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Abstract—“Big Data” is immersed in many disciplines, in-
cluding computer vision, economics, online resources, bioinfor-
matics and so on. Increasing researches are conducted on data
mining and machine learning for uncovering and predicting
related domain knowledge. Protein-protein interaction is one
of the main areas in bioinformatics as it is the basis of
the biological functions. However, most pathogen-host protein-
protein interactions, which would be able to reveal much
more infectious mechanisms between pathogen and host, are
still up for further investigation. Considering a decent feature
representation of pathogen-host protein-protein interactions
(PHPPI), currently there is not a well structured database for
research purposes, not even for infection mechanism studies
for different species of pathogens. In this paper, we will survey
the PHPPI researches and construct a public PHPPI dataset
by ourselves for future research. It results in an utterly big
and imbalanced data set associated with high dimension and
large quantity. Several machine learning methodologies are also
discussed in this paper to imply possible analytics solutions in
near future. This paper contributes to a new, yet challenging,
research area in applying data analytic technologies in bioin-
formatics, by learning and predicting pathogen-host protein-
protein interactions.

Keywords-big data; PHPPI; bioinformatics; machine learn-
ing

I. INTRODUCTION

The adoption of “Big Data” in bioinformatics has become
the main research stream not only in genome and proteomics
areas [1], but also in biomedical medicine and imaging area
[2]. With the new high throughput technologies, enormous
amounts of data are being generated by biologists. Ranging
from genomic sequencing experiments to images of phys-
iological structures, biologists are starting to grapple with
tremendous data sets, encountering challenges in processing
and analyzing information that were once considered only
with specific domain knowledge [3]. The direct benefit for
big data analytics in bioinformatics areas is that, with the
enormous amounts of data we have obtained nowadays, the
hypothesis and phenomena behind these biology researches
could be generated based on data, which was summarized
via vast amount of experiments. It is becoming a data-
driven work that helps biologists in designing the further
experiments.

Proteomics is a main branch in bioinformatics, since

proteins are considered as the basics of living organisms and
the interactions between different proteins are the basics of
the biological functions, including immune response, signal
transduction and other essential functions [4]. As a basis of
biological functions, protein-protein interaction (PPIs) plays
a crucial role in most biological processes. Mostly, PPIs
means either “intra-species PPIs” or “inter-species PPIs”.
Intra-species PPIs is the interaction between two proteins
from the same species, while inter-species PPIs means
interaction between two proteins from two different species.
How to identify PPIs is essential for understanding the
whole biological functions. Since PPIs are essential to the
majority of cellular functions, many innovative techniques
and systems for identifying protein interactions have been
developed [5]. Numerous supervised learning technologies
have been adopted to prediction of PPIs. Classifying pairs
of proteins as interacting or not, has been the subject of
intense researches in the recent years, in both computational
and biology experimental areas [6].

Most diseases, which occur between the host and
pathogen, could be analyzed by groups of infectious mech-
anisms. Since pathogen-host PPIs is the key to either the
mechanisms of infection or medicine treatment, how to
get a better understanding and prediction of inter-species
PPIs, specifically between the host and pathogen is a hot
topic for biology research. It has been reported that the
unavailability of experimental methods for large-scale de-
tection of interactions between host and pathogen organisms
is one of the main obstacles [7]. On the other hand, the
false positive rate of the available computational and high-
throughput experimental interaction datasets remains high
[8].

The pathogen-host protein-protein interactions, including
the information of the infection pathways, reveals much
more information in the infection mechanisms between
pathogen and host. Since protein-protein interaction takes
charge of almost every biological processes, systems bi-
ology based approaches also study infectious diseases by
analyzing the interactions between the host species and the
pathogen organisms [9]. Different from classical protein-
protein interaction, currently there is less experimentally
identified interaction data for host-pathogen protein-protein



interaction. How to exploit these experimental identified
PHPPI data for a further prediction is an urgent problem
to facilitate the progress.

In this paper, we focus on the PHPPI big data set
curation process. Some well developed methodologies used
for tackling the prediction on this PHPPI big data set are
also introduced as the background of our research. For every
bioinformatics researcher, a good understanding of protein
feature extraction is very important. Since there are several
public databases that store different aspects of protein, this
survey discusses on these databases first and release a PHPPI
database for research at last. By conducting a survey in this
protein related area, we hope to take stock of the progress
that biologists have made till now, and help readers navigate
through technology advances, which might focus on machine
learning areas, in the future.

The rest of this paper is organized as follows: Section
II describes important protein features; Section III intro-
duces the related PHPPI databases; Section IV discusses
the machine learning methodologies used in PPIs area;
Section V presents a detailed process for the PHPPI big
data set curation; challenges for using PHPPI big data set
are introduced in Section VI. Finally Section VII concludes
the paper.

II. PROTEIN FEATURES

It is an ongoing research for bioinformatics researchers to
figure out which mechanism would be the best and efficient
method for representing and encoding protein features.

A. Sequence Information

Sequence information is the basic information of protein.
By a composition of hundreds or even thousands of amino
acids, a protein is well developed and defined for its own
structure and its function. “Sequence specifies structure”
presents a virtual axiom, that knowledge of the amino acid
sequence alone might be sufficient to estimate the interaction
relationship between two proteins [10]. Shown as in Figure
1 is a diagram for these amino acids. These 20 basic
proteinogenic types of amino acids are the structural units
of proteins. Proteins are different from each other owing to
the different order, combination and structure of these amino
acids. This sequence information is read through the genetic
code from its corresponding mRNA information.

