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Abstract Abstract 
Patient motion due to respiration can lead to artefacts and blurring in positron emission tomography 
(PET) images, in addition to quantification errors. The integration of PET with magnetic resonance (MR) 
imaging in PET-MR scanners provides complementary clinical information, and allows the use of high 
spatial resolution and high contrast MR images to monitor and correct motion-corrupted PET data. In this 
paper we build on previous work to form a methodology for respiratory motion correction of PET data, 
and show it can improve PET image quality whilst having minimal impact on clinical PET-MR protocols. 
We introduce a joint PET-MR motion model, using only 1 min per PET bed position of simultaneously 
acquired PET and MR data to provide a respiratory motion correspondence model that captures inter-
cycle and intra-cycle breathing variations. In the model setup, 2D multi-slice MR provides the dynamic 
imaging component, and PET data, via low spatial resolution framing and principal component analysis, 
provides the model surrogate. We evaluate different motion models (1D and 2D linear, and 1D and 2D 
polynomial) by computing model-fit and model-prediction errors on dynamic MR images on a data set of 
45 patients. Finally we apply the motion model methodology to 5 clinical PET-MR oncology patient 
datasets. Qualitative PET reconstruction improvements and artefact reduction are assessed with visual 
analysis, and quantitative improvements are calculated using standardised uptake value (SUVpeak and 
SUVmax) changes in avid lesions. We demonstrate the capability of a joint PET-MR motion model to 
predict respiratory motion by showing significantly improved image quality of PET data acquired before 
the motion model data. The method can be used to incorporate motion into the reconstruction of any 
length of PET acquisition, with only 1 min of extra scan time, and with no external hardware required. 
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Abstract
Patient motion due to respiration can lead to artefacts and blurring in positron 
emission tomography (PET) images, in addition to quantification errors. 
The integration of PET with magnetic resonance (MR) imaging in PET-MR 
scanners provides complementary clinical information, and allows the use of 
high spatial resolution and high contrast MR images to monitor and correct 
motion-corrupted PET data. In this paper we build on previous work to form 
a methodology for respiratory motion correction of PET data, and show it 
can improve PET image quality whilst having minimal impact on clinical 
PET-MR protocols.

We introduce a joint PET-MR motion model, using only 1 min per PET 
bed position of simultaneously acquired PET and MR data to provide a 
respiratory motion correspondence model that captures inter-cycle and intra-
cycle breathing variations. In the model setup, 2D multi-slice MR provides 
the dynamic imaging component, and PET data, via low spatial resolution 
framing and principal component analysis, provides the model surrogate.

We evaluate different motion models (1D and 2D linear, and 1D and 2D 
polynomial) by computing model-fit and model-prediction errors on dynamic 
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MR images on a data set of 45 patients. Finally we apply the motion model 
methodology to 5 clinical PET-MR oncology patient datasets. Qualitative PET 
reconstruction improvements and artefact reduction are assessed with visual 
analysis, and quantitative improvements are calculated using standardised 
uptake value (SUVpeak and SUVmax) changes in avid lesions.

We demonstrate the capability of a joint PET-MR motion model to predict 
respiratory motion by showing significantly improved image quality of PET 
data acquired before the motion model data. The method can be used to 
incorporate motion into the reconstruction of any length of PET acquisition, 
with only 1 min of extra scan time, and with no external hardware required.

Keywords: PET-MR, motion correction, lesion detection, motion models, 
respiratory motion

(Some figures may appear in colour only in the online journal)

1. Introduction

PET acquisitions can be adversely affected by respiratory motion. Avid lesions in the thorax 
and abdomen can be blurred in images, and artefacts and tracer uptake quantification errors 
may be introduced. Motion correction by gating (Klein et al 1996, Boucher et al 2004, Bai and 
Brady 2011) requires registration of images at different motion states, but this requires long 
acquisition times to ensure good contrast-to-noise.

The emergence of PET-MR scanners allows the use of high contrast MR images to track 
respiratory motion and subsequent MR-based registration to provide deformation fields to 
correct simultaneously acquired PET data (Würslin et al 2013, Grimm et al 2015). To aid 
motion detection, MR tagging has been proposed, a technique that creates tags in MR images 
which can be tracked through respiration to provide the deformation information (Guerin 
et al 2011, Chun et al 2012). In these cases, motion tracking is done with fast dynamic MR 
sequences, but this means other clinical MR sequences cannot be acquired during this time.

