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MULTIPARENTAL POPULATIONS

Whole-Genome Analysis of Multienvironment or
Multitrait QTL in MAGIC
Ar�unas P. Verbyla,*,†,1 Colin R. Cavanagh,‡ and Klara L. Verbyla§

*Computational Informatics and Food Futures National Research Flagship, CSIRO, Atherton, QLD 4883, Australia,
†School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia, and ‡Plant Industry and
Food Futures National Research Flagship and §Computational Informatics and Food Futures National Research Flagship,
CSIRO, Canberra, ACT 2601, Australia

ABSTRACT Multiparent Advanced Generation Inter-Cross (MAGIC) populations are now being utilized to
more accurately identify the underlying genetic basis of quantitative traits through quantitative trait loci (QTL)
analyses and subsequent gene discovery. The expanded genetic diversity present in such populations and the
amplified number of recombination events mean that QTL can be identified at a higher resolution. Most QTL
analyses are conducted separately for each trait within a single environment. Separate analysis does not take
advantage of the underlying correlation structure found in multienvironment or multitrait data. By using this
information in a joint analysis—be it multienvironment or multitrait — it is possible to gain a greater un-
derstanding of genotype- or QTL-by-environment interactions or of pleiotropic effects across traits. Further-
more, this can result in improvements in accuracy for a range of traits or in a specific target environment and
can influence selection decisions. Data derived from MAGIC populations allow for founder probabilities of all
founder alleles to be calculated for each individual within the population. This presents an additional layer of
complexity and information that can be utilized to identify QTL. A whole-genome approach is proposed for
multienvironment and multitrait QTL analysis in MAGIC. The whole-genome approach simultaneously incor-
porates all founder probabilities at each marker for all individuals in the analysis, rather than using a genome
scan. A dimension reduction technique is implemented, which allows for high-dimensional genetic data. For
each QTL identified, sizes of effects for each founder allele, the percentage of genetic variance explained, and
a score to reflect the strength of the QTL are found. The approach was demonstrated to perform well in
a small simulation study and for two experiments, using a wheat MAGIC population.
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DISCOVERING the underlying genes affecting important traits such
as yield, quality, disease resistance, and climate adaptability is of par-
amount importance to increase the agricultural productivity needed to
feed the world’s growing population. The first stage in identifying
these genes is QTL analyses. Traditionally in plants, biparental crosses
are used to create experimental populations on which QTL analyses were
carried out. Recently the advantages of a different type of experimental

cross, the Multiparent Advanced Generation Inter-Cross (MAGIC),
have been explored. One of the most compelling reasons for develop-
ing MAGIC populations is the ability to conduct research on a broad
range of traits in genetically diversity populations. The genetic diver-
sity present in MAGIC populations is maximized through the selec-
tion of multiple genetically diverse founders. The founder lines in
a classic plant MAGIC population are intercrossed until all founders
have an equal probability of contributing to the genetic makeup of
a line (more complex intercrossing patterns can be used). In plants
this initial intercross is followed by multiple generations of selfing to
create recombinant inbred lines (RILs). Such a structure leads to an
amplified number of recombination events, which means that any
QTL can be mapped at a higher resolution. Consequently, these pop-
ulations are now being utilized to more accurately identify the un-
derlying genetic basis of quantitative traits through quantitative trait
loci (QTL) analyses (Mott et al. 2000; Cavanagh et al. 2008; Trebbi
et al. 2008; Kover et al. 2009; Huang et al. 2012; Bandillo et al. 2013).
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One point of difference between the QTL approaches that have
been used is whether they use marker scores or founder probabilities.
The structure of MAGIC populations means that the probabilities that
an allele has been inherited from each founder can be calculated.
These probabilities can contain additional information as the marker
scores may not be fully informative in a population with multiple
founders. Xu (1996) described the first QTL analyses for a MAGIC
population, using marker scores with interval mapping to analyze
a four-way cross. Contrastingly, Mott et al. (2000) found that using
marker scores failed and described the first use of founder probabil-
ities in QTL analyses for MAGIC. Other methods have used proba-
bilities rather than marker scores (Kover et al. 2009; Huang et al. 2012;
King et al. 2012; Verbyla et al. 2014).

Regardless of whether marker scores or probabilities are used,
most studies have employed QTL approaches that use genome scans
to test each marker or interval separately for association or linkage
with the trait of interest (Xu 1996; Mott et al. 2000; Kover et al. 2009;
Malosetti et al. 2011; King et al. 2012). An alternative is to use all
information simultaneously in a single model, overcoming the need
for genome scans. Whole-genome average interval mapping
(WGAIM) was proposed by Verbyla et al. (2007) for biparental pop-
ulations and modified by Verbyla et al. (2012). WGAIM was shown to
outperform composite-interval mapping (CIM). The approach allows
for population structure to be modeled and for any nongenetic effects,
such as experimental design terms, to be easily included. A likelihood-
ratio test of significance is conducted to decide whether selection of
a putative QTL is warranted. Forward selection of putative QTL con-
tinues until the likelihood-ratio test is nonsignificant. WGAIM was
extended for use in MAGIC populations by Verbyla et al. (2014),
utilizing the probabilities of inheriting founder alleles for each indi-
vidual at each locus.

To date, most QTL analyses in MAGIC are conducted separately
for each trait within a single environment. However, separate QTL
analyses (for any population) do not take advantage of the underlying
correlation structure found in multienvironment or multitrait data.
Joint analyses provide the opportunity for a greater understanding
of genotype- or QTL-by-environment interactions or of pleiotropic
effects across traits. This can result in a greater understanding of
traits or environments and the relationship between them. This in-
formation could lead to improvements in accuracy for a range of
traits or in a specific target environment and can influence selection
decisions.

In biparental populations, the advantages presented by multivar-
iate approaches have led to the development of a range of approaches
for the analysis of multienvironment trials for a single trait (Jiang and
Zeng 1995; Tinker and Mather 1995; Wang et al. 1999; Piepho 2000;
Verbyla et al. 2003; Vargas et al. 2006; Boer et al. 2007). In addition,
multitrait analysis has also been considered by many authors (Korol
et al. 1995, 1998; Zeng et al. 1999; Knott and Haley 2000; Gilbert and
Le Roy 2003; Lund et al. 2003). Hackett et al. (2001) present a review
and an interval-mapping method based on multivariate regression. A
more recent review of methods for multienvironment QTL analysis is
presented by Van Eeuwijk et al. (2010). Malosetti et al. (2008) in-
vestigate multitrait, multienvironment analysis. An approach for mul-
tivariate QTL analysis in biparental populations based on WGAIM
was presented by Verbyla and Cullis (2012).

In this article, an approach for multivariate QTL analysis is
proposed for MAGIC populations, building upon Verbyla and Cullis
(2012) and Verbyla et al. (2014); the approach is called multivariate
multiparent (MVMP)WGAIM. Multivariate QTL effects are included
in the model for all intervals (or markers) on the linkage map simul-

taneously. Probabilities of inheriting founder alleles are an integral
part of the model and allow estimation of QTL sizes for all founder
alleles. These multivariate genetic QTL sizes are modeled as random
effects with an associated variance–covariance matrix, be they traits or
environments. A likelihood-ratio test is presented for testing the sig-
nificance of the QTL variance–covariance matrix. If the test is signif-
icant, a multivariate outlier detection method is used to select the most
likely interval for a QTL. Multivariate QTL are chosen in a forward
selection process. These QTL are also included in the random effects.
For multienvironment QTL analysis it is possible that the QTL effects
are the same over all environments. A test for the interaction of QTL
by environment can be carried out by including a main effect QTL.
The final summary of QTL effects includes a level of significance,
a score that indicates the strength of the QTL, and the percentage
of genetic variance accounted for by each QTL. A small simulation
study examines type I error rates and power of the approach, com-
plemented by multitrait and multienvironment examples using wheat
MAGIC data, presented for illustration and interpretation.

METHODS
The approach presented generalizes that presented for the univariate
(single trait or environment) situation (Verbyla et al. 2014). The
methods presented are largely self-contained, however, even though
the development matches the univariate case as given by Verbyla et al.
(2014).

Base model
In the plant sciences, genetic studies are usually based on designed
experiments, often multiphase in nature (Smith et al. 2006). To pro-
vide a statistical analysis for these experiments, a linear mixed model
is often used. This model has the form

y ¼ Xtþ Zouo þ Zgug þ e; (1)

where y is the vector of responses, which may comprise multiple
traits or a single trait scored in multiple environments. The fixed
effects Xt and random effects Zouo reflect the experimental design
and nongenetic effects while the residual vector e allows, for exam-
ple, for possible spatial trends within environments or relationships
between traits. Note that it is assumed uo � N(0, Go) and e � N(0,
R) and that they are uncorrelated. The genetic effects Zgug are dis-
cussed in the following section.

