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Abstract 

Rationale 

Conflicting evidence exists on the effects of cannabis use on brain white matter integrity. The 

extant literature has exclusively focused on younger cannabis users, with no studies sampling 

older cannabis users. 

Objectives 

We recruited a sample with a broad age range to examine the integrity of major white matter 

tracts in association with cannabis use parameters and neurodevelopmental stage.  

Methods 

Regular cannabis users (n=56) and non-users (n=20) with a mean age of 32 (range 18–55 

years) underwent structural and diffusion MRI scans. White matter was examined using 

voxel-based statistics and via probabilistic tract reconstruction. The integrity of tracts was 

assessed using average fractional anisotropy, axial diffusivity and radial diffusivity. Diffusion 

measures were compared between users and non-users and as group-by-age interactions. 

Correlations between diffusion measures and age of onset, duration, frequency and dose of 

current cannabis use were examined. 

Results 

Cannabis users overall had lower fractional anisotropy than healthy non-users in the forceps 

minor tract only (p=.015, partial eta =0.07), with no voxel-wise differences observed. 

Younger users showed predominantly reduced axial diffusivity, whereas older users had 

higher radial diffusivity in widespread tracts. Higher axial diffusivity was associated with 

duration of cannabis use in the cingulum angular bundle (Beta=5.00x10-5, p=.003). Isolated 

higher AD in older cannabis users was also observed. 
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Conclusions 

The findings suggest that exogenous cannabinoids alter normal brain maturation, with 

differing effects at various neurodevelopmental stages of life. These age-related differences 

are posited to account for the disparate results described in the literature. 

 

 

Keywords: Cannabis; Brain; Diffusion tensor imaging; Magnetic resonance imaging; 

Tractography; White matter. 
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Introduction 
 

With the increasing legalisation of cannabis for medicinal (Martin 2014) and recreational 

(Room 2014) purposes there is a greater need than ever to better characterise the long-term 

consequences of cannabis use on the brain. Evidence suggests that the endocannabinoid 

system is critically involved in regulating neural development through activation of 

neurotrophic factors (Díaz-Alonso et al. 2012; Bilkei-Gorzo 2012) and promoting 

oligodendrocyte maturation (Molina-Holgado et al. 2002). Given this regulatory role in white 

matter growth, it follows that perturbation of this system by chronic exposure to exogenous 

cannabinoids may alter the development of white matter tracts (Hirvonen et al. 2012). 

The current literature on white matter in cannabis users has generally focused on adolescents 

and young adults, utilising samples with a mean age less than 25 (DeLisi et al. 2006; Arnone 

et al. 2008; Gruber et al. 2011; Gruber et al. 2014; Shollenbarger et al. 2015) or 20 (Ashtari et 

al. 2009; Jacobus et al. 2009; Bava et al. 2010; Becker et al. 2015), with only two studies 

utilising slightly older participants (mean 27 years of age, Rigucci et al. 2015, and mean 28 

years of age, Filbey et al. 2014). While this focus may be justified by concerns regarding the 

critical brain development occurring during this period (Bossong and Niesink 2010), 

restriction to young samples may impose major limitations to understanding the impact of 

cannabis exposure on white matter given its prolonged developmental trajectory. While grey 

matter continues to be refined until approximately the late 20’s (Giedd et al. 1999), white 

matter development is thought to peak in the 30’s and 40’s (Westlye et al. 2010; Peters et al. 

2014). Importantly, the average age of cannabis users has increased over the last decade, with 

approximately one quarter of cannabis users now comprising older individuals (defined as 

over 35 years of age) (Burns et al. 2013). Harm from cannabis use (as measured by hospital 

Emergency Department attendance) is also increasing in older adults (Kaar et al. 2015). 
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Given the changing cannabis use epidemiology there is a clear need to characterise white 

matter integrity in older cannabis users. 

Diffusion tensor imaging (DTI) has been used in the last decade to probe the extent of white 

matter abnormalities in cannabis users. Briefly, DTI exploits the properties of water when 

confined in nerve sheaths to infer the physical properties of white matter. White matter 

integrity can be derived by examining the overall directions of water displacement (fractional 

anisotropy; FA), which is sensitive, but not specific, to aberrant cellularity such as decreased 

myelination or reduced axonal numbers (Alexander et al. 2007). Additional detail on white 

matter integrity can be obtained from axial (AD) and radial (RD) diffusivity metrics 

(Alexander et al. 2007). Decreased AD and increased RD are generally posited to describe 

reduced axonal volume and reduced myelination, respectively (Song et al. 2002). 

