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ZIF-8 Derived, Nitrogen-Doped 
Porous Electrodes of Carbon 
Polyhedron Particles for High-
Performance Electrosorption of  
Salt Ions
Nei-Ling Liu1,*, Saikat Dutta2,*,†, Rahul R. Salunkhe3, Tansir Ahamad4, Saad M. Alshehri4, 
Yusuke Yamauchi3,5, Chia-Hung Hou1 & Kevin C.-W. Wu2

Three-dimensional (3-D) ZIF-8 derived carbon polyhedrons with high nitrogen (N) content, (denoted 
as NC-800) are synthesized for their application as high-performance electrodes in electrosorption 
of salt ions. The results showed a high specific capacitance of 160.8 F·g−1 in 1 M NaCl at a scan rate 
of 5 mV·s−1. Notably, integration of 3-D mesopores and micropores in NC-800 achieves an excellent 
capacitive deionization (CDI) performance. The electrosorption of salt ions at the electrical double layer 
is enhanced by N-doping at the edges of a hexagonal lattice of NC-800. As evidenced, when the initial 
NaCl solution concentration is 1 mM, the resultant NC-800 exhibits a remarkable CDI potential with a 
promising salt electrosorption capacity of 8.52 mg·g−1.

In order to meet an overwhelmingly increasing demand for efficient anode materials for advanced electro-
chemical applications, nitrogen (N) doped graphitic carbon materials are found to be the desired candidate. 
This is because of its intrinsically superior electrical conductivity for rapid electron transport and open flexible 
porous structures that offering numerous active sites and short ion diffusion distances1–3. The doping of signifi-
cant percentage of N into carbon matrix is considered as an ideal prospect because of the electronegativity of N  
(i.e. 3.5) and a smaller atomic diameter. In addition, the N atoms incorporated into graphitic networks facilitate 
the formation of stronger interactions between N-doped carbon structure and electrolyte ions (Li+, Na+) promot-
ing their facile insertion/storage4–6, and electrosorption7. On the other hand, the choice of carbon matrixes is also 
an important task. For example, carbon materials derived via solution methods usually contain a large amount 
of hydroxyl, epoxy, carbonyl and carboxyl groups occupying their active sites (surfaces and edges), resulting in 
reduced activity. Thus, carbon materials without oxygen-bearing groups with increased N-content could offer 
more active sites at their edges for grafting pyridinic and pyrrolic N atoms, and such materials are highly desired 
for electrosorption applications. This is because, electrochemical process (sorption/storage) occurs at the edges 
and basal planes of carbon matrix electrode, where a pyrrolic N “hole” defect and perturbed solid electrolyte 
interface configuration plays a major role for the charge transfer event resulting in high surface capacitive effects5.

The diversity of structures and functionality of carbon nanomaterial electrodes offers tremendous opportu-
nities for creative development for advanced electrochemical capacitive energy storage applications8,9 and recent  

1Graduate School of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan. 2Department 
of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan. 3World Premier International (WPI) 
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 
Namiki, Tsukuba, Ibaraki 305-0044, Japan. 4Department of Chemistry, College of Science, King Saud University, 
Riyadh 11451, Saudi Arabia. 5Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires 
Way, North Wollongong NSW 2500, Australia. †Present address: Catalysis Center for Energy Innovation, University of 
Delaware, Newark, Delaware, USA. ∗These authors contributed equally to this work. Correspondence and requests 
for materials should be addressed to C.-H.H. (email: chiahunghou@ntu.edu.tw) or K.C.-W.W. (email: kevinwu@ntu.
edu.tw)

received: 05 May 2016

Accepted: 09 June 2016

Published: 12 July 2016

OPEN

mailto:chiahunghou@ntu.edu.tw
mailto:kevinwu@ntu.edu.tw
mailto:kevinwu@ntu.edu.tw


www.nature.com/scientificreports/

2Scientific RepoRts | 6:28847 | DOI: 10.1038/srep28847

a surge of development in this area is largely dominated by the molecular-based design to access nanoporous 
carbon particle of wide shapes and ranging in size from nanometers to micrometers by the thermal treatment10,11.