Genetic model
Suppose there are ng lines or varieties and t traits or environments in
the study. The ngt · 1 vector of genetic effects is given by ug in (1) and
the matrix Zg assigns the appropriate line to each observation in y.
Without marker data, models for ug are typically based on the in-
finitesimal or polygenic model. We consider the simplest polygenic
model

ug ¼ up; (2)

where up is the polygenic effect assumed, up � Nð0;Gp5IngÞ, where
Gp is the t · t genetic variance–covariance matrix between environ-
ments or traits. This model can be extended to include a relationship
matrix based on pedigree information.

The aim of this article is to use marker information in the
determination of QTL for a MAGIC population. Suppose there are nf
founders in the MAGIC population and that we have c linkage groups
(or chromosomes) and rk markers on linkage group k, k = 1, 2, . . . , c.
We allow for a QTL in every interval or at each marker if analysis is
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based on markers; the development assumes intervals rather than
markers but the marker-based analog simply replaces rk 2 1 by rk
where appropriate. Our model for the genetic effect for line i for trait
or environment s, ugis, is given by

ugis ¼
Xc
k¼1

Xrk 2 1

j¼1

qTikjakjs þ upis;

where qikj is the nf · 1 vector that indicates the founder allele for line
i for a potential QTL in interval j on linkage group k; thus one
element of qikj is 1 and the rest are zero. Note that akjs is an nf ·
1 vector of sizes of effects for each potential QTL and upis is a poly-
genic effect.

If we place the effects for all environments or traits in a single
vector (as a row vector) for line i,

uTgi ¼
Xc
k¼1

Xrk 2 1

j¼1

qTikjAkj þ uTpi;

where Akj is a nf · t matrix of sizes of effects for nf founder alleles
and t environments or traits and upi is a vector of polygenic effects
for line i for all environments or traits. Placing the total genetic
effects uTgi for all lines as the rows in an ng · t matrix Ug, the model
becomes

Ug ¼
Xc
k¼1

Xrk 2 1

j¼1

QkjAkj þ Up; (3)

where Qkj is an ng · nf matrix with ith row qTikj:
Each vector qikj has a multinomial distribution with sample size 1

and a vector consisting of the probability of inheriting each founder
allele for line i in interval j on linkage group k; we denote the vector of
probabilities by pikj. Then

E
�
qikj

�
¼ pikj:

The regression approach for QTL mapping is used (Haley and Knott
1992) and so (3) is replaced by

Ug ¼
Xc
k¼1

Xrk 2 1

j¼1

PkjAkj þ Up;

where Pkj is the matrix of probabilities with ith row pTikj: If we form
the vector of genetic line effects by stacking the columns of Ug, we
find

ug ¼ ðIt5PÞaþ up; (4)

where if r ¼ Pc
k¼1rk; P is a ng · (r 2 c)nf matrix of probabilities

and a is the vector of potential QTL sizes ordered as founders
in intervals (or markers). Our working model is given by
a � Nð0;Ga5Iðr2 cÞnf Þ; where Ga specifies a model for the genetic
variances for environments or traits and covariances between envi-
ronments and traits for the sizes of potential QTL effects.

Determination of P is discussed in Verbyla et al. (2014) for single-
environment or -trait analysis. The use of three-point probabilities
and probabilities based on a hidden Markov model (HMM) (Broman
2006) was discussed and examined in that article. An averaging over
each interval was used to determine probabilities for interval-based
analysis. It was found in a simulation study that the probabilities

found using HMM led to reduced false positives while maintaining
power of detection of QTL. HMM-based probabilities were used in the
extension to multivariate situations discussed in this article.

The actual selection of putative QTL proceeds by forward selec-
tion, one QTL at a time. This requires a suitable test at each stage of
potential selection.

Threshold for QTL selection
A multienvironment or multitrait QTL exists if Ga 6¼ 0. Thus we test
the hypothesis H0: Ga = 0 to establish whether a QTL exists. If the test
is rejected, there is evidence that at least one putative QTL exists and
a process (described below) is used to select the most likely interval
for the putative QTL. If the test is retained, the selection process
concludes.

The test of H0: Ga = 0 is nonstandard and is discussed in Verbyla
and Cullis (2012). The process involves fitting two models, which have
diagonal matrices for the genetic effects, potential QTL, and polygenic
effects. The test then is equivalent to H0: tr(Ga) = 0. Thus if ℓ̂ is the
maximized residual log-likelihood including the diagonal variance
model for putative QTL sizes and the polygenic effects, and ℓ̂0 is the
maximized residual log-likelihood omitting the diagonal variance
model for the QTL effects, the likelihood-ratio test statistic is found by

X2
LR ¼ 2

�̂
ℓ2 ℓ̂0

�
: (5)

The statistic (5) has an approximate distribution under the null
hypothesis (zero diagonal variance matrix) that is a mixture of chi-
square distributions (Stram and Lee 1994); namely

X2
LR �

�
1
2

�t Xt
k¼0

�
t
k

�
x2k; (6)

where x2
k represents a chi-square distribution on k d.f. Thus a test of

size a of the hypothesis that the diagonal Ga is zero is rejected if
X2
LR . c12a; where the critical value c12a is determined using (6).

This establishes the presence of variation that is necessary for a QTL
to exist.

Outlier statistic for QTL selection
If the test of H0: Ga = 0 is rejected, a model with correlated genetic
effects (both putative QTL and polygenic) across traits or environ-
ments is fitted and based on that fitted model, an outlier statistic is
used to select the putative QTL.

The process for selecting a QTL in the biparental situation is
presented by Verbyla and Cullis (2012). The same argument leads to
the statistic

t2kj ¼
Pnf

f¼1~a
T
kjfG

2
a ~akjfPnf

f¼1tr
�
G2
a var

�
~aklf

�� (7)

so that for MAGIC it is necessary to sum over the founders; thus ~akjf
is the best linear unbiased predictor of the vector of sizes for all the
environments or traits for the jth interval on linkage group k for
founder f and G2

a is the generalized inverse of Ga. The interval (or
marker) with the largest (outlier) statistic (7) is selected as the pu-
tative QTL and is added to the model as a random effect(s).

Revised models
If a putative QTL is selected, the models (2) and (4) are revised by
adding the QTL to the models as a random effect(s). The procedure
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above is then repeated to examine whether a further QTL can be
added, until the test of H0: Ga = 0 is not rejected.

The revised models depend on whether the analysis is multi-
environment or multitrait in nature. The reason for the difference
is because for multienvironment analysis it is sensible to examine
whether the QTL has the same expression at all sites or there is QTL-
by-environment interaction. Thus the multienvironment model
contains a main effect that is common across environments and
environment-specific effects that allow for departures from the
common effect. These latter effects can be tested for significance to
establish whether the putative QTL sizes are common across environ-
ments or are different across environments.

Let a21 be the vector of possible sizes omitting the trait- or envi-
ronment-by-founder effects for the first QTL; the corresponding ma-
trix of remaining probabilities is given by P21. If P1 is the ng · nf
matrix of probabilities corresponding to the first QTL chosen, for
a multitrait analysis the model (2) becomes

ug ¼ ðIt5P1Þa1t þ up

and (4) becomes

ug ¼ ðIt5P1Þa1t þ ðIt5P2 1Þa2 1 þ up;

where a1t is the vector of trait-by-founder effect sizes for the first
QTL. Note that it is assumed that a1t � Nð0; diagðs2

1sÞ5Inf Þ; so that
the putative QTL effects are modeled as random effects with their
own variance matrix with each trait having its own variance.

For a multienvironment analysis (2) is updated to

ug ¼ ð1t5P1Þa1 þ ðIt5P1Þa1t þ up

and (4) is updated to

ug ¼ ð1t5P1Þa1 þ ðIt5P1Þa1t þ ðIt5P2 1Þa2 1 þ up;

where a1 � Nð0;s2
1Inf Þ is the vector of sizes for each founder for the

QTL chosen; this is the same for all environments and hence the 1t
in the design matrix for the term containing a1. For the multienvir-
onment situation, it is also assumed a1t � Nð0;s2

1tIt5Inf Þ; which
differs from the multitrait situation. The two components allow for
a simple QTL-by-environment model in which the common effect
allows for correlation between environments, much in the same
manner as the simplest variance component mode for genotype-
by-environment modeling.

