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Abstract. Releasing business microdata is a challenging problem for many statistical agen-
cies. Businesses with distinct continuous characteristics such as extremely high income could
easily be identified while these businesses are normally included in surveys representing the
population. In order to provide data users with useful statistics while maintaining confiden-
tiality, some statistical agencies have developed online based tools to allow users to specify
and request tables created from microdata. These tools only release perturbed cell values gen-
erated from automatic output perturbation algorithms in order to protect each underlying
observation against various attacks, such as differencing attacks. An example of the perturba-
tion algorithms has been proposed by Thompson et al. (2013). The algorithm focuses largely
on reducing disclosure risks without addressing much on data utility. As a result, the algo-
rithm has limitations, including a limited scope of applicable cells and uncontrolled utility
loss. In this paper we introduce a new algorithm for generating perturbed cell values. As
a comparison, The new algorithm allows more control over utility loss, while it could also
achieve better utility-disclosure tradeoffs in many cases, and is conjectured to be applicable
to a wider scope of cells.

Keywords: Business data; Output Perturbation; Remote Access; Continuous Tabular
Data; Statistical Disclosure Control

1 Introduction

Disseminating data containing confidential information is a challenging issue for many
statistical agencies. On the one hand, the released data should not reveal confidential
information to the public; on the other hand, the released data should carry enough
statistical information to reflect behaviours of the population. To achieve these two
conflicting objectives, statistical agencies release confidentialised data to data users. The
confidentialised data conceals sensitive information from the public at the expense of some
data utility.

However, it is not easy to confidentialise business data. Typically, some industries will
be dominated by large businesses whose information is difficult to conceal by existing data



2

masking methods. Non-perturbative data masking, such as top coding (Klein et al. 2014),
suppression (Salazar-González 2005) and micro-aggregation (Defays and Nanopoulos
1993), significantly reduce information of continuous data items such as turnover or profit,
which are of key interest to data users. Perturbation methods, such as data swapping
(Moore 1996), synthetic data (Rubin 1993) and noise addition (Kim and Winkler 1995),
cannot efficiently protect businesses with distinct continuous-valued characteristics. As a
result, most statistical agencies have taken a cautious approach to releasing business data,
and the majority of business data is still released in the form of broad-level tables.

The emergence of remote access may provide a solution to releasing business microdata.
Remote access (Blakemore 2001; Reiter 2004) is a virtual system that provides a data
analyst with access to a remote system built by a data agency. The data agency stores
microdata in the remote system, and the data analyst communicates with the remote
system through a query system. The analyst is restricted from viewing the underlying
microdata. Instead, the analyst could only obtain statistical outputs of underlying
microdata through the following model (see O’Keefe and Chipperfield 2013; Chipperfield
and O’Keefe 2014): (1) an analyst submits a query (i.e. request for a table) to the
remote system; (2) the remote system modifies or restricts estimates using an automatic
algorithm; (3) the system sends the modified output to the analyst. An example of remote
access system is American FactFinder (Hawala et al. 2004), which releases confidentialised
tabulations of census data to data users.

The reason for a remote system to release confidentialised statistics is to prevent
disclosure of confidential values via various methods of attack, the most significant of
which is a differencing attack (Lucero et al 2009, Sect. 4.1). A differencing attack reveals
a confidential value by taking the difference of two cell totals whose contributing values
differ by one. A differencing attack could be very effective on a remote system as the
attacker is able to obtain statistical outputs of different underlying microdata with a high
degree of freedom.

In this paper we base our discussion on releasing confidentialised totals from business
data through a remote system. We assume a remote system could allow users to specify
and request tables created from business microdata. Each cell of a table contains a
perturbed survey estimate of total computed from a set of surveyed business values
as specified by a data user. The algorithm in Thompson et al. (2013) has been shown
to perform particularly well for confidentialising totals from business-typed microdata,
and hence we have investigated the prospect of implementing it on remote systems to
perturb business totals. The algorithm works by adding a perturbation amount to the
unperturbed cell estimate to produce a perturbed cell estimate. The perturbation amount
follows a parametric distribution which could be adjusted according to the distribution of
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underlying business values to produce the best result.