Metal-organic frameworks (MOFs) have been widely used for fabricating nanoporous carbon owing to their 
high specific surface area and controlled pore size12,13. Recently, the utilization of MOFs for producing N-doped 
nanoporous carbons and functional materials by virtue of dual roles such as templates and also reactive precur-
sors has reported14,15. Despite these pioneering studies, it is still challenging to achieve a desired high level of 
N-doping within the hexagonal lattice and edges of MOF-derived carbon. Carbon materials with permanent 
nanoscale cavities and open channels are highly demanded. To meet these requirements, 3-D frameworks of 
zeolitic imidazolate frameworks (ZIF-8) are one of the distinguished choices to access huge N-doping into the 
microporous framework via direct pyrolysis. Retaining the polyhedron-like morphology in the ZIF-8 pyrolyzed 
product solely depends on the morphology and nature of pore networks of the parent ZIF-8. This is evident when 
compared pyrolysis activity of obtained ZIF-8 using low16 and high17 concentration of the structure directing 
agent polyvinylpyrrolidone (PVP). It is conceived that at higher concentrations of PVP higher level of N-doping 
and graphene-like framework with retaining shapes of parent ZIF-8 framework particles could be obtained16.

Capacitive deionization (CDI) is one of the promising electrochemical methods for removing salt ions from 
brackish water by taking advantage of electrosorption property of porous electrode in its electrical double layer 
region. This technology provides a great advantage in terms of drastic reduction of intrinsic energy as compared 
to current reverse osmosis processes18–20. An ideal carbon material with high electrosorption capacity and ion 
exchange rate is required for CDI electrode. Hitherto, porous carbon-based electrode materials including mes-
oporous carbon21, hierarchically porous carbon22 and graphenic23,24 electrodes have been mostly used and they 
offer maximum electrosorption capacity varied from 0.1–10 mg·g−1 19. By understanding electrode structure and 
charge/mass transfer process it is important to develop a controllable method to construct CDI electrode material 
with a large capacitance, high electronic conductivity, fast responsive to ion adsorption-desorption is scientifi-
cally essential and practically useful. Doping of nitrogen would induce more defects and active site in the carbon 
frameworks25, thus the creation of a porous carbon 3-D networks with high nitrogen doping and a graphitic 
structure is essential because such a structure can offer large accessible pores to NaCl solution and can remarkably 
improve the capacitance of the electrode.

As per our knowledge, ZIF-8 derived polyhedron particles can provide a high nitrogen loading and graphitic 
structure together with 3-D hierarchical micro- and mesopores. Consequently, they would offer plentiful elec-
trosorption behavior owing to the several useful features in the resulting materials, such as i) electrolyte ion 
reservoir in pore network, ii) moderate electrical conductivity, optimized micro-mesopore ratios, and iii) incor-
poration of N atoms into this polyhedron framework. In the present work, we have explored nitrogen containing 
ZIF-8 as the porous carbon electrode source to impart the above features into the resulting polyhedron particle 
electrodes.

Results and Discussion
Herein, as shown in Fig. 1, we synthesize high N-doped (~15.4 Wt.%) and hierarchically porous carbon electrodes 
through direct pyrolysis of uniformly sized ZIF-8 via the use of an excess of polyvinylpyrrolidone (PVP) as the 
dispersing agent. We then demonstrate the first application of the synthesized materials in electrosorption of salt 
ions for desalination. Successful fabrication of CDI electrodes using hugely nitrogen doped nanoporous carbon 
polyhedrons enable a remarkably high salt electrosorption capacity (8.52 mg·g−1) for removal of Na+ (1.16 Å) 
and Cl− (1.67 Å) ions present at a low level (1 mM NaCl). It is evident that the performance of electrosorption is 
dependent on the hierarchical porous structure of polyhedrons and nitrogen-doping in the hexagonal lattice and 
edges.

PVP was used as the structure directing agent and surface modifier of ZIF-8 nanoparticles, thus an organic 
phase synthesis (i.e. methanol system) of ZIF-8 from Zn(NO3)2.6H2O and MeIM (2-methylimidazole) with 
excess PVP would produce uniform polyhedron shaped ZIF-8 nanoparticles. The as-synthesized ZIF-8 polyhe-
drons were then heated at high temperatures (value) under N2 atmosphere to generate highly nitrogen doped, 
hierarchically porous, graphitic carbon nanoparticles (Fig. 1). TGA analysis of the heat-treated ZIF-8 (Fig. S1) 
indicates several weight loss steps. The first two steps of weight loss occurred at 30–230 °C and 230–490 °C, this is 
attributed to the removal of physisorbed water molecules and the decomposition of oxygen-containing functional 
groups, respectively. Further decomposition occurred around 710 °C due to the formation of graphitic frame-
work and the release of nitrogen-containing gases. Therefore, we conclude that the synthesized ZIF-8 samples at 

Figure 1. Illustration of the synthesis procedure of highly N-doped nanoporous carbon polyhedron for 
CDI application. 
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800 °C to fully convert from the amorphous carbon framework to graphitic framework, and the calcined sample 
is named as NC-800.