Previous research of white matter in younger cannabis users has generally found inconsistent 

results. Lower FA has been demonstrated in cannabis users in the anterior corpus callosum 

(Gruber and Yurgelun-Todd 2005; Arnone et al. 2008; Gruber et al. 2011; Gruber et al. 2014; 

Epstein and Kumra 2015), fronto-thalamic connections (Ashtari et al. 2009), uncinate 

fasciculus (Shollenbarger et al. 2015), as well as temporal and parietal brain regions, 

including the left superior longitudinal fasciculus and inferior longitudinal fasciculus (Bava et 

al. 2010; Epstein and Kumra 2015). Additionally, using newer whole-brain network analysis 

methods, we have previously reported that cannabis users had fewer streamlines in the right 

fimbria of the hippocampus and in hippocampal commissural fibres connecting the splenium 

of the corpus callosum and the right precuneus (Zalesky et al. 2012), with lower FA in the 

hippocampal commissural fibre bundle (Solowij et al. in press). Contrary to these findings, 

other studies noted higher FA in cannabis users in widely distributed cortical areas (DeLisi et 

al. 2006), forceps minor (Filbey et al. 2014, Becker et al. 2015), left superior longitudinal 

fasciculus, left superior corona radiata (Jacobus et al. 2009) and the right superior 
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longitudinal fasciculus (Bava et al. 2010). Moreover, longitudinal studies have demonstrated 

cannabis use has complex alterations to white matter integrity over time (Becker et al. 2015, 

Jacobus et al. 2013). In summary, the studies to date have implicated cannabis effects on 

multiple tracts, however the direction of change remains equivocal. 

This inconsistency has been attributed to low sample sizes (Gruber and Yurgelun-Todd 2005; 

DeLisi et al. 2006) or less detailed scanning parameters in earlier studies (as described by 

Ashtari et al. 2009) which may have overlooked smaller, more subtle, or regionally-specific 

changes. Additionally, some studies have been confounded by samples with concomitant 

cannabis and alcohol abuse, preventing the detection of cannabis specific effects (Jacobus et 

al. 2009; Bava et al. 2010). The methods of imaging analysis have also yielded different 

findings. The majority of studies have manually described ROIs in the frontal lobes, whilst 

the few studies using whole-brain analysis have primarily relied on Tract-Based Spatial 

Statistics (TBSS) with the exception of Zalesky and colleagues (Zalesky et al. 2012). ROI 

analyses are more time consuming to trace than the more automated methods, and thus 

provide only a limited picture of changes within the brain. While the whole-brain TBSS 

approach may be sufficient for exploratory analyses, it does not inform the extent to which a 

localized difference in white matter integrity may influence the integrity of a tract as a whole. 

Our previous network analysis (Zalesky et al. 2012) was limited to equally spaced 5mm3 

voxel connections, which may overlap or underestimate the anatomical locations of defined 

white matter tracts. An alternative method is to apply expert neuroanatomists’ segmentations 

of major white matter tracts to individual participants (TRActs Constrained by UnderLying 

Anatomy, TRACULA, (Yendiki et al. 2011)) and calculate average white matter integrity 

over the entire tract. In combining automated methodologies, we utilised the exploratory 

voxel-based comparison of TBSS together with the overall tract integrity assessment of 
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TRACULA. Moreover, we sought to expand our search beyond just anterior tracts 

(Shollenbarger et al. 2015) to all major defined tracts in the brain. 

Thus, the aim of the current study was to apply, for the first time, these combined analysis 

methods to an older sample of well-matched cannabis users and healthy non-users to examine 

group differences in the integrity of major white matter tracts. Additionally, we investigated 

whether changes between groups were different at different ages, and we sought to determine 

the impact of age of onset, duration of regular cannabis use, and current cannabis dose and 

frequency, on white matter integrity in these tracts. It was hypothesised that cannabis use 

would be associated with decreased white matter integrity in regionally-select tracts, and that 

this decrease would be greater in older users. Furthermore, we hypothesised that white matter 

integrity would be would be diminished by an earlier age of onset of regular use, longer 

duration of use and higher current dose and frequency. 

 

Materials and Methods 
 

Participants 
 

Cannabis users and non-using healthy controls were recruited from the general community by 

means of local advertisements. The sample ranged in age from 18 to 55 years; demographic 

and substance use characteristics are presented in Table 1. A portion of this overall sample 

was reported in Zalesky and colleagues (Zalesky et al. 2012), with further details provided 

there. 
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Table 1. Sample characteristics. 