Motion models allow estimation of dense deformation fields from a simple surrogate signal 
that can be acquired throughout a scan (McClelland et al 2013). A motion model is built by 
forming a correspondence between physical deformations and surrogate data. Motion informa-
tion can then be estimated at times when motion-capturing images are not being acquired, if the 
same surrogate is acquired continuously. This type of ‘motion model’ methodology allows the 
motion information to be gathered in a short space of time in a ‘model-building’ scan, allowing 
other clinical MR to be acquired whilst PET data are being collected. One source of surrogate 
data is external respiratory monitors, such as RPM (Real-time Position Management, Varian 
Medical Systems Inc.), pressure belt, or spirometer. Some work uses MR-derived measure-
ments as the surrogate, by building a correspondence model between 3D MR-based defor-
mations and either interleaved 2D navigator images (King et al 2012), or a measure derived 
directly from the dynamic MR images (Balfour et al 2015). In these cases, other MR sequences 
need to be altered to allow for a continuous acquisition of the surrogate data.

In this paper we investigate the ability of a respiratory motion model built from only 1 min 
of simultaneously acquired PET and MR data to capture intra- and inter-cycle variability, 
using the continuously acquired PET data itself as the surrogate, to predict motion during a 
PET scan. We then use this information to form a motion-compensated PET image. Many 
current clinical PET-MR protocols now use a fast ‘whole body’ approach, with acquisition 
times of only 3 min per bed position, so having minimal impact on the clinical protocol is 
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important. We build on previous work (Manber et al 2015) in which we used a 4 min PET-MR 
scan to estimate respiratory motion by binning dynamic MR images that corresponded to the 
PET gates.

Our new methodology improves on many aspects of our previously published work. Firstly, 
we now use a continuous correspondence model, rather than using discrete bins. With our old 
method, only one MR image was chosen per slice location per respiratory bin as a represen-
tation of the moving anatomies at that point in the respiratory cycle. The continuous motion 
model now allows interpolation at any value of the model surrogate, and cases where a bin 
may contain no MR data do not occur.

The new continuous motion model allows extrapolation, estimating deformation fields at 
values of the surrogate signal that were not used as input to the model-building sequence, 
which has two advantages. Firstly, all of the PET data can be used in the image reconstruction, 
and secondly, the attenuation μ-map can be used in the PET reconstruction even when the sur-
rogate during acquisition is outside of the normal breathing range.

Our new work is also more robust to registration errors. With the previous method and bin-
ning based schemes, deformation fields that mapped any motion state back to the reference 
state are provided by a single non-rigid registration. Now all MR images are registered back 
to a reference image and all deformation fields are used in the model. This means if any single 
registration fails, it has little effect on the overall model.

The new approach is more practical in a clinical setting. The PET and MR systems run 
on two separate clocks, so to temporally align the data, we previously collected extra MR 
sequences for clock syncing purposes. The time shift/drift between the PET and MR clocks is 
now accounted for as part of the optimisation scheme to build the motion model so only 1 min 
of extra data is needed to capture respiratory motion.

In this paper we present a novel methodology for practical PET respiratory motion correc-
tion, by acquiring only 1 min of extra PET-MR data to build a patient specific PET-MR motion 
model. We test four different types of models, using either 1 or 2 surrogate signals, with a 
linear or polynomial model, to find which provides the best estimation of motion. To evaluate 
our method we apply our PET-MR motion models to both MR acquired during and outside of 
the model-building acquisition to test model-fit and model-prediction accuracy on 45 patients. 
The models are then tested on PET acquisitions of 5 patients in a clinical setting by extending 
one 3 min bed position scan to 4 min to acquire the extra data to form the motion model, then 
using this in a motion-compensated reconstruction of the whole 4 min scan. We also present 
a patient-specific binning scheme to efficiently bin PET data prior to reconstruction based on 
the breathing during acquisition.

