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Abstract 

Shear thickening fluids (STFs) of differing compositions were fabricated and 

characterised in order to observe the effect of varying chemical and material properties 

on the resultant rheological behavior. Steady shear tests showed that for a given carrier 

fluid and particle size exists an optimum weight fraction which exhibits optimal shear 

thickening performance. Testing also showed that increasing particle size resulted in 

increased shear thickening performance and its onset whilst altering the carrier fluid 

chemistry has a significant effect on the thickening performance. An explanation is 

provided connecting the effect of varying particle size, carrier fluid chemistry and 

weight fraction to the resultant rheological behavior of the STFs. Two STFs were 

chosen for further testing due to their improved but contrasting rheological behaviors. 

Both STFs displayed a relationship between steady and dynamic shear conditions via 

the Modified Coz-Merz rule at high strain amplitudes (𝛾0  ≥ 500%). Understanding the 

effects of particle and liquid polymer chemistry on the shear thickening effect will assist 

in ‘tailoring’ STFs for certain potential or existing applications. 

Keywords: shear thickening fluids, rheological properties, viscosity, fumed silica, Cox-Mer 
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Introduction 

Shear thickening fluids (STFs) are a relatively new polymeric material that exhibits 

non-Newtonian behavior in which the viscosity of non-Newtonian fluids is dependent 

on the applied shear rate. STFs are unique as the viscosity of the solution increases with 

increasing shear rate, when a certain shear rate is applied, in a phenomenon known as 

“Shear Thickening”. Specifically, above a critical shear rate, the viscosity of the STF 

exponentially increases with increasing shear force, often described as the “Shear 

thickening effect”. Another unique aspect is the reversibility of this effect as the STFs 

will return to fluid state once the shear force is removed or reversed, making it 

advantageous as a reusable product in applications. Current applications with STFs 

include scenarios which require energy adsorption from sharp projectiles such as knife 

or spike attacks [1-11], acoustic and mechanical vibrational dampening control [12, 13] 

and in a passive capacity in other polymeric materials [14-16]. The theory of shear 

thickening includes an order-disorder transition of particles [17, 18] and formation of 

clusters, otherwise known as “hydroclusters” [19-22] that only form once the applied 

shear forces overcome particle repulsion forces.  

Current research shows a gap in understanding the relationship between the rheological 

behavior of STF and their resultant effect in practical applications such as impact 

adsorption. It is crucial to understand the effect of systematically changing material 

properties on the STF’s resultant rheology in order to manufacture a STF that suits the 

required application. A STF that thickens at very low shear stresses would be useful in 

sensitive applications such as acoustic dampening or low impact situations whilst a STF 

that thickens at higher shear stresses would be optimally used in high impact scenarios 

such as ballistic impacts.  Barnes [23] gathered that the particles within a STF governed 

its rheological response and the shape, size, surface chemistry, volume fraction, 
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dispersion in medium and reaction with the liquid all affected the STF’s rheological 

properties. Ideally, by quantifying the effects of changing each variable on the resultant 

rheology, STFs can be fabricated to suit a certain application by simply altering its 

composition. In the present work, several STFs were produced from polyethylene glycol 

(PEG) and polypropylene glycol (PPG) with two different sized fumed silica particles at 

a range of weight fractions in the final STF. Rheological properties of the different 

samples were systematically characterised in order to determine the effect of varying 

certain material properties and their resultant rheological behavior. Theories as to how 

the varying material properties affect the formation of hydroclusters under steady shear 

were postulated. 

 

Experimental 

Materials 

Three types of fumed silica were used in this experiment: AEROSIL® 130 (A130), 

AEROSIL
®

 90 (A90) and AEROSIL
®

 OX 50 (OX50) which were all supplied by 

EVONIK Industries AG. All fumed silica particles were hydrophilic in nature, sensitive 

to moisture adsorption. The materials properties for all fumed silica variants can be 

viewed below in Table 1. 

Table 1. Material properties of A130, A90 and OX50 

Particle 

name 

Primary particle 

size (nm) 

BET-surface 

area (m
2
/g) 

Tapped 

density (g/l) 

A130 16 130±25 50 

A90 20 90±15 80 

OX50 40 50±15 130 

 

Before preparation, the fumed silica was place in a vacuum chamber for 24 hours and 

heated to 110°C to eliminate any moisture.  
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PEG was used as carrier fluid with molecular weights of 400 g/mol. PPG was supplied 

in two differing molecular weights, 400 and 725 g/mol. All carrier fluids were supplied 

by Sigma-Aldrich. The main properties of PEG and PPG are presented in Table 2. 