 Cannabis Control p value 
N 56 20  
Age 32.3 (10.8) 30.0 (10.6) 0.12 
Gender (% male) 42 40 0.83 
Education (years) 12.7 (2.3) 13.6 (1.4) 0.11 
IQ 102.4 (12.0) 107.1 (11.2) 0.13 
Alcohol (drinks/weekly) 5.4 (6.7) 5.6 (6.9) 0.93 
Tobacco (cigarettes/daily) 9.3 (7.4) 1.4 (3.5) < 0.01 
Age of first cannabis use (years) 15.1 (2.3)   
Age of onset regular cannabis use (years) 16.3 (2.6)   
Duration of regular cannabis use (years) 15.5 (9.7)   
Current cannabis dose (cones/month) 460.7 

(350.1) 
  

Current cannabis frequency of use 
(days/month) 

25.5 (8.0)   

Values are mean (SD); IQ assessed using the Wechsler Abbreviated Scale of Intelligence. 

Regular use defined as ≥ twice monthly. p value represents the t/Chi-squared test between 

cannabis users and controls on demographic variables. 

 

Cannabis use was assessed using a structured interview incorporating a timeline follow-back 

procedure (Sobell and Sobell 1992). Use was quantified as “cones” which is approximately 

0.1 grams of cannabis smoked through a water pipe (3 cones are roughly equivalent to one 

joint; see  https://ncpic.org.au/media/1593/timeline-followback.pdf). The minimum use for 

inclusion in the study was twice a month for at least three years; the majority of the sample 

recruited were using near daily (Table 1). Participants were not formally assessed for any 

cannabis use disorder. All participants were right-handed, except for one left-handed 

cannabis user. Exclusion criteria for the study included any neurological conditions, head 

injuries with concussion or requiring hospitalisation, or psychiatric illness (defined by the 
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Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental Disorders-

IV Axis I disorders (First et al. 2002). There was minimal reported other illicit drug use in the 

cannabis users (amphetamines, benzodiazepines, cocaine, ecstasy, hallucinogens, inhalants 

and opiates); median lifetime use was between 0 to 4 occasions for any other drug. Cannabis 

users were asked to abstain from using cannabis for at least 12 hours before imaging due to 

additional neuropsychological and functional MRI studies being conducted on the same day 

(not reported here; median self-reported abstinence 15 hours). Urinary metabolites were 

positive for most users; this was not an exclusion criterion for the study. 

Alcohol use was quantified as standard drinks using the Alcohol Use Disorders Identification 

Test and structured interview. IQ was assessed using the Wechsler Abbreviated Scale of 

Intelligence (Wechsler 1999). Ethical approval was provided by the Melbourne Health 

Research Ethics Committee and informed consent was obtained from all participants in 

accordance with the Declaration of Helsinki. 

MRI acquisition 
 

Both structural and diffusion MRI images were obtained using a Siemens Magnetom Trio 3T 

scanner with a 32-channel head coil at the Murdoch Children’s Research Institute, 

Melbourne, Australia. Structural images were acquired using a T1 weighted magnetisation 

prepared rapid acquisition gradient recalled echo sequence (TR = 1900ms, TE = 2.19ms, 

FOV = 256mm, 1mm3 voxel resolution with 176 sagittal slices). Diffusion images were 

obtained using a spin-echo echo-planar imaging sequence (TR = 7000ms, TE = 96ms, FOV = 

24x24cm, 2.3x2.3mm in-plane voxel resolution with 54 axial slices of 2.3mm thickness). 

Five non-diffusion weighted images were acquired initially before 42 images with uniform 

diffusion weighting (b = 2000s/mm). 
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MRI data processing 
 

Structural imaging data were processed using Freesurfer 5.3 software 

(http://surfer.nmr.mgh.harvard.edu/) for cortical reconstruction and volumetric segmentation. 

Output was manually checked for errors and corrected according to the user manual, which 

primarily involved removal of the superior sagittal sinus from inclusion in the pial 

segmentation. 

Diffusion sequences were pre-processed using the TRACULA pipeline (Yendiki et al. 2011), 

which involved eddy-current correction and rotation of b-vectors, followed by brain 

extraction and co-registration between structures and diffusion (b=0) volumes. Fractional 

anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) volumes were created 

using the DTIFIT command from FSL (Smith et al. 2004) utilising ordinary least squares 

tensor fitting. Rotational and translational measures of head motion were computed and no 

participant exceeded 2mm in either measure, nor were there statistically significant 

differences between groups on these measures (Yendiki et al. 2014). Individual structural 

volumes, diffusion volumes, and template volumes were co-registered. Probabilistic 

tractography was performed using FSL software Bedpostx ball-and-stick model (Jbabdi et al. 