It has been proposed that an algorithm of generating perturbed statistical estimates
should satisfy the definition of ε-differential privacy (Dwork et al. 2006). Such algorithms
include adding Laplace distributed noises (Dwork et al. 2006) and other similar varia-
tions (Soria-Comas and Domingo-Ferrer 2013; Nissim et al. 2007) to perturb statistical
estimates. These algorithms generally sacrifice a large degree of data utility for data con-
fidentiality (see, for example, Sarathy and Muralidhar 2011). The algorithm in Thompson
et al. is not designed to achieve ε-differential privacy; however, it achieves good utility-
disclosure trade-offs for many cells. The details of the algorithm are introduced in Section 2.

A distinct feature of the algorithm in Thompson et al. is that, for a given cell of a
table, the algorithm achieves its best performance if the optimal set of parameters for
perturbing the cell is used. As developing a program of searching the optimal set of
parameters to be used to perturb each cell value is non-trivial, a recent study investigated
the outcomes of using one set of parameters to perturb all cells. The set of parameters was
selected upon satisfying the requirement of disclosure risks for a few benchmark cells, and
the study examined its impact on utility losses of different cells through empirical studies
(see reference [22]).

However, there are issues with this configuration. The issues are: 1. The algo-
rithm cannot always generate legitimate cell estimates which fulfill the requirements
of both utility loss and disclosure risk. 2. The algorithm could still produce a very
perturbed cell value even though the requirement of utility loss is satisfied. 3. The
way it trades data utility for data confidentiality may not be the most efficient one.
As a result, we are looking for alternative algorithms which could help to solve these issues.

It need to be mentioned that the first issue is not easy to solve completely. The reason
is that cells contributed to by a small number of business values, some of which strongly
dominate the cell value, are very difficult to perturb in a reasonable manner. Methods for
confidentialising such cells require further studies. In this paper, we do not consider this
kind of cells. Instead, we focus on perturbing common cells which do not contain strong
dominant contributors.

In this paper, a new algorithm for perturbing business totals is proposed. The main
point of the new algorithm is to limit the loss of utility, and simulation results show
that the new algorithm addresses the issues mentioned above more effectively than the
algorithm in Thompson et al.. The new algorithm allows a better control over cell utility
losses, achieves better utility-disclosure tradeoffs for many cells, and is conjectured to be
able to legitimately perturb a wider range of cells.
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This paper is organized as follow. Section 2 describes the algorithm in Thompson et
al. of generating perturbed cell values. Section 3 introduces measures of disclosure risk
and utility loss. Sections 4 describes the new algorithm. Section 5 discusses advantages of
the new algorithm compared with the algorithm in Thompson et al. through simulations.
Section 6 concludes the paper.

2 The algorithm in Thompson et al.

Consider any particular cell in a table and let there be n sample units contributing
to the cell, where the units are indexed by i = 1, 2, · · ·n. Define a continuous valued
characteristic (e.g. income or turnover) for the ith unit (e.g. business) by yi, the estimation
weight of yi by wi, and the survey estimate of the total is ŝ =

∑n
i=1wiyi. We assume

y1w1 ≥ y2w2 ≥ · · · ≥ ynwn. We call the weighted business values (y1w1, · · · ynwn) con-
tributor values to the cell value ŝ. The algorithm in Thompson et al. (2013) generates a
perturbed cell value in the following way:

1. The algorithm identifies the parameters (K,m) to be used.

2. The algorithm generates a perturbation amount p∗ from a random variable P ∗, and
add p∗ to the total ŝ to generate a perturbed cell value ŝ∗.

The random variable P ∗ has the expression P ∗ =
∑K

i=1(miD
∗
iH

∗
i )yiwi, where K is the

number of top contributors in the cell that are used in calculation of P ∗; m = (m1, · · · ,mK)
is a magnitude vector; D∗

i is a random variable taking the value -1 and 1 with equal
probability; H∗

i is a random variable centred on 1 and for the purpose of this paper we set
Hi to have a symmetric triangular probability density function centered at 1 with width 0.6.

The optimal set of parameters to be used for each cell depends on the distribution of
contributing values to the cell estimate. The optimal set of parameters guarantees that the
perturbed estimates have the lowest average utility loss subject to having an acceptable
disclosure risk. Examples of the optimal choices of magnitude vector when K = 3 for
different contributor values are given in Table 1.

As mentioned in the Introduction, developing a program of searching the optimal set
of parameters to perturb each cell value is non-trivial. One possible remedy is to use a
fixed set of parameters to perturb all cells. However, this configuration certainly limits
the efficacy of the algorithm as the choice of parameters is not always the optimal one for
perturbing many cells.
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To evaluate the validity of perturbed estimates generated by an algorithm, we need
to define measures of utility loss and disclosure risk. It is important that the perturbed
estimates should satisfy both an acceptable level of utility loss and an acceptable level of
disclosure risk. In next section, we introduce these measures.