 

Table 2. Material properties of PEG400, PPG400 and PPG725 

Polymer 

name 

Molecular weight 

(g/mol) 

Degree of 

polymerisation 

Density at 

25°C (g/mL) 

PEG400 400 9.09 1.13 

PPG400 400 6.90 1.01 

PPG725 725 12.50 1.01 

 

 

 

STF fabrication processing 

For each STF, certain amounts of fumed silica were added to the various carrier fluid 

with a certain weight fraction (from 20 wt% to 55 wt%). The silica was mixed with 

carrier fluid mechanically until it was apparent all fumed silica particles were 

satisfactorily blended into the carrier fluid in order to ensure an enhanced mixture of 

particles within the fluid. Once mixed, the mixture was placed in a vacuum chamber for 

one hour to remove any trapped air bubbles, then an additional mechanical stirring step 

was requested to ensure adequate distribution of silica within the STF. 

 

Materials characterisation 

Testing was completed with a parallel-plate Rheometer (MCR 301, Anton Paar, 

Germany) under steady shear and dynamic conditions with increasing angular 

frequency. A 20 mm diameter testing geometry (PP-20) was used with a gap of 0.8 – 
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1.0 mm to ensure adequate filling of the STF over the testing disk. Viscosity was 

measured as a function of shear rate within the range of 0.1 – 1000 s
-1

 at 20°C. 

 

Results and discussion 

Characterisation of STF mixtures 

Fumed silica was chosen for testing due to its ability to induce shear thickening at 

relatively lower weight fractions compared with spherical silica and its increased 

particle-particle repulsion forces which lead to increased dispersion within the carrier 

fluid [24]. Transmission Electron Microscopic (TEM) images were taken for both 

fumed silica batches and are shown in Figure 1. 

 

Figure 1. Representative TEM images of AEROSIL® 90 (Left) and AEROSIL® OX 50 (Right) 

 

Preliminary testing was completed on various wt% of both fumed silica batches in 

PEG400 and PPG400 to determine the optimum weight fraction of each batch that 

exhibit the highest shear thickening behavior. Fumed silica particles A90 was blended 

with PEG400, PPG400 and PPG725 in weight fractions between 20-40 wt% and the 

resultant steady shear test results are shown below in Fig. 2.  
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Figure 2. Viscosity measured as a function of shear rate under steady shear conditions for STF containing 

PEG400 + A90 (a), PPG400 + A90 (b) and PPG725 + A90 (c) 

 

At low shear rates (�̇� < 1 𝑠−1) all mixtures show shear thinning behavior which is 

characterised by decreasing viscosity with increasing shear rate. The onset of shear 

thickening at the critical shear rate, �̇�𝑐, is an important point as it signifies the shear rate 

at which STF begins to thicken. Another important indication of the STF’s ability to 

thicken is the ratio of the maximum viscosity to the viscosity at �̇�𝑐, henceforth named 

‘Shear thickening ratio’ (STR). With increasing wt% in PEG400 + A90, different 

rheological behaviors are observed as �̇�𝑐 and STR increases when comparing 20% and 

25% STFs. At 30%, there is a small increase in viscosity and overall shear thinning 

effect was observed, which is indicative of particle clustering, similar to that of a three 
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dimensional network of an elastomer or gel. This was considered to be an oversaturated 

STF (figure 2a). 

In PPG400 + A90 (Figure 2b), increasing the weight fraction shows significant increase 

in STR with infinitesimal change in �̇�𝑐  and relatively larger in magnitude when 

compared to PEG400 + A90. We infer that the carrier fluid has a significant influence 

on the rheological properties of the STF when using the same fumed silica with same 

fractions. This is also evident when comparing 25wt% A90 fumed silica in three 

different carrier fluids shown in Figure 3. 

 

Figure 3. Viscosity measured as a function of shear rate under steady shear conditions for STF containing 

25wt% A90 using different carrier fluids 

 

Increasing the molecular weight of PPG shows a predominately shear thinning mixture. 

A possible explanation is that the larger polymer chain of the PPG725 can result in 

entanglement with other PPG polymer chains within the solution, resulting in overall 

increased viscosity and difficulty to rearrange themselves under low to medium shear 

rates. As a consequence, STFs containing PPG725 were not further explored due their 

poor behavior as a possible application. 
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STF mixtures containing A130 were then mixed into PEG400 and PPG400 at varying 

weight fractions. The results are shown below in Figure 4. 