2. Theory

2.1. Motion models

A motion model can be defined as taking surrogate data as input and estimating motion as an 
output. A full review of motion models is provided by McClelland et al (2013). Model coef-
ficients are calculated from a set of training data taking surrogate and motion data as inputs. 
These model coefficients allow motion estimation from new surrogate data when motion data 
cannot be captured. Formally, a direct correspondence model can be written as:

M s As( )φ= = (1)

where M is a motion estimate, φ is the model, and s is a vector containing input surrogate 
data. The model is made of a matrix A of scalar coefficients, the size of which depends on the 
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number of surrogates used and the number of motion parameters (i.e. the sizes of s and M). 
The motion model we present in this paper consists of only PET and MR data as input. We test 
4 different correspondence models, limited to only 1 or 2 surrogate signals and either a linear 
or polynomial system up to an order of 2. Higher number of surrogate signals and higher 
model complexity lead to a larger coefficient matrix A, and this can lead to over-fitting of data 
and increased risk of extrapolation errors.

2.2. PET model surrogate

The surrogate signal for our motion model is a respiratory signal extracted using PCA from 
the raw PET data (Thielemans et al 2011); previously shown to provide similar information 
to an MR pencil-beam navigator to track breathing (Manber et al 2015). PET list-mode data 
are unlisted into short low spatial resolution sinogram frames. Sinograms are then spatially 
smoothed, a scale factor is applied to account for tracer kinetics, the Freeman-Tukey trans-
formation is applied to approximately convert Poisson noise to Gaussian, then finally PCA is 
executed. With PCA, each sinogram in the series is approximated as

s s w ct t
k

K

k k
1

( ) ¯ ( )∑≈ +
=

 (2)

where s t( ) is the sinogram acquired at time t, t is the time at the middle of the frame, s̄ is 
the mean of all sinograms, ck is principal component (PC) k and w tk( ) is the scalar weight 
factor for sinogram s t( ), PC k. For one PC, each sinogram in the time series therefore has a 
single weight factor, calculated as the voxel-wise multiplication of the PC with the difference 
between the sinogram and sinogram mean,

w c s st t.k k( ) ( ( ) ¯)= − (3)

We define our PET-derived respiratory signal as the weights corresponding to Principal 
Component k  =  1:

P t w t1( ) ( )= (4)

In this work, we define the gradient of our respiratory signal to be used as a derived surrogate, 
as

P
P
t

t
td

d
( ) ( )
=′ (5)

2.3. MR model imaging data

For the imaging input to the motion model, we use a fast 2D multi-slice gradient echo (GRE) 
sequence, consisting of sagittal slices at L slice locations, covering the thorax and abdo-
men (including lungs, liver, pancreas etc). The sagittal imaging plane was chosen, assuming 
through-slice motion to be minimal. Previous studies report lung lesion displacements of only 
1.2 mm laterally, compared to 2.2 mm and 5.5 mm in the anterior-posterior and superior-infe-
rior directions respectively (Seppenwoolde et al 2002).

MR images I t( ) are grouped by slice location l L1...∈  to form I tl( ), where vector tl rep-
resents the acquisition times of slices at slice location l. At each slice location, one refer-
ence image Ir l,  is chosen by binning all images based on the value of the respiratory signal 
P t( ) to find a single dynamic slice at the ‘exhale’ position. Non-rigid registration is used to 
find voxel-wise deformation fields d tl( ), that map each I Itl r l,( ) → . Each d tl( ) is comprised 
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of displacements in the x and y directions in the sagittal plane, such that d t d d,l v
x y

v( ) [ ]=  at 
voxel v. The reverse deformation fields d tl 1( )−  that warp I I tr l l, → ( ) are found by separate reg-
istrations. Registrations were performed with MIRT (Medical Image Registration Toolbox) 
(Myronenko and Song 2010) in Matlab (Mathworks, Inc.). The Residual Complexity cost 
function within the toolbox was chosen as it provides a degree of robustness to vessel inten-
sity changes and spatial intensity distortions that were present in the GRE MR images. The 
following parameters were used: b-spline control point grid size  =  5 voxels, λ (regularization 
weight)  =  0.05, and α (trade off parameter controlling the sparseness of coefficients)  =  0.01. 
For cases with very large deformations, lambda was reduced to 0.01.