1) Conjoint Triad Method: [10] points out that, accord-
ing to each amino acids’ dipole scale and volume scale,
which are their electrostatic and hydrophobic properties,
these 20 amino acids types could be classified into seven
groups. A short brief from [10] is listed as below in Table
I. Based on this table, there are several different types of
encoding algorithms for sequence representation.

The descriptor from [10] considers the properties of one
amino acid and its vicinal amino acids. According the
descriptor namely Conjoint Triad Method (CTM), it is easy

Figure 1: 20 Basic Proteinogenic Types of Amino Acids [10]

to represent every single protein sequence information into
a class-sequence, which we call it as k-mer features. A
diagram for k-mer feature encoding is shown as below in
Figure 2.

Group Index Dipole Volume Amino Acids
1 - - Ala(A), Gly(G), Val(V)
2 - + Ile(I), Leu(L), Phe(F), Pro(P)
3 + + Tyr(Y), Met(M), Thr(T), Ser (S)
4 ++ + His(H), Asn(N), Gln(Q), Tpr(W)
5 +++ + Arg(R), Lys(K)
6 +’+’+’ + Asp(D), Glu(E)
7 +’ + Cysc(C)

Table I: Group of 20 Basic Amino Acids [10]

As Figure 2 shows, a frequency of three conjoint triad
information of sequence is calculated. In 3-mer features, a
sequence would be encoded into a vector of 343 features.
For a 2-mer, 4-mer and 5-mer features, the features number
would be 49, 2401 and 16807.

Figure 2: Basic Process of CTM [10]

2) Auto Covariance: [11] proposed a new feature rep-
resentation using auto covariance (AC) based on sequence
information. By analyzing sequences with its auto cross



covariance, namely ACC, it is a popular transformation
method for adopting numerical vectors to uniform matrices.

Apart from cross covariance (CC) between two different
vectors, only AC variable was calculated [11]. The basic idea
was derived from the physicochemical properties of amino
acid, which included hydrophobicity (H), volumes of side
chains of amino acids (VSC), polarity (P1), polarizability
(P2), solvent-accessible surface area (SASA) and net charge
index of side chains (NCISC). These properties of 20
standard amino acids are reported in Table II.

Name H1 H2 Vsc P1 P2 SASA NCISC
A 0.62 -0.5 27.5 8.1 0.046 1.181 0.007187
C 0.29 -1 44.6 5.5 0.128 1.461 -0.03661
D -0.9 3 40 13 0.105 1.587 -0.02382
E -0.74 3 62 12.3 0.151 1.862 0.006802
F 1.19 -2.5 115.5 5.2 0.29 2.228 0.037552
G 0.48 0 0 9 0 0.881 0.179052
H -0.4 -0.5 79 10.4 0.23 2.025 -0.01069
I 1.38 -1.8 93.5 5.2 0.186 1.81 0.021631
K -1.5 3 100 11.3 0.219 2.258 0.017708
L 1.06 -1.8 93.5 4.9 0.186 1.931 0.051672
M 0.64 -1.3 94.1 5.7 0.221 2.034 0.002683
N -0.78 2 58.7 11.6 0.134 1.655 0.005392
P 0.12 0 41.9 8 0.131 1.468 0.239531
Q -0.85 0.2 80.7 10.5 0.18 1.932 0.049211
R -2.53 3 105 10.5 0.291 2.56 0.043587
S -0.18 0.3 29.3 9.2 0.062 1.298 0.004627
T -0.05 -0.4 51.3 8.6 0.108 1.525 0.003352
V 1.08 -1.5 71.5 5.9 0.14 1.645 0.057004
W 0.81 -3.4 145.5 5.4 0.409 2.663 0.037977
Y 0.26 -2.3 117.3 6.2 0.298 2.368 0.023599

Table II: Physicochemical Properties for Amino Acids [11]

In AC method, each single protein sequences was first
translated into numerical values corresponding to these seven
different physicochemical properties. Since the ranges of
these seven physicochemical properties differ from each
other, it would be a better operation to perform normalization
for numerical values. These values were normalized to
zero mean and unit standard deviation. The normalization
equation is shown in Equation (1).

Pi,j =
Pi,j −Meanj

SDj
(i = 1, 2, 3, ..., 20; j = 1, 2, 3, 4, 5, 6, 7)

(1)
Here Pi,j represents the jth property value of ith amino

acid, while Meanj is the mean value of jth property over the
20 amino acids. SDj is the standard deviation of jth property
over the 20 amino acids. Through this operation, every single
protein sequence was translated into six vectors with a zero
mean and unit standard deviation. With a proper range of
these numerical values for each single protein sequence, auto
covariance was used to represented them into a uniform
matric. Based on the Equation (2), a length of lg ∗ 7 is
calculated. lag is the distance between two amino acids,
and lg is the maximum value of lag.