The process is now repeated until the test for possible QTL is not
rejected. If the number of putative QTL selected is l, Pj is the vector of
probabilities for all lines that correspond to QTL j, and P2l is the
matrix of probabilities omitting all Pj, the final model for a multitrait
analysis is given by

ug ¼
Xl

j¼1

�
It5Pj

�
ajt þ ðIt5P2 lÞa2 l þ up;

where ajt � Nð0; diagðs2
jsÞ5Inf Þ or for a multienvironment analysis

ug ¼
Xl

j¼1

��
1t5Pj

�
aj þ

�
It5Pj

�
ajt
	þ ðIt5P2 lÞa2 l þ up; (8)

where aj � Nð0;s2
j Inf Þ and ajt � Nð0;s2

jtIt5Inf Þ:
The multitrait model specifies a diagonal form for the trait-by-

QTL combinations. This is a very simplistic model. It would be

preferable to include correlations between traits. The main reason
correlations have not been included is that they cannot be fitted due to
limited information; the variances and correlations in essence depend
on the vector of sizes. All attempts to fit models with correlation in
simulations or real studies failed. In addition, if an estimated variance
for a trait or environment is zero (or very close to zero), correlations
between that trait and other traits are not defined. This makes fitting
of models very difficult. Thus while the diagonal matrix is not ideal, it
represents a solution that seems to work in practice.

In the multienvironment situation, the environments are corre-
lated but in a very simple way. It would be preferable to model both
QTL variances and correlations more generally, but the same com-
putational difficulties exist as for multitrait analyses.

Test of QTL-by-environment interaction
For the multienvironment situation, it is of interest to test for
QTL-by-environment interaction. Thus we wish to test H0   : s

2
jt ¼ 0;

which is nonstandard, just like the test for possible selection of a QTL.
The same form of test is used to examine this interaction for every
QTL, using a residual log-likelihood-ratio statistic for the final model
(8) and a null hypothesis model with the appropriate term in ajt
removed. The null distribution is a mixture of a point probability of
0.5 at zero and one-half a chi-square distribution with 1 d.f. (Stram
and Lee 1994). Each QTL is examined in turn, allowing for all other
effects, and model reduction is carried out according to these tests.

Significance, LOGP scores, and percentage of variance
The significance, calculation of a measure of strength of a putative
QTL, and percentage of variance of each QTL are all assessed in
a manner similar to that presented in Verbyla et al. (2014), for each
trait or environment.

We begin with a measure of significance. If the analysis is
multitrait, the vector of QTL sizes for trait s is a�js ¼ ajs while in the
multienvironment case it is a�js ¼ aj þ ajs if QTL-by-environment in-
teraction is present or a�js ¼ aj if QTL-by-environment interaction is
not present. Then under the normality assumptions for a linear mixed
model,

a�js



y2 � N

�
~a�js;Vjs

�
;

where y2 is the component of the data free of fixed effects (Verbyla
1990). The mean of this conditional distribution is the best linear
unbiased prediction of a�js; that is, the estimated size of the QTL ~a�js;
and Vjs is the prediction error variance matrix (PEV) of a�js: If V

2
js is

a generalized inverse of Vjs, the distance measure

d2js ¼
�
a�js2~a�js

�T
V2
js

�
a�js 2~a�js

�

has a chi-square distribution on nf 2 1 d.f. If

c2js ¼ ~a�Tjs V
2
js ~a

�
js;

a measure of the strength of the putative QTL is given by

pjs ¼ Pr
�
d2js . c2js

�
:

This probability can be calculated for the QTL as a whole, that is, for
all founders together, and also for individual founders, enabling
“significance” of QTL effects both at the overall and at the founder
level to be reported.
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To measure the strength of a putative QTL, the probability pjs is
transformed using

LOGPjs ¼ 2 log10

�
pjs
�

and this measure, LOGP, is similar to a LOD score.
Finally, the (approximate) percentage of genetic variance explained

by each QTL can be found as follows. Consider the genetic effect for
line i for trait or environment s in terms of the indicator variable qij
for QTL j for line i,

ugis ¼
Xl

j¼1

qTija
�
js þ pTi;2 la2 l þ upis;

where pTi;2 l is the ith row of P2l. Then the variance of ugis is ap-
proximately given by

var
�
ugis

� ¼ Xl

j¼1

a�Tsj var
�
qij
�
a�js þ s2

ap
T
i;2 lpi;2 l þ s2

ps:

To evaluate var(qij), we proceed as in Verbyla et al. (2014) and
define an “average” line and hence an average QTL indicator �qj so
that an overall approximate variance can be found. The average
founder probabilities, �pj, found by averaging those probabilities over
the lines are used and the multinomial nature of �qj means that

var
�
�qj
�
¼ diag

�
�pj
�
2 �pj�p

T
j :

For the term involving the intervals (or markers) not selected, we
simply average the founder probabilities over all the lines for the
nonselected intervals (or markers), �p2 l say. Then the total variance
of an average line effect, u�gs is defined as

var
�
u�gs

�
¼

Xl

j¼1

a�Tjs var
�
�qj
�
a�js þ s2

as�p
T
2 l�p2 l þ s2

ps:

The percentage of genetic variance attributed to the jth QTL is then

PVjs ¼ 100
a�Tjs var

�
�qj
�
a�js

var
�
u�g
� :

In practice the unknown sizes a�js and variance components s2
as and

s2
ps are replaced by their estimates.

Dimension reduction
The dimension reduction discussed by Verbyla et al. (2012) and used
in univariate MAGIC QTL analysis (Verbyla et al. 2014) can be uti-
lized in the multivariate situations discussed in this article. Thus
a model that is equivalent to (4) is

ug ¼
�
It5

�
PPT�1=2�a� þ up; (9)

where a� is an ng · 1 vector with assumed distribution
Nð0;Ga5IngÞ: The model (9) then generates the same variance
model as (4) and the predicted random effects for the original model
can be recovered from those found using (9) as

~a ¼
�
It5PT

�
PPT�21=2

�
~a�

with variance matrix

var
�
~a
� ¼ �

It5PT�PPT�21=2
var

�
~a�
��
It5PPT�21=2

P

and only diagonal elements of this matrix are required in computing
the outlier statistics (7). Thus the computations for model fitting
have a dimension of the number of lines rather than the number of
intervals or markers.

Computation
The computations were carried out in R (R Development Core Team
2013), using packages asreml (Butler et al. 2011) and components of
wgaim (Taylor and Verbyla 2011). The required functions, including
a likelihood-ratio routine for testing QTL-by-environment interaction
and summary methods for displaying results of an analysis, are in the
mpwgaim package in R available from the authors. Note also that
a worked example is available in Supporting Information, File S1.

MATERIALS

Simulation study

Genetic data for simulation studies: The genetic data were generated
for the simulations, using the mpMap package (Huang and George
2011) in R (R Development Core Team 2013).

A classic four-way population of 500 individuals was simulated,
so that there were two crosses between two pairs of founder lines (F1 ·
F2 and F3 · F4). A line from each cross was crossed and then 500 lines
were generated from that cross. These lines were selfed for six
generations.

The linkage map was simulated to have seven chromosomes,
each of length 300 cM and each with 201 markers equally spaced
(1.5-cM spacing). The marker data were simulated for both founders
and the 500 selfed lines, using mpMap.

Null simulation study: Two hundred simulations were conducted for
the case where no QTL were present, to assess the type I error rate and
the average number of QTL detected per simulation. Phenotypic data
for each simulation were generated for the simulated 500 MAGIC
lines with two replicates and three traits in a MAGIC population,
using the model (i = 1, 2, . . . , 500; j = 1, 2, 3; k = 1, 2)

yijk ¼ mj þ upij þ eijk;

where mj were 9, 10, and 12; the errors eijk were independent stan-
dard normal; and the polygenic effects upij were simulated having
zero mean and covariance matrix

Gp ¼ 1
2

2
4 1:0 0:7 0:5
0:7 1:0 0:5
0:5 0:5 1:0

3
5 (10)

for the three environments for each line.

Power simulation study: A simple simulation to examine the power
of the MVMPWGAIM approach was conducted. The 500 simulated
MAGIC lines (with two replicates) and the linkage map used in the
null simulation study were also used in the power study. Data were
again simulated for three traits, now with four QTL. The generating
model for the phenotype was (i = 1, 2, . . . , 500; j = 1, 2, 3; k = 1, 2)
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yijk ¼ mj þ
X4
l¼1

qTilajl þ upij þ eijk; (11)

where the means mj were as for the null simulation, the polygenic
effects upij were defined as for the null distribution simulation,
including (10), and eijk were assumed independent and identically
distributed as standard normal variables.