2.4. Joint PET-MR motion model

In the case of our PET-MR motion model, we use our PET-derived signals P t( ) and P t( )′  as 
potential model surrogates. Using the gradient as the second surrogate allows us to capture 
inter- and intra-cycle variation (hysteresis). Our four different models are therefore:

 • 1 surrogate linear (1D)

P A P A P
t t

t
1i

i
i

0

1

( ( )) ( ) ( )⎡
⎣⎢

⎤
⎦⎥∑φ = =

=

=

 (6)

 • 2 surrogates linear (2D)

P P A P P A
P
Pt t t t

t
t

1
,

i

i

j

j
i j

0

1

0

1

( ( ) ( )) ( ) ( )
( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑∑φ = =′ ′ ′

=

=

=

=

 (7)

 • 1 surrogate 2nd order (1D-poly)

P A P A
P
Pt t

t
t

1i

i
i

0

2
2

( ( )) ( )
( )
( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥∑φ = =

=

=

 (8)

 • 2 surrogates 2nd order (2D-poly)

P P A P P A

P
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 (9)

We now explain the model construction using the two surrogate linear model as illustration. 
Training data comprising of PET-derived signals P t( ) and P t( )′ , and MR-derived deformation 
fields d tl( ), are used as input to the model. The d tl( ) for each value of tl are put into column 
vectors containing x and y vector components at all v voxels, d d d d d d, , ..., , , , ...,x x

v
x y y

v
y T

1 2 1 2[ ] . We 
then form a matrix D tl( ) for each slice location l by placing each vectorised d tl( ) from one slice 
location next to each other, such that:

D d d dt t t t, , ...,l n1 2( ) [ ( ) ( ) ( )]= (10)

where n N1...∈  is the MR frame number at slice location l.
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We search for model coefficients that minimise the least squares fitting error to the training 
data:

D A
P
Pt

t
t

1
arg min

l

L

l l

l

l
1

2

( )
( )
( )

⎡

⎣

⎢
⎢
⎢

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎤

⎦

⎥
⎥
⎥

∑ − ′
=

 (11)

where Al are the independent model coefficient matrices for each slice location l L1...∈ . P tl( ) 
and P tl( )′  are the values of the signals P t( ) and P t( )′  at the times of each d tl( ) in D tl( ), found 
with linear interpolation. The vector 1 is a vector of 1s of the same length as P tl( ) and P tl( )′ . 
We also want to account for a constant unknown time shift δ between the PET and MR system 
clocks, so this is included as an unknown in the functional:

D A
P
Pt

t
t

1

arg min
l

L

l l

l

l
1

2

( )
( )
( )

⎡

⎣

⎢
⎢
⎢

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎤

⎦

⎥
⎥
⎥

∑
δ
δ−

+
+′

=
 (12)

The minimisation is solved to find each Al and δ in one optimisation with a robust multi-
linear regression scheme with an iteratively weighted least squares cost function (Holland and 
Welsch 2007). This robustness ensures a good fit to the data by assigning d tl( ) a lower weight 
in the optimisation if the registration failed.

New deformation fields dl̂ can therefore be estimated at each slice location using the model 
with new input surrogate values p̂ and p̂′ and the model coefficient matrices Al:

d A
p

p
1

l l
ˆ

ˆ
ˆ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥= ′ (13)

Deformations for between-slice voxels are found using linear interpolation to form one 
3D deformation field (the 3rd vector orthogonal to the sagittal plane is set to zero) in the PET 
image space per gate, using PET and MR Dicom geometry information.

3. Method

In this paper we present a methodology to build a patient specific PET-MR motion model 
by extending a 3 min scan to 4 min, with no change to the protocol for the original 3 min. 
Workflow steps are outlined below, and presented in figure 1 and explained in detail below:

 1. Acquire 4 min of PET-MR data.
 2. Extract surrogate signals from raw PET data.
 3. Bin GRE MR slices based on signal to identify an ‘exhale’ reference image at each slice 

position and perform non-rigid registration of all MR slices.
 4. Form motion model, providing a correspondence between deformation fields and sur-

rogate signals.
 5. Form trajectory map and plan PET data gating scheme.
 6. Unlist raw PET data into several gates according to step 5.
 7. Calculate 3D deformation fields for each gate with motion model.
 8. Warp μ-map with motion model to form gated μ-maps.
 9. Motion compensated image reconstruction (MCIR).

Details of all steps are outlined in this section.
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3.1. Data acquisition

On patients undertaking clinical whole-body PET-MR scans, a 3 min PET-MR acquisition was 
extended to 4 min to acquire data to build the motion model, whilst acquiring extra MR during 
the first 3 min for model validation. The acquisition consisted of:

 • PET list-mode (4 min), in same FOV as one previous PET bed positions.
 • MR Dixon (18 s), used by the manufacturer’s software to produce an MRAC (MR 

Attenuation Correction) μ-map, nominally acquired at end-expiration.
 • MR 2D multi-slice gradient echo (GRE) (2 min 40 s), sagittal slices at 9 slice locations. 