2007). Prior expert segmentation of major white matter pathway seed points was applied to 

each participant’s diffusion volume to recreate major white matter tracts for each participant. 

Pathways reconstructed were: forceps major, forceps minor, bilateral anterior thalamic 

radiation, cingulum (angular bundle & cingulate gyrus), corticospinal tract, inferior 

longitudinal fasciculus, superior longitudinal fasciculus (parietal and temporal divisions), and 

the uncinate fasciculus (Fig. 1). Tracts were manually inspected to ensure valid 

reconstructions. The average measures of FA, AD, and RD within each pathway were 

calculated for each participant. 
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For TBSS analysis (Smith et al. 2006), the FA, AD, and RD maps from the TRACULA pre-

processing stages were used. The FA volumes were subsequently aligned to the FMRIB58 

FA 1mm image using non-linear registration. These realigned images were used to generate a 

mean, shared, “skeleton” tract, for which each participant’s FA map was projected onto to 

create the final skeletonized FA data. The registration warps from the FA process were 

subsequently utilized for the AD and RD images to create skeletonized AD and RD volumes 

for subsequent analysis. 
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Fig. 1 Reconstructed major white matter tracts 

 

Legend: Superior (top) and lateral (bottom) views of the major white matter tracts 

superimposed on a sample T1 image. 
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Statistical analysis 
 

Group (controls and cannabis users) characteristics were compared using independent sample 

t-tests or Chi-squared tests as appropriate. The white matter integrity measures FA, AD and 

RD were examined for a main effect of group status (users and non-users) and a group-by-

age interaction effect. The effect of age alone (adjusted for covariates) is included in the 

supplemental Table S1 for reference. Lastly, DTI measures were correlated with cannabis use 

measures in the cannabis user group only. All white matter integrity analyses included 

covariates of age, gender, education, IQ, alcohol and cigarette consumption since these 

variables have known associations with white matter integrity (Szeszko et al. 2003; Lebel et 

al. 2008; Pfefferbaum et al. 2009; Hudkins et al. 2012). Given the unequal tobacco use 

between groups, we conducted additional partial analysis of models to assess for confounding 

of tobacco use which is presented in the supplemental information. 

For voxel-wise analysis of TBSS skeletonised data, permutation tests with 1000 replications 

were performed using the FSL randomise tool with family-wise correction for multiple 

comparisons (Smith et al. 2004) and cluster formation using Threshold-Free Cluster 

Enhancement (Nichols and Holmes 2002). Significance was set at p < .05. To further clarify 

the group-by-age interaction effect, the voxel with the maximal significance value was 

identified for each DTI metric (i.e. FA, AD, and RD) and the DTI values were plotted across 

ages between groups. 

For the tract reconstructions, analyses were performed in R version 3.1.2 (R Development 

Core Team 2008) using linear models. Assumptions of normality and homogeneity of 

variances were met through visual inspection of histograms and residual plots. Where 

significant group-by-age interactions were present then the Johnson-Neyman test (D’Alonzo 
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2004) was performed to identify age ranges where significant group differences were 

observed. 

Previous studies have examined only one, or at most three (Filbey et al. 2014), specific tracts 

at any one time due to the laborious process of manual segmentation. To ensure comparable 

error rates with previous research on fewer tracts, we considered p values significant at the 

.05 level. For definitive conclusions about differences in tracts, we lowered the significance 

level to .003 to take into account the 18 different tracts being compared (i.e. .05/18), which is 

an approach utilised by prior studies (e.g. Hatton et al. 2014). All reported p values are 

uncorrected. We also attempted False Discovery Rate (FDR) correction across the entire 

sample, although this is problematic with correlated independent variables (Schwartzman and 

Lin 2011). No p values survived the FDR correction. 

 

Results 
 

Tract-Based Spatial Statistics 
 

TBSS analysis found no significant differences between groups. However, widespread 

significant interactions between cannabis use status and age were noted across predominantly 

frontal and central tracts for all white matter integrity indices (FA, AD and RD; Fig. 2). The 

interaction effect was demonstrated by plotting the regression slopes of the maximally 

significant voxel, showing that there are significantly different values of FA, AD, and RD 

measures depending on both cannabis use status and age at the time of assessment. 
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Fig. 2. Significance maps of the interaction between cannabis use status and age across DTI 

metrics (top) and regression slopes for the maximally significant voxel (bottom). 

 

Top panel: Significance maps displayed for the interaction between cannabis use status and 

age on FA, AD, and RD skeletons. All significance maps overlaid over mean FA skeleton 

(green) and standard MNI T1 brain image at Z=0 slice. 