The polyhedron morphology of the synthesized samples was observed by field emission scanning electron 
microscopy (FESEM). As shown in Fig. 2a, it shows that the NC-800 sample retains regular polyhedron morphol-
ogy of the parent ZIF-8. The high-resolution transmission electron microscope (HRTEM) images of the NC-800 
(Fig. 2b,c) reveals the porous structure in the ZIF-8 derived carbon polyhedron. As shown in Fig. S2, the images of 
elemental mapping by SEM microscopy confirms that a large quantity of N atoms are effectively incorporated into 
the framework of the NC-800 polyhedrons. High-resolution TEM images of NC-800 are as shown in the Fig. S3.  
The porosity of these NC-800 samples was examined with nitrogen adsorption/desorption isotherms. As shown 
in Fig. 2d and Table 1, the BET specific surface area and the main micropore size of the NC-800 are estimated to 
be 798 m2·g−1 and around 0.8 nm, respectively. Furthermore, it can be found that micropores contribute the most 
to this high surface area in NC-800, according to the high ratio of Smic/SBET =  95%. The surface area, pore sizes, 
and the relative ratios of micropores can be varied, depending on several parameters, such as precursor concen-
trations, additives, aging conditions, and calcination temperatures26,27.

The carbon framework of the NC-800 was characterized with X-ray diffraction (XRD) and Raman spectra. 
In contrast to parent ZIF-8, the NC-800 exhibited a broad XRD peak at approximately 24°, which corresponds 
to the (002) peak of a graphitic carbon material (Fig. S4). In addition, the Raman spectra of the NC-800 (Fig. S5)  
displays the presence of G*  and 2D band in addition to D and G bands which are the characteristic feature of 
graphene layers. The 2D-band corresponds to the disordered carbon or defective graphitic structures. The ratio 

Figure 2. (a) A FE-SEM image, (b,c) TEM and HR-TEM images, and (d) a typical nitrogen adsorption/
desorption isotherm of the ZIF-8-derived NC-800 nanoparticles.

Sample

Specific 
surface area 

(m2g−1) (SBET)

Micropore 
diameter 
(nm)[b]

Total pore 
volume 

(cm3g−1)[c]

Micropore 
volume 

(cm3g−1)[c]

Micropore 
surface area 

(m2g−1) (Smic)[c]
Smic /SBET 

(%)

ID/IG (Raman 
spectral 

intensity)[d]

NC800 798 0.8 0.50 0.40 760 95 1.2

Table 1.  Porous characteristics of the NC-800 sample. [a]BET method, [b]NLDFT method, [c]t-plot method, 
[d]Peak intensity of D and G bands in Raman spectra.
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of the band intensity (i.e. ID/IG) is calculated to be around 1.2, indicating a large amount of defects by sp3 carbons. 
These defects could be resulted from the edge modification of NC particles by N atoms.

The amount and the chemical structure of the N atoms in NC-800 were examined with elemental analysis 
(EA) and X-ray photoelectron (XPS) spectroscopy. The amount of nitrogen in NC-800 was determined to be 
18.7 or 15.4 wt% by EA or XPS, respectively. These values are close to the value of the nitrogen content in ZIF-8 
(i.e. 17.7 wt%)13. In addition to the nitrogen source from the imidazole group in ZIF-8, we suggest that the PVP 
polymer which was used as the dispersing agent would also contribute a certain amount of nitrogen.

The N1s spectrum of XPS (Fig. S6) for NC-800 can be deconvoluted to three peaks: pyridinic-N (N-6 
398.4 ±  0.2), and quaternary N (N-Q, 400.7 ±  0.4). The N-6 species is the dominant N-containing functional 
group in the NC-800 sample (i.e. 82.8%), and these  N-6 species serve as electrochemically active sites for enhanc-
ing the capacitive behaviors. The percentage of the N-Q species is about 17.2%, and it refers to graphitic nitrogen, 
which locates inside the graphitic carbon framework. The large percentage of N-Q species in NC-800 indicates an 
increase in the degree of graphitization of ZIF-8 framework during pyrolysis at 800 °C.