Scan parameters: slice thickness 10 mm, gap between slice centres 25 mm, repetition time 
5.1 ms, echo time 2.5 ms, flip angle 10°, pixel bandwidth 965 Hz, matrix size 192 144× , 
FOV 262 349×  mm, in-plane resolution 1.8 1.8 mm2 × , IPAT 3. Only the last minute 
of the acquisition are used to form the motion models (model slices) and the rest are 
for validation purposes (test slices). A temporal resolution of 300 ms ensures a good 
temporal-spatial resolution trade off, where intra-frame motion is minimised and inter-
frame motion is captured. The sequence was optimised to obtain good contrast in all 
anatomies of interest such as lung, liver and pancreas.

All data were acquired using an integrated 3T PET/MR system (Biograph mMR, Siemens 
Healthcare). Additional data were acquired as part of calibration and service development 
protocols. Patients consented to the use of their data for research purposes.

3.1.1. Calculation of gate size. Each motion model can produce a deformation field estimate 
for any value of the surrogate, but computational effort for motion-compensated listmode 
reconstruction is high due to deformations varying at each time point, therefore, we binned the 
PET data which have similar surrogate values (and hence deformation fields). We use a novel 
efficient binning scheme to group PET data based on the amplitude and range of breathing 
throughout each acquisition to ensure that intra-bin motion is less than half the full-width-
half-maximum (FWHM) resolution of the scanner.

Figure 1. Proposed clinical workflow from PET-MR data acquisition to motion 
incorporated PET reconstruction. The MR acquisition consists of the normal MRAC 
and clinical MR, plus 1 min of extra dynamic GRE for the motion model. For this work 
we collected extra GRE MR instead of clinical scans for model validation purposes.
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A trajectory map of P and P′ is used to track the surrogate signals throughout the scan. 
First, a grid is drawn across the trajectory map (figure 2(a)). Each outer square on the grid fol-
lowing the perimeter of the trajectory is marked (figure 2(b)) and deformation fields at every 
slice location are estimated for each of these squares. For each row (constant value of P′) and 
each column (constant value of P) the deformation range is found for each voxel, between the 
2 outermost squares (figure 2(c)). The deformation range with the highest sum over all voxels 
in both P and P′ directions over all slice locations is found (figure 2(d)). In the 2 directions, 
voxel deformations are histogrammed (figure 2(e)). The maximum respiratory displacement 
is marked as the value at the 98th percentile in each of these directions. The percentile is used 
to disregard any local outliers in the deformation fields. Bin size in both directions is then 
found by dividing the maximum respiratory displacement by half the FWHM resolution of 
the scanner (4.5 mm). The resulting gating scheme is shown in figure 2(f), with gates marked 
on the trajectory.

3.1.2. Motion compensated image reconstruction. Motion compensated image reconstruc-
tion (MCIR) was used to form motion corrected PET images with randoms, scatter processes 
and motion incorporated in the system matrix of the reconstruction (Polycarpou et  al 2012, 
Tsoumpas et al 2013). An ordered subset expectation maximisation reconstruction algorithm 
was used in the STIR software, with 21 subsets, 3 iterations and 4 mm Gaussian post-filtering. 
Each PET acquisition was reconstructed without motion correction, and with motion correc-
tion 4 different ways using the 4 motion models. All reconstructions were carried out both with 
attenuation correction (AC) and without attenuation correction (NAC). NAC PET reconstruc-
tions allow examination of how well the motion correction alone is performing, without added 
changes due to attenuation correction. PET data processing (unlisting, reconstruction etc) was 
carried out with STIR (software for tomographic image reconstruction) (Thielemans et al 2012).

Figure 2. Method for automatic calculation of PET gate size. (a) Respiratory 
trajectory, (b) respiratory perimeter, (c) deformation ranges in each direction, (d) largest 
deformation ranges in each direction, (e) deformation ranges histogrammed, (f) final 
gating scheme.

(a)

(d) (e) (f)

(b) (c)
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For each MCIR reconstruction, a stack of emission sinograms, 3D voxel-wise deformation 
field and background sinogram are required for each gate. Using the gate size information found 
with the method described above, gating was then applied to the trajectory map and raw PET 
data were unlisted into one stack of sinograms per gate. Deformation fields are estimated with 
the motion model using the surrogate values at the centre of each gate according to figure 2(f).