Bottom panel: Interaction effect between DTI measures (FA, fractional anisotropy at X=34, 

Y=-22, Z=-6; AD, axial diffusivity at X=42, Y=-7, Z=-31; and RD, radial diffusivity at X=-

26, Y=-21, Z=28) for cannabis users and control participants across the age range. 

 

The only significant association between cannabis exposure measures (i.e. age of regular use, 

duration of use, current dose and current frequency of use) and DTI metrics was between 
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greater duration of cannabis use and lower FA in an area corresponding to the left inferior 

longitudinal fasciculus (Fig. 3). 

 

Fig. 3 Significance map of the association between duration of cannabis use and FA 

 

Significance map overlaid over mean FA skeleton (green) and standard MNI T1 brain image 

at X = -38 slice. 

 

Tract group differences 
 

Comparison of cannabis users and controls revealed significant differences between groups 

for FA in the forceps minor only (cannabis users FA = 0.472, SD = 0.052; controls FA = 

0.488, SD = 0.026; p = .015). 
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The group-by-age interaction was significant across a number of tracts and is demonstrated in 

Table 2. The interaction pattern was similar to the TBSS interaction pattern demonstrated in 

Fig 2. Together with the Johnson-Neyman technique, tract-based analysis revealed lower FA 

in older users, lower AD and RD in younger users, and higher AD and RD in older users. 

 

Table 2. Beta-values and p values for group by age interactions, and age cut-offs where 

significant differences in white matter integrity measures were found between cannabis users 

and controls. 

 FA AD RD 
 Beta 

x104 
p value age  

Beta 
x106 

p value age 
Beta 
x106 

p value age 

Forceps major -1.4 0.874  13.5 0.215  8.10 0.292  

Forceps minor -0.3 0.968  26.4 0.004 >34.8 10.05 0.204  

L anterior 
thalamic radiation 

-10.7 0.083  14.0 0.064  16.16 0.014 
<18.9
>49.4

L cingulum 
(angular bundle) 

-7.1 0.364  8.0 0.415  13.29 0.113  

L cingulum 
(cingulate gyrus) 

-21.7 0.077  -27.4 0.059  9.35 0.326  

L corticospinal tract -13.7 0.024 >36.3 4.9 0.488  14.18 0.005 >34.7

L inferior 
longitudinal 
fasciculus 

-11.5 0.240  15.4 0.201  17.50 0.033 >31.9

L parietal superior 
longitudinal 
fasciculus 

-7.8 0.320  14.4 0.035 <18.0 13.32 0.041  

L temporal superior 
longitudinal 
fasciculus 

-10.7 0.174  11.2 0.136  13.54 0.041  

L uncinate 
fasciculus 

-1.9 0.767  16.4 0.057  9.11 0.214  

R anterior 
thalamic radiation 

-6.5 0.339  21.1 0.007 
<18.6 
>44.3 

15.81 0.013 >39.7

R cingulum 
(angular bundle) 

-7.2 0.399  15.6 0.158  18.05 0.030 >53.1
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R cingulum 
(cingulate gyrus) 

-14.2 0.196  11.9 0.327  20.12 0.026 <23.7

R corticospinal tract -14.9 0.043 >34.6 -4.5 0.541  12.22 0.044 >49.0

R inferior 
longitudinal 
fasciculus 

-9.8 0.221  12.1 0.269  16.44 0.039 >53.1

R parietal superior 
longitudinal 
fasciculus 

0.4 0.957  19.1 0.026 
<18.6 
>53.7 

10.45 0.139  

R temporal superior 
longitudinal 
fasciculus 

-1.6 0.796  10.5 0.197  8.09 0.203  

R uncinate 
fasciculus 

-13.5 0.017 >41.8 11.3 0.176  18.90 0.004 
<19.7 
>41.5

Standardised Beta values of the interaction effect between groups and the p value of the 

interaction effect. Age refers to the cut off in years beyond which significant differences 

between cannabis users and controls emerge, determined using the Johnson-Neyman 

statistical method (D’Alonzo 2004). FA, fractional anisotropy; AD, axial diffusivity; RD, 

radial diffusivity. 

 

Tract associations with cannabis use 
 

Within the right cingulate gyrus, AD was negatively associated with the age of onset of 

regular cannabis use (Beta = -1.4x10-5, p = .027) and positively associated with the duration 

of cannabis use (Beta = 5.00x10-5, p = .003). For the same tract, FA had a positive association 

with current dose (Beta = .013, p = .044). 

