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Abstract 

Linewidth enhancement factor, also known as the alpha factor, is a fundamental 

characteristic parameter of a laser diode (LD). It characterises the broadening of the laser 

linewidth, the frequency chirp, the injection lock range and the response to external optical 

feedback. In the past few decades, extensive researches have been dedicated to the 

measurement of alpha. Among all the existing approaches, the methods based on self-

mixing interferometry (SMI) are considered the most simple and effective. The core 

components of a SMI consist of an LD, a lens and a moving target. When a portion of laser 

light backscattered or reflected by the external target and re-enters the laser cavity, a 

modulated lasing field will be generated. The modulated laser power is also called SMI 

signal, which carries the information of target movement and LD related parameters, 

including alpha.  

The frequency-domain method is one of the SMI based alpha measurement techniques, 

which has the merits of high accuracy, feasible over a wide range of optical feedback level 

and low computational complexity. However, the measurement performance can be easily 

degraded by the noises contained in SMI signals. This thesis addresses such issue from two 

aspects: noise filtering and process optimization. A new filtering technique is proposed 

specially for eliminating the transient oscillation (which is treated as impulsive noise) and 

reducing white noise in SMI signals simultaneously. Then, by analysing the errors introduced 

at each stage of the frequency-domain based method, a series of optimization methods are 

proposed that can effectively prevent error propagation during the calculation. 

Additionally, an FPGA based real-time alpha measurement system using the frequency-

domain method is presented. Both simulation and experimental tests show the system 

works well for alpha measurement. The system developed in this thesis can be employed for 

the further in-depth study on the character of alpha factor.  
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Chapter 1. Introduction 

1.1 Introduction to alpha factor 

Laser linewidth is defined as the width of the power spectral density of the emitted electric 

field in terms of frequency, or more experimentally, the full-width half-maximum (FWHM) of 

the optical field power spectrum [1,2]. The linewidth is associated to the fluctuations in the 

phase of the optical field, which arise from two basic sources: spontaneous emission and 

carrier density fluctuations (unique to semiconductor). 

To explain the observed linewidth broadening which is much greater than expected by 

conventional theories of laser linewidth, the concept of linewidth enhancement factor (also 

known as alpha factor, denoted as ) was introduced by Henry [2]. He found that linewidth 

broadening results from the coupling between phase and intensity, which is caused by the 

change of refractive index with carrier density in the semiconductor [2]. Thus,  is 

introduced to quantify the amplitude-phase coupling mechanism, expressed as [2,3]: 

2
g

                                                                (1.1) 

where ∆ϕ is the change in phase; the factor 2 converts the change of power gain ∆g to the 

change of amplitude gain. Meanwhile, in terms of the change in refractive index with carrier 

density,  also can be expressed as [2,3]: 

Δ /
Δ /

r r

i i

n n N
n n N

                                                        (1.2) 

where  and  are the real and imaginary parts of reflective index ;  is carrier density. 

This suggests a change in  will result in phase shift and line broadening. 

According to the derivation of Henry on the linewidth of a single-mode laser diode, the laser 

linewidth should be increased by a factor of (1+ ) [2], which has been confirmed to be in 

reasonable agreement with experimental data. 
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Since phase fluctuations lead to linewidth broadening as a consequence, the value of  is 

useful for analyses of any phenomena where variations of phase are important, which 

include the phase noise [4-7], field spectra [8-10] and FM noise [10-12]. Besides,  is also 

responsible for injection locking phenomena and the response to external optical feedback 

[13-16]. Considering the significant influence of  on these properties, it is of significant 

interest to understand this parameter and knowing its value. In the past few decades, 

researchers have devoted their efforts to exploring measuring techniques and improving 

measurement accuracy. In the following sections, various  measuring methods for laser 

diodes are reviewed. 

1.2 Literature review on alpha measurement 

As mentioned in the previous section,  has significant influence on several properties of 

laser diodes, such as spectral effects, modulation response, injection locking and the 

response to external optical feedback. In the past few decades, the connection between  

and those effects has been investigated extensively, thereby different measurement 

techniques were developed accordingly. Generally, they are classified as: FM/AM method 

[17,18], optical injection method [19-21], optical feedback method [22-25] and linewidth 

measurement [2,26,27]. 

 FM/AM method 

The FM/AM modulation method [17] is based on current modulation of a high frequency SL, 

which will in turn result in both amplitude modulation (AM) and frequency (FM) modulation 

in the laser. The ratio of the FM over AM components allows a direct measurement of the 

linewidth enhancement factor. The amplitude modulation term can be directly detected by 

means of a high speed photodiode, whereas the frequency modulation term is measured 

using a high resolution Fabry-Perot filter as it is related to laser sidebands intensity. This 
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method is based on the hypothesis that the susceptibility is linear and the carrier density is 

longitudinally uniform. 

Based on the same principle as the FM/AM modulation, the FM/AM noise method [18] relies 

on the measurement of the phase correlation and the ratio between the spectral 

dependence of semiconductor laser FM noise and AM excess noise [18]. The AM noise can 

be measured by direct detection and RF spectrum analysis, while the FM noise is measured 

by Fabry-Perot filters or other techniques. All the FM and AM noises are measured in a 

frequency range where the spontaneous emission noise is dominant. This method requires 

complex experimental implementation, but is relaxed from active current modulation. 

 Optical injection method 

The principle of injection locking is that the injection of light from a master LD into a slave LD 

causes locking of the slave LD’s lasing frequency to be that of the master’s [19-21]. The 

locking region is typically characterized by the injection level and the asymmetrical 

frequency detuning, due to the non-zero  factor. This category of methods are based on 

the complex theory of injection locking dynamics, however, simplified analytical dependence 

of the measured the quantities such as asymmetric detuning range can be established on  

factor. These techniques are of complicated experimental implementation, and the accuracy 

of measurement is dependent on the availability of knowledge about the injection level 

whose measurement is generally very difficult. 

 Optical feedback method 

There are generally two categories of optical feedback method for alpha measurement: one 

is retrieving alpha from self-mixing signals [23-25], which will be introduced in detail in 

Section 1.3; another is based on the functional relationship associated with alpha between 

the emission wavelength and effective reflectivity of laser compound cavity [22]. 

In [22], two simple alpha measuring methods are proposed, a current scanning method and 

a reflectivity scanning method, to measure alpha with an external cavity semiconductor laser 
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(SL). The functional relationship related to alpha between the emission wavelength and 

effective reflectivity of the compound cavity of the SL is the key to both of the two methods. 

Both of these two methods do not require modifying the laser configuration of traditional 

external cavity. The current scanning method uses the frequency tuning curve as a function 

of injection current to estimate the value of alpha. A simple model which yields a linear 

relationship between the injection current and the phase shift of the incident wave after one 

round trip in the external cavity is introduced in the first method. On the other hand, in the 

reflectivity scanning method, the external feedback intensity is scanned to control the 

effective reflectivity of SL which leads to the determination of the value of alpha. In this 

paper, the modification of the external feedback intensity is implemented by adjusting the 

rotation angle of a half wave plate inserted in the external cavity. 

 Linewidth measurement 

Although in [2,27], the approximate value of  was deduced from analysis of spontaneous 

emission in buried hetero-structure lasers by measuring the refractive index and gain change 

within the active layer. This approach relies on an accurate knowledge of the carrier 

concentration in the active layer, which is not easily determined due to the uncertainties in 

the layer thickness, lifetime etc.  

In [26], Toffano et al. proposed an easier method for measuring the alpha factor based on 

linewidth measurements. The laser linewidth then injection current below and above 

threshold can be written as =  and =(1+ ) , where  is the total 

spontaneous emission rate above threshold and  is the photon number in the mode. Thus 

 can be obtained by comparing the laser linewidth below threshold to its value above 

threshold, i.e. = . 

 

In summary, based on the methods reviewed above, a wide range of  values were obtained 

respect to different laser diode structures, different measuring techniques and different 
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operating conditions. In some early researches,  was studied and measured as a constant 

parameter for a certain type of semiconductor material used in LD, for instance the methods 

based on sub-threshold gain and refractive index measurements [27,28]. Later, as the 

dependence between  and other LD associated parameters were investigated [3,25,28-30], 

e.g. LD structure, system operating conditions, they provided explanations that how 

inconsistent values of  were obtained from the same type of LD. According to the existing 

researches, LD operating conditions including operating temperature, output power and 

optical feedback level have been found can affect the value of  [3,25,29,30]. Since  is no 

longer a constant parameter in operation based on this context, it is important to pay 

attention to the measuring condition before using the value of alpha for analysis or 

applications. 

1.3 SMI based alpha measurement 

Self-mixing interferometry (SMI) has been an active and promising technique for non-

contact sensing, which is based on the self-mixing effect. The self-mixing interference 

happens when a part of laser light reflected or backscattered from a distant target ahead of 

the laser, re-enters the laser cavity, resulting in modulations on both intensity and frequency 

of the lasing field. The modulated laser power, called SMI signal, is detected by a photodiode 

(PD). The self-mixing interferometry inherently possesses the superiority of self-alignment, 

mechanical stability and exemption from necessitating costly high precision optical 

apparatus. Generally, there are two classes of applications based on SMI technique: one is 

external target related metrological quantities measurement; another is estimation of 

parameters associated with laser diode. External target (solid targets and fluids) related 

detections include displacement, vibration, velocity, etc. [31-33]. Measurements of LD 

parameters mainly focus on the alpha factor and the optical feedback strength [32].  
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The primary objective of this section is to introduce SMI system and the alpha measuring 

methods based on SMI system. Firstly, the fundamental concepts of the system are 

described, including system structure, theoretical model and the behaviour of SMI signal. 

Then, the alpha measurement methods based on SMI are reviewed, which are classified into 

two categories: time-domain based and frequency-domain based. The comparison on those 

methods is given at the end of this section. 

1.3.1 Introduction to SMI 

Self-mixing interferometry (SMI) is developed based on self-mixing effect in lasers. Self-

mixing happens when the emitted laser light reflected by a remote target, re-enters the 

laser active cavity and causes modulation of both laser output frequency and intensity. If the 

external target is subject to a movement, the laser output power fluctuates for each half-

wavelength movement of the target along the laser emitting axis. The self-mixing effect was 

first observed on gas lasers such as He-Ne and CO2 lasers [34,35] and then on 

semiconductor lasers [36-39].   

1.3.1.1 System description 

Compared to conventional interferometers, the interference in a SMI system occurs in the 

laser cavity between the internal optical field and a beam backscattered by an external 

target. The system can be very compact that a laser diode and a focusing lens are the only 

components for the laser head. Moreover, since the interference happens in the active 

cavity of laser diode, the reflected light is amplified in the cavity thus leads to stronger 

modulation. 

The typical schematic of an SMI system is given in Figure 1-1. The core part of the system 

consists of a laser source and an external target. When the target moves, the light phase at 

external cavity will be varied, and thus results a modulation of the emitted laser power. 
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Usually, the modulated laser power is detected by the photodiode (PD) packed in the rear of 

the laser diode (LD). But for some special applications, the bandwidth of the build-in PD can 

be insufficient. In this case, an external PD will be used for signal detection through a beam 

splitter. The signal acquisition device includes a DC-coupled trans-impedance amplifier 

which amplifies and converts the current passing through PD into voltage, and an AD 

convertor which digitises and feeds the SMI signal into the signal processing unit for further 

processing. The laser controller and the temperature controller (LC and TC) stabilize the 

injection current and the operating temperature of the SL during the operation. The lens is 

used to focus the light beam onto the target. The attenuator is used to adjust the optical 

feedback strength.  

 

Figure 1-1: SMI system schematic. 

1.3.1.2 Mathematical model 

The widely accepted theory about the dynamics and stability of laser diode with optical 

feedback was conducted by Lang and Kobayashi yielding a set of fundamental rate equations 

to simulate the system [40]. The Lang-Kobayashi equations depicted the modulation of laser 

output intensity resulted from the variations in the external cavity length. The equations are 

listed as follows: 

0
( ) 1 1( ), ( ) ( ) ( ) cos ( ) ( )

2 N
p in

dE t G N t E t E t E t t t
dt

        (1.3) 
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0
( ) 1 1 ( )( ), ( ) sin ( ) ( )

2 ( )N
p in

d t E tG N t E t t t
dt E t

             (1.4) 

2( ) ( ) ( ), ( ) ( )N
s

dN t J N t G N t E t E t
dt eV

                                   (1.5)  

where the contribution of the nonlinear gain suppression, the spontaneous emission and 

multiple reflections are neglected. The physical meanings of the symbols in Equations 1.3-

1.5 are summarised in Table 1-1. 

Table 1-1: Physical meanings for of symbols in L-K equations. 

Symbol Physical meaning 

 electric field amplitude 

 electric field phase 

 Photon density in laser cavity 

 carrier density 

 angular frequency for an LD without optical feedback 

 modal gain coefficient 

 photon life time 

 LD internal cavity round-trip time 

 external cavity round-trip time 

 carrier life time 

J injection current 

 reflectivity coupling parameter 

 elementary charge 

 volume of the active region 

 the alpha factor 

 

When the system described by above equations enters into a stationary state, we have 

,  and , where  is the stabled angular 

frequency. By substituting  and  with constants  and ,  with , 

 with , Equations 1.1-1.3 become [1-3]: 
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2
0 1 sin( arctan )s s

in
                                  (1.6) 

0
2 cos( )1 s

s
p inN N

N N G G                                              (1.7) 

2

0

( ) s s
s

sN

J eV NE
G N N

                                                       (1.8) 

Considering the external cavity length is time varying,  can be replaced by . For 

convenience,  is replaced by parameter C, which indicates the intensity of 

the reflected light, thus referred to as the optical feedback factor. Then Equation 1.4 

becomes: 

0 sin( arctan )F FC                                              (1.9) 

Equation (1.9) is called the phase condition equation, where  and  are the light phase 

without and with feedback respectively. By substituting Equation 1.5 into 1.6, the variation 

of the LD output power is expressed as: 

0(1 )P P m g                                                         (1.10) 

cos( )Fg                                                             (1.11) 

where  and  are the LD power with and without feedback respectively; g  is the 

normalized LD power, also known as SMI signal;  is called modulation parameter. 

Equations 1.9 - 1.11 are the common used stationary SMI model which has been widely 

accepted to describe the waveforms of SMI signals [31,32,41-44]. 

1.3.1.3 SMI signal 

For convenience, the SMI model equations are relisted here: 

0 sin( arctan )F FC                                            (1.12) 

cos( )Fg                                                              (1.13) 
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In the phase condition equation (Equation 1.12),  and C  are two important system 

parameters, their values determines the features of SMI signals.  

The optical feedback factor C and its influence on SMI signals has been widely investigated 

and studied [45-48]. A few feedback regimes have been recognized with: weak C , 

moderate C , strong C . Figure 1-2 respectively depicts the characteristics of 

SMI signals in different feedback regimes. Assuming the vibration of target is simple 

harmonic, as shown in Figure 1-2(a), then  is expressed as: 

0 0( ) sin(2 )t ftfsin(2sin(2sin(2                                                (1.14) 

where  and ;  is the initial external cavity length;  and  f  are 

target vibrating amplitude and frequency respectively. Then SMI signals can be generated by 

using Equations 1.12-1.13. The parameters used for Figure 1-2 are: =0.45 , =2.25 ,  f 

=100Hz, =3; C=0.7 in (b), C=2 in (c), C=5 in (d),. 