3 Measuring Disclosure Risk and Utility Loss

3.1 Differencing Attack

We measure the disclosure risk with respect to a ‘Differencing Attack’. Throughout the
paper, without loss of generality, we assume the attacker’s target is the largest contributor
value y1w1, and the attacker also knows the weight of y1 is equal to one (w1 = 1). The
reason for these assumptions is that, normally speaking, the largest contributor value y1w1

has the highest disclosure risk against differencing attack than any other contributor value.

Differencing Attack: The attacker uses the difference between two perturbed cell
estimates, ŷ1 = ŝ∗− ŝ∗−1 as an estimate of y1, where ŝ∗−1 is defined as the same as ŝ∗ except
that the attacker’s target, y1, is dropped from the cell.

To define disclosure risk, we conservatively assume that: 1. the target is in the sample.
and 2. the attacker could uniquely identify the target in terms of a set of quasi-identifiers.
So the only protection available in a remote system is perturbation. Consequently, pertur-
bation is the focus of how disclosure risk is measured.

3.2 Defining Disclosure

We first describe the process of conducting a differencing attack on a remote system.

Consider the following scenario: suppose a continuous valued characteristic of the ith
sample unit is yi and there are n sample units, and the estimation weight of yi is wi.
Define y = (y1, y2, · · · , yn) and y1w1 ≥ y2w2 ≥ · · · ≥ ynwn > 0 with w1 = 1. The attacker
estimates y1 by taking the difference of two perturbed estimates. The estimate of y1 is a
realization of Ŷ1 = Ŝ∗− Ŝ∗

−1 = y1 +P ∗−P ∗
−1, where Ŝ∗ is the underlying random variable

for the cell consisting of (y1w1, · · · , ynwn) from which a perturbed cell value is drawn; P ∗

is the perturbation random variable for perturbing the cell; Ŝ∗
−1 is the underlying random

variable for the cell consisting of (y2w2, · · · , ynwn); and P ∗
−1 is the perturbation random

variable for perturbing the cell.

Disclosure occurs if the realization of Ŷ1 reveals the value of y1. It is not necessary for
the realization of Ŷ1 to be exactly equal to y1- the degree of accuracy required for disclosure
must be determined by the statistical agency. The following definition of disclosure risk
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we adopt is similar to that used by Lin and Wise (2012) and Klein et al.(2014).

Disclosure Risk: We say that the disclosure risk against a differencing attack is the
probability that a realization of Ŷ1 is within 100α% of the true value y1. If we define
disclosure risk of attacking target value y1 as D(y1), then

D(y1) = P (|P ∗ − P ∗
−1| < αy1)

We say that α is the definition of disclosure and R is the acceptable disclosure risk.
Different values of (R,α) could be justified on the basis of whether the attack is likely to
occur. We say that perturbed cell estimates have an acceptable disclosure risk if D(y1) is
less than R.

3.3 Defining Utility Loss

We define the utility loss of perturbing a cell as the relative distance between the
perturbed cell value and unperturbed cell value. Measuring utility loss by percentage
difference between the perturbed estimate and the unperturbed estimate has been widely
used in many applications. It is formally introduced by Domingo-Ferrer and Torra (2001)
and widely used by other authors in their studies (see Kim and Winkler 1995; Yancey et
al. 2002).

As an algorithm produces a perturbed cell value randomly, in order to assess the general
performance of the algorithm to perturb a cell in terms of utility loss, we look at the
average utility loss, which is the expected utility loss of perturbing the cell using the
algorithm. It is preferable that the average utility loss to be as low as possible given that
D(y1) < R.

4 A New Algorithm to Generate Perturbed Cell Estimates

Now we introduce a new algorithm to generate perturbed cell estimates. Suppose an
ordinary cell has contributor values (y1w1, y2w2, · · · , ynwn), w1 = 1. The new algorithm
perturbs the cell value as follows:

1. The statistical agency sets a parameter value of β.

2. Define λ = ŝβ, where ŝ is the cell value. If n is an even number, the new algorithm
generates a perturbed amount p∗ = d1z1 and adds it to ŝ to produce a perturbed cell
estimate, where d1 and z1 are random samples drawn from random variables D1 and
Z1, respectively. The random variable D1 takes values -1 or 1 with equal probabilities
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and random variable Z1 is distributed as U1 or U2 with equal probabilities, where
U1 ∼ U(0, 0.5λ) and U2 ∼ U(1.5λ, 2λ). If n is an odd number, then the new algorithm
generates a perturbed amount p∗ = z2d2 and adds it to ŝ to produce a perturbed
cell estimate, where z2 and d2 are samples drawn from random variables Z2 and D2,
respectively. The random variable Z2 has distribution U(0.5λ, 1.5λ) and D2 has the same
distribution as D1.