AC(lag, j) =
1

N − lag

N−lag∑
i=1

(Pi,j−
1

N

N∑
i=1

Pi,j)∗(Pi+lag,j−
1

N

N∑
i=1

Pi,j) (2)

For m properties chosen out of these seven physicochem-
ical properties, the length of the AC would be lg ∗ m.
N means the length of the protein sequence. After AC
transform, a representation of protein protein interaction is
a concatenation of these two AC transform calculations.

3) Local Descriptor: Another sequenced-based feature
representation method was Local Descriptor [12]. The most
important feature of PHPPI is that, the interaction often
occurs on some specific intermittent fragments. To better
extract these continuous or discrete knowledge from se-
quence information, [12] proposed using region descriptors
to firstly divide a protein sequence into 10 regions. As shown
in Figure 3, a protein sequence is divided into four equal
regions (A-D), two equal regions (E, F), the central 50%
region (G), the first 75% region (H), the final 75% region
(I) and the central 75% region (J).

Figure 3: Dividing Protein Sequence into 10 Regions [12]

With these 10 regions, a local descriptor is utilized to
transform the region sequence into three related descriptors
[12]. These three descriptors are Composition (C), Transition
(T) and Distribution (D). Composition is the composition
ratio of each group of amino acid within a separate region.
Transition represents the percentage of which amino acid
group is followed by another amino acid group. And Dis-
tribution means a specific location information by selecting
the first, 25%, 50%, 75% and last one of each amino acid
group. Figure 4 shows a bit more details of C, T and D on
a protein region sequence with 21 amino acids.

Figure 4: Local Descriptor for Protein Sequence adapted
from [12]

Using local descriptor, the extracted feature vector would
contains 7 features for composition, 21 features for transition
and 35 features for distribution. Multiplied by 10 different
local regions, Local Descriptor method would results in 630



features for a single protein sequence. In a PHPPI pair, this
local descriptor contains 1260 features.

There are also some other methods that extract differ-
ent types of concerned features for protein sequence, for
example, Moran Autocorrelation Score [13], and Amino
Acid Triplet [14]. Protein sequence information is the main
information directly linked to PHPPI. A further novel rep-
resentation of these PHPPI, which might include any other
information from the specific host species, would be a better
way to prediction of PHPPI [9].

B. Gene Ontology

For each single protein, it has its own gene ontology
(GO) terms. Three important protein properties are provided
via GO terms: molecular function (F), cellular component
(C) and biological process (P). [9] has presented a good
combination of GO terms into the PHPPI prediction task.
The authors of [9] utilized the similarity between the GO
terms of two proteins. G-Sesame [15] was used to compute
the similarity between two individual GO terms, which
would represent the similarity between two proteins in
their molecular function, cellular component and biological
process properties.

A diagram for GO terms similarity, which illustrates a
“is-a” relationships as adapted from [16] is shown in Figure
5.

Figure 5: “is-a” Relationship in GO Terms [16]

By utilizing GO terms between a PHPPI pair, [9] reported
that these gene ontology similarity features model the sim-
ilarity between two functional properties of two proteins.
Since PHPPI include many different types of pathogen
species, using GO terms becomes a good strategy to link
PHPPI between them. A policy deployed in [17, 18] was
that, by building a set H which contains all GO terms
appearing in possible human proteins and a set P which
contains all GO terms from possible pathogen proteins, a
matrix between set H and P was established. If set H’s size
is n1 and set P’s size is n2, the size of matrix M would
be n1 ∗ n2. Now given two proteins h1 and p1. h1 might
contains m1 GO terms and p1 contains m2 GO terms. This
results in a matrix of m1 ∗m2 size. These m1 ∗m2 features
out of n1 ∗ n2 is triggered and their values would be set

to be 1. Further a possible similarity calculation, such as G-
Sesame, could be conducted to get a similarity map between
these two proteins.

As PHPPI means protein-protein interaction between
pathogen and host, they are “inter-species PPIs”. For se-
quence information and gene ontology features, a pair-
wise level representation is considered. However, for “intra-
species PPIs”, single end representation would also be help-
ful in PHPPI prediction job. For example, the interactome
graph and gene expression are reported to be significantly
different between two different pairs [9, 17]. Since PHPPI
research mainly focus on the interactions between pathogen
and human proteins, it implies an introduction of human
interactome graph and gene expression for human proteins
[19].

Human interactome graph features are derived using three
graph properties: degree, between-ness centrality and clus-
tering coefficient of human protein “node” in the human
interactome graph, which can be downloded from HPRD
[20]. And gene expression features are derived from several
selected transcriptomic datasets, which represent a scope
of human genes infected by corresponding pathogen, for
example in [19] GDS77, GDS78, GDS80 from the Gene
Expression Omnibus (GEO) database [21] are selected as
gene expression features for Salmonella-human PPIs.

III. PHPPI DATABASES

Since many database repositories are provided all over
the world by a variety of both academics and indus-
try, there are many different standardized formats for
PPIs data. Recently Human Proteome Organization Pro-
teomics Standards Initiative(HUPO-PSI) published the PSI-
MI XML format to store a single, unified format for PPIs
data. Another consortium International Molecular Exchange
(IMEx, http://www.imexconsortium.org/) is also established
to create collaboration between research groups for sharing
literature-curation efforts and making a non-redundant set
of PPIs available in a single search portal on one website
[22]. As a well developed version, PSI-MI XML is sup-
plemented by a simplified tabular format named MITAB,
which enables the user to download, combine, visualize and
analyze data from multiple sources. Several well developed
and popular repositories are introduced below. By far, DIP,
IntAct, MINT, I2D, MatrixDB, MBInfo, UniProt, Molecu-
lar Connections, HPIDB, BioGRID and PrimesDB are the
IMEx partners. Notably most of these data repositories were
initially built by the universities [22, 23].