The attenuation μ-map is warped to the exhale position with deformation fields estimated 
by the motion model, using the values of the surrogate signals P and P′ during the MRAC 
sequence acquisition. This exhale μ-map is then warped to match each of the gates. Randoms 
and scatter sinograms were also calculated for each gate, and together with the μ-map at each 
gate, make up the background sinograms.

3.2. Evaluation of motion models on MR data

All images I in the GRE MR series (test slices and model slices) were registered to their slice 
location reference image Ir to provide warped images Iw and associated deformation field d, 
using the same non-rigid registration scheme as described previously. We assume these defor-
mation fields provide a ‘perfect’ registration and call these the gold-standard. Deformation 
fields d̂ were estimated using each type of model. Each image I can therefore also be warped 
to an estimated ‘exhale’ position to form image Iŵ.

We tested how well each model performed by comparing images Iw to Iŵ with mutual infor-
mation (MI) and sum of squared difference (SSD) metrics, and comparing deformation fields 
d to d̂ by calculating Euclidean distance (ED). All metrics were used to compare how each 
model performed regarding model-fit error (testing the same set of GRE images that were 
used to form the model) and model-prediction error (testing using the set of GRE images not 
used as input to the model—acquired prior to the last 1 min model-building section).

We define a performance index M( )ξ  of an image-based metric M as percentage improvement 
by dividing the improvement from model-warping by improvement from registration-warping:

I I I I

I I I I
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M M

M M

, ,

, ,n

w r l r l

w r l r l

, ,

, ,
( )

( ˆ ) ( )
( ) ( )∑ξ =
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−

 (14)

Figure 3. Dynamic line profiles through original uncorrected, registered, and model-
warped images with the 2D model.
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where n is the frame number in the set to be evaluated—either test slices or model slices, and 
M is either metric MI or SSD. A high value of 100% of index M( )ξ  shows the model performs 
as well as registration in predicting the correct warping of all images back to their respective 
exhale reference images.

When using the ED metric, we compare model-based deformation fields with registration-
based deformation fields. We calculate the voxel-wise ED sum between each d̂ and d as abso-
lute values in mm:

d d
V

MeanED
n

∥ ˆ ∥
∑=

−
 (15)

where V is the total number of voxels in all frames in the set.
A Wilcoxon signed rank test was used to test the statistical significance of the results, with a 

threshold of 0.0001 (99.99% confidence), so p-values below this were considered significant.

3.3. Evaluation of motion models on PET data

A motion-compensated reconstruction of the 4 min PET acquisition was carried out using 
deformation fields estimated by each of the 4 motion models. This was done for 5 patient data 
sets, all with suspected/known lesions in the liver, pancreas or lung—patient A (4 pancreas), 
B (6 liver), C (10 liver), D (4 pancreas), E (6 liver/lung).

Motion-corrected images were compared to uncorrected images visually, and quantita-
tively with SUV measures in a region of interest (ROI) containing areas of high tracer uptake 
in AC and NAC PET. Measures used are SUVmax, and SUVpeak, defined as the maximum 
average activity concentration within a 12 mm diameter sphere inside the ROI (Boellaard et al 

Figure 4. Performance index MI( )ξ  as a % compared to registration, for (a) model-fit, 
(b) model-prediction.
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2015). Focal lesions were identified and highlighted by a PET accredited radiologist on the 
original clinical images of the PET-MR study.

4. Results

4.1. Evaluation of motion models on MR data

Figure 3 shows a dynamic line profile through the lung and liver (including lung vessels) for 
original uncorrected images I, registered images Iw and model-warped images Iŵ for the 2D 
model in one patient.

Figure 4 shows model performance for each patient in terms of MI for both model-fit and 
model-prediction. For model-fit error, the 2D-poly model performed best in terms of MI, SSD 
and ED, in 98%, 93% and 100% of patients respectively. For model-prediction error, the 2D 
(linear) model performed best in terms of MI, SSD and ED, in 82%, 78% and 65% of patients 
respectively.

Figure 5 shows average performance index for all metrics over all 45 patients, in terms 
of both model-fit (figure 5(a)) and model-prediction (figure 5(b)). Overall, for model-fit, the 
2D-poly model performed best, and for model-prediction, the 2D (linear) model performed 
best, and these were statistically significant (p  <  0.0001) when comparing with each other 
model, for each of the 3 metrics.