Longer duration of regular use was also associated with decreased in RD in the left angular 

bundle (Beta = -0.15x10-5, p = .020). Current dose was also associated with lower FA in the 

forceps minor (Beta = 8.01, p= .045) and left anterior thalamic radiation (Beta = -8.37, p = 

.017). There were no significant associations with frequency of current use. 
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Discussion 
 

In this study we examined the integrity of major white matter tracts between cannabis users 

and non-user healthy controls and evaluated age-related white matter integrity associations 

with the extent of cannabis exposure. Our hypothesis of worsening DTI measures in cannabis 

users overall was only partially supported, with FA in cannabis users being significantly 

lower in the forceps minor only. Interaction effects between group and age, however, 

demonstrated widespread altered DTI metrics in the cannabis users across different analysis 

methodologies, primarily located within frontal, parietal and motor tracts. In particular, both 

localised and widespread changes in RD were observed, with younger users having lower RD 

and older users having higher RD than non-using controls, consistent with our hypothesis. As 

further hypothesised, lifetime cannabis exposure also had isolated deleterious effects, 

primarily in the right cingulate gyrus, whereas current cannabis dose was associated with 

lower FA in frontal tracts. 

Unique to this study is the consideration of white matter integrity in a wide age range of 

cannabis users. Our finding of lower FA in the forceps minor tract has been demonstrated in 

the literature for younger users (Ashtari et al. 2009; Filbey et al. 2014), although Becker et al. 

(2015) did note higher FA in cannabis users than non-users. This effect on the forceps minor 

is congruent with the known increased density of cannabinoid type 1 receptors (which are 

activated by the main psychoactive constituent of cannabis, delta-9-tetrahydrocannabinol 

(THC)) in frontal brain regions (Svíženská et al. 2008). Our finding of reduced FA in a wide-

ranging in age sample provides evidence of a negative impact of cannabis on frontal white 

matter integrity not just in younger users, but across older users as well. 

Utilising this older sample, we found for the first time, significantly lower FA in older 

cannabis users in bilateral corticospinal tracts and higher RD of bilateral corticospinal, 
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bilateral inferior longitudinal, right anterior thalamic radiation, right angular bundle and right 

uncinate fasciculus tracts. These differences were significant from approximately age 32 

onwards, highlighting the limitations of past research that typically assessed samples with a 

mean age below 25 (DeLisi et al. 2006; Arnone et al. 2008; Ashtari et al. 2009; Jacobus et al. 

2009; Bava et al. 2010; Gruber et al. 2011; Gruber et al. 2014; Becker et al. 2015; 

Shollenbarger et al. 2015). Our findings provide a preliminary extension for longitudinal 

studies in younger users which noted altered FA in the frontal regions (Becker et al. 2015) 

and the left inferior longitudinal fasciculus (Epstein and Kumra 2015) to additional tracts 

within the brain. Our finding of significant voxel-wise associations between duration of use 

and FA in the left inferior longitudinal fasciculus is consistent with that of Epstein and 

Kumra (2015); it is unclear why this tract in particular is vulnerable to cumulative dose-

dependent effects of cannabis. We encourage further histological analysis of this tract in 

long-term cannabis users. 

Although decreased FA was observed in the forceps minor when considering the tract as a 

whole, we did not replicate previous findings of reduced FA values in this tract in cannabis 

users using TBSS (Arnone et al. 2008). Notably, previous research only examined younger 

cannabis users. Combined with the substantially increased AD in this tract only in older users 

(>34.8 years; Beta = 26.4 p = .004), this may indicate that variable insults are more 

distributed, and may involve increased axon density, in older users. Additionally, the general 

paucity of significant voxel-based differences observed using TBSS suggests that the effect 

of cannabis is evident only when considering the tract as a whole. Notably, recent research 

has generally moved away from voxel-based comparisons (DeLisi et al. 2006; Arnone et al. 

2008) to considering tracts as a whole (Filbey et al. 2014; Epstein and Kumra 2015; 

Shollenbarger et al. 2015). We have demonstrated somewhat consistent effects on RD 
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utilising both approaches, however we note that different methods have isolated different 

tracts of interest. Multi-modal approaches are encouraged for future research. 

Paradoxically, our findings also suggested that younger and older users had improved metrics 

of white matter integrity in certain tracts. Older users had an increased AD in forceps minor, 

whereas younger users had increased RD in the left anterior thalamic radiation, right 

cingulate gyrus and right uncinate fasciculus) compared to non-using controls. These findings 

are corroborated in the literature, with increased measures of integrity reported in frontal and 

parietal tracts in cannabis users (DeLisi et al. 2006; Jacobus et al. 2009; Bava et al. 2010; 

Filbey et al. 2014). 

