243 -145 0 369 313 -145 369 130 206 

SLR by 2100 9 287 28 -430 1228 448 -430 1228 262 560 

Table D2: Sensitivity statistics for projections utilising rates of SEC under an intermediate rate of SLR (A1FI).  

 

 

 

Parameter 

          

Undeveloped 

Dry Land 
Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean 

Standard 

Deviation 

Historic sea level trend  2 23 68 48 220 315 2 315 113 125 

NAVD88 - MTL  1 13 41 30 127 174 1 174 64 70 

Salt Boundary Elevation  11 -256 -3 -1 0 0 -256 11 -42 105 

Mangrove Accretion  0 0 -16 -8 10 28 -16 28 2 15 

Mixed Accretion  0 -10 -9 -3 -29 0 -29 0 -8 11 

GT Great Diurnal Tide Range  0 206 -160 -295 446 581 -295 581 129 344 

SLR by 2100 19 212 624 389 3006 2026 19 3006 1046 1197 

Table D3 Sensitivity statistics for projections utilising rates of SEC under an extreme rate of SLR.  
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Sensitivity results when accretion rates were utilised 

 

 Undeveloped 

Dry Land 
Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean 

Standard 

Deviation 

Historic sea level trend  4 -18 0 -6 -96 35 -96 35 -13 44 

NAVD88 - MTL  2 -5 8 -867 -59 22 -867 22 -150 352 

Salt Boundary Elevation  22 -105 0 -2 0 0 -105 22 -14 46 

Mangrove Accretion  0 1 0 7 0 0 0 7 1 3 

Mixed Accretion  0 1 1 2 0 0 0 2 0 1 

GT Great Diurnal Tide Range  0 24 -39 844 -259 96 -259 844 111 378 

SLR by 2100 3 -15 0 -5 -85 31 -85 31 -12 39 

Table D4: Sensitivity statistics for projections utilising accretion rates under a low rate of SLR.  

 

 

 Undeveloped 

Dry Land 
Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean 

Standard 

Deviation 

Historic sea level trend  3 25 -63 160 201 146 -63 201 79 105 

NAVD88 - MTL  1 16 -21 -1428 87 88 -1428 88 -209 599 

Salt Boundary Elevation  12 -70 21 -1 0 0 -70 21 -6 32 

Mangrove Accretion  0 0 0 38 0 0 0 38 6 16 

Mixed Accretion  -2 -79 120 -2 -331 0 -331 120 -49 152 

GT Great Diurnal Tide Range  0 103 -119 -274 75 409 -274 409 32 231 

SLR by 2100 10 110 -244 1252 765 610 -244 1252 417 557 

Table D5: Sensitivity statistics for projections utilising accretion rates under an intermediate rate of SLR (A1FI).  
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 Undeveloped 

Dry Land 
Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean 

Standard 

Deviation 

Historic sea level trend  2 30 77 -64 242 164 -64 242 75 112 

NAVD88 - MTL  1 17 39 -31 154 89 -31 154 45 67 

Salt Boundary Elevation  11 -242 -43 56 0 0 -242 56 -36 105 

Mangrove Accretion  0 0 -273 209 -1 17 -273 209 -8 153 

Mixed Accretion  0 -81 -48 59 -129 1 -129 59 -33 67 

GT Great Diurnal Tide Range  0 210 -156 8 261 538 -156 538 143 246 

SLR by 2100 19 308 694 -570 1609 2326 -570 2326 731 1067 

Table D6: Sensitivity statistics for projections utilising accretion rates under an extreme rate of SLR.  
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Sensitivity results when the accretion module was utilised 

 

 

 

Undeveloped 

Dry Land 
Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean 

Standard 

Deviation 

Historic sea level trend 4 1 -20 -6 -96 35 -96 35 -14 44 

NAVD88 - MTL  2 1 0 -860 -59 22 -860 22 -149 349 
Salt Boundary Elevation  22 -113 -2 -1 0 0 -113 22 -16 49 

GT Great Diurnal Tide Range  0 61 -69 836 -259 96 -259 836 111 377 

SLR by 2100 3 2 -18 -5 -85 31 -85 31 -12 39 

Mangrove maximum accretion 0 0 0 9 0 0 0 9 1 4 

Mangrove minimum accretion 0 0 0 0 0 0 0 0 0 0 
Mangrove elevation b coefficient 0 0 0 0 0 0 0 0 0 0 

Mangrove elevation c coefficient 0 0 0 0 0 0 0 0 0 0 

Mixed maximum accretion 0 0 0 0 0 0 0 0 0 0 

Mixed minimum accretion 0 0 0 0 0 0 0 0 0 0 

Mixed elevation b coefficient 0 0 0 0 0 0 0 0 0 0 

Mixed elevation c coefficient 0 0 0 0 0 0 0 0 0 0 
Table D7: Sensitivity statistics for projections utilising the accretion module under a low rate of SLR 
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 Undeveloped 