The value of the parameter β is actually the average utility loss of using the algorithm
to perturb a cell. Therefore, the value of β could be set according to the requirements of
the statistical agency. The disclosure risk of y1 could also be mathematically determined
and the mathematical expressions are given in Tables 2 and 3.

The advantage of splitting up odd and even cases is addressing the differencing attack
by guaranteeing that the counts of contributors will go from odd to even or even to odd. It
makes it much harder for the perturbation under the set of n contributors and the set of
n−1 contributors to cancel out if the largest contributor is not strongly dominating the cell.

In next section, we discuss the advantages of using the new algorithm compared to the
algorithm in Thompson et al..

5 Discussion of the New Algorithm Against the algorithm in Thompson
et al.

5.1 Controlled Utility Loss of Perturbing a Cell

For a given cell with cell value ŝ, it can be easily seen that the perturbation amount p∗

generated by the new algorithm is bounded in (−2βŝ, 2βŝ). As a result, the utility loss of
perturbing the cell through the new algorithm is bounded in (0, 2β). As a result, both the
average utility loss and the maximum utility loss of perturbing the cell could be controlled.

To illustrate this advantage, suppose the contributor values to a cell are
(y1w1, · · · y8w8) = (25, 25, 25, 25, 25, 25, 25, 25). From Table 1, the optimal magnitude val-
ues are (m1,m2,m3) = (0.5, 0.4, 0.3). If the cell is perturbed by the algorithm in Thomp-
son et al. with the optimal magnitude values, the average utility loss is 7.54%. However,
simulation results show that it is possible that the algorithm generates a extremely high
perturbation amount which leads to a 22.3% utility loss to the cell. A perturbed result
with such a high utility loss may mislead some data users. In contrast, perturbing the cell
by the new algorithm with β = 0.0754 also gives an average utility loss of 7.54% while the
maximum utility loss of perturbing the cell is only 15.08%.
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5.2 A Conjectured Wider Applicability

It is conjectured that the new algorithm could legitimately perturb a wider range of cells.
A legitimately perturbed cell value should satisfy the requirements of both disclosure risk
and utility loss. Recall that we assume the attacker’s target is the largest contributor value
y1, and w1 = 1. In the following, we say that a cell could be legitimately perturbed by an
algorithm if the average utility loss is less than T , and the disclosure risk of y1 against
differencing attack is less than R given a specified definition of disclosure α. We illustrate
this conjectured wider applicability by comparing the performances of the two algorithms
on different cells.

Suppose the statistical agency set (T ,R,α) to be (10%, 15%, 11%) for a perturbed cell
estimate to be legitimate. Recall that in a recent study, we use one set of parameters for
the algorithm in Thompson et al. for perturbing all cells as it is more practical. We stick
to this way in this section and the parameters were set to be K = 3, m = (0.4, 0.3, 0.2).
The parameter of the new algorithm was set to be β = 0.1. Recall that β = 0.1 guarantees
a 10% utility loss for each cell.

Cell 1: The contributor values of cell 1 consist of (y1w1, y2w2, · · · , y6w6) =
(30, 30, 30, 10, 5, 5). Using the algorithm in Thompson et al., the average utility loss and
disclosure risk of releasing perturbed cell estimates are 12.4% and 9.4%, respectively. It
means that, even though the perturbed cell estimates satisfy a required level of disclosure
risk, they do not carry enough data utility as required by the statistical agency. Using
the new algorithm, the average utility loss and disclosure risk of releasing perturbed cell
estimates are 10% and 6.5%. It means that, both the requirements of utility loss and
disclosure risk are satisfied, and it is legitimate to release a perturbed cell value generated
by the new algorithm.