The vector qil in (11) is the vector of founder indicators and for
each line i, one element is one and the rest are zero. The element that
is 1 indicates which founder provides the QTL allele. The vector of
QTL sizes is ajl, of length 4 (one for each founder), and there are 3 · 4
such vectors of sizes corresponding to the three traits and four QTL.
The sizes of QTL effects used in the simulations are given in Table 1.
The percentage of genetic variance explained by each QTL for each
trait was calculated using the given sizes and the multinomial nature
of those sizes; the calculation mirrored the development presented in
the Methods section. It was assumed that all founder alleles were
equally likely to be inherited, that is, 0.25 for the four founders.

The simulation is an attempt to examine some simple scenarios to
see how successful is the detection of QTL using MVMPWGAIM. The
first QTL has the same pattern of sizes across all traits, a pleiotropic
QTL. The second QTL has the same vector of sizes for traits 1 and 3
but opposite signs for trait 2. The third QTL is absent for traits 1 and
2. Finally, trait 2 does not express for the fourth QTL.

In the power study, a QTL was declared as detected if the interval
selected was within 5 cM either side of the true QTL position. For the
scenario presented, 200 simulations were carried out.

Examples

Linkage map: A linkage map for a four-way cross in wheat developed
in the Commonwealth Scientific and Industrial Research Organisation
(CSIRO), Australia, was described in Verbyla et al. (2014). There were
5763 markers on the map, and most were SNPs with 755 DArT
markers (Diversity Arrays Technology) and 39 multiallelic microsa-
tellites, grouped into 21 chromosomes of wheat together with three
additional linkage groups. The total map length was 5788 cM.

Many of the markers were colocated at the same position on
the map and so markers were removed prior to QTL analysis to
ensure nonzero recombination fractions between the remaining
markers. The final map for QTL analysis consisted of 3230 markers
(including 620 DArTs and 37 microsatellites).

The following files are related to the genetic data: The linkage
map is presented in File S2; the pedigree information for the MAGIC
RIL lines and the founders is given in File S3, while the correspon-
dence between the pedigree identifiers and the identifiers in the phe-

notypic data is given in File S4; and the marker data for the founders
and RILs are given in File S5 and File S6, respectively.

Seed size in wheat: Two important measures of seed size in wheat are
hectoliter weight (HW) and the weight of 1000 kernels (TKW) due to
their impact on milling quality and yield. These two variables were
measured on the four-way wheat MAGIC population developed by
CSIRO in Australia in a field trial at Yanco, New South Wales in 2009.
The trial was designed as a partially replicated experiment with 53% of
1063 four-way lines replicated and the rest unreplicated. The layout
was 81 rows by 20 columns, in three blocks of 27 rows. The data are
available in File S7.

Individual trait analyses were conducted for the two traits, using
the methods of Gilmour et al. (1997). The blocking factor in the
design was included in each model. The two traits exhibited some
spatial variation, similar for both traits, that was included in the
model. The only other extraneous or global effect that was found in
the data was a random effect for rows that was required for the 1000-
kernel weight analysis. The heritability for hectoliter weight was 77%
and for 1000-kernel weight it was 85%.

The bivariate models that are required for the multitrait QTL
analysis were of the (symbolic) form

y ¼ Trait:Typeþ Trait:Blockþ atðTrait;   2Þ:Row
þ   Trait:Genotypeþ error;

where y is the response variable, composed of HW and TKW
arranged suitably in a vector, Trait denotes the factor for the two
traits that indicates the corresponding trait for each value in y,
Genotype is the indicator for the line for each y, Block denotes the
blocking factor, and error is the residual error variable. The factor
Type separates out the four-way lines of interest from other lines that
were planted in the trial; these other lines consisted of the four-way
founders and other standard commercial wheat varieties. The repli-
cation of these additional lines varied but in general these lines had
several replicates. The meaning of “.” depends on what other terms
are in the model, but they generally are interactions or simply
combinations of variables. In the symbolic model above, the
Trait.Genotype term is nested in Trait.Type.

In the model, the term Trait.Type is a fixed-effects term, that is,
corresponds to Xt in (1), that allows a different mean for each trait
and type combination. The other effects were taken as random. The
term Trait.Block, which allows for a different block effect for each
trait, and the term at(Trait, 2).Row, which allows for a random row
effect for the second trait, here 1000-kernel weight, are components of
Zouo in (1).

n Table 1 Specification for the power simulation

Environment 1 Environment 2 Environment 3

Founder Founder Founder

Chr Position (cM) 1 2 3 4 % var 1 2 3 4 % var 1 2 3 4 % var

1 141 0.3 20.3 20.3 0.3 11.7 0.3 20.3 20.3 0.3 11.7 0.3 20.3 20.3 0.3 11.7
2 160 0.3 20.3 20.3 0.3 11.7 0.3 20.3 20.3 0.3 11.7 20.3 0.3 0.3 20.3 11.7
3 174 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 20.3 20.3 0.3 11.7
4 207 0.3 20.3 20.3 0.3 11.7 0.3 20.3 20.3 0.3 11.7 0.0 0.0 0.0 0.0 0.0
Total 35.1 35.1 35.1

Four QTL on chromosomes (Chr) 1–4 are shown with sizes as specified for the founder alleles for each of three environments together with percentage of genetic
variance (% var) explained by each QTL at each environment.
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Trait.Genotype allows for variation of genotypes for each trait
[Zgug in (1)], and the form of this variation depends on the structure
imposed on the Trait factor. For example, effects associated with this
factor might be random with zero mean vector (2 · 1) and a diagonal
variance matrix with separate variance for each trait. Alternatively, we
would in general allow for a correlation between the traits; this is the
genetic correlation between traits. These model are also appropriate
for Trait.Block.

The error term also has a model, namely a separable structure that
corresponds to a three-way combination of factors, namely Trait.
Column.Row. The Trait component is treated in the same manner as
the terms preceding it, while we impose an autoregressive process of
order 1 for both the column and the row components. This generates
a three-way separable variance matrix.

The bivariate models required for QTL analysis have first diagonal
structures for the Trait component in each term to establish whether
a putative QTL should be selected and, for QTL selection, a 2 · 2
variance matrix that allows for different variances for the two traits
and a correlation between traits.

The analysis with correlation between the traits resulted in a genetic
correlation of 0.28 and genetic variances of 2.6 and 14.1 for HW and
TKW, respectively. The genetic correlation is not large but is present
so we expect some pleiotropic QTL. The correlation between the traits
at the residual level was 0.26 and residual variances were 1.1 and 3.2
for HW and TKW, respectively. The spatial correlation in the column
direction was close to zero while it was 0.16 in the row direction.

Multienvironment trials for flowering time: Three trials were
conducted using the MAGIC four-way wheat population of CSIRO,
Australia. One of the aims was to investigate flowering time, using
zadok scores (Zadok et al. 1974). Plant maturity or flowering time is
an important adaptation trait (Worland 1996) that breeders either
directly or indirectly select for in breeding. The development from
the vegetative phase to the reproductive phase can be divided into
three components, vernalization requirement (VR), photoperiod sen-
sitivity (PS), and earliness per se (eps). Each stage is controlled by
different genes and influences the overall flowering time.

The trials were conducted in Yanco, in 2009 (the same trial as the
seed size experiment above), and at Leeton and Temora in 2010; all
sites are in New South Wales. The numbers of four-way lines used in
the trials were 1063, 1026, and 1025 for Yanco, Leeton, and Temora,
respectively. The trials were all partially replicated designs (53%, 44%,
and 56% replication, respectively). The layouts as rows by columns
were 81 · 20, 40 · 46, and 90 · 16, respectively. The blocking
structure varied across trials: Yanco had three blocks of 27 rows;
Leeton had two blocks of 20 rows; and Temora was blocked in two
directions, three blocks of 30 rows and two blocks of 8 columns. The
data are available in File S8.

The analyses for the individual trials resulted in models that included
the blocking structures in the experimental design for each trial and
a separable autoregressive of order 1 for rows and columns (Gilmour
et al. 1997) at the error level, thereby modeling the spatial correlation.
No other terms were necessary. The heritabilities for zadok score for the
three trials were 82%, 82%, and 92%, respectively, which are very high.

The multienvironment model was of the (symbolic) form

zadok ¼ Site:Typeþ Site:Blockþ atðSite;   2Þ:Cblock
þ   Site:Genotypeþ error:

The terms are similar to those explained for the seed size analysis.
Site is the factor of three levels for the trials, Cblock is the blocking in
the column direction for Temora [hence the term at(Site, 2)], and

Site.Type is a fixed effect to ensure correct mean effects are obtained
for four-way and non-four-way lines. The other terms in the model
are random effects. The Site variable is again modeled using a di-
agonal variance matrix or a 3 · 3 variance matrix that includes
correlations between the sites. The error represents at(Site).
Column.Row, which allows for separate spatial models for each site,
consisting of separable autoregressive processes of order 1 for rows
and columns. The two models required for QTL analysis provide for
the Site variance matrix to be diagonal or a general 3 · 3 structure
for the Site.Genotype term.