 

Figure 4. Viscosity measured as a function of shear rate under steady shear conditions for STF containing 

PEG400 + A130 (a) and PPG400 + A130 (b) 

The rheological behaviours are significantly different when compared to using A90 

fumed silica. For instance, the shear thickening phenomenon was observed in PEG400 

+ A130 at lower weight fractions and gel-like behaviour occurred at 20wt%. Although 

the shear thickening effect was relatively poorer in PEG400 + A130 mixtures, fewer 

particles were required to observe this effect. In mixtures containing PPG400 + A130, 

the shear thickening effect was considerably unstable and the increase in viscosity past 

γ̇c increased gradually and not sharply as observed in other STFs. The decreased particle 

size of A130 has a significant effect on the thickening effect of STFs. Wang and 

Wunder (2000) both quantified the differences of two types of fumed silica sizes and 

observed that “state of aggregation/agglomeration therefore increases with decreasing 

particle size” [25]. Gun’ko et al also stated “aggregation of primary 

particles…decrease…with decreasing specific surface area” [26]. Increased degrees of 

aggregation in smaller particles are proportional to increased aspect ratios and increased 

chances of interparticle clustering or ‘hooking’ to form a three-dimensional or ‘gel’ 
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network. Gel-like behaviour typically exhibit a constantly shear thinning rheological 

response. 

STF mixtures containing OX50 were then mixed into PEG400 and PPG400 at varying 

weight fractions and their resultant rheological behaviors are shown in Figure 5. 

 

 

Figure 5. Viscosity measured as a function of shear rate under steady shear conditions for STF containing 

PEG400 + OX50 (a) and PPG400 + OX50 (b) 

 

Similar trends found in the STFs containing A90 can also be seen in STFs containing 

OX50. In PEG400 + OX50 and PPG400 + OX50, the optimum weight fraction was 

found to be 45 wt% which shows a good combination of �̇�𝑐 and STR, increasing further 

resulted deterioration in performance, trending more to gel-like behavior (Figure 5). 

From these preliminary results; two STF mixtures were chosen based on their superior 

rheological behaviors: PEG400 + 45wt% OX50 and PPG400 + 45wt% OX50 

henceforth known as STFPEG and STFPPG respectively (Figure 6). 
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Figure 6. Viscosity measured as a function of shear rate under steady shear conditions for STF containing 

45wt% OX50 using different carrier fluids 

 

Discussion on variables and rheology of STF 

Barnes [23] stated that “All suspensions of solid particles will show the phenomenon 

[Shear thickening effect]”. From this, we gather that the variables relating to particles 

including size, weight/volume fraction, surface chemistry and shape all have an effect 

on the resultant rheology when mixed with a fluid. To some extent, the reaction 

between the carrier fluid and the particles is also worth considering when attempting 

explaining the effect the relationship between physical variables and rheology. From 

this, a relationship can be developed that can quantify the effect of differing particle and 

carrier fluid material properties on the resultant rheological behavior of the STFs.  

Weight fraction 

During fabrication, the polymer chains within the carrier fluid react with the surface 

hydroxyl groups on the fumed silica (silanol groups) via hydrogen bonding. The 

resultant reactions between polymer and silica surface results in the formation of a layer 

of polymer surrounding fumed silica called a “solvation layer” [24, 26-28]. This was 
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initially proposed by Raghavan et al. (2000) in which they stated “in strongly hydrogen-

bonding liquids, a solvation layer is envisioned to form on the silica surface through 

hydrogen bonding between liquid molecules and surface silanol groups.” [27]. The 

solvation layer was also used to explain the results found by He et al (2015) when 

combining porous nanosilica particles in ethylene glycol [29]. This hypothetical 

solvation layer around silica would increase interparticle distancing resulting in 

increased deflocculation and interparticle repulsion forces. By increasing weight 

fraction of fumed silica, there is a larger readily reactive silanol surface area. As shown 

in Figures 3, 4, 5 and 6, there exists an optimum weight fraction of fumed silica, 

regardless of size, in which the shear thickening effect is pronounced. We suggest the 

remaining carrier fluid that has not reacted with the silanol surface groups act as 

lubrication between the fumed silica, allowing for increased particle distance and 

mobility to rearrange whilst under the applied shear force. Thus the conclusion can be 

made that a STF with a particle weight fraction below that of its optimum value will 

result in increased �̇�𝑐 and decreased STR. This could be due to the larger interparticle 

distancing due to the abundance of unreacted liquid polymer chains present, requiring 

larger external forces to overcome this separation distance and the interparticle 

repulsion forces simultaneously. Inversely, by increasing the weight fraction beyond the 

optimum weight fraction, the STF is deprived of lubrication from unreacted polymer 

chains which results in entanglement of particle clusters leading to complete 

disappearance of the shear thickening effect. This optimum weight fraction was more 

dependent on the size of the fumed silica and less on the chemistry of the carrier fluid. 