 

Figure 1-2: Simulated SMI waveforms: (a) target movement trace; (b) SMI under weak feedback; (c) 

SMI under moderate feedback; (d) SMI under strong feedback. 
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From Figure 1-2, it can be seen in weak feedback regime (Figure 1-2(b)) the SMI signal is 

sinusoidal and symmetrical-like. In moderate (Figure 1-2(c)) and strong feedback regime 

(Figure 1-2(d)), sharp transitions appear.  

As illustrated earlier,  is an important parameter for semiconductor lasers, it determines 

multiple behaviours of the laser, including spectral effects, injection locking and the 

modulation response. Since its influence on SMI signal waveform is not in an obvious 

manner like C, only a few researches studied  from this perspective [45]. To give some 

illustrative examples, two sets of SMI waveforms are generated with a fixed constant C, and 

three different values for  in each set, as shown in Figure 1-3. The parameters used for 

Figure 1-3 are: =0.45 , =1.5 , f =100Hz. 

 

Figure 1-3: SMI signals with different  (a) week feedback case; (b) moderate feedback case. 

The interval of  is set based on most of the laser diodes used for sensing applications, 

which lies within the range (3, 7). Figure 1-3 shows generally the SMI signals with different  

values are fairly close. That is, compared to C measurements, the estimation of  is more 

challenging. But it is worth notice that the difference caused by  is more distinct in 
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moderate feedback level than in weak feedback level. This suggests conducting  

measurement in the moderate feedback regime is more likely to achieve accurate results. 

1.3.2 Time-domain based methods 

In 2004, Yu et al. proposed the first SMI-based  measurement method [23]. This method 

based on the hysteresis phenomenon in SMI signal and  is estimated from the 

characteristic points in the SMI signal waveform as shown in Figure 1-4 and Figure 1-5 [23]. 

 

Figure 1-4: Hysteresis in the relationship between  and g( ). 

 

Figure 1-5: Simulated SMI signal at moderate feedback. 
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when  decreases. Deriving from the SMI model equations, the relationship between , C 

and the phase intervals between different phase points is obtained [23]: 

2
13

2

11 arccos( ) arctan( )
21

CC
C

                      (1.15) 

2
24

2

11 arccos( ) arctan( )
21

CC
C

                      (1.16) 

Note  and . Thus,  and C can be solved from Equation 

1.15-1.16. 

Although the above method is fast and easy, there are some restrictions that its usage and 

performance are limited. Firstly, the method works in moderate feedback regime and C 

must less than approximately 3, otherwise, the hysteresis area will cover the phase interval 

 and there will be no zero-crossing points when  increases [49]. Secondly, the 

algorithm is achieved by assuming the external target is moving back and forth in a constant 

speed, which is hard to implement strictly in practice. To reduce the inherit error, the set of 

fringes which correspond to the moment that external target moves across the equilibrium 

position, should be used in calculation since they has the minimum acceleration and the 

movement trace is most linear. 

In 2005, Xi et al. [24] developed a gradient optimization-based  estimation algorithm that 

works under weak optical feedback level. The core algorithm of this approach is data fitting 

technique, whereby the theoretical model incorporates an estimate of  and that are 

optimized to yield the best match for the observed SMI signal. For this purpose, a cost 

function is defined to achieve the best match which is the summation of square errors 

between the observed data samples and the calculated ones using the model. To speed up 

the process of fitting, gradient-based algorithm is employed that ensures  and C update 

toward the direction that the cost function tends to minimum. The advantages of this 

method are simple implementation and suiting all single-mode laser diodes running in weak 
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feedback regime. On the other hand, the main limitation of this method is the external 

target must subject a pure harmonic vibration, and the prior knowledge of vibration 

trajectory is required, which is difficult to achieve in practice thus restricts the applicability 

of this method. 

In 2005, Yu et al. [49] proposed an improved data-to-model fitting method for measuring  

and C that lifts the main limitation in [24]. This method addresses the situation where the 

target is subject to a simple harmonic vibration with unknown frequency and amplitude, 

leaving four variables to be identified in the cost function including  and C, target vibration 

amplitude and equilibrium position. To avoid the algorithm converging to a local minimum, 

initial parameter values must be carefully set in the beginning. The vibration frequency and 

the initial phase are estimated using auto-correlation and phase unwrapping respectively. 

The improvement in this method not only enhances the measurement accuracy but also 

reduces the difficulty of implementation of the system. Unfortunately, this method still only 

covers the weak feedback regime. 

1.3.3 Frequency-domain based method 

The idea of measuring LD parameters by analysing SMI signals in frequency-domain was first 

proposed by Yu et al. in 2011 [50]. The measurement equations are derived from the SMI 

theoretical model equations, which are relisted below: 

0( ) ( ) sin( ( ) arctan )F Ft t C t                                 (1.17) 

( ) cos( ( ))Fg t t                                                    (1.18) 

0( ) (1 ( ))P t P m g t                                                (1.19) 

Since the external target is moving periodically in this method, the above equations are 

expressed with respect to time variance. By taking Fourier transform on both sides, Equation 

1.17 is transferred into frequency domain: 
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0( ) ( ) {sin( ( ) arctan )}F Ff f C F t                         (1.20) 

where  and  are the Fourier transforms of  and  respectively; {}F  

denotes the Fourier transform operation. Since the target is moving in simple harmonic, the 

spectrum of  should be very narrow that can be easily excluded from Equation 1.16 by 

applying a frequency interval where 0 ([50] suggests >15  which is 15 times 

bigger than the target vibration frequency). Meanwhile, by using the phase unwrapping 

technique in [51], we can obtain the phase signal , thereby its spectrum . Finally, 

by giving  a reasonable value, the spectrum of  can be calculated, 

then C becomes the only unknown factor in Equation 1.16 thus can be easily solved from 

spectrum. Although this method fails to work out the value of , it does provide a new 

approach of retrieving LD information from SMI signals. 

Soon in 2013, Yu et al. [25] published an improved frequency-domain based method that is 

capable of measuring both C and  simultaneously. In this work, the sin part in the phase 

condition equation (Equation 1.17) is expanded as: 

2 2

sin( ( ))cos(arctan( )) cos( ( ))sin(arctan( ))

sin( ( )) cos( ( ))
1 1

F F

F F

C t C t
C Ct t                 (1.21) 

By substituting  and  with  and  respectively, Equation 1.15 

becomes: 

0 1 1 2 2( ) ( ) ( ) ( )F t t k t k t                                           (1.22) 

where  and . By taking Fourier transform on 

Equation 1.19, we have: 

0 1 1 2 2( ) ( ) ( ) ( )F f f k f k f                                   (1.23) 

And again,  is obtained by performing phase unwrapping on SMI signal,  is 

excluded from the equation by applying a frequency interval, which leaves  and  the 

only unknown factors: 
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1 1 2 2( ) ( ) ( ),  F f k f k f f                                    (1.24) 

where  is defined as the frequency range ,  is the maximum frequency 

that . Considering above equation with respect to all the frequencies on , we 

have the following: 

1 1 2 2F k k                                                       (1.25) 

By using  denotes the Since Fourier transform result is a complex 

function, the above equation can be separated into real and imaginary two parts. Then by 

taking a segment from spectrum for calculation which is denoted by , the values  and  

can be estimated by jointly solving the two equations: 

2 2 1 1
1 2

1 2 1 2 1 2 1 2

,   
I R R I R I I R
F F F F
I R R I I R R Ik k                               (1.26) 

where superscript  and  denote the real part and imaginary part of . Finally,  and C are 

solved from: 

2 2
2 1 1 2/ ,   k k C k k                                             (1.27) 

In summary, this method measures  in frequency domain, the most significant benefit is it 

lifts the limitation in time domain measurements and covers a wide range of C. Moreover, 

this approach does not require the prior knowledge associated with target movements, such 

as external cavity length or target vibration amplitude.  

Although the major algorithm of this method is frequency-domain based, the pre-processing 

procedures still have to be done in time-domain, e.g. noise cancelling and phase 

unwrapping, which may induce complicated consequences in frequency domain, thereby 

potentially degrade the accuracy of this method. The error analysis on the processing 

procedures of this method will be discussed in detail in Chapter 3. 
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1.3.4 Comparison 

The overall comparison between different SMI based methods is summarised in Table 1-2. 

Table 1-2: Comparison between different SMI based  estimation approaches. 

Approaches Description Accuracy Requirements Computational 
complexity 

Time domain 
based 

Using data-to-model fitting 
to obtain the only unknown 

parameters  and C [2]. 
±6.7% 

Accurate target 
moving trajectory, 

0 < C < 1 
High 

Using data-to-model fitting 
to obtain multiple system 

parameters including  
automatically [3]. 

±3.9% 0 < C < 1 High 

Using the hysteresis 
phenomenon in SMI signal 
and calculate  from the 

waveform [4]. 

±6.5% 1 < C < 3 Low 

Frequency 
domain based 

Calculating the spectra of 
phase signals and calculates 

 from their functional 
relationship [1]. 

no 
record 

no feedback level 
limitation Low 

 

By comparing the feasibility of the above methods, we can conclude that the frequency-

domain based  measurement method in [25] is very promising. Firstly, there is no need to 

accurately adjust the optical feedback strength since the method covers a wide range of C. 

In practice, C is depending on many factors including the structure of the laser diode and the 

characteristic of the external target. Therefore, measuring  in frequency domain greatly 

reduces the difficulty of system implementation and maintenance. In contrast, the method 

in [24] is hard to implement due to the additional requirement on the initial condition of SMI 

system, whereas the other methods [23,25,49] have less constraints on implementation. 

From the perspective of algorithm complexity, the methods based on data fitting techniques 

[24] and [49] are more suitable for off-line processing due to their huge computational 
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resources consumption; in this respect, measurement methods in [25] and [23] are more 

suitable for real-time measurement.  

Based on the above comparison table and comments, it is clear that the frequency-domain 

based alpha measurement method possesses the advantages of high feasibility, easy 

implementation and medium computational complexity, which is ideal for implementing on 

other platforms (besides PC) in real-time. 

1.4 Existing research problems and objectives 

Since we need to demodulate the required information from SMI signals, the quality of 

signals plays a crucial role for achieving a high performance sensing and measurements. 

From the configuration of an SMI system shown in Figure 1-1, an SMI system contains both 

optical and electronic components. Noises can be introduced to an SMI signal from the 

external cavity (e.g. background light and cavity vibration), driving devices to the SL (e.g. 

temperature fluctuations, the detection circuit and the operating status of an SMI system), 

etc. There are three types of noises (or distortions) that commonly exist in SMI signals: slow 

fluctuation, Gaussian-like noise and transient oscillation. Unfortunately, there are very few 

investigations on SMI signal noise cancellation in literatures, and the existing processing 

techniques unable to handle all those noises. Especially for the transient oscillation which 

has strong influence on the measurement accuracy, to the best of our knowledge, there is 

no report on how to remove such noise. Hence, the development of an effective signal 

processing technique for suppressing the noises in SMI signals is required. 

The frequency-domain based method is very promising as it has the advantages of high 

precision and wide feedback level applicable range [25]. Through this method,  can be 

retrieved from a wide range of frequency components. However, not all the frequency 

components can generate accurate measurement results due to the influence of noises. 

Although we can improve the signal quality by applying filters or other signal pre-processing 
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techniques, the influence of noises cannot be eliminated completely and it will propagate 

through the calculation. Therefore, the optimization on the signal processing and result 

selection of this method is an important topic for investigation. 

For all the SMI based alpha measurement approaches mentioned in Chapter 1, the signal 

processing and alpha estimation are off-line. To meet the requirements of high-efficiency for 

practical applications, DSP platforms can be employed for real-time alpha measurement. 

1.5 Thesis organization and contributions 

The contributions of the work in this thesis are three-fold. Firstly, the influence of noises on 

the measurement accuracy is discussed, from which an effective filtering method is 

presented. Secondly, a series of optimization methods for improving the accuracy and 

reliability of the frequency-domain based  measurement against noises are proposed. 

Finally, a real-time  measurement is implemented on FPGA. 

In Chapter 2, an overview is given on the features of SMI signals and all sorts of noises 

contained in the signal. Then, the existing filtering methods are reviewed. Finally, a new 

filtering technique is proposed specially for eliminating the influence of transient oscillation. 

In Chapter 3, firstly the four stages of the frequency-domain based  measurement method 

are reviewed, which followed by a detail analysis on the error introduced at each stage. 

From the analysis, a series of optimization methods are proposed that can effectively 

prevent error propagation during the calculation. 

In Chapter 4, an FPGA based real-time  measurement system using the frequency-domain 

based method is presented. The FPGA module design includes: signal acquisition module 

(analog to digital), signal pre-processing module (filtering and normalization), calculation 

module (phase and spectrum calculation) and result display module.  
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Chapter 2. SMI signals and filtering 

In the previous chapter, the mathematical model and the basic setup of a SMI system has 

been introduced, as well as the characteristics of ideal SMI signals. The signal quality plays a 

crucial role in the performance of SMI based sensing. However, ambient noise, electronic 

noise and thermal noise are inevitably in SMI systems, which can seriously degrade the 

accuracy of measurement. As a result, noise removal is an important topic in this area of 

research. A few digital filters have been proposed to suppress the noises in SMI signals [52], 

but these methods are still limited and not able to effectively remove the transient 

oscillation. 

This chapter is focused on how to acquire a clear SMI signal. Firstly, an overview is given on 

the features of SMI signals and all sorts of noises contained in the signal. Then, the existing 

filtering methods are reviewed. Finally, a new filtering technique is proposed specially for 

eliminating the influence of transient oscillation. 

2.1 Noises and distortions in SMI systems 

2.1.1 Experimental system 

The typical scheme of an experimental SMI system is implemented and shown in Figure 2-1. It 

mainly consists of three parts: a laser source, a controlled target and a signal detection 

system. 
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Figure 2-1: Experimental SMI system schematic with external PD. 

A laser source consists of a semiconductor laser diode, a laser diode driver and a focusing 

lens. In practice, the SL and the lens are always packed in one device for better stability and 

alignment, e.g. the SL mount shown in Figure 2-2, which also provides interfaces for the laser 

controller and the temperature controller (LC and TC). The LC is mainly functioned as a 

current controller, providing stable injection current or modulated injection current for 

various applications [44,53]. The TC allows the laser to be temperature controlled for stable 

operation. The lens is used to focus the light emitted by the SL onto the target, and the lens 

coating also reduces unwanted background light.  

 

Figure 2-2: SMI experimental system. 
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A controlled target consists of a moving target, a target driver and an attenuator. In practice, 

the controllable target can be a PZT (piezoelectric ceramic transducer) or simply a 

loudspeaker depending on the precision requirement of measurements. The target driver 

connected with a signal generator will allow the target moving in certain pattern, which is 

required by some of SMI based applications [23,24,32,44]. The attenuator is installed for 

diming the reflected laser light since some SMI based measurements have strict limitations 

on the optical feedback level [23,24,54].  