The estimated genotype-by-environment (Site.Genotype) covariance/
correlation matrix for the data was (correlations above the diagonal,
variances down the diagonal, and covariances below the diagonal)

Leeton Temora Yanco
Leeton
Temora
Yanco

2
4  24:4 0:92 0:93
 20:0 19:7 0:88
 25:3 21:5 30:1

3
5 (12)

so that the three environments are highly genetically correlated.

RESULTS

Simulation study

Null simulation: For the null QTL simulation, the type I error rate
was 0.035 with an average number of false positive QTL per sim-
ulation of 0.045. Thus the testing procedure is conservative when
compared to the nominal level of 0.05 that was used.

Power simulation: The rate of detection of each QTL (and the overall
total across QTL) is presented in Table 2. On average three of four of
the QTL were detected. This is probably due in part to the small size
of the simulated MAGIC population, but also because the QTL that
express in a subset of the traits (QTL on chromosomes 3 and 4) are
more difficult to detect. This is similar to the results found in Verbyla
and Cullis (2012). Perhaps more surprising is the lower rate of de-
tection of the QTL on chromosome 1 compared to that on chromo-
some 2, although the rates for both are quite high.

The number of false positives was very low and is given in Table 3.
The proportion per chromosome per simulation is �0.02. Overall the
proportion per simulation was 0.125.

The estimated mean QTL sizes and the standard error of the mean
are given in Table 4. In general the sizes tend to be underestimated
and it is conjectured that this might in part be due to the small size of
the simulated MAGIC population. Verbyla and Cullis (2012) show
this type of bias reduces for multivariate QTL analysis in biparental
populations as the population size increases.

Examples

Seed size: The putative QTL found in the bivariate analysis are given
in Table 5. There were 29 putative QTL found in the analysis. In total,

n Table 2 Proportion of correct determination (within 5 cM of the
true QTL position) in 200 simulations for each of the four QTL,
together with a total out of four

QTL

1 2 3 4 Total

Proportion 0.880 0.990 0.415 0.720 3.005
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the QTL explain 48% and 56% of the genetic variance for HW and
TKW, respectively. The major contribution to HW comes from a QTL
on 7B, while that for TKW comes from 2D.

After the QTL analysis, the polygenic variances for HW and
TKW were 1.70 and 8.22 with a genetic correlation of 0.25. Thus the
QTL have resulted in a reduction in polygenic variance of 42% in both
traits. The polygenic correlation remains much the same as before the
QTL analysis.

Univariate analyses were also conducted (see Table S1 and
Table S2) to compare results with the bivariate analyses. There were
18–20 QTL identified for TKW and HW (respectively), and of these,
7 and 8 for HW and TKW (respectively) were in common across
univariate and bivariate analyses when considering the position as the
same as if they were within 5 cM. However, the main difference was
that the position identified on each of the chromosomes differed.

Multienvironment trial for flowering time: The multienvironment
QTL analysis resulted in 16 QTL being found, with 11 being
significant as judged by the probability measure presented in the
Methods section. The putative QTL are listed in Table 6. The percent-
age of genetic variance explained by the QTL overall in each environ-
ment was 82.1%, 81.6%, and 82.4% for Leeton, Temora, and Yanco,

respectively. Six of the putative QTL expressed in the same way across
all environments; that is, common sizes for each QTL were appropri-
ate for all environments and this can be seen in Table 6. These
putative QTL were on 2D (in the interval adjacent to the PPD-D1
gene also found in the analysis), which contributes �7–9% of the
genetic variance across the environments, and also on 4B, 6B, 7A,
and 7B.

The estimated polygenic or G · E covariance/correlation matrix
after QTL analysis was

Leeton Temora Yanco
Leeton
Temora
Yanco

2
4  13:7 0:87 0:92
 11:0 11:7 0:85
 13:7 11:6 16:2

3
5

and compared to (12) we see that the genetic variances have
decreased substantially (44%, 41%, and 46% for Leeton, Temora, and
Yanco, respectively) after determination of putative QTL.

As a comparison univariate QTL analyses were carried out using
MPWGAIM (Verbyla et al. 2014); see Table S3, Table S4, and Table
S5. There were 11, 9, and 14 QTL detected at Leeton, Temora, and
Yanco, respectively. Of the QTL detected, 4 appeared to be common
to three sites and 6 were common to two of the three sites. The 4
common QTL were on 2D (2 QTL), 6B, and 7A. The univariate
analyses clearly identified PPD-D1 as the major QTL influencing plant
maturity across all sites. Note, however, that the size of the estimated
effects is larger for the more powerful multienvironment analysis and
the percentage of variance explained increases accordingly. The other
QTL identified across all sites were on 2D, 6B, and 7A; the latter two
turn out to be common effects across all environments in the trivariate
analysis. The QTL on 2D, however, was not detected in the trivariate
analysis, which is surprising, but we conjecture it is due to the forward
selection of putative QTL. Interestingly 3 of the 11 QTL identified in

n Table 3 Proportion of false positives over 200 simulations for
each QTL chromosome and chromosomes 5–7 that contained no
QTL

Chromosome

1 2 3 4 5–7 Total

Proportion 0.020 0.020 0.030 0.010 0.045 0.125

n Table 4 Means and standard errors of the mean for each QTL and every founder size for the three traits in the 200 simulations

Founder

1 2 3 4

QTL Trait Method Mean SE Mean SE Mean SE Mean SE

1 Trait 1 Simulated 0.300 0.006 20.300 0.006 20.300 0.006 0.300 0.006
Estimated 0.253 20.266 20.256 0.268

Trait 2 Simulated 0.300 0.006 20.300 0.007 20.300 0.006 0.300 0.006
Estimated 0.257 20.261 20.255 0.258

Trait 3 Simulated 0.300 0.006 20.300 0.006 20.300 0.006 0.300 0.005
Estimated 0.265 20.266 20.284 0.284

2 Trait 1 Simulated 0.300 0.006 20.300 0.006 20.300 0.006 0.300 0.006
Estimated 0.266 20.293 20.249 0.276

Trait 2 Simulated 0.300 0.005 20.300 0.005 20.300 0.005 0.300 0.006
Estimated 0.271 20.295 20.259 0.283

Trait 3 Simulated 20.300 0.005 0.300 0.005 0.300 0.006 20.300 0.006
Estimated 20.277 0.292 0.283 20.298

3 Trait 1 Simulated 0.000 0.004 0.000 0.004 0.000 0.04 0.000 0.05
Estimated 0.000 20.004 0.002 0.001

Trait 2 Simulated 0.000 0.003 0.000 0.002 0.000 0.003 0.000 0.003
Estimated 0.000 20.003 0.001 0.001

Trait 3 Simulated 0.300 0.008 20.300 0.009 20.300 0.008 0.300 0.008
Estimated 0.295 20.304 20.292 0.302

4 Trait 1 Simulated 0.300 0.006 20.300 0.006 20.300 0.007 0.300 0.007
Estimated 0.265 20.287 20.265 0.287

Trait 2 Simulated 0.300 0.006 20.300 0.007 20.300 0.007 0.300 0.007
Estimated 0.255 20.289 20.260 0.294

Trait 3 Simulated 0.000 0.003 0.000 0.003 0.000 0.004 0.000 0.003
Estimated 20.003 0.005 0.001 20.003
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n Table 5 Results for bivariate QTL analysis (using intervals) of hectoliter weight, labeled HW, and 1000-kernel weight, labeled TKW

Chromosome Dist (cM) Dist (cM) Trait Founder Size Founder prob Founder LOGP Prob % var LOGP

1A 37.16 40.25 HW Yitpi 20.174 0.2265 0.65 0.0002 3.5 3.6
Chara 20.474 0.0236 1.63
Baxter 0.402 0.0465 1.33
Westonia 0.194 0.2072 0.68

TKW Yitpi 0.000 0.4997 0.30 1.0000 0.0 0.0
Chara 0.000 0.4997 0.30
Baxter 0.000 0.4992 0.30
Westonia 0.000 0.4996 0.30

1B 124.79 126.83 HW Yitpi 20.495 0.0113 1.95 0.0010 2.6 3.0
Chara 0.188 0.1939 0.71
Baxter 0.033 0.4415 0.36
Westonia 0.233 0.1412 0.85