Dry Land 
Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean 

Standard 

Deviation 

Historic sea level trend 2 81 -37 162 255 146 -37 255 102 108 

NAVD88 - MTL  1 49 -15 -1420 146 88 -1420 146 -192 605 

Salt Boundary Elevation  11 -87 -1 0 0 0 -87 11 -13 36 

GT Great Diurnal Tide Range  0 264 -91 -297 302 409 -297 409 98 271 

SLR by 2100 8 320 -143 1223 940 610 -143 1223 493 532 

Mangrove maximum accretion 0 0 0 87 0 0 0 87 14 36 

Mangrove minimum accretion 0 0 0 0 0 0 0 0 0 0 

Mangrove elevation b coefficient 0 0 0 0 0 0 0 0 0 0 

Mangrove elevation c coefficient 0 0 0 0 0 0 0 0 0 0 

Mixed maximum accretion 0 0 5 0 -133 0 -133 5 -21 55 

Mixed minimum accretion 0 0 -2 0 61 0 -2 61 10 25 

Mixed elevation b coefficient 0 0 0 0 9 0 0 9 1 4 

Mixed elevation c coefficient 0 0 0 0 -9 0 -9 0 -1 4 

Table D8: Sensitivity statistics for projections utilising the accretion module under an intermediate rate of SLR.  
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 Undeveloped 

Dry Land 

Casuarina Mangrove Mudflat Mixed Saltmarsh Minimum Maximum Mean Standard 

Deviation 

Historic sea level trend  2 23 100 26 239 164 2 239 92 94 

NAVD88 - MTL  1 14 48 8 146 88 1 146 51 57 

Salt Boundary Elevation  11 -263 -31 11 0 0 -263 11 -45 108 

GT Great Diurnal Tide Range  0 210 -216 -246 393 531 -246 531 112 320 

SLR by 2100 19 192 920 134 2029 2314 19 2314 935 1013 

Mangrove maximum accretion 0 0 -120 -28 -9 10 -120 10 -24 49 

Mangrove minimum accretion 0 0 -86 -18 -2 4 -86 4 -17 35 

Mangrove elevation b coefficient 0 0 5 2 -5 -4 -5 5 0 4 

Mangrove elevation c coefficient 0 0 -5 -2 5 4 -5 5 0 4 

Mixed maximum accretion 0 0 0 -4 -37 4 -37 4 -6 15 

Mixed minimum accretion 0 0 0 2 20 0 0 20 4 8 

Mixed elevation b coefficient 0 0 0 0 4 0 0 4 1 2 

Mixed elevation c coefficient 0 0 0 0 -4 0 -4 0 -1 2 

Table D9: Sensitivity statistics for projections utilising the accretion module under an extreme rate of SLR. 
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APPENDIX E – Further uncertainty analysis results 

Uncertainty analysis results for projections utilising accretion rates to characterise the 

accretion parameter. Figure F1 and F2 are discussed in the main body of the thesis and 

clearly display a significant uncertainty associated with the lower wetlands. Figures F1 – F5 

present the uncertainty associated with simulations of each vegetation type over the period 

2011-2100. 

 

 

 
Figure E1: Results of the uncertainty analysis for mudflat zones. It is noteworthy that the 

deterministic run is situated at or near the very minimum of the possible mudflat distributions over the 

simulated period.  

 

 
Figure E2: Results of the uncertainty analysis for mangrove zones. Significant uncertainty in output 

can be observed by the year 2100.  
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. 
Figure E3: Uncertainty results for the mixed zone. Some uncertainty is associated with the model 

output. It is noteworthy that the results of the uncertainty analysis suggest that the mixed zone may 

increase or decrease by the year 2100.  

 

 

 
Figure E4: Results of the uncertainty analysis for the saltmarsh zone. The distribution of possibilities 

for the simulated period 2011-2100 suggest that a loss in saltmarsh is more than likely.  
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Figure E5: Results of the uncertainty analysis for the Casuarina zone. Considerably greater 

uncertainty is associated with this class than with the saltmarsh or mixed zones. However, similar to 

the mixed zones, simulated Casuraina zones may increase or decrease by the end of the century.  
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 Uncertainty results for projections utilising rates of SEC 

 

Greatest uncertainties are associated with lower wetlands (mudflat and mangrove areas) and 

Casuarina zones. Descriptive and inferential statistics derived from the 500 iterations of the 

uncertainty analysis are presented in Figures F6-F10.  

 

 

 

 

 
Figure E6: Results of the uncertainty analysis for mudflat zones. A large amount of uncertainty is 

associated with simulated mudflat zones, especially by the year 2100. Unlike when accretion rates are 

utilised, the deterministic projection is only slightly below the mean value calculated for possible 

mudflat zones.  

 

 

 
Figure E7: Results of the uncertainty analysis for mangrove areas. Uncertainty associated with 

mangrove zones when utilising rates of SEC are slightly less than when accretion rates are utilised.  
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Figure E8: Results of the uncertainty analysis for mixed vegetation zones. Little variation can be seen 

in the simulation of this zone by the year 2100. 

 

 

 

 

 
Figure E9: Results of the uncertainty analysis for saltmarsh. A loss of saltmarsh can be inferred to be 

most likely to occur by the year 2100 given almost all possible areas simulated for in this uncertainty 

analysis for the year 2100 are below the initial vegetation distribution. The vegetation succession 

defined in the SLAM model, however, may also affect the ability of the saltmarsh zone to be 

sustained over time, as considered in the discussion of this study. Error in the framework of the 

SLAM model may increase the uncertainty associated with simulated saltmarsh zones, more so than is 

depicted here.  
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Figure E10: Results of the uncertainty analysis for Casuarina zones. Greater uncertainty is associated 

with this vegetation class than the saltmarsh and mixed zones. Considering the statistics calculated 

from the uncertainty results, it appears that a loss in wetland is most likely to occur.  
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