A signal detection system consists of a PD, a signal detection circuit and a digital data 

acquisition (DAQ) device. Although it is common that for many laser diodes, there is a built-

in PD packaged at the rear of SL, due to the limit in the rising time of the PD (or can be 

considered as the cut-off frequency is limited), it may not be able to detect the details in a 

high frequency SMI waveform [55]. Therefore, an external detection PD is employed in some 

cases [55,56]. Since the amplitude of SMI signals are very weak [52], so a signal detection 

circuit is required to pick out the signal and amplify it. The details of an experimental signal 

detection circuit will be discussed in Section 2.1.4. Finally, the analog signal is converted into 

digital signal via a DAQ device and fed into a signal processing terminal. 

Since the signal passes through both optical and electrical paths, ambient noise, electronic 

noise and thermal noise are inevitable in practice. A significant issue that impacts on the 

performance of SMI is the quality of signals. Figure 2-3(a) gives an example of experimental 

SMI signals when the target is subject to a simple harmonic vibration, which mainly contains 

two types of noises: white noise (enlarged in Figure 2-3(b)), transient oscillation (enlarged in 

Figure 2-3(c)). Furthermore, slow fluctuation is also very common in experimental signals. In 

the following sections, the causes of these noises will be analysed and the possible solutions 

will be discussed. 
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Figure 2-3: (a) A piece of experimental SMI signal; (b) white noise in the signal; (c) transient oscillation 

in the signal. 

2.1.2 Transient oscillation 

Transient oscillation happens when the system enters the moderate feedback regime, i.e. 

when C > 1 and the SMI signal shows sawtooth-like fringes. For the stable-state SMI model, 

multiple solutions can be obtained in the moderate feedback regime, which leads to 

discontinuities in the modelled laser power when the external cavity length changes. This 

phenomenon is related to the assumptions made for simplification, i.e. , 

 and . While unique solution can be obtained by solving 

the complete L-K equations. A simulated self-mixing signal which is calculated from the L-K 

equations is plotted in Figure 2-4 ( =1m, =1.5 , =80KHz, C=2.5, =3.5), in which the 

laser power shows damped oscillations where the stable-state model predicts 

discontinuities. 
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Figure 2-4: (a) and (c): simulated SMI signals respectively generated by L-K equations and stable-state 

model; (b) and (d): details enlarged for the sharp changing edges in (a) and (c). 

Damped oscillations are often described by their amplitude, decay time and oscillation 

period (frequency). According to the research in [56,57], there are three factors can 

significantly influence the features of transient oscillation: optical feedback strength (C), 

laser-to-target distance ( ) and the linewidth enhancement factor ( ). The oscillation 

amplitude varies proportional with C [57]. The oscillation period increases with  and  

[56,57]. And finally, increasing any one of the three factors will extend the decay time 

[56,57]. 

When the external target moves at low speed in the moderate feedback regime, the 

duration of transient oscillation is much less than a fringe, which can be easily eliminated by 

simple filtering and lowering the sampling frequency. However, if the target moves at high 

speed, the oscillation will take a comparatively big part of the fringe. In this case, although 

the SMI signal with transient oscillations still has the basic interference resolution for 

displacement sensing like normal SMI signals, for some applications, such as accurate 

displacement reconstruction and laser diode parameter estimations, the measurement 

performance can be severely degraded. Besides, the overshoots in oscillations will also cause 
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problems when normalizing the signal for further information demodulation. Therefore, to 

guarantee the measurement accuracy, it is desirable to remove the transient oscillations. 

Narrowing the bandwidth of acquisition system is a straightforward way to avoid transient 

oscillation, but the original signal will also be distorted, an example is given in Figure 2-5. 

Figure 2-5(a) and (c) are the processing results of applying low-pass filters with different cut-

off frequencies (100MHz and 30MHz respectively) on the signal in Figure 2-4(a). Figure 2-5(b) 

is an enlarged view on the sharp changing part in Figure 2-5(a), which suggests the transient 

oscillations can pass through the system when the bandwidth is wider than 100MHz. While 

in Figure 2-5(d), which is enlarged from Figure 2-5(c), the sharp edge has been seriously 

blurred. Therefore, adjusting the bandwidth is not a desirable way to remove transient 

oscillations. 

 

Figure 2-5: (a) and (c): results obtained by applying low-pass filters on the signal in Figure 2-4(a); (b) 

and (d): enlarged details of the sharp changing edges in (a) and (c). 

Since it is hard to control or avoid the transient oscillations during the measurement 

process, the development of an effective digital filter to remove those oscillations is 

required. In Section 2.3 we propose to use a Myriad filter to solve this problem, which is 

capable of removing oscillations while preserve the details in signal. 
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2.1.3 Slow fluctuation 

Slow fluctuations commonly exist in SMI signals when the external target is subject to 

reciprocating movements, e.g. sinusoidal movement and triangle wave movement. Examples 

can be found in: Fig. 7 in [46], Fig. 5 in [58], Fig. 1 in [59], Fig. 2 and Fig. 3 in [60], etc. 

Figure 2-6 gives two examples of slow fluctuations which were observed in our experimental 

SMI system. In Figure 2-6(a), it can be seen the slow fluctuation shares the same fundamental 

period (or frequency) with the target movement. While in Figure 2-6(b), the slow fluctuation 

is more like an additive sinusoidal interference, which appears to be irrelevant to the 

fundamental period of SMI signal. According to our research, the slow fluctuation 

phenomenon is related to the operating frequency range (bandwidth) of the signal 

acquisition circuit. 

 

Figure 2-6: Examples of SMI waveforms containing slow fluctuations. 

A simplified signal detection circuit is depicted in Figure 2-7, which consists of two parts: an 

optoelectronic conversion circuit (within the dashed box) and a trans-impedance amplifier. 
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Between those two parts, an AC-coupling capacitor (or called DC-blocking capacitor) is 

employed for the following purposes: 

1) Extracting SMI signal from the received laser power thus avoid amplifying the signal to an 

excessive power level, which increases the system instability and enhances the performance 

of AD converter; 

2) Isolating low-frequency noises, including temperature variations, mechanical vibration, 

power noise and other slow-time noises inherited from the LD (e.g. servo effects in LD 

driver). 

 

Figure 2-7: Signal acquisition circuit. 

Unfortunately, the coupling capacitors can also introduce nonlinear distortion when the 

signal contains lower frequency components relative to the RC cut-off frequency. Then, the 

low frequency components can develop across the capacitor, leading to distortions, in this 

case, slow fluctuations. To solve this issue, a capacitor with higher capacitance should be 

used in the circuit which lowers the cut-off frequency, or alternatively, increasing the 

fundamental frequency of SMI signal, i.e. target vibration frequency. 

To test above assumptions, we conducted simulation tests with a powerful software tool 

Simulink, which supports importing SMI signals into an analog circuit model. The circuit 

model is plotted in Figure 2-8, where “Input port” and “Output port” are modules work as 

digital signal generating and recording unit respectively. Simulation results are plotted in 

Figure 2-9. 
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Figure 2-8: Analog circuit model built in Simulink. 

 

Figure 2-9: (a) Input simulated SMI signal; (b) and (c): signals before and after correcting the 

capacitance respectively. 

The ideal SMI signal (in Figure 2-9(a)) is generated by Matlab using SMI model ( =0.45 , 

=1.4 ,  =100Hz, =3, =3). Firstly, we assigned the capacitor with a small value, and the 

output signal in Figure 2-9(b) is clearly covered in slow fluctuations, which just like the 

experimental signal shown in Figure 2-6(a). Then we increased the value of capacitor to a 

much bigger value, and the result in Figure 2-9(c) suggests the problem has been solved 

effectively. Meanwhile, the slow fluctuation phenomenon in our experimental system also 
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was well suppressed after the target vibration frequency adjusted to a higher level (since the 

capacitor in our circuit is fixed on board). 

In summary, the slow fluctuation in an SMI system is most likely caused by inappropriate AC 

coupling configurations. Either upgrading the capacitor or increasing the fundamental 

frequency of SMI signal can suppress this phenomenon. 

2.2 Existing filtering methods 

The main existing filtering methods for SMI signal pre-processing including linear FIR filter, 

median filter, Kaiser window filter, outlier detection method. In the following paragraphs, 

these filtering methods will be briefly introduced and discussed regarding their filtering 

performance and feasibility in practice. 

 FIR filter 

The classic processing flow of an Nth-order discrete FIR filter is given in Figure 2-10. 

 

Figure 2-10: Block diagram of a simple FIR filter. 

Where  and  are input signal sequence and output signal sequence respectively. 

 represents the delay operator in Z-transform notation.  are coefficients of 

the filter. Because of the complexity of SMI signals, an FIR filters with constant coefficients is 

hard to meet the requirement of noise cancelling and even can result in distortions, an 

example is given in Figure 2-11. For demonstration purpose, a piece of simulated clean SMI 

signal (a segment from Figure 2-9(a)) is used so it can be seen that the details of the sharp 

edges are lost after went through an FIR filter. 
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Figure 2-11: Processing results for simulated signals: (a) a piece of ideal SMI signal; (b) an enlarged 

view on the sharp fringe edges in (a); (c) the processing results of (a); (d) an enlarged view on the 

distorted edges after filtering. 

 Median filter 

Median filters are typical non-linear filters which has been widely used in digital image 

processing because of its edge preservation property and efficient noise attenuation with 

robustness against impulsive type noise (speckle noise and salt and pepper noise) [61,62]. 

The median (usually denoted by  in expressions) of an odd number of  elements 

vector is the th largest element. When using median in a sliding window as a 

filter, the output of a median filter is calculated after the odd number of sample values in 

the window are sorted, and the middle or median value is used as the filter output. The 

filtering procedure is defined as: 

1 2( ) [ ( ), , ( ), , ( )]y n MED x n N x n x n N                              (2.1) 

where  is window length (if  is even then  and ; if  is odd then 

 and ). To demonstrate its outlier rejecting property, a median filter 

using a window size of three will be applied to the simple signal vector , 

then, the median filtered output sequence is calculated as follows: 
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i.e.  

By comparing the output sequence with the input, it is clear the outlier sample value 

 has been eliminated. Such outlier rejecting feature makes median filter desirable 

for removing sparkle-like noise, especially salt and pepper noise.  

It is noticeable in the above example that the first value and the last value are repeated 

during the process since there are not enough entries to fill the running window. Not just for 

median filter, it is common in signal processing with a sliding window that need handling 

missing window entries at the boundaries of the signal. In addition to this scheme, there are 

other ways to solve this issue in other particular circumstances: 

1) Skip processing the boundaries if the window is small enough compared to the whole 

signal that the influence of both beginning and ending of the signal is negligible; 

2) Shrink the window near the boundaries, so that every window is full; 

3) Fill the window with the samples in adjacent periods if the signal is periotic. 

Despite the advantages, a median filter’s performance suffers when dealing with sustained 

noises (or distortions), e.g. the oscillations in SMI signals. To demonstrate this flaw, a piece 

of simulated SMI signal with oscillations is processed and the result is given in Figure 2-12. 

Although the impulses are removed as shown in Figure 2-12(d), the edge is also smoothed 

just like being processed by a low-pass filter. 
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Figure 2-12: Processing results using a median filter: (a) simulated SMI signal with overshoot; (b) an 

enlarged view of the overshoot in (a); (c) the processing result of (a); (d) the overshoot after being 

filtered. 

 Kaiser window filter 

In [52], the authors proposed a filtering method that combined a median filter and a band-

pass filter based on Kaiser window. The impulse response of the filter is described by: 

0[ ] [ ] co[ s]dh n w n h nn                                                    (2.2) 

where ,  is the pass-band width.  

being the central frequency, where  and  are two boundaries of the frequency band. 

The Kaiser window function  is defined as: 

2

2
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[ ]

                       0,   

nI n N
w n

else

                               (2.3) 

Where  is the zero-th order modified Bessel function of the first type,  is a parameter 

that determines the shape of the window.  is half window width that equals to , 

where  is the window width. By running simulations on experimental SMI signals, the 

optimal boundaries of frequency band can be determined.  
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Figure 2-13: Processing results for an experimental SMI signal at moderate feedback: (a) raw SMI 

signal; (b) and (c): processing results (just show the enlarged view for the two pieces indicated in (a)). 

The original intention of combining median filter with Kaiser window function is to improve 

the performance of median filter on suppressing high frequency noises. Unfortunately, the 

Kaiser window filter belongs to the class of FIR band-pass filters, which means both 

smoothing and blurring property of FIR filters are inherited. Figure 2-13 gives the example of 

using a median filter with Kaiser window function to process a piece of experimental SMI 

with oscillations at the edges. As demonstrated by Figure 2-13(b), the high frequency 

components are removed from the signal, while the sharp changing edges are also 

smoothed as shown in Figure 2-13(c). 

 Outlier detection approach 

An outlier detection approach was proposed in [63], which proposed an approach that 

detecting the data samples corrupted by the noises and then using the least square curve 

fitting to rectify the waveform. The idea of the outlier detection approach are summarised 

as follows: 
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1) Set a standard reference by using linear equation; 

2) Determine the two coefficients in the standard reference equation by minimizing the cost 

function which is defined as the summation of square errors between the observed data 

samples and the fitting parameters; 

3) Evaluate the smoothness of every data sample in the waveform sequentially by 

referencing to the standard reference trajectory and thus locate the position of corrupt 

signal samples including transient overshooting; 

4) Replace the located noise samples with the curve fitting result which is based on the 

reference sample set. 

An example of using outlier detection method to process SMI signals is given in Figure 2-14 

where the same piece of SMI signal shown in Figure 2-13(a) is processed. It can be seen from 

the processed waveform that the white noise is reduced and most of the transient 

oscillation has been removed, except the raising edge part. 

 

Figure 2-14: Processing results by outlier detection method on the experimental signal in Figure 

2-13(a): (a) the enlarged view on the slow changing part; (b) the enlarged view on the sharp changing 

edge. 

Additionally, the processing sequence of this approach is backwards and every fringe needs 

to be processed separately. The non-casual property of this approach determines it is only 

suitable for post-processing on computers instead of working in real-time like other filters. 
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In summary, all the existing pre-processing methods have merits and shortcomings: FIR 

filters and Kaiser window filters are good at high frequency white noise cancelling while can 

seriously blur the sharp changing edges; median filters are very effective to impulse noises 

and salt/pepper noise while has poor performance on handling sustained noises like damped 

oscillations; the outlier detection approach has passible performance on white noise and 

overshoots removal, but its application is limited to post-processing on computers. 

2.3 A new filtering method 

2.3.1 Introduction to Myriad filter 

The theory of non-linear filtering was proposed with the intension of lifting the limitations in 

linear filtering whenever the underlying processes are impulsive. At first, median based 

filters were widely preferred in 1-D and image processing since it possesses the properties of 

impulse resistivity and relative computational simplicity [64]. Then, it has been noticed that 

filters based on the median operator are not very flexible that their output is always 

constrained to one of the samples in the input window [65,66]. Meanwhile, median based 

filters tend to blur edges when smoothing noisy signals, and are not capable of performing 

edge enhancing operations [64].  

The Myriad filter was proposed as a robust, non-linear filtering and an estimation technique 

in impulsive environments (e.g. atmospheric noise in radio links, switching transients in 

telephone channels, and multiple access interference in radio communication networks 

[65]). It represents a wide class of maximum likelihood type estimators (M-estimators) of 

location [67]. 