4.2. Evaluation of motion models on PET data

Figure 6 summarises the mean changes in SUVpeak and SUVmax in lesions in the 5 patient data 
sets. In all patients, average SUVpeak and SUVmax have significantly increased due to motion 
correction in both the AC and NAC PET images when comparing uncorrected and motion-
corrected images, but no model performs significantly better than any other.

Visually, the motion-corrected images from the four types of motion model were com-
parable, with all lesions showing an increase in sharpness. Figures 7 and 8 show examples 
of the improvements in image quality apparent in the motion-corrected PET reconstruc-
tions, using the 2D model. For patient A (figure 7), the blurring in the lesion marked in the 
uncorrected image has been reduced in the motion-corrected image and the lesion appears 
sharper.

For patient B (figure 8), the MRAC was acquired at a deep inhale position (possibly due 
to patient misunderstanding the instructions or easier due to illness), causing a mismatch 

Figure 5. Mean performance index ξ for MI and SSD, and mean vector field ED over 
all 45 patients, (a) model-fit, (b) model-prediction. Good improvement compared to 
warping by registration is indicated by high values for MI and SSD, and by low values 
for ED.
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between the attenuation μ-map and PET emission data. This in turn causes artefacts in the 
uncorrected images above the liver. In this example, the combination of misaligned μ-map, 
respiratory motion and avid lesions present at the top of the liver causes them to be almost 
invisible in the uncorrected image. Two lesions are marked on the sagittal image, and one of 
them is also marked on the coronal image. Both lesions are visible on the motion-corrected 
image. Both lesions, along with others that appear in the motion-corrected image were con-
firmed to be present in the patient using extra MR and CT information confirmed by an 
accredited radiologist.

5. Discussion

We have demonstrated the feasibility of building and applying a motion model with MR and 
PET data only; using only 1 min of data with no external devices, to build a correspondence 
model capable of estimating respiratory motion. For a whole body clinical PET-MR exami-
nation at our institution, PET data at each bed position are acquired for 3 min. At least 2 of 
these positions (thorax and abdomen) will be adversely affected by respiratory motion, and 
for these 2 positions, the 3 min scan can be extended to 4 min with no change needed to the 

Figure 6. Mean SUVpeak and SUVmax changes in lesions in 5 patients. (a) SUVpeak AC, 
(b) SUVmax AC, (c) SUVpeak NAC, (d) SUVmax NAC.
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protocol for the original 3 min. We explored various ways to set up the model with different 
numbers of surrogate signals, and different levels of complexity, and tested each model on 45 
MR patient data sets, and then on 5 identified oncology patients. The methodology presented 
builds a robust continuous motion model with the capability of interpolation and extrapola-
tion, by predicting motion outside of what was visible in the model data, thus allowing use of 
100% of PET data.

The overall results from all metrics indicated that the 2D-poly model performed the best 
in terms of model-fit (figure 5(a)). This was to be expected, as the larger the model coefficient 
matrix, the better the model can fit to the data. The aim of this work was to use the model 
to predict motion so other clinical MR sequences can be acquired in parallel with the PET 
scan, so the results of the model-prediction are of more interest. The general trend shows that 
performance drops when using the models to predict motion (figure 5(b)). These tests also 
showed that the simpler 2D model (linear) performs best in terms of motion prediction. This 
model is able to capture inter-cycle variability (hysteresis) as well as exhale-inhale motion.

When applied to PET data, the models all showed sizeable and statistically significant 
improvements by using MCIR compared to a single uncorrected reconstruction, but there 

Figure 7. Uncorrected and motion-corrected (2D model) PET reconstructions for 
patient A. Top row shows coronal slices and bottom row shows sagittal slices.

Figure 8. Uncorrected and motion-corrected (2D model) PET reconstructions for 
patient B. Top row shows coronal slices and bottom row shows sagittal slices.
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were no statistically significant differences in the extent of improvement between different 
models. It could be assumed that the quantitative evaluation on MR data gives a much better 
indication of model performance as 3 different global metrics were used, as opposed to only 
ROI based metrics in the PET. MR images are also of a much higher spatial resolution, so 
small discrepancies between the models would be more readily testable. It should be noted 
that for the evaluation on PET data, we did not differentiate between model-fit and model-
estimation as the whole 4 min PET acquisition was used in the reconstruction. However, as 3 
of the 4 min of PET data were acquired outside of the model-building section, the reconstruc-
tions tested mainly model-prediction accuracy.