A graphical example of this theory can be seen in Figure 7 where the critical shear rate 

and shear thickening ratio (𝜂𝑚𝑎𝑥/𝜂𝑐)  were plotted against weight fraction.  It is 

apparent that the critical shear rate of STFs containing PEG400 at varying weight 
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fractions was significantly larger than STFs containing PPG400 and PPG725. The effect 

of differing carrier fluid chemistry is further examined below. 

 

Figure 7. Shear thickening ratio (a) and critical shear rate (b) measured as a function of weight fraction 

mixed with A90 fumed silica under steady shear conditions 

 

Particle size 

Comparing the material properties of A90 and OX50, the size of fumed silica is 

inversely proportional to its BET-surface area, which is indicative of the exposed silica 

surface area available to bond with the carrier fluid polymer chains. Also, the optimum 

weight fraction for STFs containing smaller fumed silica was found to be relatively 

lower than that for STFs containing larger fumed silica. This implies that an ‘Effective 

surface area’ exists in which particle separation and lubrication is at their most effective 

state. This is further supported as the optimum weight fraction of OX50 is almost twice 

that of A90, and almost three times that of A130 which also coincides with the surface 

area of OX50 almost halving that of A90 and a third of A130. A graphical 

demonstration can be seen in Figure 8 below. 
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Figure 8. Shear thickening ratio (a) and critical shear rate (b) measured as a function of weight fraction 

mixed in PEG400 carrier fluid under steady shear conditions 

 

By increasing the particle size, we are able to increase the weight fraction before 

attaining this ‘Effective surface area’, allowing us to maximise weight fraction within 

the STF, reduce interparticle distancing whilst allowing for sufficient space for particle 

rearrangement under shear stress. This would result in a higher shear thickening effect 

and lower �̇�𝑐 due to the reduced external forces required to overcome particle repulsion 

forces. Another interesting relation is the effect of increasing particle size resulted in 

overall increased shear thickening performance and increased critical shear rate values.  

In terms of potential applications, using larger particles will amplify the shear 

thickening effect and critical shear rate at the compromise of using more particles. By 

analyzing the requirements of the STF in mechanical applications, a suitable STF 

mixture can be fabricated that satisfy the application’s thickening requirements and the 

shear force range at which it occurs. 
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Carrier fluid chemistry 

Observing the effect of varying liquid chemistry with equivalent molecular weight 

(PEG400 vs. PPG400) was explored experimentally. With PPG400, the shear 

thickening effect was found to occur at lower shear rates and at significantly larger 

magnitudes than PEG400. It was also observed that there was very little change in �̇�𝑐 

with changing weight fraction in PPG400 (Figure 7). 

A possible theory as to why STFs with PPG attain shear thickening sooner is the 

relatively smaller DP which could affect the thickness of the solvation layer formed 

around the particles in the STF. This can attribute to smaller interparticle distancing and 

weaker particle-particle repulsion which results in less external force required for 

initiating shear thickening. Another possible suggestion is the composition of PEG 

compared to PPG. The only difference between these two polymers is an additional 

methyl branch within the PPG monomer, resulting in more rigid behavior under flow. 

More rigid polymer chains can typically lead to increased spacing between adjacent 

chains and reduced entanglement allowing for easier rearrangement whilst under shear 

flow. Therefore, ease of polymer flow will result in easier particle rearrangement to 

attain the shear thickening effect at lower shear rates. Comparing both STF mixtures 

with differing carrier fluids as shown in Figure 6, a similar trend is observed in which 

the rheological response of STFs containing PPG400 shows lower �̇�𝑐 but higher STR 

and vice versa for STFs containing PEG400. Another interesting observation is the 

equal optimum weight fractions observed in both PEG400 and PPG400. The difference 

in rigidity of the carrier fluid chemical composition has little effect on the ‘effective 

surface area’ at which the same amount of particles added to both PEG400 and PPG400 

will exhibit the maximum shear thickening effect and �̇�𝑐 of both STFs. 
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Comparing carrier fluids with similar chemical composition but with varying molecular 

weights (PPG400 vs. PPG725) in Figure 7 showed that STFs with higher molecular 

weight carrier fluid resulted in significantly lower STR and lower optimum weight 

fraction. These findings are consistent with those reported by Xu et al. [28]. EG and 