* HPRD is a database manually extracted from lit-
erature, which provides more than 30,000 proteins
and also 39,000 protein-protein interactions. HPRD is
built by Johns Hopkins University and the Institute
of Bioinformatics. The related information, including
its post-translational modifications, disease associations
via OMIM for each protein in the human proteome and



domain architectures, are provided in details along with
each records.

* BIND belongs to Biomolecular Object Network Data-
bank (BOND), which is created by University of
Toronto. Within more than 1500 organisms linked,
more than 200,000 interactions are provided. Besides
PPIs data, many other types of RNA, DNA, genes,
complexes and small molecules interactions are also
included in this repository. Even though BIND has
stopped running since 2005, it still remains a highly
cited PPIs database and subsequently a translation of
this repository is available now.

* DIP is a combined database from a variety of sources,
including Yeast Protein Database (YPD), EcoCyc, and
FlyNet, Kyoto Encyclopedia of Genes and Genomes
(KEGG). Developed by University of California at Los
Angeles, now it contains more than 460 organisms. The
DIP datasets in both complete mode and specialized
mode are all freely available.

* BioGRID is the most convincing repository because of
the reported experimentally verified PPIs. 27 different
organisms are included and it has continuously been
updated. It contains more than 460,000 interactions and
all data is available in standardized formats. Another
excellent aspect is that experimental methods used for
PPIs detection are also provided in BioGRID.

* MINT is a database, which contains PPIs data and
various experimental details via a literature-mining
program developed by University of Rome Tor Vergata.
Now it provides more than 230,000 interactions and
more than 34,000 proteins. The confidence scores for
experimentally detected PPIs are also provided to show
the reliability of the interactions.

* IntAct is an open database, which provides both the
source code and data. It contains more than 60,000
proteins and more than 290,000 binary interaction
evidences, which are extracted from more than 5000
scientific publications and also other direct database
repositories. All of the PPIs, DNA, RNA and small-
molecule interactions are included in this repository.

Aside from these PPIs database, we focus on pathogen-
host protein-protein interaction (PHPPI). Even though cur-
rent PHPPI knowledge is still scarce and not sufficient,
the research on PHPPI prediction are continuously being
conducted.

Considering about 26,000 human proteins, the PHPPI
pairs would be millions even if we only pair them with
a few thousands of pathogen proteins. Reliable experimen-
tal methods are time-consuming and expensive, making it
unjustifiable, thus for some special PHPPI, we might need
to verify its result with duplicate experiments. Now owing
to some earlier research efforts, there are several verified
PHPPI datasets available, including HPIDB [4], PATRIC

[24], PHISTO [25], VirHostNet [26] and VirusMentha [27].
These databases have provided some PPI pairs to build a
“golden standard dataset”, including positive PHPPI and
negative PHPPI for verifying computational methods.

A statistics of these PHPPI datasets repositories is shown
in Table III. In order to build a PHPPI dataset between
human and different types of pathogens, we used two
datasets from PHISTO and PATRIC to build a comprehen-
sive positive part of the “golden standard PHPPI dataset”.
The details will be discussed in Section VI.

DataBase Pairs Number Pathogen Species Report Detection Method
HPIDB 45238 594 Yes
PATRIC 12194 15 Yes
PHISTO 47992 182 Yes
VirHostNet 2671 180 Yes
VirusMentha 6337 24 No

Table III: Details for PHPPI Databases

IV. MACHINE LEARNING METHODOLOGIES

With a valuable dataset, a suitable computational model
is desired to predict host-pathogen PPIs. Especially con-
sidering the problems aforementioned in the discussion on
the datasets, numerous methodologies have been proposed
in different trials. Since very few host-pathogen PPIs has
been studied, the methodologies presented below are mainly
extracted from PPIs related researches.

1) Support Vector Machines: Support Vector Machines
(SVM), developed by the authors of [28], have become
the most utilized model in many research disciplines, in-
cluding bioinformatics. Its associated basic structural risk
minimization theory ensures the performance of SVM to
be successful in many real world applications. A training
dataset of PPIs is denoted as {xi,yi}, i=1,2,...,N, where
xi ∈ Rn and yi ∈ {+1,−1}. Simply as defined in SVM, yi
is calculated in the following equation:

y(x) = sign[
N∑
i=1

yiαi ∗K(x, xi) + b] (3)

where K(xi, xj) = exp(−γ‖xi − xj‖2) stands for a Radial
Basis Functions (known as RBF) kernel, and αi are the
parameters from a covex quadratic programming problem,
which is shown as bellow:

Maximize

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαj · yiyj ·K(xi, xj)

(4)
Due to the high efficiency and performance of SVM, it

has been widely used in PPIs research. In [29], SVM is
deployed, with a newly proposed feature curation method,
to achieve a better results than others’ work, i.e. [12]. For
PHPPI, the authors of [14] select two types of viruses,
namely human papillomaviruses (HPV) and hepatitis C virus
(HCV), then design a new frequency representation method



and deploy a SVM model achieving an average accuracy
above 80 %, which is higher than other representation
scheme using SVM. Furthermore, combining with transfer
learning, [17] utilize two human-pathogen datasets as source
tasks, and the other as target task, and achieve a relative good
result using SVM model for training. These researches have
shown the compatibility and performance of the SVM model
for PPIs prediction.