To evaluate the electrochemical performance of the synthesized NC-800 as electrodes, electrochemical imped-
ance spectroscopy (EIS), galvanostatic charge-discharge (GC), and cyclic voltammetry (CV) measurements were 
performed in NaCl electrolyte solutions. To characterize the electrical conductivity, we studied the Nyquist plot 
of the EIS for NC-800. As shown in Fig. 2a, the Nyquist plot was constituted by two regions between Z′ (real axis) 
and Z″ (imaginary axis), corresponding to a semicircle at high-frequency and a straight line in the low frequency 
region. In the high-frequency region, the semicircle expressed the equivalent series resistance (ESR), reflecting 
the diffusion and transport of ions in the electrolyte22. Notably, the quasi-semicircle of the NC-800 with small 
arc size is observed, suggesting a low charge transfer resistance. In the low-frequency region, the straight line is 
evident for an ideal electrical double layer capacitance and faster ion diffusion behavior results from low Warburg 
diffusion resistance. Hence, the NC-800 electrode has a favorable accessibility of ions. This result reflects the 
fact that the NC-800 electrode exhibits good charge storage behavior with the electrical double layer capacitive 
(EDLC) mechanism.

Figure 3b shows the GC curve of NC-800 electrode at a current density of 0.1 A g−1 in 1 M NaCl. As observed, 
the curve displays a symmetric and triangular shape with a negligible potential drop (iR drop) even at such low 
current density, indicating to the good reversibility and non-Faradic reaction.

This confirms that the NC-800 electrode has a good electrical double layer behavior for ion storage23. 
Moreover, a comparative test of GC curves for NC-800 was carried out in 1 M and 0.01 M (Fig. S7). It can be seen 
that at a high concentration of 1 M NaCl, a longer charge-discharge time of NC-800 electrode was needed, corre-
sponding to a higher capacitive charge storage feature. Further, iR drop at the tuning point of GC profile is indic-
ative of an inner resistance of ion transport into this porous structure. As demonstrated, the iR drop in 1 M and 
0.01 M NaCl were 0.01 V and 0.08 V, respectively. This implies that the mass transfer of salt ions at low NaCl con-
centrations such as 0.01 M, referred to as brackish water, may be restricted through the pore network. With this 
regard, charge transfer enhancement to capture salt ions in electrosorption process is pursed for CDI electrodes.

CV measurements of NC-800 were performed in 1, 0.1, 0.01, 0.001 M NaCl at various scan rates 
in a range of 1 mV s−1 to 100 mV s−1 (as shown in the Fig. S8 and  Table S1). As seen, from the CV curves, 
NC-800 electrodes have an apparently rectangular shape at high-concentrations of NaCl solution with 
a slow scan rate such as 1 mV·s−1 and 5 mV·s−1. Meanwhile, the current response shows no evidence for 
redox peaks within the potential range of − 0.4 to + 0.6 V, corresponding to the formation of electrical dou-
ble layer. Moreover, Fig. 3c shows the CV curves of NC-800 electrode in 1 M NaCl at different scan rates-
ranging from 5 to 50 mV s−1. It should be noted that with increasing the scan rate, ions barely have time to 
be transported from bulk solution to the 3-D pore network to fully develop the double layer. As seen, the CV 
curves of NC-800 were slightly distorted, but still presented nearly quasi-rectangular shape. As calculated 
by equation (1) (refer to Supporting Information), Fig. 3d shows the specific capacitances of NC-800 in 1 M 
NaCl solution as a function of scan rate. Clearly, the specific capacitance decreases with increasing the scan 
rate. The scan rate dependence is a typical capacitive behavior for the microporous structure of ZIF-8 derived 
carbon material28. It should be emphasized that the NC-800 exhibits superiority in the specific capac-
itance of capacitive charge storage over other ZIF-8 derived carbon materials calcined at lower temperatures 
in all the electrochemical measurements. Fig. S9 displays the EIS profile, GC, and CV curves of the NC-700 
(i.e. ZIF-8 derived carbon calcined at 700 °C). For example, with an increase of scan rate from 5 to 50 mV s−1,  
the specific capacitance of NC-700 considerably decreased from 135.5 to 18.6 F g−1, respectively. In the mean-
time, the NC-800 remained high specific capacitances of 160.8 F g−1 and 116.7 F g−1 at 5 mV s−1 and 50 mV s−1, 
respectively. Notably, the NC-800 presents better capacitive properties and has a less scan rate dependence on the 
specific capacitance as compared to the NC-700, reflecting a better rate capability for electrosorption of ions. In 
brief, the NC-800 associated with good electrochemical performance can be considered as a favorable candidate 
for CDI, and thereby, it was selected for the following CDI experiment.