The structure of location M-estimator is defined as: 

1

ˆ argmin ( )
N

K i
i

x                                                 (2.4) 
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where  is a set of samples in length ;  is the estimated value which minimizes the 

expression;  is the cost function associated with the estimator which plays an important 

role in the characterization of M-estimators [64]. The class of Myriad filter is based on the 

Cauchy distribution which has the probability density function when scaling factor : 

2 2

1; Kf z
K z

                                                    (2.5) 

where  denotes  that is the location parameter, scaling factor  is also known as the 

half interquartile range. Its associated cost function is described by: 

2 2logz K z                                                     (2.6) 

The expression of cost function defines the class of selection Myriad estimators, which has 

proven successful in the management of signal smoothing and edge enhancing [68,69]. As 

illustrated in the previous section, the existing filtering approaches can cause serious blurry 

at the sharp changing edges. Therefore, for SMI signal processing, the later property of 

Myriad estimator is extremely desirable, which makes Myriad a highly promising candidate 

for removing the transients without blurring the waveforms.  

The complete expression of Myriad estimator is given as following: 

1 2

2 2

1

2 2

1

{ ; , ..., }

argmin log[ ( ) ]

argmin [ ( ) ]

K N
N

i
i
N

i
i

myriad K x x x

K x

K x

                                     (2.7) 

In Myriad estimator, the scaling factor  is rather referred as the linearity parameter since it 

controls the impulse-resistance (outlier rejection capability) of the estimator. This parameter 

offers a rich class of operation that can be easily controlled by tuning the value of . The 

impact of  on the behaviour of Myriad estimator has been extensively investigated [64-

66,70,71]. When , the estimator converges to the sample average that is the 

Gaussian-efficient sample mean behaviour (linear property). When , the estimator 
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tends to favour values near the most repeated clusters of input samples which represents 

the behaviour of impulse-resistant, that is the mode property (non-linear property) of 

Myriad, or short for mode-myriad. The following figure is given to interpret the definition of 

Myriad in a more intuitive manner, which shows the mechanism of how  influences the 

estimation output in a geometrical way [69]. 

 

Figure 2-15: Geometrical interpretation of Myriad estimation. 

Considering  and  in Figure 2-15 as the base-side and height of a right triangle 

respectively, then the hypotenuse has the expression of  which is the basic 

element in Equation 2.7. That is, the output of the estimator is actually the location that 

minimises the product of all the hypotenuses. With the assistance of above figure, it is easy 

to imagine: when  is small, the output of Myriad estimator should converge to the densest 

area of input values, thus rejects the outlier values which are far away from the cluster; if 

tuning  to + , or more practically, much longer than the differences of input samples (the 

differences of input samples  between each other), every hypotenuse tends to be 

equal in length which means the final output is equally influenced by all the input samples, 

thus the estimator will degrade into an averager. 

It is important to realise that the location estimation being considered is related to the 

problem of filtering a time-series signal using a sliding window. The input of the Myriad filter 

is the sequence of SMI signal samples, denoted by g(n). And the width of sliding window, 

that is the quantity of input samples  in Myriad estimator. According to the definition in 

(4), the output of the Myriad filter with window width  is expressed as: 
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2 2

0

{ ; , ( 1),.., }

arg min

ˆ( ) ( ) ( )

log{ [ ( ) ] }
N

ig

myriad K g g n N gg n n N n

K g n i g
                           (2.8) 

There are two important parameters in above expression, one is the linear parameter  and 

other is the slide window width . The values of these two parameters determine the 

characteristics of Myriad filters. In the following section, the configuration of these two 

parameters for achieving a good filtering result on an SMI signal will be deeply investigated. 

2.3.2 Design of Myriad filter 

2.3.2.1 Configuration of  

As mentioned in last section, the value of  determines the output feature of Myriad filters. 

Figure 2-16 presents a series of enlarged views on the Myriad processed signals with different 

 value settings. According to the processioning results shown in Figure 2-16(b) and (c), the 

transient oscillations at sharp changing edges are all removed after applying the Myriad 

filter, regardless of the value of . By comparing the details in filtering results, we can 

conclude that: when  is small, the Myriad filter reflects strong non-linear property that 

mainly targets the oscillations, thus not very effective to white noise, as shown in Figure 

2-16(b); when  is large, the Myriad filter degenerates into a linear filter that smooths the 

whole waveform including white noise and sharp changing edges, as shown in Figure 2-16(c). 

In practice, as the SMI signal contains both white noise and transient oscillations (when in 

moderate feedback regime), the two properties of Myriad filter need to be balanced by 

choosing a suitable  thus eliminates the transient oscillations while preserve the sharp 

edges. 
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Figure 2-16: Processing results by Myriad filter with different  values: (a) a part of raw SMI signal 

segmented from the experimental signal in Figure 2-13(a); (b) and (c) are the processing results of 

using Myriad filters with =0.001 and 1 respectively. 

In order to investigate the influence of  on filtering various transient oscillations, let us 

generate simulated SMI signals containing transient oscillations. As discussed in Section 

2.1.3, transient oscillations appear in the form of fast decaying oscillation in SMI signals, 

which can be featured by amplitude, decay time and oscillation period (frequency). To 

quantify those features, we defined the following parameters as shown in Figure 2-17: : 

the amplitude of oscillation; : the amplitude of a clean SMI signal fringe; : the decay 

time of oscillation; : the duration of a single fringe. Then two ratios  and  

(  and ) are used to describe the intensity and the duration of 

oscillations respectively. By our knowledge from the experiments and simulations,  is 

usually in the range of (0, 1) when the system works in stable state. For , although it is 

practically pointless to give a fixed interval since its value is related to both transient 

oscillation and target movement, here  is only a variable parameter that used to 
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investigate the performance of Myriad filter. Nevertheless, a general test interval (0, 1/20) is 

set for  based on our experience. For a normalized ideal SMI signal g , the absolute 

values of all the data sample should fall in the range of [0, 1]. Thereby, the worth considering 

range of  should also be inside this range [70]. 

 

Figure 2-17: Enlarged views for a short segment from the experimental SMI signal shown in Figure 

2-3(a). 

The SMI signals in the following tests are generated by using the stable-state SMI model 

described in Equation 1.9-1.11. Meanwhile, in order to adjust  and  flexibly, transient 

oscillations are approximated by the simple harmonic damped oscillation model in the tests. 

For determining the optimal value for , the filtering error  is introduced to evaluate 

the filtering performance, which is defined as: 

2

1

ˆ
M

K
n

E K g n g n                                                (2.9) 

where  is the length of the signal under test. As an example, a piece of SMI signal with 

additive damped oscillations ( =0.6 and =1/50) is generated. By increasing  from 0.001 

to 1 with a minimum step of =0.001, the filtering errors are calculated by using above 

equation. The relationship between filtering error  and the value of  is plotted in 

Figure 2-18, where the minimum error is achieved at =0.012 (Figure 2-18(b) provides a better 

view of the minimum point of  by using logarithmic axes). 
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Figure 2-18: Filtering error  vs.  shown in: (a) linear axes; (b) logarithmic axes. 

Next, we will investigate if the two ratios  and  influence the optimal  that minimize 

the filtering error.  

First we alter  (oscillation amplitude) and remain  (oscillation duration) fixed ( =1/50). 

In this test, three pieces of SMI signal were generated with = 0.8, 0.6 and 0.45 

respectively, and then processed by Myriad filter with difference  settings from 0.001 to 1 

(just like in the above example). The correspondences between  and  of the three SMI 

signals are plotted in Figure 2-19. According to the optimal  values found in this test (are all 

around 0.01), it can be concluded that the optimal value of  is not affected by . 

 

Figure 2-19: Filtering error  vs.  shown in logarithmic axes: (a) = 0.8; (b) = 0.6; (c) = 

0.45. 
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Similarly, in the following simulation,  will be adjusted while  is fixed to 0.8. The filtering 

errors for the cases with =1/30, 1/50 and 1/70 are plotted in Figure 2-20 respectively. 

Clearly, the optimal values of  are still around 0.01, which proves  can hardly affect . 

 

Figure 2-20: Filtering error  vs.  shown in logarithmic axes: (a) = 1/30; (b) = 1/50; (c) = 

1/70. 

As the simulation results showed in Figure 2-19 and Figure 2-20, the best  values locate 

within (0.01, 0.04). While there is another important feature in those figures should be 

noticed, the filtering error  increases significantly at certain point when (0.025, 0.2). 

Therefore, to avoid the risk of introducing huge filtering error, the smallest value of the best 

 values should be the most feasible value, i.e. 0.01. 

In summary:  

1) The features of transient oscillation (amplitude and duration) have negligible impact on 

the selection of ; 

2) =0.01 is the most feasible choice for cancelling the transient oscillations in SMI signal 

with a Myriad filter. 
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2.3.2.2 Configuration of  

Equation 2.8 indicates that the output of a Myriad filter depends on the length and the 

values of an input sample sequence. Therefore, the window width  (the quantity of input 

samples) in Myriad filter is another important parameter needs to be carefully determined.  

In order to investigate the influence of  on the filtering performance, the same piece of 

simulated SMI signal is processed by Myriad filter with different window width settings. For 

a clear demonstration, only one sharp changing part from each result is shown in Figure 2-21. 

Apparently, the oscillation cannot be completely removed if the window width  is not wide 

enough. However, an overlarge  can also introduce distortions and leads to considerable 

computational complexity. Therefore, the selection of  is crucial for both signal quality and 

processing efficiency.  

 

Figure 2-21: Comparison on the filtering results of using Myriad filters with different sizes of window 

: (a) raw signal with overshooting; (b) =50; (c) =100; (d) =150. 

As shown in Figure 2-21(a), the damped oscillation is approximately 100 sample points wide. 

For the cases when <150, there are still some residual sparkles which suggest  should 

wider than . However in practice, it is difficult to detect with the existence of all 

kinds of noise throughout the signal. There is no doubt that the window width can be set 
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manually by measuring the duration of oscillation, but this kind of manual intervention is not 

ideal for the automation of signal processing. Here, an iterative method is proposed that 

adjusting the window width based on filtering results to work out an optimal . 

There are two key points in this iteration: the initial value of window width (denoted by ) 

and the iterative rule of . Based on our experience, the transient oscillation in SMI signal is 

worth noticing when its duration is wider than 1/100 of a fringe width , i.e. >1/100. 

So the initial window width can be simply set to /100, where  is roughly estimated 

by detecting the interval between two consecutive peaks from a raw SMI signal. That is, 

dividing a piece of received SMI signal into fringe based segments, and  is the average 

over the lengths of the segments. 

For each iteration, the current window width  should be adjusted according to the filtering 

results. As indicated by Figure 2-21, a fraction of sparkle will remain if  is not big enough. So 

the following formula is introduced to assess the flatness of filtering results: 

2ˆ ˆ( ) S 5%, 1, 2 ,...,aveg i g i m m m m N                         (2.10) 

where ˆaveg  denotes the average value of the filtering results;  is the fringe amplitude; 5% 

is the threshold which is set based on experience;  is the index of a sharp changing 

location. If the filtering result does not satisfy the above condition, then update the window 

width  by 1.2 times of its current value. The iterative process for determining the window 

width  is summarized in Figure 2-22. 
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Figure 2-22: Flow chart on determining an optimal window width . 

2.3.2.3 Delay correction 

Most of the existing filters can introduce distortion to the original signal more or less, 

Myriad filter is no exception. Figure 2-23 gives an example of such issue in Myriad filters, 

where the sharp edge in the filtering result (indicated by ) shows a very short delay 

relative to its original location (indicated by ). 

 

Figure 2-23: Sharp edge delay caused by Myriad filter. 
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Although the duration of such delay is extremely small compared to a whole fringe, for some 

particular applications which are sensitive to the locations of characteristic points, e.g. the 

algorithm in [23] for alpha estimation, this error is not negligible. In order to avoid the error 

introduced by such delay, a post-processing correction is required. 

The key of delay correction is to determine the duration of delay, i.e. the time interval 

between  and , that is  in time sequence.  can be easily detected by 

monitoring the differential value of the output signal. While since there is no sharp change 

in transient oscillations, so  cannot be detected in the same way as . As demonstrated 

in Figure 2-23, the oscillation starts from  where the raw signal intersects with the filtered 

signal, which suggests such intersection can be used to determine the location of . The 

procedure of detecting  is summarised as follows: 

(1) Locate the sharp changing edge in filtered signal ;  

(2) Locate the nearest intersection of the processed signal and the raw signal that ahead of 

;  

(3) Calculate the delay duration as . 

With the knowledge of delay duration, the original sharp changing edge then can be 

approximately restored. The most direct way to reconstruct the waveform is using the 

stable-state value to replace all the values inside the delay interval. Alternatively, the 

waveform can be generated by curve fitting. Although the latter option is more reasonable 

from the perspective of mathematical model, there is no guarantee of the fitting 

performance due to the residual noises. In summary, both solutions are feasible in practice 

since the delay duration is very short. 

2.3.3 Adaptive Myriad filter for SMI signal processing 

The idea of adaptive Myriad filter was proposed and extensively discussed in the field of 

robust non-linear filtering, and the main topic is how to assign appropriate values for linear 
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parameter  and weights for Myriad filters depending on the signal and the features of 

noise [65,68,69,71-73]. The existing adaptive methods all have very specific area of 

applications. So far, there is no feasible adaptive algorithm for SMI signal processing. In this 

section, an adaptive Myriad algorithm is proposed to remove noises from SMI signals. 

As mentioned earlier, the objects of filtering SMI signals are removing white noise and 

transient oscillations. To reduce white noise, Myriad filter is expected to exhibit its linear 

property, which requires a large . While for removing oscillations, Myriad needs to be 

highly selective, which requires a very small . An adaptive algorithm for  is desired to 

solve this contradictory, that is, using a small  to process transient oscillations and using 

large  values to cancel the rest. The authors in [70] presented a deep discussion regarding 

the choice of  that how much is large and how much is small, and an empirical method is 

given: if the values of  on the order of the data range, , the Myriad will 

reflect linear property and outputs the sample average; while when , the 

output of Myriad will become very selective (where  denotes the th-order statistic of the 

sample sequence ). This simple but effective method for  selecting has been accepted and 

adopted [72]. Unfortunately, this method is based on the assumption that all the samples 

are under the Cauchy distribution, thereby this approach does not suitable for SMI signals. 

Nevertheless, it still provides a general idea for designing an adaptive algorithm for , that 

is: the value of  should depends on the dispersion of input samples. To verify this 

hypothesis, we define the dispersion of the samples inside the filtering window as: 

2
1

1 [ ( ) ]N
MSN avei

D g i g
N

                                           (2.11) 

where  is the filtering window width,  is the average of all the samples inside the 

window. According to the requirements, the transient overshooting (high dispersion) should 

be processed with a very small , and for other part of the waveform that far from the 

overshooting, a large  is desirable that helps reducing the white-like noise. Therefore, the 
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adaptive  value (denoted by ) should be inversely proportional to , which can 

be simply described by the following expression: 

adapt
MSE

kK
D

                                                         (2.12) 

where  is a coefficient need to be determined. Next, we will specify a suitable value for  

through simulations. 

In the following simulations are based on an ideal SMI signal (Figure 2-24(a), a segment from 

Figure 2-9(a)) and an experimental signal (Figure 2-24(b)). By temporarily letting  in the 

above equation,  of every sample was calculated throughout both signals, the results 

are shown in Figure 2-24(e) and (f). 

 

Figure 2-24: SMI signals and their corresponding  throughout the signal: (a) and (b): simulated 

and experimental SMI signal respectively; (c) and (d): enlarged view for (a) and (b) respectively; (e) 

and (f) are calculated  of (c) and (d) respectively. 