2) Multi-task and Transfer Learning: Multi-task learn-
ing aims to improve the performance of machine learning
algorithms by learning classifiers for multiple tasks jointly,
especially when the tasks contain much less data samples
than we expected. It performs much better if the tasks could
share some commonality.

The state-of-art studies of host-pathogen PPIs using multi-
task and transfer learning are reported in [9, 17–19, 30].
[9] reports a novel method that builds a common structure
across learning models, based on a biological hypothesis that
“similar pathogens target the same critical biological pro-
cesses in the host”. Based on another hypothesis, that “the
set of human proteins are involved in a particular biological
process by a graph called a biological pathway”, [9] revises
it to a similarity in the infection process version, which is
“protein from different bacterial species are likely to interact
with human proteins from the same biological pathway”.
For the pathways obtained from pathway databases like
Reactome [31] and Pathway Interaction Database (PID) [32],
the edges between these pathways are discarded and only the
pathways are collected to present proteins, which means a
human protein can be denoted as a binary pathway vector
of every pathways.

In order to combine two tasks within the multi-task model,
a solution for combining more tasks in the multi-task model
has been proposed later but it is not implemented in [9],
these two vectors obtained via pathways are calculated by
an objective function. Suppose pis is the pathway vector for
PHPPI i, and two tasks are Ts and Tt. To calculate the
dissimilarity between these two tasks, the objective function
is denoted as Equation (5).

L(ws, wt) = l(ws) + l(wt) + λ‖R‖2 + σ(‖ws‖2 + ‖wt‖2)
(5)

where
R =S(Ts)− S(Tt)

S(Ts) =
1

n+s

∑
i∈X+

s

pisIpos(wT
s x

i
s)

Only the positive PHPPI pairs are considered.
Meanwhile it is noted that any convex function could

compute over task Ts and Tt for l(ws) and l(wt). The
last two l2 regularization norms over the parameter vectors
ws and wt to control over-fitting. The parameters λ and
σ take positive values. It is proved that this equation is a
difference of convex (DC) function. It could be represented

as in Equation (6).

L =[l(ws, wt) +Rl2(ws, wt) + λ

N∑
k=1

2(f2k + g2k)]

− [λ

N∑
k=1

(fk + gk)
2]

L =F (ws, wt)−G(ws, wt)

(6)

Using CCCP algorithm proposed by [33], the objective
function is decreased to a local minimum point. Then the
pair-wise model is introduced to test the model.

The experiments are carried out with human as the host
and four bacterial species as pathogens. Using a task-based
regularization approach to build a multitask learning model,
[9] implements a Convex-Concave procedure based algo-
rithm to optimize the model and achieve a better result than
single host-pathogen protein interaction dataset. According
to its public data and source code, the gene expression from
Gene Expression Omnibus (GEO) repository [21], protein
sequence from Uniprot database [34], gene ontology from
GO database, properties of human proteins in the human
PPIs network and the positive pathway in each positive
PPIs are utilized. For those missing data [9] uses a mean
value-based feature imputation, because integrating several
databases would result in incompleteness of features.

[9] also describes the details about the following promi-
nent feature computations.

- For protein sequence from Uniprot ID, a frequency
feature of amino acid within the sequence features are
extracted using k-mers [10]. It is finally a frequency
value to represent every single protein sequence.

- For gene ontology features, using G-Sesame algorithm,
the similarity between two individual GO terms is
computed.

- The third feature utilized in [9] is derived by using
only the human protein from the pair, which represents
the properties of human proteins in the human PPIs
network. It has been reported that pathogens generally
target host proteins that are important in several host
processes, and later these host proteins interact with
many other host proteins to carry out their tasks.
These human interactome could be downloaded from
HPRD, including the degree, between-ness centrality
and clustering coefficient properties.

- The last feature is related to gene expression features.
Using transcriptomic dataset GSE12131, GSE 14390,
GSE 5966 for pathogen B.anthracis, GSE 12108, GSE
22203 for F.tularensis, and GSE 22299, GSE 18293 for
Y.pestis from the GEO database, which would give the
differential gene expression of human genes infected
by the bacteria under different control conditions, the
result shows a different regulation of human protein
subject to bacterial infection.



With these four features integrated, for all four interaction
datasets used in [9], a unique feature dataset is completed
and the number of each PPIs dataset are, 694715 for
B.anthracis, 468955 for F.tularensis, 886480 for Y.pestis,
349155 for S.typhi. But for every PPIs dataset, not all
examples and all features are available over there since it
is integrated by several different databases, some of which
are not complete inherently. So the dimensions of each PPIs
datasets is not the same as shown here, like 694715 for
B.anthracis. For example, a PHPPI pair would be directly
eliminated if the missing ration of features >10%. For
the rest, a mean value-based feature imputation strategy is
utilized.

Although experiments are basically conducted under the
conditions of independent models and multitask pathway-
based learning, the results have shown that multi-task learn-
ing could improve the learning performance for small and
limited PPIs datasets.