Cell 2: The contributor values of cell 2 consist of (y1w1, y2w2, · · · , y7w7) =
(25, 25, 25, 25, 1, 1, 1). Using the algorithm in Thompson et al., the average utility loss and
disclosure risk of releasing perturbed cell estimates are 10.9% and 12.0%, respectively.
That means perturbed cell estimates do not carry enough data utility as required by the
statistical agency. Using the new algorithm, the average utility loss and disclosure risk of
releasing perturbed cell estimates are 10% and 11.4%. Both the requirements of utility
loss and disclosure risk are satisfied, and it is legitimate to release a perturbed cell value
generated by the new algorithm.

The above two cells are used to show that the new algorithm could help to generate
legitimate cell estimates that are not achievable by the algorithm in Thompson et al..
However, we next show that it is possible that, when a cell contains a dominant contributor
value, the algorithm in Thompson et al. is better. For illustration, we set (T ,R,α) to be
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(15%, 12%, 11%), and β = 0.15 for the next cell.

Cell 3: The contributor values of cell 3 consist of (y1w1, y2w2, · · · y9w9) =
(60, 20, 20, 15, 15, 10, 10, 10, 10). The average utility loss and disclosure risk of releas-
ing perturbed cell estimates generated by the algorithm in Thompson et al. are 14.1% and
9.5%, while the counterparts generated by the new algorithm are 15% and 13.1%. In this
case the algorithm in Thompson et al. is the better algorithm perturbing the cell.

The reason the new algorithm is not favourable for Cell 3 is that, when the ratio
y1w1/ŝ gets large, the disclosure risk of using the new algorithm goes up dramatically. To
see this, without loss of generality, we assume n is even, β ≥ 2α, y1w1 < min( λ

1.5β+α ,
λ
2α).

From Table 3, the disclosure risk is PC11 = 1
2λλ1

αy21w
2
1β. It is evident that the ratio y1w1/ŝ

largely impact the value of disclosure risk. Possible future research would be to use either
the algorithm in Thompson et al. or the new algorithm to perturb a cell estimate subject
to a condition involving the value of y1w1/ŝ.

5.3 Better Utility-Disclosure Trade-offs

We compare the utility-disclosure tradeoffs of the two algorithms on different cells through
simulations. In order to obtain utility-disclosure plots, we gradually changed the values
in the magnitude vector m used by the algorithm in Thompson et al. and the parameter
β used by the new algorithm. We recorded the average utility losses and disclosure risks
given different parameter values. Moreover, we provide utility-disclosure plots for α = 0.11
and α = 0.18, respectively.

Simulation 1: The contributor values of a cell are (y1w1, y2w2, · · · , y8w8)
= (25, 25, 25, 25, 25, 25, 25, 25). We set the magnitude vector to be m = (0.3 + 0.01i, 0.2 +
0.01i, 0.1 + 0.01i), where i = 1, 2 · · · 40. We recorded the utility loss and disclosure
risk of releasing perturbed cell estimates generated by the algorithm in Thompson
et al. for each value of i for generating the utility-disclosure plot. When i = 20,
m = (0.5, 0.4, 0.3), which is the optimal magnitude vector as shown in Table 1. Similarly
we set β = 0.04 + i/400, i = 1, 2 · · · 40; and we obtained the utility-disclosure plot for the
new algorithm. We use a box-plot to represent the utility-disclosure plot of the algorithm
in Thompson et al. and a dotted plot to represent utility-disclosure plot of the new
algorithm and these symbols also apply to Figures 2 and 3 discussed in Simulations 2 and
3. The utility-disclosure plots for α = 0.11 and 0.18 are provided in Fig. 1.

Simulation 2: The contributor values of a cell are (y1w1, y2w2, · · · , y9w9)
= (40, 20, 20, 15, 15, 10, 10, 10, 10). We set the magnitude vector to be m =
(0.15 + 0.01i, 0.1 + 0.01i, 0.05 + 0.01i), where i = 1, 2 · · · 40. The parameter of new
algorithm is set to be β = 0.03 + i/300, i = 1, 2 · · · 40. We follow the same procedure as in
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Simulation 1 to obtain the utility-disclosure plots of the two algorithm for α = 0.11 and
0.18. The plots are given in Fig. 2.

Simulation 3: The contributor values are (y1w1, y2w2, · · · , y49w49)
= (60, 20, 10, 10, · · · , 10). We set the magnitude vector to be m = (0.05+0.05i, 0.05i, 0.05i),
where i = 1, 2 · · · 40. The parameter of the new algorithm is set to be
β = 0.01 + i/150, i = 1, 2 · · · 40. The utility-disclosure plots for α = 0.11 and 0.18
are given in Fig. 3.