TKW Yitpi 0.000 0.4999 0.30 1.0000 0.0 0.0
Chara 0.000 0.4997 0.30
Baxter 0.000 0.4997 0.30
Westonia 0.000 0.5000 0.30

1D 114.44 114.95 HW Yitpi 20.139 0.1732 0.76 0.0418 0.8 1.4
Chara 0.009 0.4773 0.32
Baxter 20.155 0.1778 0.75
Westonia 0.268 0.0453 1.34

TKW Yitpi 20.281 0.1274 0.89 0.2617 0.2 0.6
Chara 0.000 0.4997 0.30
Baxter 0.359 0.0992 1.00
Westonia 20.124 0.3199 0.49

2A 220.64 221.65 HW Yitpi 20.017 0.3713 0.43 0.9554 0.0 0.0
Chara 0.015 0.3893 0.41
Baxter 0.013 0.4010 0.40
Westonia 20.012 0.4076 0.39

TKW Yitpi 0.305 0.1475 0.83 0.0942 0.6 1.0
Chara 0.205 0.2969 0.53
Baxter 20.441 0.0915 1.04
Westonia 20.142 0.3415 0.47

2A 284.61 285.12 HW Yitpi 0.283 0.0338 1.47 0.0481 0.8 1.3
Chara 20.033 0.4131 0.38
Baxter 20.125 0.2066 0.68
Westonia 20.142 0.1717 0.77

TKW Yitpi 20.239 0.1765 0.75 0.1803 0.3 0.7
Chara 20.084 0.3697 0.43
Baxter 20.095 0.3535 0.45
Westonia 0.376 0.0655 1.18

2B 0 0.5 HW Yitpi 0.000 0.4995 0.30 1.0000 0.0 0.0
Chara 0.000 0.4995 0.30
Baxter 0.000 0.4994 0.30
Westonia 0.000 0.4994 0.30

TKW Yitpi 20.499 0.1689 0.77 0.0224 0.8 1.6
Chara 0.293 0.2371 0.63
Baxter 0.381 0.1720 0.76
Westonia 20.306 0.2785 0.56

2B 36.39 37.4 HW Yitpi 20.045 0.4315 0.36 0.0167 1.9 1.8
Chara 0.296 0.0674 1.17
Baxter 20.358 0.0748 1.13
Westonia 0.071 0.3941 0.40

TKW Yitpi 0.000 0.4999 0.30 1.0000 0.0 0.0
Chara 0.000 0.4997 0.30
Baxter 0.000 0.5000 0.30
Westonia 0.000 0.4998 0.30

2B 81.9 82.4 HW Yitpi 0.336 0.0617 1.21 0.0306 1.7 1.5
Chara 20.335 0.0881 1.05
Baxter 0.099 0.3526 0.45
Westonia 20.138 0.2675 0.57

TKW Yitpi 0.394 0.2546 0.59 0.0053 2.4 2.3
Chara 21.422 0.0153 1.81

(continued)
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n Table 5, continued

Chromosome Dist (cM) Dist (cM) Trait Founder Size Founder prob Founder LOGP Prob % var LOGP

Baxter 0.084 0.4512 0.35
Westonia 0.571 0.1707 0.77

2B 117.41 118.42 HW Yitpi 0.000 0.4994 0.30 1.0000 0.0 0.0
Chara 0.000 0.4986 0.30
Baxter 0.000 0.4997 0.30
Westonia 0.000 0.4983 0.30

TKW Yitpi 0.602 0.1801 0.74 0.0052 2.1 2.3
Chara 21.462 0.0123 1.91
Baxter 0.190 0.3950 0.40
Westonia 0.265 0.3537 0.45

2B 140.39 141.91 HW Yitpi 0.438 0.0893 1.05 0.0000 5.3 4.5
Chara 20.849 0.0133 1.88
Baxter 0.328 0.1629 0.79
Westonia 20.037 0.4615 0.34

TKW Yitpi 1.458 0.0397 1.40 0.0000 6.9 6.8
Chara 22.306 0.0113 1.95
Baxter 20.232 0.3960 0.40
Westonia 0.085 0.4663 0.33

2D 7.35 31.25 HW Yitpi 0.000 0.4998 0.30 1.0000 0.0 0.0
Chara 0.000 0.4997 0.30
Baxter 0.000 0.4998 0.30
Westonia 0.000 0.4997 0.30

TKW Yitpi 21.486 0.0752 1.12 0.0000 22.7 16.9
Chara 0.537 0.3149 0.50
Baxter 23.131 0.0018 2.75
Westonia 2.136 0.0230 1.64

2D 90.57 92.09 HW Yitpi 20.015 0.4518 0.35 0.2369 0.4 0.6
Chara 0.134 0.1313 0.88
Baxter 20.168 0.0934 1.03
Westonia 0.040 0.3744 0.43

TKW Yitpi 20.505 0.1151 0.94 0.0001 1.9 3.9
Chara 0.757 0.0308 1.51
Baxter 0.216 0.3062 0.51
Westonia 20.649 0.0628 1.20

2D 128.63 129.64 HW Yitpi 20.135 0.2189 0.66 0.0430 1.1 1.4
Chara 0.288 0.0593 1.23
Baxter 20.221 0.0990 1.00
Westonia 0.046 0.3973 0.40

TKW Yitpi 20.188 0.3646 0.44 0.0000 3.9 7.0
Chara 0.210 0.3556 0.45
Baxter 21.317 0.0073 2.14
Westonia 0.942 0.0428 1.37

3A 57.34 57.84 HW Yitpi 0.262 0.0519 1.28 0.0449 0.9 1.4
Chara 20.045 0.3963 0.40
Baxter 0.000 0.4993 0.30
Westonia 20.235 0.0775 1.11

TKW Yitpi 0.534 0.0504 1.30 0.0358 0.6 1.4
Chara 0.025 0.4716 0.33
Baxter 20.193 0.2853 0.54
Westonia 20.455 0.0874 1.06

3A 291.17 292.69 HW Yitpi 0.287 0.0348 1.46 0.0214 1.1 1.7
Chara 20.148 0.1795 0.75
Baxter 0.014 0.4658 0.33
Westonia 20.172 0.1394 0.86

TKW Yitpi 0.023 0.4518 0.35 0.5795 0.1 0.2
Chara 20.205 0.1439 0.84
Baxter 0.021 0.4567 0.34
Westonia 0.142 0.2278 0.64

3B 61.63 65.8 HW Yitpi 0.341 0.0592 1.23 0.0133 1.7 1.9
Chara 20.031 0.4539 0.34
Baxter 20.335 0.0497 1.30
Westonia 20.011 0.4829 0.32

(continued)
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n Table 5, continued

Chromosome Dist (cM) Dist (cM) Trait Founder Size Founder prob Founder LOGP Prob % var LOGP

TKW Yitpi 0.000 0.4997 0.30 1.0000 0.0 0.0
Chara 0.000 0.4998 0.30
Baxter 0.000 0.4997 0.30
Westonia 0.000 0.5000 0.30

3D 39.21 39.71 HW Yitpi 0.000 0.4985 0.30 1.0000 0.0 0.0
Chara 0.000 0.4996 0.30
Baxter 0.000 0.4984 0.30
Westonia 0.000 0.4998 0.30

TKW Yitpi 0.567 0.0488 1.31 0.0086 0.9 2.1
Chara 20.259 0.2451 0.61
Baxter 0.133 0.3555 0.45
Westonia 20.554 0.0778 1.11

5A 245.09 250.92 HW Yitpi 20.368 0.0536 1.27 0.0009 2.5 3.1
Chara 20.260 0.1221 0.91
Baxter 0.409 0.0433 1.36
Westonia 0.172 0.2205 0.66

TKW Yitpi 20.450 0.1076 0.97 0.0086 1.2 2.1
Chara 20.245 0.2456 0.61
Baxter 20.099 0.3978 0.40
Westonia 0.680 0.0269 1.57

5A 289.62 290.12 HW Yitpi 20.071 0.3068 0.51 0.2161 0.4 0.7
Chara 20.134 0.1949 0.71
Baxter 0.208 0.0698 1.16
Westonia 20.015 0.4577 0.34

TKW Yitpi 0.001 0.4976 0.30 0.8713 0.0 0.1
Chara 0.012 0.4700 0.33
Baxter 20.097 0.2599 0.59
Westonia 0.075 0.3119 0.51

5A 321.45 324.54 HW Yitpi 20.215 0.0846 1.07 0.1294 0.8 0.9
Chara 20.048 0.3957 0.40
Baxter 0.024 0.4494 0.35
Westonia 0.222 0.1003 1.00