3) Extreme Learning Machines: [5, 35] utilized Ex-
treme Learning Machines (ELM), combined with local de-
scriptors, for protein sequence representation, and achieved
a better result compared with SVM methods.

Dividing an entire protein sequence into several equal
length fractions, which we call continuous regions, we are
able to convert it in a binary coding scheme, which is
called a global descriptor for protein sequence. Then for
each continuous region, three types of descriptors, which
are composition, transition, and distribution, are calculated
to represent the local information for each continuous region.
Derived from Local Descriptor discussed in Section II,
below is a detailed process as shown in Figure 6.

The three types of descriptors are described in details.
- Composition: the exact percentage of each groups.

Group Index here means the seven-group category for
Composition. There are six “1”, eight “3” and seven “7”
in this protein sequence. The composition of these three
symbols is 6/(6+7+8)=28.57%, 8/(6+7+8)=38.10%,
7/(6+7+8)=33.33%.

- Transition: the percentage of transition from one group
to another group, which results in namely 21 different
transitions. For transitions, there are 2 transitions be-
tween “1” and “3”, 3 transitions between “7” and “1”,
6 transitions between “7” and “3”, thus, the transitions
of these three symbols can be calculated as 2/20=10%,
3/20=15%, 6/20=30%.

- Distribution: for each group, we get a subset and its
corresponding selected location for distribution repre-
sentation. The Distribution is calculated a bit more
complicated here. The 1st, 25%, 50%, 75% and 100%
amino acid are selected for every group. Considering
group “1”, they are the 1st, 2nd, 3rd, 5th and 6th amino
acid in the group, which should be the 4th, 5th, 6th,
15th, 21th of the protein sequence. So the Distribution
for “1” are 4/21=19.05%, 5/21=23.81%, 6/21=28.57%,

15/21=71.43%, 21/21=100%. The Distribution for “3”
and “7” are similar.

Since it was categorized in seven groups, the dimensions of
Composition is 7, the dimensions of Transitions is 7*6/2=21
and the distribution is of 7*5=35 dimensions. So for every
continuous region, it contains a vector of 63 dimensions.
For an entire protein sequence, it is chosen with a 7-bit
representation, which results in a set of 126 different regions.
Taken from these 126 different regions, only 27 regions
could be a continuous regions. That means each protein
sequence contains 63*27=1701 dimensions overall. For each
protein pair, a 3422 dimensional vector is constructed to
represent it and to be used as a feature vector for Extreme
Learning Machine.

Figure 6: Example from [36] for Local Descriptor

Method in [12] is a bit different from this partition method
introduced in [36]. As discussed in Section II, 10 local
regions of varying length are selected out of every protein
sequence.

In all of these PPIs researches, a Golden Standard Dataset
could be found from the HPRD. On the other hand a relative
golden negative dataset of equal number can be downloaded
from [37] and curated with another randomly generated one
from Swiss-Prot database [38].

ELM plays a crucial role in training this curated dataset,
if we focus on high accuracy and meanwhile consider the
running time taken to train the classification model. The
running time increases in this model, according to the
reported results, with varying numbers of hidden neurons.
A whole dataset consists of 73,110 protein pairs are used
in this model. For ELM, it assumes that for a classic neural
network, its traditional parameters set includes Wij , bi, βi.
In ELM, for every pair of Wij , bi, the βi is decided
correlated and unique. The design of ELM follows classic
neural network. Suppose N samples for learning, which
are denoted as (xi, ti), where xi = [xi1, xi2, ..., xin]

T and
ti = [ti1, ti2, ..., tim]. Here we set ELM with L hidden
neurons and the transfer function to be g(x). Shown as below



is the mathematical model function.
L∑

i=1

βig(xj) =

L∑
i=1

βig(wi ∗ xj + bi)

wi = [wi1, wi2, wi3, ..., win]
T

βi = [βi1, βi2, ..., βim]T

(7)

bi represent the bias of ith hidden neuron. According to

ELM theory, the minimum error of
L∑

i=1

βig(xj) − tj is the

main objective, where tj ∈ [t1, t2, ...tN ]. These equations
can be written in a compact way as follows.

Hβ = T (8)

H[w1, ..., wL; b1, ..., bL;x1, ..., xN ]

=


g(w1 ∗ x1 + b1) · · · g(wL ∗ x1 + bL)
g(w1 ∗ x2 + b1) · · · g(wL ∗ x2 + bL)

... · · ·
...

g(w1 ∗ xN + b1) · · · g(wL ∗ xN + bL)


N×L

β =

β
T
i
...
βT
L


L×m

, T =

t
T
i
...
tTi


N×m

(9)
In summary, given a dataset, we are able to construct an

ELM learning model, and the learning procedure can be
presented as below.

STEP 1 Fix the input weight wi and bias bi, i = 1,...,L
STEP 2 Calculate the hidden neurons output H
STEP 3 Calculate β according to β = H∗T , H∗ is the

Moore-Penrose generalized inverse of the hidden
neurons output.

4) Naive Bayes: [39, 40] reported using Bayesian Clas-
sification to predict protein-protein interactions.