A potential mechanism to explain these paradoxical results is that cannabis use in critical 

periods of development may accelerate aspects of brain maturation in young adulthood but in 

later years lead to potentially toxic effects (Bilkei-Gorzo 2012). Importantly, our results for 

healthy control participants demonstrate a gradual decline in both AD and RD into middle 

age, which is consistent with previous studies of healthy controls and likely reflects 

improvements in efficiency rather than decreased integrity per-se (Westlye et al. 2010). 

Animal models indicate that the endocannabinoid signaling system, particularly in the 

dorsolateral prefrontal cortex, peaks in early childhood and progressively declines into 

adulthood (Long et al. 2012). Therefore, the potential for exogenous cannabis use to interact 

with the endogenous system is greater the earlier that regular cannabis use is commenced. 

Given that our findings primarily involve increased RD in cannabis users (reflecting 

decreased myelination (Song et al. 2002)) and given the known role of endogenous 

cannabinoids on promoting oligodendrocyte maturation (Molina-Holgado et al. 2002), our 

results suggest that cannabis use predominantly alters myelination in the brain. Moreover, 

exogenous cannabis use has been shown to interfere with normal pruning processes (Rubino 

et al. 2015), thus possibly elevating measures of white matter connectivity. Alternatively, 
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these increases in white matter may arise as a reactive response to reduced gray matter (Yücel 

et al. 2008; Lorenzetti et al. 2010) or be an imaging artefact due to smaller axons leading to 

falsely elevated axon density (Beaulieu 2002). Additionally, differentially altered white 

matter integrity across age groups, which to our knowledge has not been previously 

examined, may explain the seemingly disparate reports of both increases (DeLisi et al. 2006; 

Jacobus et al. 2009; Bava et al. 2010; Filbey et al. 2014) and decreases (Gruber and 

Yurgelun-Todd 2005; Arnone et al. 2008; Ashtari et al. 2009; Gruber et al. 2011; Gruber et 

al. 2014) in white matter integrity in cannabis users. Lastly, cannabinoid neurotoxicity may 

be mediated by immune processes (Molina-Holgado et al. 2003), or be compounded by direct 

toxicity from hydrocarbons and carbon monoxide produced by combustion during cannabis 

smoking (Prockop and Naidu 1999; Abrams et al. 2007). Given the imaging evidence of 

differential effects of cannabis on white matter tracts, further histopathological research on 

the effects on cannabis on axonal development is encouraged. 

After correcting for multiple comparisons, there remained a strong positive association 

between the AD of the right angular bundle and duration of regular cannabis use. The right 

cingulum angular bundle runs along the inferior cingulum and connects frontal to 

hippocampal and para-hippocampal regions (Schmahmann et al. 2007). Given that chronic 

cannabis use is associated with worsening verbal memory (Solowij and Battisti 2008; Broyd 

et al. 2015), and poorer integrity of the cingulum angular bundle is also associated with 

poorer memory in both younger and older adults (Fjell et al. 2015; Ezzati et al. 2015), our 

findings may provide further evidence for impairment in the memory systems of chronic 

cannabis users. 

Despite evidence for altered white matter integrity at various ages, the current cross-sectional 

design precludes making definitive conclusions about causality. Our findings may be 

confounded with cohort effects resulting from, for example, the increasing THC 
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concentrations in cannabis over time (Cascini et al. 2012). However, the lower potency 

exposed to early in the drug using career of our older cohort would arguably lead to fewer 

observed group differences, yet, this group still showed poorer white matter integrity indices.  

This suggests that exposure even to lower potency cannabis during adolescence/early 

adulthood in combination with the effects of prolonged exposure to cannabis over many 

years, manifests most prominently as white matter integrity group differences from non-users 

in older age. Of concern is the current increased potency and earlier onset regular use in 

younger cannabis users; as these users age there may appear even greater disparity in white 

matter integrity between users and non-users. 

Further consideration should be given to a reported decrease in orbitofrontal grey matter 

volume predating cannabis use (Cheetham et al. 2012), which may lead to connectivity 

alterations that precede the commencement of cannabis use and may differentially interact 

with subsequent exposure to cannabis. Despite this, in recent longitudinal studies of white 

matter and cannabis use, white matter changes were found to develop subsequent to the 

commencement of regular cannabis use (Bava et al. 2010; Becker et al. 2015; Epstein and 

Kumra 2015). The current trend for longitudinal studies of cannabis users is encouraged, 

particularly into older age. 

There are a number of limitations to this study which deserve acknowledgement. Although 

we revised our significance level downward to account for the multiple comparisons (as in 

previous research, e.g. Hatton et al. 2014), we also considered results at a p < .05 where the 

results were consistent, since this is the first study, to our knowledge, of older cannabis users. 