As depicted in Figure 2-24(e) and (f), the locations of sharp changing edges have been clearly 
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while   was found the most desirable value for eliminating transient oscillation 

(according to Section 2.3.2.1). So by setting coefficient =0.01 in Equation 2.12 will allow 

 approximating 0.01 around the sharp changing edges. Since =1 is large enough to 

reduce the white noise and smooth the waveform (as shown in Figure 2-16), thus the final 

expression for  is: 

                                          (2.13) 

To test the performance of proposed adaptive Myriad filter, the same piece of signal (Figure 

2-24(b)) was processed with simple Myriad filter, adaptive Myriad filter and the filter 

proposed in [52], results are plotted in Figure 2-25 and Figure 2-26.  

 

Figure 2-25: Performance comparison between simple Myriad filter and adaptive Myriad filter: (a) 

processed with fixed =0.01; (b) processed with adaptive . 
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removal. The difference is that the proposed method removes the oscillation without 

distorting the sharp edges, while the method in [52] fails. 

 
Figure 2-26: Performance comparison between adaptive Myriad filter and the filtering method from 

[52]. 

In order to verify the performance of the proposed filtering method in practical applications, 

the measurement of  using the algorithm presented in [23] is used as a validating method 

which is sensitive to the quality of SMI signals. 

According to the  estimation algorithm in [23], each target vibration period can generate 
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of the estimation results are reported in Table 2-1. It can be seen that the results estimated 

from the signal processed by the proposed method are characterized by better accuracy 

than that from the approach in [52]. Although the average results from the two approaches 
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Table 2-1: Estimation results of . 

 

Filtering method 

Average value 

 ( ˆ ) 

MSE 

(1/n ∑( ˆ )2) 

Method in [52] 4.81 0.31 

Proposed method 4.36 0.06 

 

2.4 Summary 

This chapter is focused on acquiring a clear SMI signal. Firstly, an overview is given on the 

features of experimental SMI signals and the noises contained in the signal. Then, the 

influence of noises on measurements are evaluated, which followed by the possible 

solutions for reducing the noises. Finally, a new filtering technique based on Myriad 

algorithm is proposed specially for SMI signal processing, which can effectively eliminate the 

transient oscillation while preserve the waveform of SMI signals. 
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Chapter 3. Error analysis and optimization on 

frequency-domain based alpha measurement 

The alpha factor ( ) is a fundamental LD parameter that characterises LDs in terms of the 

linewidth, modulation response, injection locking, and the response to external optical 

feedback [3]. Therefore, it is of significant interest to know the value of this parameter since 

the knowledge of alpha is required both for SMI system analysis and design. Among the 

existing measuring method of alpha factor, the frequency domain based approach is highly 

promising since it has the advantages of high precision and wide feedback level applicable 

range [25]. However, the measurement performance can be severely degraded due to the 

noises contained in the signal. Although the quality of an SMI signal can be improved by pre-

processing techniques (e.g. the adaptive Myriad filter presented in Chapter 2), the influence 

of the noises cannot be eliminated completely. Therefore, it is important to optimize the 

calculation process thus avoid error propagation and minimize the influence of noises on 

estimation accuracy. 

This chapter is organised as follows. Firstly, the four stages of the frequency-domain based  

measurement method are reviewed in Section 3.1. Then, for each stage, a detail analysis on 

the introduced error is provided. Finally, from the analysis, a series of optimization methods 

are proposed for preventing error propagation during the calculation and the effectiveness 

of proposed methods will be verified through simulations. 

3.1 Method review 

The frequency domain method proposed in [25] has been introduced in Chapter 1. In this 

section, a brief review is provided that gradually leads to the following sections of error 

analysis and optimization. The frequency domain method is capable of measuring both 

optical feedback parameter C and  simultaneously with SMI signals. The values of C and  
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are estimated from the spectrum of the feedback phase which is extracted from an SMI 

signal. 

For illustration convenience, the SMI model equations are relisted below: 

0( ) ( ) sin( ( ) arctan )F Fn n C n                                      (3.1) 

( ) cos( ( ))Fg n n                                                           (3.2) 

0( ) (1 ( ))P n P m g n                                                       (3.3) 

By expanding the sine component, Equation 3.1 becomes: 

0 1 1 2 2( ) ( ) ( ) ( )F n n k n k n                                             (3.4) 

where , , , . 

Then by taking Fourier transform of the above equation, phase equation in frequency 

domain is obtained as: 

0 1 1 2 2( ) ( ) ( ) ( )F f f k f k f                                        (3.5) 

If target is in harmonic vibration with a frequency of , by choosing , the frequency 

component of  can be excluded from above equation, then we have: 

1 1 2 2( ) ( ) ( ),  F f k f k f f                                        (3.6) 

where  denotes the frequency range which starts from  and ends at . The 

authors in [25] gave an approximate range that  based on experience. 

Since ,  and  are all complex functions that consist of real and imaginary 

components, Equation 3.6 can be separated as: 

1 1 2 2

1 1 2 2

Φ Φ Φ
,   

Φ Φ Φ

R R R
F
I I I
F

f k f k f
f

f k f k f
                                 (3.7) 

where superscripts “ ” and “ ” denote the real and imaginary parts of the relevant complex 

numbers (e.g. ). In this case, expect for  and , all the 

component are known constants at a certain frequency component. Then, each frequency 

component inside frequency range  can be used to worked out a pair of  and .  
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Finally,  and  C can be estimated by using the values of  and , and calculated as 

follows: 

2 22
1 2

1

, k C k k
k

                                                     (3.8) 

Theoretically, the estimation results of  and  using each frequency component inside 

range  should be identical. While in practice, their values often deviate from the true 

values due to the influence of various noises and the error introduced in signal processing.  

The procedures of the frequency domain based alpha estimation algorithm are summarised 

as follows: 

1) Normalisation: normalise the raw SMI signal into the range of [-1, 1], so that the phase 

can be extracted from SMI signal by performing inverse-cosine transform (Equation 3.2); 

2) Phase unwrapping: reconstruct the feedback phase based on the method in [51]; 

3) Spectrum calculation: generate the spectrum of phase signals by performing FFT (fast 

Fourier transform); 

4) Optimization of results: select the optimal value based on the processing results.  

In the following sections, we will investigate the errors at each stage caused by noises and 

signal processing, from which, corresponding optimization methods are proposed to 

minimize the errors. 

3.2 Error analysis and optimization 

3.2.1 Normalization 

For a SMI signal in standard model, the values of all the data sample should fall in the range 

of [-1, 1], while the signals acquired from the experimental setup in practice are unlikely to 

fit in this range perfectly. Therefore, for most of the high precision applications which 

involve calculations based on phase signals (e.g. alpha factor measurement [23-25,43,49] 

and target movement reconstruction [44,51,59,74]), a normalization process is required in 



55 

 

signal pre-processing stage before further calculations can be done. However, in practice, it 

is difficult to accurately determine the true boundaries (upper limit and lower limit) of an 

SMI signal duo to the noises, which can result distortions during the normalization process. 

Despite a variety of signal pre-processing and filtering methods were proposed to improve 

signal quality, the enhancement on the accuracy of normalization has barely been 

investigated. 

In this section, an optimized normalization process with the assistance of the frequency 

domain based alpha estimation is presented. Firstly, the influence of normalization on the 

performance of alpha estimation is investigated through simulations. Then, by analysing the 

results of simulations, a novel method was proposed to improve the accuracy of 

normalization and thus enhance the performance of SMI based sensing.  

As discussed in Chapter 2, due to the various noises contained in the experimental system, 

which cause SMI signals featured in time domain with transients and slow-time fluctuation, 

as shown in Figure 3-1. Since acquired experimental SMI signals are not fitting in the range of 

[-1, 1], a normalization process is required. However, unlike ideal signals, the peak points in 

an experimental signal are usually not in the same horizontal level (e.g. the peak points in 

Figure 3-1), as well as the valley points. 

 

Figure 3-1: An experimental SMI signal obtained at moderate feedback with an external target in 

harmonic vibration. 
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passed on to the next procedure: phase unwrapping. To demonstrate the consequences of 

normalization error, the phase signal unwrapped from an improperly normalized SMI signal 

is given in Figure 3-2. By comparing the unwrapped phase with the true phase signal in Figure 

3-2(b), it is clear that the error produced by normalization has been passed on. Although 

according to Figure 3-2(a) that most of samples in unwrapped result are accurate, actually 

this minor error is not negligible for alpha estimation, which will be demonstrated in the 

following section. 

 

Figure 3-2: (a) Noise affection on phase unwrapping; (b) an enlarged view on the part indicated in (a). 

3.2.1.1 Error analysis on normalization process 

As required by the frequency domain based alpha estimation algorithm, extracting phase 

signal  from the SMI signal g  is the first step. If g  is already distorted due to an 

inaccurate normalization, the error can be passed on or even be amplified throughout the 

calculations. In order to find out the influence of normalizing error on the performance of 

alpha estimation, a simulated SMI signal (with the boundary of [-1, 1]) was shifted upwards 

(or can be considered as the signal boundaries were shifted downwards) by 2% of its range 

(i.e. 0.04) to simulate a normalization process with error. Then the frequency domain based 

alpha measurement algorithm was applied for alpha estimation, the results are plotted in 

Figure 3-3(b). For comparison, the results calculated from the ideal signal are also given in 
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Figure 3-3(a). Remarkably, only 2% normalization error has caused considerable disturbance 

to the estimation results: for the ideal signal, the alpha results are identical at each 

frequency component in Figure 3-3(a) (coincide with the true value of =2.5); in contrast, the 

results in Figure 3-3(b) exhibit a large dispersion in the estimated results of , which indicates 

a poor measurement accuracy. 

 

Figure 3-3: Alpha results estimated from: (a) an ideal SMI signal; (b) the signal with normalization 

error. 

In practice, it is very hard to have both upper limit and lower limit (denoted by  and 

 respectively) set accurately in normalization. It is common that one of the limits is set 
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2

1

1( ) [ ( ) ]
N

ave
n

MSE n
N

                                             (3.9) 

where  and  are the length and average value of sequence  respectively. Figure 3-4 

gives the correspondences between limit deviation and MSE of the estimation results in 

above two cases. 

 

Figure 3-4: Correspondence between limit deviation and MSE of estimation results. 
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adjusting the upper limit and comparing the alpha estimation results, the best value for 

upper limit in normalization can be found. The optimized normalization process is 

summarised below: 

Step 1: Pick a piece of SMI signal which has the minimum fluctuations on the values of peak 

points and valley points, and then segment one target vibration period of waveform; 

Step 2: Set the minimum value of the valley points as the lower limit; 

Step 3: Set the average value of the peak points as the reference upper limit value; 

Step 4: Deviate the upper limit from the reference value with a step of 0.5%, from -4% to 

+4%, record the MSE of estimated alpha values at each step; 

Step 5: Find out the optimal value for upper limit by corresponding to the minimum MSE of 

alpha, and normalize the SMI signal with this limit. 

3.2.1.3 Test on experimental signal 

In order to test the feasibility of the proposed normalizing method in practice, we applied 

the proposed method on the same piece of experimental signal where the waveform in 

Figure 3-1 was segmented from. Figure 3-5 gives the result of MSE vs. adjustment amount 

which is calculated at Step 4. As expected, the dispersion of estimation results reaches a 

bottom when the upper limit is adjusted with certain amount (-1% in this case), which 

means the actual upper limit of this SMI signal has been found 
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Figure 3-5: Correspondence between upper limit adjustment and MSE of estimation results. 

In summary, the proposed normalization method is based on the fact that the results of 
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prior concern. 
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Firstly, the principle of PUM (phase unwrapping method) is reviewed. For illustration 

purpose, a piece of simulated ideal SMI signal ( =2.5 and  C=3) is plotted in Figure 3-6. 

 

Figure 3-6: A simulated SMI signal and the corresponding target movement. 

In Figure 3-6(a), characteristic points V and P indicate the valley and peak of a fringe 

respectively, and J is the sharp changing edge of a fringe. Because of the hysteresis 

phenomenon [46,54], P and J are overlapped in the right inclination.  

When the system is in weak feedback regime (C<1), there is no hysteresis effect and the 

phase is calculated as: 

( 1)( arccos) [ ( )]VPi
F g nn                                               (3.10) 

When the system is in moderate feedback regime, for the waveform in right inclination, the 

phase is calculated as: 

( 1) arccos[ ( )]) )( 2 ( 1VPi
F Vg nn i                                 (3.11) 

For the waveform in left inclination, the phase is calculated as: 

( ) arccos[ ( )] 2 , for VP and PV part
( ) arccos[ ( )] 2 , for PJ part              F

V

J

F n g n i
n g n i

                    (3.12) 

Where   and  are updated as: 

, when at P points or V points 

, when at V points in right inclination 
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, when at V points in left inclination 

, when at J points in left inclination 

The rough PUM recorded in [75] and [76] ignores the particularity of the PJ part, so the 

obtained phase signal is not suitable for high-precision displacement reconstruction and SL 

parameter estimations (e.g. alpha factor). 

An important source of phase unwrapping error is the uneven fringe peaks in SMI signals. In 

Figure 3-7, two segments from the same piece of experimental SMI signal are plotted. 

Compared to Figure 3-7(b), the fringe peaks of the waveform in Figure 3-7(a) are more 

scattered due to the stronger slow-time noises. Then both signals were pre-processed by the 

proposed adaptive Myriad filter and the optimized normalisation process, their alpha 

estimation results are plotted in Figure 3-8. Apparently, the estimation results of the signal in 

Figure 3-8(b) are more stable and concentrate which yield to more accurate alpha estimation. 

 

Figure 3-7: Two segments from the same piece of experimental SMI signal. 

0 500 1000 1500 2000
0.55

0.6

0.65

0.7

0.75

0.8

n

SM
I s

ig
na

l

(a)

0 500 1000 1500 2000
0.55

0.6

0.65

0.7

0.75

0.8

n

SM
I s

ig
na

l

(b)



63 

 

 

Figure 3-8: Alpha estimation results of the signal in: (a) Figure 3-7(a); (b) Figure 3-7(b). 

As discussed earlier in Section 3.2.1, in most cases, the fringe peaks in acquired SMI signals 

are not even. Even with the proposed pre-processing techniques, the uneven peaks still can 

cause serious performance degradation, as demonstrated in Figure 3-8. Therefore, choosing a 

high quality signal (without obvious uneven peaks and severe noises/distortions) is the 

premise of achieving accurate alpha estimations. 

3.2.3 Period detection and spectrum calculation 

As required by the principle of frequency domain based alpha measurement algorithm, the 

external target is subject to a simple harmonic vibration which makes  close to a 

sinusoidal signal. Hence,  has the expression of: 

0
0 0

0

4( ) sin(2 )Lt f t                                               (3.13) 

where  and  are vibration amplitude and vibration frequency of the target. Then, by 

substituting into SMI model equations (Equation 3.1 and 3.2), we have: 
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It is seen from above equations that the target vibration frequency  is also the 

fundamental frequency of g . 

There are two objectives to achieve the target vibration period (or frequency). One is for 

excluding the frequency component of  from the FFT results (Equation 3.5), which 

requires the general knowledge of frequency interval that allow  and , 

i.e. . Another purpose is for spectrum calculation (FFT), which strictly 

requires the input sequence duration is an integer multiple of the target vibration period, 

otherwise, serious error can be caused by spectral leakage during the FFT. 