In [39], three-dimensional structural information was used
to predict PPIs and the result shows that it is more superior
than other non-structural evidences. Using the sequence
alignment to identify structural representatives, which cor-
respond to either their experimentally verified structures or
homology models, this method tried to find both close and
remote structural neighbors with these structural alignment.
From these neighbors we would be able to form a template
for modeling the interaction of query proteins. Thus com-
bined with other raw features, the naive Bayesian Classifier
was able to predict PPIs compared with other reported high-
throughput experiments. It was actually not a direct three
dimension structure information utilization in [39], but it
still outperformed other methods. The algorithm, namely
PrePPI, through combining structural information with other
functional clues and using Bayesian statistics, shows its
ability to be comparable with high-throughput experiments,
which yields over 30,000 high-confidence interactions for
yeast and over 300,000 for humans. A brief illustration of

the steps used in this method is shown below, assuming a
pair of interesting query proteins are QA and QB.
STEP 1 Using sequence alignment to identify the structural

representatives, here denoted as MA and MB, that
correspond to either their experimentally deter-
mined structures from the PDB [41] or to homology
models from the ModBase [42] homology model
databases. The selection criteria are different for
these databases. For a specific data, a similarity of
above 40% always brings in a high similarity in
structure.

STEP 2 Using structural alignment to find both close and
remote structural neighbors of MA and MB, here
we denote them as NAi and NBj . There would
probably be ∼ 1500 of each, which would result
in over 2 million pairs.

STEP 3 If one of the 2 million pairs is reported in PDB,
we get a template for modeling the interaction of
QA and QB

This procedure would produce more interaction models,
approximately 550 million “interaction model” for about 2.4
million PPIs involving about 3900 yeast proteins, and about
12 billion models for about 36 million PPIs involving about
13000 human proteins. The evaluation of each interaction
model is needed. This PrePPI algorithm was considered to be
able to identify unexpected PPIs of considerable biological
interest.

Also for Bayesian statistics, the authors of [43] integrated
a number of public intra-species PPIs datasets with protein-
domain profiles to develop a framework for statistics com-
puting, in order to illustrate the frequency of proteins with
specific pairs of domains interacted, and predict inter-species
HPPPIs. For every pair of host and pathogen proteins, there
exists at least one domain, thus the probability whether these
two proteins interact can then be calculated.

Besides these machine learning models, some other mod-
els have also been adopted for PPIs prediction, including
K-Nearest Neighbors [44], Decision Tree [45], Random
Forest [46], Homology Detection Approaches [47]. All these
models aim to get a better understanding of PPIs inner
mechanism. How to better utilizing the features remains as
a key issue in the research progress.

V. DATA SET FOR PHPPI
In this section, we will report the big data set curation

process of PHPPI. The repositories we choose here are
PATRIC and PHISTO, which data are manually extracted
from related literatures. Furthermore, the feature we
choose for PHPPI is sequence information. Every vector
representing singular PPIs pair is high dimensional.

Pathogens include virus, bacterias fungi and others,
anyhow, in our research we first use bacterias as the main
pathogen and human as the host. This strategy allows us to
focus on deeper information mining. Statistics combining



data from PHISTO and PATRIC is shown in Table IV
below.

Bacteria Species Positive Pairs Number Clear Redundancy
Aeromona 2 2
Bacillus anthracis 6073 3138
Burkhold 1 1
Campylob 4 4
Chlamydi 21 21
Citrobac 2 2
Clostridium difficile 56 53
Coryneba 1 1
Escherichia coli 168 104
Francisella tularensis 2671 1339
Helicoba 17 17
Neisseri 17 17
Pseudomo 23 23
Salmonel 96 39
Shigella 60 29
Staphylo 34 34
Streptoc 36 36
Yersinia pestis 8046 4118

Table IV: Statistic of PHPPI Data Set

From Table IV, we choose bacteria Bacillus anthracis,
Clostridium difficile, Escherichia coli, Francisella
tularensis and Yersinia pestis to curate the data set for
PHPPI. In case that these data by now are reported with
positive pairs, to curate a whole data set of PHPPI, a
negative pairs data set is also desired.

They are actually only considered as a “probable
negatives” dataset for negative pairs curation. Since no
literature has ever reported any non-interacted protein
protein pairs, we have used a technique, namely random
selection, which is commonly used in PPIs prediction
literature. We pair up all bacteria proteins with all human
proteins and sample a random set to be negatives. This
heuristics works in practice as the interaction ratio (i.e.
number of positives in a large random set of protein pairs)
is expected to be very low: 1/100 to 1/500 [9, 19, 48, 49].
We expect 1 out of every 100 random PHPPI to interact
with each other. Thus the probability that our negatives
contain true positives is essentially negligible.

Before we represent this data set with their corresponding
features, a clustering process is required to reduce the
occurrence of similar proteins in positive pairs. In this
paper we used the cd-hit method, which were proposed
in [50, 51]. After clustering, we found out that some of
these proteins could be clustered into same groups. Hence
we reserved those proteins, which interact with the most
human proteins, in a same cluster.

Here we choose a ratio of 1:100 between positive pairs
and negative pairs, which result in a number of 283300
pairs for Bacillus anthracis, 5200 pairs for Clostridium
difficile, 7200 pairs for Escherichia coli, 118000 pairs for
Francisella tularensis and 340600 pairs for Yersinia pestis.