Although this may inflate the Type I error rate, our findings are generally consistent with 

previous research. Additionally, given the number of covariates included in our analyses, our 

study may be potentially underpowered to detect smaller effects. Further research into the 

effects of cannabis use on white matter in older cannabis users is encouraged to verify our 
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findings. Furthermore, both tobacco use and the duration of cannabis use are both potential 

confounds in our sample. Tobacco use was significantly greater in users than non-users, and 

thus may have confounded the group effect, although there was limited evidence of this in an 

additive model (Supplemental Table 2). Further confounding in our study occurs with 

participants commencing regular cannabis use at a similar age, and so the effects of aging and 

duration of cannabis use are closely integrated. More heterogenous cannabis users, and well-

matched groups of users and non-users, would allow better quantification of effects due to 

aging or cannabis exposure. Lastly, the sub-acute effects of recent cannabis use on DTI 

measures require further investigation. Participants self-reported a median 15 hours 

abstinence from cannabis and urinalysis was performed. We assume that residual 

cannabinoids are unlikely to influence brain microstructure at the level detectable by DTI, 

however further research to clarify any such effects would be warranted. 

In conclusion, there have been inconsistent reports of both decreased and increased white 

matter microstructure in previous DTI studies of cannabis users. This study is the first to 

capture both trends in the same sample by assessing a sample with a wider age range than 

previous studies. Our findings provide evidence of predominantly degraded white matter 

integrity with increased cannabis use, with most prominent effects on indices of myelination. 

Replication of these findings in prospective longitudinal research in recreational cannabis 

users is encouraged to further elucidate the effects of cannabis across the lifespan. 
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The main effect of age (adjusted for covariates) on DTI metrics across both users and non-users 
is presented in Table S1. Results indicate that age is an important predictor of white matter 
integrity and thus supports the investigation of cannabis use across the lifespan. 

 

Table S1. Main effect of aging on DTI metrics, corrected for cannabis use, gender, IQ, 
education, tobacco and alcohol use. 

 

 FA AD RD 
 Beta 

x104 
p value 

Beta 
x106 

p value 
Beta 
x106 

p value 

Forceps major -10.91 0.008 -1.00 0.040 0.77 0.026 

Forceps minor -12.01 0.000 -0.59 0.170 0.83 0.018 

L anterior 
thalamic radiation 

-8.80 0.002 -0.74 0.033 0.51 0.085 

L cingulum 
(angular bundle) 

-7.35 0.036 -1.21 0.006 -0.01 0.985 

L cingulum 
(cingulate gyrus) 

-8.90 0.100 -0.35 0.577 0.83 0.046 

L corticospinal tract -6.63 0.020 -1.44 0.000 0.10 0.664 

L inferior 
longitudinal fasciculus 

-12.79 0.005 -1.45 0.008 0.44 0.235 

L parietal superior longitudinal 
fasciculus 

-8.55 0.016 -0.55 0.084 0.46 0.104 

L temporal superior 
longitudinal fasciculus 

-6.96 0.054 -0.68 0.049 0.32 0.280 

L uncinate fasciculus -4.19 0.138 -1.38 0.000 -0.29 0.370 

R anterior 
thalamic radiation 

-0.23 0.941 0.15 0.686 0.16 0.586 
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R cingulum 
(angular bundle) 

-4.74 0.214 -1.02 0.038 -0.14 0.718 

R cingulum 
(cingulate gyrus) 

2.83 0.606 -0.19 0.740 -0.05 0.911 

R corticospinal tract -9.05 0.007 -1.06 0.001 0.43 0.112 

R inferior 
longitudinal fasciculus 

-13.58 0.001 -1.47 0.006 0.51 0.155 

R parietal superior longitudinal 
fasciculus 

-14.23 0.000 -0.60 0.112 0.83 0.008 

R temporal superior 
longitudinal fasciculus 

-7.64 0.007 -0.32 0.371 0.45 0.106 

R uncinate fasciculus -5.84 0.025 -0.80 0.026 0.13 0.661 

 

 

A partial model analysis is presented for our only significant overall group difference (FA of the 
forceps minor) in Table S2. Results indicate generally stable parameter estimates and 
significance values, which suggest that the effect of tobacco use (which significantly differed 
between groups) does not substantially confound the results. 

 

Table S2. Partial model analysis of the FA of the forceps minor 

 

Model Beta (Group)
p value (Group) 

Age + Gender + Group 0.014 0.012 

Age + Gender + Cig + Group 0.017 0.012 
Age + Gender + Cig + Education + IQ + Alcohol + Group 0.017 0.015 
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