3.2.3.1 Error analysis on period detection 

According to the principle of discrete Fourier transform, the observed data sequence will be 

extended periodically during the calculation. If a signal with frequencies is not periodic in the 

observation window, the periodic extension of that signal will not commensurate with its 

natural period thus can exhibits discontinuities at the boundaries of the observation, which 

are responsible for the spectral leakage [77]. For SMI signal processing, in order to achieve 

high quality spectrum for alpha estimation, it is of significant importance to ensure the 

length of input signal sequence is exactly equal to the target vibration period. 

To investigate the impact of period detection error on alpha estimation using frequency 

domain based method, we conducted a series of tests on ideal simulated SMI signals. In 

practice, the detected period can be larger or smaller than the true value, therefore, we 

simulated both circumstances separately. For a clear demonstration of simulation results, 

the cases for period detection error = 0.1%, 0.5% and 1% respectively, are chosen and 

plotted in Figure 3-9. 
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Figure 3-9: Estimation results of alpha for SMI signals with different period detection errors: (a) +0.1% 

error; (b) +0.5% error; (c) +1% error; (d) -0.1% error; (e) -0.5% error; (f) -1% error. 

As demonstrated by Figure 3-9, the reliability of frequency domain based alpha estimation is 

closely related to the accuracy of period detection. It can be seen in Figure 3-9(a) and (d), 

even 0.1% period detection error already caused considerable errors in few frequency 

components. Fortunately, most of the results in Figure 3-9(a) and (d) exhibit very low 

fluctuations, thus accurate value of alpha still can be achieved via result optimisation 

processing. But for bigger period detection errors like 0.5% and 1% in Figure 3-9(b) (c) and (e) 

(f), the estimation results in most of the frequency components are not acceptable, so no 

matter how we improve other procedures in alpha estimation algorithm, the accuracy and 

reliability of alpha measurement most be poor. 

3.2.3.2 Optimization on period detection 

In [43], the authors proposed to acquire target vibration period using the auto-correlation, 

which has the following expression: 
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where  is the data length of SMI signal segment  under test.  is time delay which 

varies from  to . An example of SMI signals (period is approximately 

1000 sample points) and its corresponding auto-correlation result is given in Figure 3-10. 

 

Figure 3-10: (a) A piece of experimental SMI signal; (b) period detection with auto-correlation; (c) 

period detection with least square. 

Similarly, we also can use the least square approach to acquire repeatability which has the 

following expression: 
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The calculation result of using least square is plotted in Figure 3-10(c). Clearly, the 

fundamental period can be obtained by detecting the intervals of the peaks or valleys in 

either auto-correlation result or least square result. 

So far, it seems no difficulties in period detections, but it is important to aware the detection 

error must be controlled less than 0.1%, e.g. only 1 sample point of error is allowed for the 
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signal in Figure 3-10. To investigate the accuracy of our period detection approaches, we 

applied auto-correlation and the least square method onto a piece of long experimental 

signal (contains more than 20 fundamental periods). The period detection results are plotted 

in Figure 3-11. 

 

Figure 3-11: Period detecting results calculated by (a) auto-correlation; (b) least square method. 

By comparing the results obtained by two different detection approaches, we can say they 

have similar accuracy, both around 0.3%.  

To achieve a detection error less than 0.1%, an optimal value should be selected based on 

the period detection results, which requires a very long piece of signal. In this way, the error 

caused by a single period detection is minimized. Based on this idea, we propose the 

following procedure of period detection: 

1) Acquire a piece of SMI signal long enough for period detection, which should contain 

dozens of fundamental period; 

2) Apply auto-correlation or the least square method, and record the durations of peak 

interval; 

3) Apply Myriad estimator (illustrated in Section 2.3) to obtain the most repeated value as 

the final detection result. 
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3.2.4 Optimization of estimation results 

As mentioned earlier, in ideal circumstances, the estimation results of  and  at each 

frequency component should be identical. However, due to the interference of all kinds of 

noise and the errors involved in signal processing, the estimation results deviate from the 

true values more or less (e.g. Figure 3-3 in Section 3.2.1 and Figure 3-8 in Section 3.2.2).  

In previous chapter and sections, we already discussed how to enhance the quality of SMI 

signals and how to avoid introducing error during the signal processing. Even though, the 

noise residual still can cause considerable errors during the calculation. In order to 

investigate the influence of such error and find a way to diminish it, a simulated noisy SMI 

signal is generated for the test on alpha estimation. To make the noises more realistic, the 

simulated ideal signal is contaminated with both white noise and slow-time noises. The 

simulated target movement and the corresponding SMI signal are given in Figure 3-12 with 

discrete time index ( =0.45 , =1.4 ,  =100Hz, =4.5, C=4.5). 

By applying the frequency domain based alpha measurement algorithm, the true values of 

 and  for the above simulated SMI signal are calculated as -0.976 and -4.393 

respectively. After sequentially processed through adaptive Myriad filter, normalisation, 

phase unwrapping, period detection and spectrum calculation, the results of  and  are 

obtained, which lead to the results of alpha factor ( ) and optical feedback parameter (C) by 

using Equation 3.8. The estimation results are plotted in Figure 3-13. 
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Figure 3-12: Simulated target movement and the corresponding SMI signal: (a) simple harmonic 

target movement; (b) clean SMI signal; (c) SMI signal contaminated with slow fluctuations and white 

noise. 

 

Figure 3-13: Estimation results of , , alpha factor and feedback parameter. 
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As expected, instead of being identical, the calculation results of all the parameters deviate 

from their true values more or less. As shown in Figure 2-13, since the value of  is very 

close to zero and alpha is calculated as , the accuracy of alpha is highly dependent 

on . Moreover, the results of alpha (in Figure 3-13(c)) are much disperse compared to  

and , which suggest the error lies in  and  is actually amplified through the 

calculation. Therefore, instead of calculating alpha at each frequency component 

individually, we can determine an optimal value for  based on the whole set of calculation 

results, as well as for , then work out the final result of alpha. 

When it comes to result selection, Myriad estimator can be a good candidate, especially in 

this case. As indicated by the result distribution pattern shown in Figure 3-13, the estimation 

results are distributed around the true value and also containing few outliers as well. Such 

pattern is very close to the impulse environment, that Myriad estimator can be highly 

effective.  

After performing Myriad estimation, the final results of  and C from the above simulation 

and their errors are listed below. 

Table 3-1: Optimized estimation results of the simulated SMI signal. 

Parameter True value 
Without result optimization Results optimized with Myriad 

Value Error Value Error 

 4.5 2.51 44.2% 4.44 1.3% 

C 4.5 4.78 7.2% 4.49 0.2% 

 

As demonstrated by Table 3-1 that the accuracy of estimation has been greatly improved, 

which proves the effectiveness of Myriad on removing the outliers in calculated results. 

To test the performance of our proposed result optimization method in practice, a further 

test was conducted on experimental SMI signals. The experimental setup is based on the 

typical structure of an SMI system as given in Figure 1-1. The SL used in system is HL8325G 

with a wavelength of 830nm provided by Hitachi. During the experiment, the SL is biased 
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with a DC current of 70 mA and stabilized at 25±0.1°C. The moving target is a PZT placed 20 

cm away from the SL front facet, which is driven by a signal generator and vibrates 

harmonically at 210 Hz frequency. The SMI signal consists of approximately 20 fundamental 

periods was collected under moderate region, for demonstration only, two periods of signal 

is plotted in Figure 3-14. Then the whole signal was segmented into 20 pieces and fed into the 

frequency-domain based alpha estimation algorithm separately. For each segment, a set of 

 and a set of  were obtained just like in Figure 3-13(a) and (b). In order to verify the 

effectiveness of the proposed result optimization approach, the calculation of alpha was 

conducted in two groups: in one group, alpha and C were calculated directly from  and  

results; in another group, the raw data of  and  were processed with Myriad estimator 

at first, then alpha and C are calculated from the optimal results of  and . Thus 20 final 

results of alpha were obtained in each group. Finally, by using the mean squared error (MSE) 

to evaluate the accuracy of the estimation done by each group, the comparison information 

is reported in Table 3-2. 

 

Figure 3-14: A piece of experimental SMI signal acquired under moderate feedback level. 

Table 3-2: Estimation results of experimental SMI signals. 

Parameter 
Without result optimization Results optimized with Myriad 

Average value MSE Average value MSE 

 4.239 1.006 4.432 0.134 

 4.394  0.038 4.434 0.004 
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It is noticeable that the average results of estimations are different between the two groups. 

But considering the results optimized with Myriad are characterized by much less MSE, it is 

expected that the results obtained by the proposed method are more reliable and closer to 

the true value than that without the result optimization process. 

3.3 Summary 

In this chapter, the calculation process of the frequency-domain based alpha measurement 

method is investigated in detail. Firstly, the four stages of the frequency-domain based  

measurement method are reviewed. Then, for each stage, a detail analysis on the 

introduced error is provided, which followed by the optimization method proposed for 

preventing error propagation during the calculation. Finally, the effectiveness of proposed 

optimization method is verified through tests on both simulated and experimental signals. 
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Chapter 4. Real-time alpha measurement on 

FPGA 

In all the SMI based alpha measurement approaches introduced in Chapter 1, the signal 

processing and alpha calculation are implemented by a computer with prepared 

experimental SMI signal. However, this off-line computer-based processing is hard to meet 

the requirements of practical applications on processing speed and system compactness.  

In recent years, FPGAs (Field Programmable Gate Array) are widely used in the fields of 

communications, consumer electronics, automotive electronics, industrial control, detection 

and measurements. A basic FPGA architecture consists of an array of logic blocks (or called 

configurable logic block), I/O pads and routing channels, generally, all the routing channels 

have the same width [78]. FPGA is the further development product of programmable 

devices such as PLA (Programmable Logic Arrays), GAL (Generic Array Logic), CPLD (Complex 

Programmable Logic Device). FPGA is considered as a kind of semi-custom circuits in the 

field of ASIC (application specific integrated circuit), thus it solves the defects in custom 

circuits and also overcomes the shortcomings in programmable devices duo to limited 

number of gates. Compared to traditional DSP (digital signal processor), FPGA supports 

parallel operation which provides better flexibility to suit different speed and cost 

requirements. Moreover, compared with the ASIC chip, FPGA is able to be reconfigured at 

run-time without sacrificing speed [79].  

In order to make FPGA more widely available in the field of digital signal processing, FPGA 

suppliers like Xilinx and Altera, they all have launched simplified developing tools for their 

products, such as Xilinx's System Generator for DSP (or short for System Generator) and 

Altera’s Quartus , thus designed algorithms can be efficiently mapped into reliable and 

synthesisable hardware systems with the help of developing tools.  
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Based on the above characteristics, combining FPGA with SMI sensing system is considered 

as a good solution for the real-time alpha measurements since it possesses the advantages 

of small size, high efficiency, abundant I/O ports and related modules, easy to configure and 

high-flexibility.  

In this chapter, the general FPGA development process is introduced in Section 4.1.1. The 

structure of SMI-FPGA system and the overall design scheme of alpha measurement 

algorithm based on FPGA are briefly described in Section 4.1.2. In Section 4.2, the details of 

each block in the design is presented which followed by individual performance test. Finally, 

the overall testing results are reported in Section 4.3. 

4.1 Introduction 

4.1.1 Introduction to FPGA development 

Generally, the process of FPGA design includes algorithm and module design, synthesis, 

implementation and download to FPGA devices. The process of FPGA design flow chart is 

shown in Figure 4-1 [80]. Take the Xilinx FPGA design development kit for example, the 

design steps are briefly described in the following paragraphs. 

 

Figure 4-1: FPGA design flow. 

 Algorithm and module design 
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System Generator is a system modelling software tool which developed by FPGA 

manufacturer Xilinx. System Generator provides system modelling and automatic HDL 

(Hardware Description Language) code generation from embedded simulation software 

Simulink which is based on MATLAB [80]. System Generator capable to generate the most 

widely-used HDL code types, Verilog HDL and VHDL (Very-high-speed Hardware Description 

Language). System Generator provides a suitable DSP hardware modelling environment, 

accelerate and simplify the FPGA design, designers only need to connect and configure the 

pre-set Xilinx modules built in Simulink. Related tools: Matlab, Simulink, System Generator, 

Xilinx blockset. 

 Synthesis 

After finish modelling with the Xilinx modules, by configuring the synthesis tool and output 

code type, the HDL contained in the modules is compiled into a netlist which comprises basic 

logic gates and FPGA resources. Synthesis report contains useful information like maximum 

frequency, they can indicate hidden problems [80]. Related tool: System Generator. 

 Implementation 

Implementation in Xilinx design flow has three stages: translate, map and place/route [80]. 

During the translate phase, the netlist generated in synthesis is translated into another 

netlist based on SIMPRIM library which is more close to detailed components. During the 

map phase, the netlist generated in translate phase is mapped into a specific device 

resources, like LUTs (Look Up Table) and flip-flops, moreover, precise switching delays is 

contained in this phase. Place and route phase is the most important, it gives the list of 

different device resources and how they are interconnected inside an FPGA [80]. Related 

tool: Xilinx ISE Project Navigator. 

 Download to FPGA board 

The final bitstream of configuration is downloaded into FPGA device. Related tool: Xilinx ISE 

Project Navigator, iMPACT. 
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4.1.2 Design overview 

As the frequency-domain based alpha measurement method has been introduced in last 

chapter, to implement this method, the overall measuring system setup scheme is shown in 

Figure 4-2. The system shares the same basic structure with the one shown in Figure 2-1. The 

optical path from the front facet of the SL to the target surface forms the external cavity of 

the SL. When the target moves, the light phase at external cavity will vary accordingly, and 

thus results a modulation of the emitted SL power. The modulated SL power (SMI signal) is 

detected by a PD through a beam splitter. Finally, the SMI signal is picked out and amplified 

by the signal acquisition device, then fed into FPGA for real-time processing and calculations. 

 

Figure 4-2: Real-time processing system schematic. 

As the frequency-domain based alpha measurement has been introduced in Chapter 1, 

according to the measuring principle and the sensing system setup, the signal processing 

flow chart is plotted in Figure 4-3. 

 

Figure 4-3: Signal processing flowchart. 

The overall processes consist of three main steps: 
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1. Signal acquisition: The SMI signal is received by PD and amplified by trans-impedance 

amplifier, and then the signal is sampled by an AD converter; 

2. Signal processing: This is the main process consists of three procedures that calculate 

alpha from the sampled initial measured SMI signal; 

1) Waveform pre-processing: The raw SMI signal should be filtered and normalized first; 

2) Generate related phase signals and perform FFT: The purpose of this procedure is to 

generate  and  from , which is obtained by performing inverse 

cosine transform and phase unwrapping on SMI signal . Then, applying FFT on 

,  and  to calculate their spectrum; 

3) Calculate alpha: Calculate alpha by solving the spectrum-based equations; 

3. Result output: The results of alpha estimation are stored and analysed, and then output 

an ultimate value. 

According to the signal processing flow inside the dashed box in Figure 4-3, the Simulink 

model is designed as shown in Figure 4-4 using Xilinx blocksets. 

 

Figure 4-4: Block diagram of overall signal processing design. 

In order to make the design scheme more compact, related block components are packed 

into subsystems according to the function they belong to. 