CDI performance of the NC-800 electrode was investigated by batch-mode experiment at a applied voltage 
of 1.2 V. The initial concentration of the NaCl solution was 1 mM (~58 mg L−1) with an initial conductivity of 
about 131 μ S cm−1. Figure 4 shows the electrosorption and regeneration cycles of the NC-800 by repeating the 
charge-discharge process three times. When the voltage was applied on a pair of working electrodes, a dramatic 
decrease of the solution conductivity was observed at the early stage. It suggests the fast charge transfer of salt 
ions from the bulk solution into the charged pores. Then, the conductivity gradually decreased to 96 μ S cm−1 
at pseudo-equilibrium in the first cycle. After the voltage was removed, the ions were released back to the bulk 
solution, and thus, the solution conductivity returned to about the initial value. This finding indicates that NaCl 
removal is mainly ascribed to an electrostatic interaction of electrical double layer formation. The same pattern of 
electrosorption-desorption curves, corresponding to the good regeneration performance, further demonstrates 
that the NC-800 electrode has good electrochemical stability and reversibility in the electrosorption process. 
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Furthermore, the electrosorption capacity of the NC-800 was calculated (using the equation 2 in supporting 
information) to be 8.52 mg g−1.

For comparison, we list all salt electrosorption capacities of other porous carbon-based materials for CDI 
(Table S2). As demonstrated, the conventional CDI electrodes have electrosorption capacity in a range from 2 
to 7 mg g−1 for desalting NaCl solution at relatively low concentrations. We have previously used cellulose fibers 
as the template to synthesize hierarchically porous carbon (HPC) for CDI application, and an electrosorption 
capacity as high as 7.75 mg g−1 was achieved22. Here, our NC-800 electrode exhibits even higher electrosorption 

Figure 3. (a) EIS analysis of NC-800 presented as Nyquist plot, (b) galvanostatic charge/discharge curve of 
NC-800 with a current load of 0.1 A·g−1, (c) cyclic voltammograms of NC-800 at various scan rates, (d) specific 
capacitance values at various scan rates for NC-800 sample. All the experiments were carried out in a 1 M NaCl 
electrolyte solution.

Figure 4. Electrosorption-regeneration cycles of Na+ ions from 1 mM NaCl solution using ZIF-8-derived 
NC800 electrode with an applied voltage of 1.2 V. 
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capacity (i.e. 8.52 mg g−1). We believe that the superior electrosorption capacity for salt ions was owing to the high 
specific surface area of NC-800 associated with the edge-sharing of framework nitrogens (creating additional 
defect sites). In addition, the small particle size of NC-800 with interconnected micropores can ensure the fast 
charge transfer for capacitive ion storage.

In conclusions, we synthesize high surface-nitrogen doped carbon polyhedron particles through the pyrolysis  
of ZIF-8 nanoparticles. ZIF-8-derived carbon polyhedron particles performed excellently in electrosorption-based 
salt ion capture from saline water at a low applied voltage. Experimental evidence from the structural studies of 
these materials and its correlation with the CDI experimental results on salt-ion capture supports the hypothesis 
of multiple advantages of ZIF-8 derived carbon nanoparticles as electrodes. It is understood that, edge-sharing 
of framework nitrogen and microporous framework of ZIF-8-derived carbon particles based electrodes plays a 
major role in enhancing the electrosorption capacity of the electrode over a range of a structurally diverse set 
of electrodes. We expect that the ZIF-8 derived NCs material could also be considered as high-performance  
electrodes for other energy or environmental issues.

Methods
Chemicals. Zinc nitrate hexahydrate (≥ 99%), 2-methylimidazole (99%), polyvinylpyrrolidone (PVP, K30, 
MW 40,000) were purchased from Sigma-Aldrich. All chemicals were used without any further purification.

Preparation of the surfactant-controlled zeolitic imidazolate framework, ZIF-8. During the typ-
ical synthesis procedure, a methanolic solution (50 ml) of zinc nitrate (Zn(NO3)2·6H2O, 2.4 g) was added drop-
wise to a methanolic solution (50 ml) of 2-methylimidazole (2.1 g) and polyvinylpyrrolidone (K-30, 6.0 g) using a 
syringe while stirring at room temperature. The entire reaction process was performed at room temperature with 
agitated stirring for 20 min. The reaction was aged at room temperature without any interruption for 10 h. The 
resulting white precipitate was centrifuged and washed several times with methanol before drying in an oven at 
60 °C.

Preparation of the N-doped graphitic carbon polyhedron particles (NC). The N-doped graphitic 
carbon particles were synthesized by direct carbonization of the as-prepared ZIF-8 under a flow of nitrogen gas at 
various temperatures. Typically, the ground ZIF-8 was homogeneous.
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