Even though for most proteins, their sequence and GO

terms information exist in the corresponding database,
including Uniprot and Gene Ontology Consortium, there
are still some of the proteins that we lack their features
information. With a comprehensive fetching and curation
process, we have successfully built a data set and its
corresponding statistics are shown as below in Figure 7.

Figure 7: Statistics of PHPPI Data Set

With this whole data set including both positive and
negative pairs, we are now able to extract the features using
protein sequence features. The dimension details of the
PHPPI data set will be discussed in the next section.

VI. CHALLENGES FOR PHPPI DATA SET

In this section, we will discuss several challenges existing
for PHPPI big data sets and present some insights on several
potential methods to tackle these challenges.

A. High Dimensions

For the computational model, the feature vectors, which
are composed from these PPIs databases and feature
databases, are with very high dimension. A short list for
our PHPPI data set is shown in Table V. For sequence
information, we used 2-mers, 3-mers, 4-mers and 5-mers
features. The corresponding feature number would be 98,
686, 4802, 33614. So for each bacteria species, the dimen-
sions are 39200.

Thus the PPIs data in a large sample set with high
dimension poses a big challenge for learning the model
efficiently. Furthermore, if we take gene ontology as extra



Bacteria Species All Pairs Number Dimensions
Bacillus anthracis 286133 39200
Clostridium difficile 5252 39200
Escherichia coli 7272 39200
Francisella tularensis 119180 39200
Yersinia pestis 344006 39200

Table V: Detail Statistics of PHPPI Data Set

feature, and use the method proposed by [9], it would result
in a feature with 700k dimensions.

Under these circumstances, there are several methods
worth being considered to tackle the challenging problem.
First of all, we could use Principal Component Analysis,
minimal-redundancy-maximal-relevance criterion (mRMR)
[52] and artificial neural network to reduce the dimensions.
Neural network, especially a multi-layer structure, is be-
lieved to be powerful to extract the inner relations between
each data and dimensions. The state-of-art method here to
encounter with high dimension problem would be a multi-
layer structure for mapping the high dimension data into
a low dimensions representation, which implies decreasing
the dimension and extracting the abundant relations between
each dimensions in a neural network learning model. For
example, [53] used deep learning to create a multi-layer
network for cancer diagnosis and classification. Compared
with deep learning, General Vector Machines (GVM) [54],
which was based on Monte Carlo algorithm and also used
by us in genetic classifications, could be used to learn from
data set associated with high dimension but a low quantity
of samples.

B. Missing Data

Data scarcity is a common and challenging issue for
applying machine learning methods in bioinformatics, es-
pecially for host-pathogen protein-protein interactions. As
mentioned in [19], a regular fraction of about 58% - 85%
missing values makes it a big headache to apply machine
learning algorithms. The missing data problem comes from
the lack of experiments, where ongoing experimental stud-
ies are either difficult or expensive to conduct or lagging
behind to obtain enough information for the much more
advanced progresses in data analytics area, even with the
high-throughput techniques. Taking Salmonella-human PPIs
prediction as an example, only 1058 proteins are known for
their molecular functions in gene ontology, 592 proteins
are known for their protein structure in PDB, and 2978
proteins are known for their protein family information in
Pfam [55] database, even though there are 4533 protein
sequences reported in the reference proteome set in the
Uniprot database. This will result in a large missing fraction
when we want to combine all of these features as one feature
vector. It is reported that 58% of the interactions in 62 known
PPIs have at least one feature with missing values [19].

In our PHPPI big data set, we try to avoid missing

data problem by deleting the protein pairs, which lack
information for some features. It results in a smaller positive
and negative data set. How to utilize a proper machine
learning or data preparation technology to maintain these
identified pairs, so as to curate data set and help to improve
the prediction results, remains a research challenge now.

C. Negative PHPPI Data

The negative PPIs data is needed under the consideration
of supervised learning models. With a ratio of nearly 1:1
between positive and negative PPIs data, it is called a
balanced dataset. Otherwise it is assumed an imbalanced
dataset with a 1:100 or more. The ratio of positive to
negative PPIs data is critical to avoid a biased classifier
towards inaccurate predictions. A ratio of 1:100 is usually
chosen for PHPPI data curation. The other challenge in
dealing with the negative PPIs data is its selection strategy.
Both random sampling and a novel negative data sampling
method based on one-class SVM have been compared in
[56].

VII. CONCLUSION

In this paper, we try to explore the PHPPI prediction
problem, which would facilitate the research on infectious
mechanisms between pathogen and host. Considering the
protein features, which include sequence information, gene
ontology information, human interactome graph and gene
expression features, we have curated a PHPPI big data set
and also have released a sample online for research1. It
is a big data set with high quantity and high dimension.
Most of the works in the literature focused on sequence
information features and “intra-species” PPIs. In “intra-
species” PPIs, a balanced data set was often curated and used
for model performance analysis. For PHPPI, considering
the experimental experience, an imbalanced ratio between
1:100 and 1:500 should be considered. Also other protein
properties and pair-wise level features could be taken into
consideration for feature representation.

The multi-layer structures, namely deep learning technol-
ogy, have shown its decent performance to deal with big data
set with high dimension. For example, sparse autoencoder
[57], restricted Boltzmann machine (RBM) [58] and so on,
have enlightened promising future research in establishing
computational methods for PHPPI prediction.
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