The general processing mode is: the amplified and sampled SMI signal is sent to the signal 

processing unit continuously, so the output value of alpha will be updated throughout the 

calculation. Next, each block in Figure 4-4 will be briefly described regarding their functions 

and how do they work. 



78 

 

There are three non-stop modules: “Myriad filter”, “Normalisation” and “Phase 

unwrapping”. They output processing results in real-time. The “Myriad filter” module is 

designed based on the adaptive Myriad filter proposed in Chapter 2, which is effective to 

both oscillations and white noise. The “Normalisation” module keeps tracking on the value 

range of the filtered signal and then adjusts the amplifying rate accordingly. The “Phase 

unwrapping” module is integrated with the phase unwrapping algorithm specifically 

designed for real-time processing, which is able to synthesis the phase signal instantly from 

the input SMI signal (details are presented in Section 4.2.4). The “FFT” module consists of 

several FFT calculation units, which generate the spectrum of ,  and  from 

the unwrapped phase signal. The “k1_k2_calculator” module implements the calculation of 

Equation 1.26, and outputs the result sequences of  and  which lead to the final result 

of alpha. The “Alpha calculator” module records and analyses the results of  and , then 

computes the final result of alpha.  

In the following sections, the above modules are introduced in detail. Meanwhile, a series of 

simulation tests are conducted to verify the validity of each module. 

4.2 Module design for real-time alpha measurement 

4.2.1 Signal input 

The FPGA development board Xilinx Spartan-3E (XC3S500E-4FG320C), is integrated with 

abundant I/O ports and associate components, including built-in AD convertors (LTC1407A-1 

dual ADC) and amplifiers (LTC 6912-1 dual AMP). The two-channel analog capture circuit of 

ADC on the FPGA board is plotted in Figure 4-5 [81]. The programmable amplifier is employed 

to scale the incoming voltage on VINA or VINB so that it maximises the conversion range of 

the DAC. According to data sheet [81], the gain of each amplifier is programmable from -1 to 

-100, which is sent as an 8-bit command word, consisting of two 4-bit fields. The maximum 

sampling rate of the ADC is approximately 1.5 MHz and the sampling depth is 14-bit per 
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channel. Firstly, the gain setting of amplifier is configured by FPGA through SPI (Serial 

Peripheral Interface) bus. Then the scaled signal is sent into ADC, where the analog signal is 

converted into a 14-bit discrete digital representation. Finally, the sampled signal is sent into 

FPGA chip via SPI bus. Both the pre-amplifier and the ADC are serially programmed or 

controlled by the FPGA chip, and the data communication between them is based on SPI 

bus. Table 4-1 lists the important interface signals associate with the analog capture circuit. 

 

Figure 4-5: Detailed view of the analog capture circuit on FPGA. 

Table 4-1: Important interface signals associate with the analog capture circuit. 

Signal Direction Description 

SPI_MOSI FPGA→AMP Serial data: master output, slave Input. Presents 8-bit 
programmable gain settings. 

AMP_CS FPGA→AMP Active-Low chip-select. The amplifier gain is set when signal 
returns High. 

SPI_SCK FPGA→AMP 
FPGA→ADC 

Clock for SPI bus communication. 

AMP_SHDN FPGA→AMP Active-High shutdown/reset amplifier. 

AMP_DOUT FPGA←AMP Serial data. Echoes previous amplifier gain settings. Refresh 
gain data when SPI_SCK returns Low. 
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AD_CONV FPGA→ADC When the AD_CONV signal goes High, the ADC 
simultaneously samples both analog channels. 

SPI_MISO FPGA←ADC Serial data: master input, serial output. Presents the digital 
representation of the sample analog values as two 14-bit 
two’s complement binary values. Converted data is 
presented with a latency of one sample. 

SPI_SS_B FPGA→SPI Disable the device to avoid bus contention by setting to logic 
value 1. 

DAC_CS FPGA→DAC The same use as SPI_SS_B. 

SF_CE0 FPGA→ 
StrataFlash 

The same use as SPI_SS_B. 

FPGA_INIT_B FPGA→ 
Platform flash 

The same use as SPI_SS_B. 

 

By importing the HDL code into a Black Box in Xilinx Blockset, the AD controlling program can 

be added to our design in System Generator as a normal Xilinx module. To test the 

effectiveness of AD module, another module LCD display is employed (details are given in 

Section 4.2.7), so the digital value converted from the captured analog voltage can be 

directly displayed on the build-in LCD screen. The test result shows the AD module works 

well, as shown in Figure 4-6. 

 

Figure 4-6: ADC module test: LCD displays the actual 14-bit value from ADC (represented in 

hexadecimal). 
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4.2.2 Filtering 

As illustrated in Chapter 2, the main noises/distortions in SMI signals are white noise, 

transient oscillations and slow fluctuation. Among them, slow fluctuation can be eliminated 

by adjusting the acquisition circuit (discussed Section 2.1.4), while the white noise and 

transient oscillations are hard to avoid in practice. Therefore, the adaptive Myriad filter is 

designed (in Section 2.2.2) specifically for those two types of noise, and its effectiveness is 

verified by testing on experimental signals.  

Firstly, let us review the general design idea of adaptive Myriad filter. The linear parameter 

 determines the output characteristics of Myriad filter: to reduce white-like noise, Myriad 

filter is expected to exhibit its linear property, which requires a large ; while for removing 

transient overshooting, Myriad needs to be highly selective, which requires a very small . 

Therefore, in order to simultaneously suppress two noises, suitable values should be 

assigned to  depending on the feature of noise, e.g. in Section 2.3.4, the dispersion of 

signal samples is proved to be a good reference for  value. 

Accordingly, the design scheme of the adaptive Myriad filter block is shown in Figure 4-7, 

where  denotes the filtered signal sequence. 

 

Figure 4-7: 9-point adaptive Myriad filter schematic. 

Limited by the sampling rate of ADC on FPGA board, the duration of a transient response is 

less than 6 points in most of the SMI signals, the window width of Myriad filter  can be set 

to 9 sample points. Firstly, sequential input SMI signal data are collected and converted into 

9 paralleled outputs at block serial to parallel. Then the 9 outputs are sent to the MSE 

calculator block where the dispersion of the input samples and the adaptive value of  is 
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calculated by following Equation 2.11 and 2.12. Finally, the paralleled signal and the  value 

are sent into the Myriad estimator block where the output value is calculated by Myriad 

algorithm (Equation 2.8). Considering the complexity MSE calculation and Myriad algorithm, 

the “MCode” block provided by Simulink in Xilinx blockset category is employed to simplify 

the design which can be easily configured by importing Matlab functions. 

Figure 4-8 shows the FPGA design of adaptive Myriad filter on System Generator. By using 

“From Workspace” block and “To Workspace” block, we can import test signals (simulated 

or experimental) from Matlab and export FPGA processing results to Matlab. To test the 

performance of design, a piece of experimental SMI signal was fed into the filter. Figure 4-9 

presents the real-time processing results captured at the output of MSE calculator and 

Myriad estimator. It can be seen from Figure 4-9(b) that appropriate values were calculated 

and assigned to   based on input signal. According to the filtering result in Figure 4-9(c), the 

impulsive noise-like transient has been eliminated and the white-like noise is well 

suppressed, which indicate the filter has satisfied the design requirements. 

 

Figure 4-8: FPGA design of adaptive Myriad filter unit. 



83 

 

 

Figure 4-9: (a) Input experimental SMI signal with oscillations and white noise; (b) real-time 

calculation result of ; (c) real-time filtering result . 

4.2.3 Normalization 

Normalisation is a crucial step in the signal pre-processing before applying further 

measurement algorithms. For a standard SMI signal , the values of all the data samples 

should fall in the range of [-1, 1] as indicated by Equation 1.11, while the signals acquired 

from the experimental setup in practice are unlikely to fit in this range perfectly. 

Furthermore, according to the frequency-domain based alpha estimation algorithm [25], the 

phase signal is extracted from SMI signal g  by performing inverse cosine function and 

phase unwrapping, that is why a normalization process is required in signal pre-processing 

stage before further calculations can be done.  

After filtering process, the normalisation is no longer affected by the transient overshooting 

and most of the white-like noise. So, it is simple to remove the direct current component 

through the following equation: 

2 1
( )

( ) f fmin
nor

fmax fmin

g g
g

g
n

g
n

                                               (4.1) 
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where ( )norg n  is the normalised signal; fmaxg and fming  are the maximum value and the 

minimum value in ( )fg n  respectively. Obviously, the key point of the design is acquiring 

fmaxg and fming  in real-time. 

Traditionally, maximum and minimum values can be found using a register. The first come-in 

value of the signal ( )fg n  is stored as an extreme value, and the next value compares with 

the stored one. If the next value is larger than the maximum value or smaller than the 

minimum value, the extreme value will be replaced by the new value. However, in practice, 

influenced by the slow fluctuations and residual noises that unable to be filtered out, the 

extreme values obtained by this method are very unreliable. An example is given in Figure 

4-10 to illustrate this issue. 

 

Figure 4-10: Real-time extreme value detection result. 

As shown in the figure, due to the fluctuations at the beginning, the detected extreme 

values are not suitable for the rest of the waveform, which must lead to considerable error 

during the normalisation. The flaw of this detection method has been revealed though this 

case: instead of flexible updating along with the real-time signal, the range (extreme values) 

can only be expanded during the detection. To compensate this deficiency, a negative 

feedback mechanism is required. 

Figure 4-11 gives the design idea of updating maximum value based on the input signal, 

where  denotes the index of the maximum value of signal in a certain period (local 
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maximum);  is a configurable threshold. In Figure 4-11, Case 2 describes the traditional 

detection method mentioned earlier: once the come-in sample value ( )fg n  exceeds the 

current maximum value, fmaxg  will be updated. Additionally, two other cases are considered 

in this design to address the remaining issue in the traditional method. Case 3 describe the 

situation when fmaxg  has not been exceeded for a long period of time, then fmaxg  should be 

reduced so it can stick to the signal border again. In order to avoid triggering Case 3 too 

frequently, a tolerance range is designed in Case 1. That is, if the local maximum value only 

exceed fmaxg  a little bit, then fmaxg  does not need to be updated.  

 

Figure 4-11: Flow chat on how to update maximum value based on the input signal. 

The idea of this design is simple and straightforward, only involves IF statements and simple 

calculations which can be easily implemented by a single “MCode” block with Matlab 

function. With the real-time maximum and minimum values ( fmaxg  and fming ), then the rest 

of the normalization calculation only requires several basic arithmetic blocks in Xilinx 

Blockset category. The final design diagram is given in Figure 4-12. 
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Figure 4-12: FPGA design of normalisation unit. 

To test the effectiveness of the design, the SMI signal in Figure 4-10 is employed again as the 

input signal, and the real-time processing results are plotted in Figure 4-13. 

 

Figure 4-13: Real-time processing results of extreme value detection and normalisation. 

From the real-time processing result shown in Figure 4-13, it can be seen that the detected 

extreme values are updated flexibly along the incoming signal, thus leads to a much better 

normalisation result as shown in Figure 4-13(b). 
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4.2.4 Phase unwrapping 

The phase unwrapping of the signal under the weak feedback level is very simple since there 

is no hysteresis effect. However, the signal SNR under the weak feedback level is poor 

because of the additive noises exist in the system. So normally, we prefer to conduct the 

measurement of alpha under the moderate feedback level for better accuracy. 

According to the work in [51], the calculation of phase unwrapping is divided into left 

inclination and right inclination, which respectively correspond to positive direction and 

negative direction of the target movement, as shown in Figure 4-14. Characteristic points P 

and V denote the peak and valley of each fringe. J points are called jumping points where 

SMI signal exhibits sudden change. 

 

Figure 4-14: (a) Simulated SMI signal; (b) corresponding target movement of (a). 

When feedback strength parameter C<1, i.e. under weak feedback level: 

( 1)( arccos) [ ( )]VPi
F g nn                                               (4.2) 

When 1< C <4.6, i.e. under weak feedback level, for the waveform in right inclination, the 

phase is calculated as: 

( 1) arccos[ ( )]) )( 2 ( 1VPi
F Vg nn i                                  (4.3) 

For the waveform in left inclination, the phase is calculated as: 
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( ) arccos[ ( )] 2 , for VP and PV region
( ) arccos[ ( )] 2 , for PJ region              J

F V

F

n g n i
n g n i

                   (4.4) 

Where   and  are updated as: 

, when at P points or V points 

, when at V points in right inclination 

, when at V points in left inclination 

, when at J points in left inclination 

To implement above PUM on DSP devices, the come-in SMI signal needs to be segmented 

and stored into a ROM, so the characteristic point detection program can analyse the 

waveform by constantly accessing the memory, and then sends back the detection results. 

Finally, the phase signal is synthesised based on the stored SMI signal and the detected 

indexes of characteristic points. Obviously, such processing scheme is actually an 

intermittent off-line processing and requires data exchange with the storage all the time, 

which is inefficient on both processing speed and resource utilization. Therefore, to achieve 

real-time processing on DSP devices, the structure of PUM algorithm need to be simplified 

and refined. 

4.2.4.1 Simplified PUM 

By looking into the principle of PUM, there are actually only two key points, one is the sign 

of  in , i.e. Equation 4.4, another is the cumulative multiples of  (i.e.  

and ). Firstly, +  is only applicable at PJ. For the rest of the waveform,  is 

calculated as -  plus the multiples of . Thus Equation 4.3 and 4.4 can be 

combined together. Secondly, the cumulative trend (add or subtract) of  component 

should be increment in left inclination and decrement in right inclination, which practically 

can be triggered by the falling edges and the raising edges in a SMI signal. This supersedes 
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the updating rule of  which discriminates left inclination and right inclination. Thus, the 

PUM is simplified as: 

( ) arccos[ ( )] 2 , for PJ part
( ) arccos[ ( )] 2 , for the rest

V

J

F

F

n g n i
n g n i

                            (4.5) 

Where  is updated as: 

, raising edge at J 

, falling edge at J 

For implementation, the raising edge and the falling edge at J points can be easily detected 

with the differential value of SMI signal; the location of PJ is determined by a falling edge-

triggered peak detection, details are given in Section 4.2.4.2. 

Compared to the original PUM, the benefits of above simplification are: (1) no need to 

discriminate between the left inclination and the right inclination; (2) no need to determine 

the indexes of characteristic points before phase unwrapping.  

In summary, although for off-line processing, the simplification is not significant in terms of 

basic principles or calculation accuracy, for real-time sequential signal processing on DSP 

devices, e.g. FPGA, the simplification is crucial since it lifts the limitations in off-line 

processing scheme and improves the processing efficiency. 

4.2.4.2 FPGA implementation 

As indicated by Equation 4.5, region PJ need to be treated specially during the phase 

unwrapping. In moderate feedback regime, PJ region only exists in the left inclination part 

[45,46,54] and the duration is too short compared to a whole fringe, thus its influence used 

to be ignored in rough PUMs [75,76]. For alpha estimation using the frequency-domain 

based method in [25] which involves Fourier transform, based on our experience, reliable 

results are obtained only when the signal resolution reaches approximately 1000 sample 

points per fundamental period. In this case, the PJ region normally only occupies less than 
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30 points under the moderate feedback level, which suggests P can be located within 30 

points ahead of J, as shown in Figure 4-15 ( =0.45 , =1.3 ,  =100Hz, =3, =2). That is, 

the knowledge of J is required in order to locate P. However, the appearance of J is not 

predictable in real-time, unless introducing a 30-point delay to P detection so that the two 

detections can proceed simultaneously. 