TKW Yitpi 20.598 0.1553 0.81 0.0000 4.5 4.6
Chara 0.068 0.4584 0.34
Baxter 21.203 0.0375 1.43
Westonia 1.276 0.0198 1.70

5B 190.22 190.72 HW Yitpi 0.120 0.2333 0.63 0.0627 0.9 1.2
Chara 20.278 0.0537 1.27
Baxter 0.126 0.2384 0.62
Westonia 0.013 0.4788 0.32

TKW Yitpi 20.047 0.3141 0.50 0.9542 0.0 0.0
Chara 0.022 0.4095 0.39
Baxter 0.013 0.4480 0.35
Westonia 0.008 0.4702 0.33

5D 35.87 64.86 HW Yitpi 0.027 0.4327 0.36 0.4512 0.4 0.4
Chara 0.047 0.3890 0.41
Baxter 20.189 0.1067 0.97
Westonia 0.104 0.2607 0.58

TKW Yitpi 20.603 0.1074 0.97 0.0229 1.6 1.6
Chara 20.553 0.1449 0.84
Baxter 0.665 0.0767 1.12
Westonia 0.293 0.2789 0.55

6A 85.68 86.18 HW Yitpi 0.000 0.4994 0.30 0.0468 1.4 1.3
Chara 20.232 0.1557 0.81
Baxter 20.122 0.2572 0.59
Westonia 0.328 0.0397 1.40

TKW Yitpi 0.329 0.1300 0.89 0.1230 0.4 0.9
Chara 0.049 0.4475 0.35
Baxter 20.461 0.0646 1.19
Westonia 0.017 0.4777 0.32

6B 162.33 163.85 HW Yitpi 0.378 0.0365 1.44 0.0125 1.8 1.9
Chara 20.260 0.1448 0.84

(continued)
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the trivariate analysis were not identified in the univariate analyses,
supporting the fact that correlation across sites offers greater power.

DISCUSSION

Seed size
Of 29 QTL identified, the largest QTL for TKW was identified on
chromosome 2D, consistent with a locus near PPD-D1 as reported by
Williams and Sorrells (2014). The largest QTL for HW was located on
7B and appears novel. Of particular note was the number of QTL
identified for both traits at the same location. Of the 29 QTL, 21 QTL
were identified for both traits. However, of these 21 only 4 had the
superior allele donated by the same founder for both traits. In addi-

tion, each trait had 4 independent QTL. These results, which may not
be that surprising, confirm the challenges in selecting for seed mor-
phology traits and reflect the complex genetic structure that underpins
seed size and volume. The locations of the QTL identified are consis-
tent with those in previous studies (Zhang et al. 2010; Gegas et al.
2010); in particular the QTL on 2B, 2D, 3A, and 5A are well supported
in the literature; interestingly, these are the same chromosomes in this
study where the founder contributing the favorable allele was the same
for both traits. Conversely, the QTL on 7B for hectoliter weight
explaining 14.2% of the genetic variation has not been reported pre-
viously. In addition, as in previous studies, there are a large number of
genomic regions contributing significant effects for these traits, rein-
forcing the complex genetics underpinning these traits.

n Table 5, continued

Chromosome Dist (cM) Dist (cM) Trait Founder Size Founder prob Founder LOGP Prob % var LOGP

Baxter 0.065 0.3825 0.42
Westonia 20.219 0.1402 0.85

TKW Yitpi 20.427 0.0890 1.05 0.1303 0.5 0.9
Chara 20.205 0.2937 0.53
Baxter 0.240 0.2337 0.63
Westonia 0.317 0.1509 0.82

7A 161.15 161.66 HW Yitpi 20.163 0.2031 0.69 0.0028 1.8 2.5
Chara 0.074 0.3509 0.45
Baxter 0.352 0.0308 1.51
Westonia 20.294 0.0683 1.17

TKW Yitpi 0.144 0.3067 0.51 0.1241 0.4 0.9
Chara 20.013 0.4821 0.32
Baxter 20.449 0.0495 1.31
Westonia 0.262 0.1806 0.74

7A 286.39 287.4 HW Yitpi 0.112 0.2275 0.64 0.0772 0.8 1.1
Chara 20.263 0.0360 1.44
Baxter 0.049 0.3719 0.43
Westonia 0.088 0.2819 0.55

TKW Yitpi 20.271 0.2726 0.56 0.0003 2.0 3.6
Chara 20.046 0.4590 0.34
Baxter 20.826 0.0344 1.46
Westonia 0.923 0.0218 1.66

7B 6.66 7.17 HW Yitpi 0.192 0.3063 0.51 0.0002 14.2 3.8
Chara 0.572 0.1002 1.00
Baxter 21.220 0.0037 2.43
Westonia 0.249 0.2750 0.56

TKW Yitpi 20.396 0.1220 0.91 0.1701 0.6 0.8
Chara 20.303 0.2466 0.61
Baxter 0.129 0.3873 0.41
Westonia 0.464 0.1316 0.88

7B 92.71 95.28 HW Yitpi 0.079 0.3138 0.50 0.1288 0.8 0.9
Chara 20.063 0.3746 0.43
Baxter 20.221 0.1064 0.97
Westonia 0.188 0.1286 0.89

TKW Yitpi 0.484 0.0617 1.21 0.1293 0.5 0.9
Chara 20.172 0.3268 0.49
Baxter 20.072 0.4166 0.38
Westonia 20.315 0.1626 0.79

Unlinked3 2.02 4.06 HW Yitpi 20.257 0.0669 1.17 0.1132 0.7 1.0
Chara 20.005 0.4896 0.31
Baxter 0.138 0.2129 0.67
Westonia 0.106 0.3148 0.50

TKW Yitpi 20.461 0.1014 0.99 0.0627 0.8 1.2
Chara 20.024 0.4782 0.32
Baxter 0.483 0.0934 1.03
Westonia 20.100 0.4149 0.38

Twenty-nine QTL were found. Dist, distribution; Prob, probability.
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n Table 6 Results for multienvironment QTL analysis (using intervals) for Yanco, Temora, and Leeton

Chromosome Dist (cM) Dist (cM) Trait Founder Size Founder prob Founder LOGP Prob % var LOGP

2B 246.43 247.44 Leeton Yitpi 20.06 0.45 0.35 0 0.63 2.8
Chara 20.36 0.22 0.66
Baxter 0.40 0.23 0.63
Westonia 20.04 0.47 0.33

Temora Yitpi 0.25 0.28 0.55 0 0.72 2.8
Chara 20.10 0.41 0.39
Baxter 20.00 0.50 0.30
Westonia 20.10 0.43 0.37

Yanco Yitpi 0.14 0.38 0.42 0 0.55 2.8
Chara 21.04 0.01 1.88
Baxter 0.61 0.14 0.87
Westonia 0.26 0.32 0.49

2B 81.9 82.4 Leeton Yitpi 20.47 0.20 0.70 0.65 0.07 0.18
Chara 20.84 0.09 1.05
Baxter 0.16 0.40 0.40
Westonia 1.09 0.02 1.63

Temora Yitpi 20.47 0.20 0.70 0.87 0.03 0.06
Chara 20.84 0.09 1.05
Baxter 0.16 0.40 0.40
Westonia 1.09 0.02 1.63

Yanco Yitpi 20.47 0.20 0.70 0.02 0.34 1.64
Chara 20.84 0.09 1.05
Baxter 0.16 0.40 0.40
Westonia 1.09 0.02 1.63

2D 5.83 7.35 Leeton Yitpi 4.07 0.01 1.97 0 8.4 10.4
Chara 23.52 0.03 1.54
Baxter 20.13 0.48 0.32
Westonia 21.13 0.32 0.49

Temora Yitpi 4.07 0.01 1.97 0 9.61 10.4
Chara 23.52 0.03 1.54
Baxter 20.13 0.48 0.32
Westonia 21.13 0.32 0.49

Yanco Yitpi 4.07 0.01 1.97 0 7.29 10.4
Chara 23.52 0.03 1.54
Baxter 20.13 0.48 0.32
Westonia 21.13 0.32 0.49

2D 7.35 31.25 Leeton Yitpi 210.93 0.00 6.29 0 69.19 43.1
Chara 7.22 0.00 3.20
Baxter 24.67 0.04 1.39
Westonia 4.82 0.03 1.56

Temora Yitpi 210.25 0.00 5.75 0 68.01 52.2
Chara 6.54 0.00 2.82
Baxter 24.18 0.06 1.24
Westonia 4.62 0.03 1.50

Yanco Yitpi 210.89 0.00 6.25 0 69.11 47
Chara 7.91 0.00 3.68
Baxter 26.00 0.01 1.90
Westonia 5.51 0.01 1.85