The difference in performance of model-fit and model-prediction in the patient-by-patient 
MI results of figure 5 give clues as to where the model can fail. For example, there is a big 
drop in MI( )ξ  in all models for patient 5 in model-prediction compared to model-fit. When 
examining the dynamic MR for this patient, it is clear that bulk motion occurred during the 
first half of the PET scan. Currently our method cannot account for this type of bulk motion, 
but it could potentially be captured with intermittent MR-based checks throughout clinical 
scanning. Other work such as (Kolbitsch et al 2014) explores the problem of stand-alone bulk 
motion (without respiratory motion) in the PET-MR context.

It is clear from the PET images for patient B (figure 8) that a large source of error in 
the uncorrected images of this patient stemmed from the μ-map being mis-matched with the 
emission data. This is highlighted by the large increases in SUVpeak and SUVmax in the AC 
motion-corrected images for this patient (figures 6(a) and (b)), whereas the increase is much 
smaller in the NAC images. The extent of the μ-map mismatch can be seen by looking at the 
original signal P for this patient, where it is clear that a deep inhalation was taken at the start 
of the scan where the MRAC was acquired, as visible in figure 9. This shows the mis-match 
between an exhale reference image and the corresponding slice in the MRAC. Also shown 
is the alignment of the MRAC after warping to the exhale reference image. Here, the warp 
applied to the MRAC is outside of the model-building phase, nevertheless, the warped MRAC 
matches the exhale reference images reasonably well. However, more work is needed to test 

Figure 9. MRAC acquired at deep inhale, for patient B. Acquired MRAC and MRAC 
warped with model-predicted deformation fields are shown alone and overlaid with the 
exhale MR.
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the extrapolation performance of the models quantitatively. This result suggests shows that 
motion artefacts caused by the MRAC being acquired at the incorrect respiratory position 
can be reduced with the proposed methodology. This could be useful for patients with lung 
problems that find it difficult to hold their breath at exhale, or those with communication 
difficulties.

There are a number of limitations to the study. Firstly, there are some confounding fac-
tors in interpreting the results from the metrics used on MR data. We assume that the non-
rigid registrations worked perfectly to provide our motion ground truth, but this was not the 
case. Occasional registration errors may occur, but the use of the robust model means these 
stand-alone errors should not affect the model performance. A general, easy to use, open-
source registration scheme was utilised, which we chose as a practical method, but it cannot 
deal with non-diffeomorphic transformations (sliding motion), as would occur between the 
liver and the ribs. This could be overcome by utilising a registration method that allows for 
non-smooth deformation fields at organ boundaries where sliding motion occurs, provid-
ing a piecewise-diffeomorphic deformation field (Risser et  al 2013). Secondly, by only 
examining motion in the sagittal plane, we assume no lateral motion during respiration, 
and interpolation is used for deformations between slices. Although we did not explicitly 
enforce continuity of the model coefficients across slices, we did not observe any abrupt 
changes, which provides extra confidence in the ability of the motion model, driven by the 
PET- derived signal, to capture the actual patient motion. We chose a 2D multi-slice acquisi-
tion scheme to ensure good spatial resolution, but we also use a gap between slices to speed 
keep scan time to a minimum. A full 3D motion model including lateral motion could be 
found by acquiring contiguous slices (Würslin et al 2013, McClelland et al 2014) but this 
would extend the scan time.

Overall, results indicate that the 2D linear PET-MR motion model performs best when pre-
dicting motion as measured by MR data, and is effective in PET motion correction, suggesting 
that in a clinical setting the 2D linear model would be the best choice, although evaluation 
on a larger patient cohort is required. PET image results of patient B indicate the importance 
of proper motion correction through μ-map misalignment as it can lead to improved lesion 
detectability. For future validation work, a quantitative assessment of lesion detectability 
would also be of interest.

6. Conclusion

We have demonstrated a methodology to use only 1 min of PET and MR data to build a patient-
specific respiratory motion model, capable of predicting motion at time periods outside of the 
model. We tested different complexities of models on MR data, demonstrated improvements 
in clinical PET images when the motion information was incorporated into a PET reconstruc-
tion, and showed that lesion detectability could potentially be increased. The methodology 
built on previous work, to now allow interpolation and extrapolation in a continuous motion 
model, thus allowing more efficient use of PET data.
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