 

Figure 4-15: (a) A segment of SMI signal; (b) the enlarged view on the dashed area in (a). 

Based on the above real-time PUM scheme, the final design of FPGA implementation is given 

in Figure 4-16. Firstly, to import simulated signal and collect the simulation results, From 

Workspace block and To Workspace block are employed (some of them are packed inside 

subsystems for tidiness). Block arcos calculates the inverse cosine values of input signal “g”. 

Since the FPGA board (Spartan-3E) does not support CORDIC (coordinate rotational digital 

computer) based computation of arccos and arcsin, a LUT-based design is developed 

instead, which is faster and more efficient in execution. The “J_detect” block detects the 

raising edge and the falling edge (i.e. J points) based on the differential value of input signal, 

which is required by block “2kpi” for updating  and also block “P_search_area” for 

determining the P searching region. Block “P_detect” detects the maximum value within the 

P searching region and reports the position of P to block “PJ_region”, where the information 

of J and P are combined. Finally, the outputs of the former blocks are synthesized via the 

block “phase_systhesis” by following the PUM algorithm in Equation 4.5. 
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Figure 4-16: FPGA design of the real-time phase unwrapping unit. 

 

Figure 4-17: Real-time processing result of the phase unwrapping module: (a) input SMI signal; (b) 

detected edges; (c) 30-point searching region indication and detected P points; (d) the output of block 

“2kpi”; (e) the final output of synthesized phase signal. 
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To test the effectiveness of the design, a simulated SMI signal ( =0.45 , =1.4 ,  

=100Hz, =2.5, =3) was fed into the import port, the output of each module was 

monitored and plotted in Figure 4-17. According to the verification results, all the 

characteristic points were correctly detected thus lead to an accurate phase unwrapping 

result. Therefore, the phase unwrapping unit is proved to be fully functional and the design 

is successful. 

4.2.5 Spectrum calculation 

Spectrum calculation is the foundation of the frequency-domain based alpha estimation, 

which consists of two steps:  

(1) Generate the temporary phase signals  and  from  as

; 

(2) Generate the spectra of ,  and . 

The FPGA design scheme is simple and straightforward, as shown in Figure 4-18. 

 

Figure 4-18: FFT module group design. 

Firstly, the “phase_1_2” module computes the sine and cosine values of the input phase 

signal ( , denoted as “phasef” in Figure 4-18), which is the outcome of phase unwrapping 

unit. As mentioned in the last section, although there are existing CORDIC blocks in Xilinx 
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Blockset library which are capable of computing trigonometric functions, but they are 

inefficient and have strict limitations for input signal which make them hard to be 

coordinated. Therefore, we still use LUTs here to obtain  and   (denoted as 

“phase1” and “phase2” respectively in Figure 4-18). 

FFT block are available from the Xilinx Blockset library, they are integrated with abundant IO 

ports so that they are easy to coordinate and configure. To keep the design diagram tidy, 

most of the IO ports and their related blocks are packed inside the subsystem, only few main 

communication ports are left out, they are: signal input port, real and imaginary 

components of FFT output data stream, output valid indicator. The output valid indicator 

“valid1”, “valid2” and “valid3” are reserved for diagnoses and calculation complete 

indication, which will be used in the following alpha calculation unit.  

As usual, to verify our design on FFT modules, an ideal phase signal is fed into the system 

from Matlab workspace; meanwhile the outputs are monitored and recorded. The 

simulation results are plotted in Figure 4-19. 

 

Figure 4-19: Simulation results of FFT module testing. 
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As shown in the Figure 4-19(a), (b) and (c), the trigonometric function computing module 

“phase_1_2” is non-stop, just like other previously designed modules. However, an FFT block 

requires a long time to process the input sequence, which can be observed from the time 

difference between the data reading period in (d) and the output valid period in (e). Please 

note that all the spectra were successfully generated, only “phifr” (the real component of 

“phasef”’s spectrum) is plotted in Figure 4-19 for demonstration.  

Since the internal resources of an FPGA are very limited, the data precision is often 

compromised due to this reason. To ensure the data precision in this design is acceptable, 

the spectra obtained in the previous simulation are directly used to complete the estimation 

of alpha, and the results are plotted in Figure 4-20. As mentioned in previous chapters, under 

ideal circumstances, the estimation results should be identical at each frequency 

component. In this case, the precision of our design is very satisfactory according to the test 

results. 

 

Figure 4-20: Calculation results of  and  which determines the final value of alpha. 

4.2.6 Alpha calculation and optimization 

The alpha estimation and result optimization module implements most of the calculations in 

the frequency-domain based alpha estimation algorithm.  
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For illustration purpose, the expressions of ,  and their relation with  are relisted here 

2 2 1 1
1 2

1 2 1 2 1 2 1 2

,   
I R R I R I I R
F F F F
I R R I I R R Ik k                                 (4.6) 

2 2
2 1 1 2/ ,   k k C k k                                               (4.7) 

where , , ; ,  and  

denotes the FFT results of phase signals ,  and  respectively;  represents 

a frequency interval on spectrum; superscripts “R” and “I” denote the real and imaginary 

part of a complex number. 

Through the last section, we have obtained the spectra of phase signals ,  and 

, which are output sequentially in natural order. Considering the case that letting the 

frequency interval  equals to the resolution of FFT, then every frequency component on 

those spectra will lead a set of  and . In FPGA environment, this means one set of  

and  is calculated per computing cycle from the FFT results, which has the following 

expression: 

2 2 1 1
1 2

1 2 1 2 1 2 1 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ,   ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

I R R I R I I R
F F F F
I R R I I R R I

n n n n n n n nk n k n
n n n n n n n n

    (4.8) 

Thus after processing the spectra samples within the valid frequency range (typically 15~125 

times of the target vibration frequency), two sequences of  and  are obtained. The FPGA 

implementation scheme is shown in Figure 4-21. The results of  and  are simultaneously 

calculated in block “k1k2_calculator” by using Equation 4.8. 
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Figure 4-21: Alpha estimation and result optimization module design. 

As mentioned in the previous chapters, in ideal circumstance, all the values in sequence  

(or in ) should be identical. While in non-ideal circumstances, we need to select an 

appropriate value from the calculation results. In Section 3.2.4 we propose to choose the 

most repeated value as the final output by means of Myriad estimation. Unfortunately, 

considering the data sequence is too large (theoretically there will be hundreds of results), 

the Myriad estimation will consume huge resources to complete the calculation, which is 

very inefficient and time-consuming. Alternatively, an easy but effective approach is 

proposed here based on averaging and result feedback. 

Figure 4-22 is the unfolded scheme of module “k1_select” (or “k2_select”, they are identical), 

which capable of rejecting the outliers in input result sequence and then able to calculate 

the average value. The raw data sequence comes in from the input port “k1”. The “MCode” 

block “k1k2select” is a data pre-select block. After the average result is comparatively stable, 

it filters out the outliers in raw data sequence based on the feedback from final output 

value. The block “k1k2select” has two output ports, one gives the current data value, and 

another indicates whether the current result should be used. Once the value passed the 

quality check, then it will join the averaging conducted in block “average calculator”. Finally, 
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after the average result reaches stability, block “k1k2select” will enable the final result 

output and allow giving feedback thus improves the accuracy further. 

 

Figure 4-22: Result optimization blocks “k1_select”. 

To test the performance of the result optimization block, a simulated noisy SMI (SNR=25dB) 

was processed through the alpha estimation algorithm, and the raw results of  are plotted 

in Figure 4-23(a). Then the result sequence was sent into the result optimization block, the 

output port “y” in “MCode” block and the final output “k1final” were monitored and 

reported in Figure 4-23(b). By comparing the  sequences before and after the pre-select 

block (“MCode” block), clearly the outliers in Figure 4-23(a) are rejected with the guidance of 

feedback reference. The final output value of  in Figure 4-23(b) is 1.199, and the true value 

is 1.114. Considering the severe dispersion of the raw results, the performance of the result 

optimization block is satisfactory. 

 

Figure 4-23: Result sequence before and after the block “k1k2select”. 

Finally in the “alpha_calculator” block,  is calculated by “k2final”/“k1final”. 

0 50 100 150
-5

-4

-3

-2

-1

0

1

2

3

n

k1
 b

ef
or

e 
re

su
lt 

se
le

ct
io

n

(a)

0 50 100 150
-5

-4

-3

-2

-1

0

1

2

3

n

k1
 a

fte
r r

es
ul

t s
el

ec
tio

n

(b)

 

 
k1
average k1



98 

 

As usual, the overall error of the module will be tested through ideal signals. The calculated 

spectra of an ideal SMI signal were sent into the input ports of the module, and the real-time 

results of ,  and  are collected and plotted in Figure 4-24. The final estimation result of 

 is 2.498, which is extremely close to the true value 2.5 (error < 0.1%). 

 

Figure 4-24: Overall error test results of the alpha estimation and result optimization module. 

4.2.7 LCD display 

The last step of this FPGA based measurement design is to display the results of  on the 

LCD (liquid crystal display) screen. The LCD on the Spartan-3e FPGA board has a Character 

Generator ROM (CG ROM) which contains the font mapping for each of the pre-defined 

character that can be displayed, the mapping table is given in Figure 4-25 [81]. Taking 

character “ ” as an example, according to the mapping table, the corresponding upper 

nibble and lower nibble should be “1100” and “0000” respectively. Then those nibbles are 

sent to LCD’s ROM by the HDL program module which is written by following the FPGA-LCD 

communicating protocol. Complete LCD character display command set is available in the 

Spartan-3E user guide Table 5-3 [81]. 
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Figure 4-25: LCD character mapping table. 

Take the input  = 3.45 for instance, since “ =” and decimal point “.” are fixed format in 

display, we only need to transfer the value of  into three digits, one for integer and the rest 

for fraction. All the digits are extracted by performing simple multiplications and divisions. 

To extract the integer bit “3”, we take the integer remainder of dividing 3.45 by 10, thus the 

upper data nibble of the integer digit is “0011” and the lower nibble is “0011”. The first 

fraction digit “4” is extracted by multiplying 3.45 by 10 and then taking the integer 

remainder of dividing 34.5 by 10, which makes the upper nibble “0010” and the lower nibble 

“0100” for the second digit. Similarly, the last digit “5” is the integer remainder of dividing 

345 by 10, which is represented by the upper nibble “0010” and the lower nibble “0101”. 

By packing the HDL program into a Black Box in Xilinx Blockset, the LCD display program can 

be added to our design as a normal module. To test the display module, the Black Box coded 

with LCD driver was connected to the final output port of the alpha calculation module from 

the previous section. The test result is shown in Figure 4-26. 
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Figure 4-26: Test result of LCD driver module. 

4.3 Overall test 

To test the overall accuracy of the whole FPGA design, a piece of simulated ideal SMI signal 

( =5, C=2) was fed into the input port. The real-time input signal and the output results of  

are recorded and plotted in Figure 4-27, where the final estimation result of  is 5.05, 

thereby the overall error of the design is approximately 1% (or 0.05). 

 

Figure 4-27: Overall error test results of the whole design. 

Then the whole FPGA design is transferred to a bit-stream file by Xilinx ISE and downloaded 

into the FPGA board. The FPGA based SMI system is completed and the values of  can be 

read from the LCD, as shown in Figure 4-28. Each device has been introduced in Section 2.1.1. 

0 5000 10000 15000
-1

-0.5

0

0.5

1

n

In
pu

t S
M

I s
ig

na
l

(a)

0 5000 10000 15000
-2

0

2

4

6

8

n

al
ph

a

(b)



101 

 

 

Figure 4-28: Measurement system based on FPGA. 

When the system is working, the SMI signal detected by PD passes through the trans-

impedance amplifier, the acquired signal is shown in Figure 4-29. Firstly, the signal was 

processed with Matlab, the final estimation result of  is 4.16. Then, the experimental signal 

was sent into FPGA, the displayed result on LCD is =4.13 (as shown in Figure 4-30), which 

coincide with the results obtained by off-line processing on Matlab. Therefore, the 

performance of this FPGA design is reliable, and this design meets the requirements. Note 

the slight difference on the calculated results of alpha is due to the different data precision 

formats adopted by Matlab and FPGA. In Matlab, data precision format is double (64-bit) in 

all the calculations. However in FPGA, lower data precision formats are used for calculation 

due to the limited resources (e.g. 16-bit in the phase unwrapping block and 32-bit in the FFT 

block). Then, the error caused by lower data precision in early stages is inherited and even 

amplified throughout the calculations.  

 

Figure 4-29: Obtained experimental SMI signal in test. 
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Figure 4-30: Measurement result of  on LCD. 

4.4 Summary 

In this chapter, an FPGA based real-time  measurement system using the frequency-

domain based method is presented. The signal pre-processing design includes a 9-point 

adaptive Myriad filter and an adaptive normalization unit. The alpha estimation design 

includes three modules: phase unwrapping module, spectrum calculation module, and alpha 

estimation and result optimization module. For signal input and result output, driving 

modules for analog capture circuit and LCD are created. Each designed module was verified 

separately with simulated and experimental signals. The overall test result on FPGA shows 

good agreement with the calculation done by Matlab. 
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Chapter 5. Conclusion 

Self-mixing interferometry (SMI) has been an active and highly promising research area for 

non-contact sensing and measurement. Measuring the linewidth enhancement factor ( ) by 

using SMI technique is a significant application. However, the performance of measurement 

is always suffered from the noises and distortions exist in the system. In this thesis, how to 

acquire a clean SMI signal and how to improve the performance of  measurement are 

investigated. Furthermore, in order to make the measuring system more compact and can 

achieve real-time measurement, an FPGA based system is designed and implemented.  

In this chapter, the research contributions are summarised in Section 5.1, and based on 

studies in this thesis, future research works are proposed in Section 5.2. 

5.1 Research contributions 

 A new filtering method based on Myriad algorithm is proposed specially for 

eliminating the transient oscillation in SMI signals. The proposed method can 

effectively remove the oscillation while preserve the original waveform of the signal. 

 By incorporating the proposed normalization method and result optimization 

method, an improved frequency-domain based alpha measurement method is 

developed. This method can effectively reduce the error propagation among the 

calculation process thus improve the measurement accuracy.  

 A real-time measurement system for alpha using the frequency-domain based 

method is implemented on FPGA. The module design includes: signal acquisition 

module (analog to digital), signal pre-processing module (filtering and 

normalization), calculation module (phase and spectrum calculation) and result 

display module. Both software and hardware simulations were conducted to verify 
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the design. The system was also tested by using experimental SMI signals and the 

measurement results shows good agreement with the off-line calculated results. 

5.2 Suggested future work 

In further work on SMI signal pre-processing and alpha measurement, the following research 

topics would be helpful: 

 Advanced signal processing can be further studied and applied on experimental SMI 

signals to improve SNR. 

 The experimentally obtained SMI signals may contain low frequency envelope. The 

frequency range of the envelope has overlapped with the spectrum of an SMI signal. 

In this case, it is difficult to remove the envelope by using normal filtering methods. 

Both hardware design and digital signal processing can be further studied to remove 

the envelope. 

 The factors influencing alpha can be further investigated by employing the system 

designed in this thesis. 
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