4B 86.73 87.24 Leeton Yitpi 20.15 0.36 0.44 0 0.51 3.2
Chara 0.38 0.20 0.70
Baxter 0.63 0.08 1.09
Westonia 20.89 0.02 1.72

Temora Yitpi 20.15 0.36 0.44 0 0.58 3.2
Chara 0.38 0.20 0.70
Baxter 0.63 0.08 1.09
Westonia 20.89 0.02 1.72

Yanco Yitpi 20.15 0.36 0.44 0 0.44 3.2
Chara 0.38 0.20 0.70
Baxter 0.63 0.08 1.09
Westonia 20.89 0.02 1.72

5B 240.97 241.47 Leeton Yitpi 0.62 0.09 1.05 0.01 0.48 2.3
Chara 20.98 0.02 1.73

(continued)
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n Table 6, continued

Chromosome Dist (cM) Dist (cM) Trait Founder Size Founder prob Founder LOGP Prob % var LOGP

Baxter 0.22 0.33 0.48
Westonia 0.05 0.46 0.34

Temora Yitpi 0.10 0.41 0.39 0.65 0.07 0.2
Chara 20.02 0.48 0.32
Baxter 0.31 0.25 0.59
Westonia 20.32 0.25 0.60

Yanco Yitpi 0.45 0.17 0.78 0 0.76 4
Chara 21.33 0.00 2.58
Baxter 0.03 0.48 0.32
Westonia 0.81 0.05 1.26

5D 64.86 68.49 Leeton Yitpi 20.17 0.37 0.44 0.06 0.22 1.2
Chara 20.34 0.24 0.62
Baxter 0.71 0.06 1.20
Westonia 20.24 0.31 0.51

Temora Yitpi 20.09 0.43 0.37 0 0.43 2.7
Chara 20.50 0.14 0.84
Baxter 0.91 0.02 1.66
Westonia 20.33 0.24 0.62

Yanco Yitpi 20.34 0.24 0.62 0 0.64 4.8
Chara 20.67 0.09 1.07
Baxter 1.30 0.00 2.60
Westonia 20.32 0.25 0.60

6B 162.33 163.85 Leeton Yitpi 20.90 0.04 1.39 0 0.57 3.6
Chara 20.32 0.30 0.53
Baxter 0.23 0.33 0.48
Westonia 0.94 0.03 1.51

Temora Yitpi 20.90 0.04 1.39 0 0.66 3.6
Chara 20.32 0.30 0.53
Baxter 0.23 0.33 0.48
Westonia 0.94 0.03 1.51

Yanco Yitpi 20.90 0.04 1.39 0 0.5 3.6
Chara 20.32 0.30 0.53
Baxter 0.23 0.33 0.48
Westonia 0.94 0.03 1.51

7A 129.56 138.28 Leeton Yitpi 1.33 0.01 1.88 0 0.9 5.9
Chara 20.99 0.05 1.32
Baxter 20.59 0.16 0.79
Westonia 0.19 0.38 0.42

Temora Yitpi 1.33 0.01 1.88 0 1.03 5.9
Chara 20.99 0.05 1.32
Baxter 20.59 0.16 0.79
Westonia 0.19 0.38 0.42

Yanco Yitpi 1.33 0.01 1.88 0 0.78 5.9
Chara 20.99 0.05 1.32
Baxter 20.59 0.16 0.79
Westonia 0.19 0.38 0.42

7B 7.17 20.89 Leeton Yitpi 20.75 0.12 0.93 0 1.07 3.2
Chara 21.10 0.06 1.20
Baxter 0.86 0.12 0.92
Westonia 0.91 0.08 1.08

Temora Yitpi 20.75 0.12 0.93 0 1.22 3.2
Chara 21.10 0.06 1.20
Baxter 0.86 0.12 0.92
Westonia 0.91 0.08 1.08

Yanco Yitpi 20.75 0.12 0.93 0 0.93 3.2
Chara 21.10 0.06 1.20
Baxter 0.86 0.12 0.92
Westonia 0.91 0.08 1.08

Unlinked1 336.49 337 Leeton Yitpi 0.15 0.41 0.39 0.77 0.04 0.1
Chara 20.18 0.39 0.41
Baxter 0.15 0.41 0.39
Westonia 20.18 0.39 0.41
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Multienvironment trial for flowering time
The analysis detected 11 significant QTL, located on nine linkage
groups. The largest QTL identified was for the QTL on 2D at the
position of the PPD-D1 gene marker. This gene is one of the major
genes involved in the photoperiod insensitivity to long days in wheat
(Beales 2007). All sites experienced conditions that would satisfy the
vernalization requirement. The major genes controlling the vernaliza-
tion response in wheat are VRN1 on the group 5 chromosomes,
VRN2 on 5AL, and VRN3 on 7B (Dubcovsky and Yan 2003; Trevaskis
et al. 2003; Yan et al. 2003; Danyluk et al. 2007). The analysis
detected QTL near/at these positions on 5B and 5D. As with the
seed morphology data the QTL detected are well supported in the
literature, in particular those on 2B, 2D, 4B, 5B, 5D, and the group 7
chromosomes (Hanocq et al. 2007).

Multivariate multiparent WGAIM
The approach presented for multienvironment or multitrait analysis
of MAGIC populations (MVMPWGAIM) utilizes probabilities of
inheriting founder alleles for a marker or putative QTL in a whole-
genome QTL analysis. A forward selection approach is used based on
a likelihood-ratio test that determines whether a putative QTL should
be selected and an outlier statistic is used to select the location of the
putative QTL. This QTL is added to the model as a random effect for
multiple traits or two random effects for multiple environments;
a main effect is added in the multienvironment situation to allow for
a possible common set of QTL sizes. In the latter case it is possible to
test for environment-by-QTL interaction and modify the model if the
hypothesis of no interaction is retained. The method allows QTL effect
sizes to be determined for all founder originating alleles for each QTL
and measures of strength to be specified in terms of percentage of
genetic variance and a log-probability.

As with all approaches, there are advantages and disadvantages in
using MVMPWGAIM. One positive was highlighted in the simulation
study. The type I error rate was demonstrated to be controlled and is
conservative. The power of the method is also shown to be very good.
In the examples many QTL were found so effects of small QTL can be
detected. The analyses of the examples took 30 and 65 hr to complete,
both running on machines with 16 GB of memory. Of course these are
a function of the number of QTL detected, which was large, but the
biggest time factor was fitting so-called dense models. The mixed-
model framework implemented accommodates trials with complex
experimental designs (including spatial variation), includes derived
marker/interval variables, and can include both genetic and non-
genetic effects. In addition, the models used involved multiple traits or
environments, which is generally computationally demanding regard-
less of the complexity of the model. The computational demands of
fitting such a model are an issue with the asreml software used in the

MVMPWAIM package or indeed with any mixed-models software
that might be used. Other potential methods of analysis (for example
using some kind of genome scan) may in some circumstances be less
computationally and time demanding; however, they are likely to
require the use of a simple linear model. This may be possible through
the use of a two-stage analysis. Depending on the experimental design
and model this may affect the statistical efficiency and consequently
may not be ideal. The other aspect is that multivariate models are
inherently difficult to fit and this is particularly true when trying to
automate the process. Problems arise in the fitting of these models
that sometimes require manual intervention. This means that software
can be fragile and in particular very difficult to use by nonexperts.

In the power simulations, most of the QTL were found successfully.
The simulation study did highlight that some QTL might be difficult
to detect using multivariate methods. QTL that are expressed for
a subset of traits or environments might be more difficult to
detect; this is similar to the findings of Verbyla and Cullis (2012) for
biparental multivariate QTL analysis and was confirmed in the power
study. The effect sizes for each trait tended to be underestimated in the
simulations, probably due to the small population size. Note that the
number of possible scenarios for founder effect patterns and effect
sizes across traits were too numerous to test. However, the simulations
demonstrated that the method was able to identify QTL present only
in a subset of traits. In addition, the QTL found in the two examples
were large in number. As previously discussed, some of the putative
QTL have been previously identified, while some QTL are novel.
Overall the method performed very well across all data sets.

Multivariate methods are by their nature complex and difficult. The
method presented in this article is a powerful approach for multivariate
QTL analysis for MAGIC populations. The available software will allow
such analysis in situations for a moderate number of traits or envi-
ronments. When the number of traits/environments becomes large
in number or the models are complex or have issues with conver-
gence, it may be necessary to carry out the analyses manually or on a
supercomputer. Research is underway to allow for manual interven-
tion during the analyses, as well as further investigation of the ability
of the method to identify linked QTL vs. pleiotropic QTL.
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