PEG are commonly used in STF research and their mixtures with silica particles usually 

exhibit shear thickening when mixed with [2, 4-6, 28, 30-32]. The main difference 

differentiating PEG and EG is that PEG is a polymer of EG with a much higher degree 

of polymerization (DP) which could affect fluid viscosity.  The molecular weight of a 

polymer is proportional to the DP, which could result in heavier polymer chains to form 

larger solvation layers on the particles, increasing interparticle distancing and repulsion 

forces. Another possible explanation is the increased DP resulted in entanglement, 

which hindered the formation of Hydroclusters under shear stress. However, by 

observing Figure 7(b) the �̇�𝑐 of both PPG400 and PPG725 show minute changes. One 

could infer the effect of decreasing the molecular weight of the carrier fluid would 

increase the shear thickening effect while the shear rate at which thickening commences 

remains relatively stable.  

 

 

Validity with the Modified Cox-Merz Rule 

Several previous investigations attempted to relate the shear thickening effect of STFs 

under steady shear conditions to those under dynamic (oscillatory) shear conditions 

using the Modified Cox-Merz theory (MCM) [24, 33-35], mathematically represented 

as: 

𝜂(�̇�) = 𝜂∗(𝜔𝛾0) 



16 
 

This relationship allows us to characterise a similar thickening effect under oscillatory 

shear flow, refereed as shear stiffening effect.  Both STFPEG and STFPPG were tested 

under dynamic testing conditions. In which the amplitude shear strain, 𝛾0, is provided 

whilst the frequency is gradually increased. The results are shown in Figure 9.  

 

Figure 9. Dynamic frequency tests conducted on STFPEG (a) and STFPPG (b). Each data series represents 

the strain amplitude (𝛾0) applied. 

Under comparison, both STFPEG and STFPPG behave differently as they do under steady shear 

conditions. STFPEG begins to show signs of shear stiffening when 𝛾0  ≥ 500%  whereas in 

STFPPG shear stiffening is apparent at 𝛾0  ≥ 100%  which also shows a relative increase in the 

ratio of 𝜂𝑚𝑎𝑥
∗ /𝜂𝑐

∗. As observed previously, STFPPG was observed to exhibit shear thickening at 

lower shear rates and greater magnitudes than STFPEG, which also appears evidently under 

oscillatory condition. Further analysis was completed by calculating the dynamic shear rate 

(𝜔𝛾0) and comparing with steady shear results to observe the validity of the MCM rule 

(Figure 10). 
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Figure 10. Correlation of steady and dynamic shear test data of STFPEG (a) and STFPPG (b) using MCM 

rule. Each data series represents the strain amplitude (𝛾0) applied. 

The MCM model applies to a limited extent in both STFs but only at higher strain 

amplitudes (𝛾0  ≥ 500%). The dynamic shear data fits relatively well with the shear data as 

the deviation of �̇�𝑐 with 𝜔𝛾0 is relatively minor. The significance of these findings can 

allow for future research to extrapolate findings from steady shear tests to estimate the 

STF’s shear stiffening performance under dynamic testing. 

Conclusions 

The effect of varying particle and liquid parameters on the resultant shear thickening 

effect was quantified. For each STF, there existed an optimum weight fraction that 

depended on the size of the fumed silica and larger particles resulted in the increased 

shear thickening effect and critical shear rate. The chemical properties of carrier fluids 

had a significant effect on the shear thickening properties by adjusting the critical shear 

rate and the shear thickening ratio. It was proposed that the mentioned variables affect 

the formation of solvation layer around the particles and interparticle distancing via 

polymer lubrication. Two STFs were selected for further testing based on their improved 

rheological behaviour to observe whether they conform to the Modified Cox-Merz rule 

and relate steady shear and dynamic shear conditions. Both STF’s conformed to the rule 
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which showed a relationship between shear-thickening and shear-stiffening at high 

strain amplitudes (𝛾0  ≥ 500%). These theories and suggestions into the effect of varying 

material properties on rheology aim at providing the ability to ‘tailor’ STFs for potential 

applications and future testing will be planned to observe the effect of differing critical 

shear rate and shear thickening ratios on current and potential real world situations. 
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