From Fig. 1, we see that the new algorithm leads to a better utility-disclosure trade-off
when the contributor values to a cell estimate are uniformly distributed. From Fig. 2, we
see that this advantage is reduced when the largest contributor value dominates the cell
estimate. From Fig. 3, we see that the new algorithm again offers a better utility-disclosure
trade-off even though the largest contributor value is significantly larger than all other
contributor values, as in this case the largest contributor value does not dominate the cell
estimate.

6 Conclusion

In this paper we introduced a new algorithm to generate perturbed cell estimates. The
advantages of the new algorithm are discussed compared with the algorithm in Thompson
et al.. It is conjectured that the new algorithm could be widely used in many remote
systems for creating tables from business microdata. Possible future research would be on
combining the new algorithm with the algorithm in Thompson et al. to perturb survey
estimate of population totals from business microdata.
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Appendix

Table 1. Magnitude values that guarantee 15% disclosure risk given α = 0.11 and minimise the average utility loss for different
distributions of top contributor values.

Distribution Relative Size of Top Contributors Optimal Magnitude Values
1st 2nd 3rd 4th m1 m2 m3

1 90 5 5 0.15 0.1 0.1
2 80 10 5 5 0.15 0.1 0.1
3 70 20 10 0.15 0.1 0.1
4 60 20 10 10 0.2 0.1 0.1
5 60 40 0.25 0.15 0.1
6 50 20 20 10 0.25 0.15 0.1
7 40 30 30 0.3 0.2 0.1
8 30 30 30 10 0.4 0.3 0.2
9 25 25 25 25 0.5 0.4 0.3

Table 2. Probability expressions for Table 3. m1 = y1w1 and λ1 = ŝ−1β.

PC11
1

2λλ1
αm2

1β

PC12
1

2λλ1
(0.125λ2 + 0.5λαm1 + 0.5α2m2

1 − 0.25λλ1 + 0.125λ2
1 − 0.5αm1λ1)

PC13
1

2λ1λ
(1.125λ2

1 + 1.5λ1αm1 + 0.5α2m2
1 − 2.25λλ1 + 1.125λ2 − 1.5αm1λ)

PC21
αm1
2λ

PC22
1

2λλ1
(−0.5α2m2

1 − λ1m1α + 3λλ1 − 2λ2
1 − 1.125λ2 + 1.5λαm1)

PC23
3αm2

1β

2λλ1
PC24

1
2λλ1

(0.125λ2
1 + 0.5α2m2

1 + 0.5αm1λ1 − 0.25λλ1 + 0.125λ2 − 0.5αm1λ)

PC25
1

2λλ1
(0.75λλ1 + 0.5αm1λ1 − 0.875λ2

1)

PC26
1

2λλ1
(1.125λ2 + 0.5α2m2

1 + 1.5αm1λ− 2.25λλ1 + 1.125λ2
1 − 1.5λ1αm1)

Table 3. Disclosure risk of perturbed estimates generated by the new algorithm.

β ≥ 2α α
1.5

< β < 2α β ≤ α
1.5

n is odd, λ
4β−2α

< y1w1 < min( λ
1.5β+α

, λ
2α

) PC21 PC24 + PC21 not possible

n is odd, λ
4β+2α

< y1w1 <
λ

4β−2α
PC22 PC24 + PC22 not possible

n is odd, λ
4β+2α

< y1w1 < min( λ
1.5β+α

, λ
2α

) PC22 PC24 + PC22 PC24 + PC25

n is odd, y1w1 <
λ

4β+2α
PC23 PC24 + PC23 PC24 + PC26

n is even, y1w1 < min( λ
1.5β+α

, λ
2α

) PC11 PC12 PC12 + PC13
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(a) Utility-Disclosure plots for Simulation 1
with α = 0.11

(b) Utility-Disclosure plots for Simulation 1
with α = 0.18

Fig. 1. Utility-disclosure plots for Simulation 1 with different α values. The box-plot represents results generated by the Thompson
et al. algorithm and the dotted plot represents results generated by the new algorithm.

(a) Utility-Disclosure plots for Simulation 2
with α = 0.11

(b) Utility-Disclosure plots for Simulation 2
with α = 0.18

Fig. 2. Utility-disclosure plots for Simulation 2 with different α values.

(a) Utility-Disclosure plots for Simulation 3
with α = 0.11

(b) Utility-Disclosure plots for Simulation 3
with α = 0.18

Fig. 3. Utility-disclosure plots for Simulation 3 with different α values.
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