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Abstract 

Here we developed a free-standing reduced graphene oxide (rGO)-polypyrrole (PPy) 

hybrid paper via electropolymerization on a paper-like graphene gel. This flexible hybrid 

paper displayed a uniform layered structure with PPy coated onto the graphene layers. A high 

areal mass of 2.7 mg cm
-2

 could be obtained. It delivered a greatly enhanced areal 

capacitance of 440 mF cm
-2

 at 0.5 A g
-1

, in contrast to that 151~198.5 mF cm
-2

 previously 

reported for graphene paper or polypyrrole-graphene paper. It can retain ~81% of the initial 

capacitance at a high current density of 6 A g
-1

. The combined high flexibility with 

outstanding electrochemical performance, makes such novel hybrid paper a promising 

electrode for flexible supercapacitors.   

Keywords: Graphene; Areal capacitance; Polypyrrole; Supercapacitor; Flexible hybrid paper 

electrode 
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1. Introduction 

Recently, there is increasing interest in the development of wearable electronic 

devices, flexible displays and bendable television screens. Such devices require the 

development of flexible high efficiency energy storage devices [1-3]. Supercapacitors, due to 

the high power density attainable and excellent cycling stability, are an important class of 

energy storage devices [4, 5]. An ideal flexible supercapacitor should combine excellent 

mechanical strength and large electrochemical capacitance. Due to their excellent electrical 

conductivity, chemical stability and high specific surface area offered by graphene 

nanosheets, graphene based electrodes in the form of films or papers have shown remarkable 

flexibility with high gravimetric capacitances in the range of 138 to 210 F g
-1

 [6-8].  

Although these graphene-based flexible electrodes present promising gravimetric 

capacitance, they normally deliver a very low areal capacitance in the range of 57 to 94.5 mF 

cm
-2

 due to the low areal mass loading (< 1 mg cm
-2

) [9, 10]. For practical usage, it is 

suggested that the areal mass loading is at least 5 mg cm
-2

 and the electrode thickness is 

between 50-200 μm [11, 12]. One effective way to improve the areal capacitance is to 

incorporate metal oxides with high theoretical capacitances. However, graphene/metal oxide 

hybrid electrodes normally suffer from poor conductivity and excellent performance is only 

achieved at low scan rates/current densities. A MnO2/carbon nanotube/textile nanostructure 

could deliver a large areal capacitance of 2.8 F cm
-2

 at a scan rate of 0.05 mV s
-1

, but this 

dropped sharply to 120 mF cm
-2

 when the scan rate increased to 50 mV s
-1

 [13]. A 

rGO/MnO2 film electrode showed a capacitance of 245 F g
-1

 (i.e. 196 mF cm
-2

) at 2 mV s
-1

. 

Approximately 58% of the capacitance was observed at 300 mV s
-1

 [14]. The use of a 3D 

graphene/MnO2 electrode resulted in a large areal capacitance of ~600 mF cm
-2

 at 5 mA cm
-2

, 

but showed a greatly decreased capacitance of 300 mF cm
-2

 at 20 mA cm
-2

 [15].  
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Integration of conducting polymers (CPs) with graphene may provide another route to 

achieve high areal capacitance. In CPs/graphene composites, CPs can provide high 

pseudocapacitance while graphene can provide a conductive network to overcome the poor 

cyclic stability of CPs, thus lead to enhanced gravimetric capacitance and good rate 

performance. Capacitance of 210 F g
-1

 (at 0.3 A g
-1

) and 285 F g
-1

 (at 0.5 A g
-1

) was obtained 

from polyaniline/graphene film and polypyrrole/sulfonated graphene film, respectively [16, 

17]. Polypyrrole (PPy) is one of the most widely used CPs due to its good conductivity, low 

cost and high charge storage capability [8, 18]. Flexible electrodes based on graphene/PPy 

composites provide a high gravimetric capacitance ranging from 92 to 345 F g
-1

 [19-21] and 

an areal capacitance in the range of 152 to 175 mF cm
-2

 [22, 23].    

In this work, a novel flexible reduced graphene oxide (rGO)-PPy hybrid paper with an 

enhanced areal capacitance was developed. PPy was incorporated into a paper-like graphene 

hydrogel via electropolymerization forming a layered structured rGO-PPy hybrid paper. The 

rGO-PPy paper with 3 times increased thickness can still keep an equivalent gravimetric 

capacitance compared to a neat rGO paper. It delivered a much higher areal capacitance of 

440 mF cm
-2

 at 0.5 A g
-1

, in sharp contrast to 185 mF cm
-2 

from a neat rGO paper. The 

capacitance decreased slightly to 356 mF cm
-2

 when the current density was increased to 6 A 

g
-1

, indicating an excellent rate capability. Compared to the previously reported free-standing 

graphene-polypyrrole materials, our flexible free-standing rGO-PPy hybrid paper presents a 

higher areal capacitance and better rate performance.  

 

2. Experimental 

2.1 Material synthesis 

Graphene oxide (GO) was synthesized from natural graphite flakes by the modified 

Hummers method. The reduced graphene oxide (rGO) aqueous solution was prepared by 
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reducing GO solution with hydrazine in the presence of ammonium solution [24]. Typically, 

ammonium solution (28 wt%, 350 µL) and hydrazine hydrate (92 µL) were added to GO 

dispersion (0.72 mg mL
-1

, 100 mL), and stirred at 95°C for 1 h to complete the reduction. The 

resultant solution was then subjected to dialysis against a ~0.5 % ammonia solution to 

remove the excess hydrazine. Paper-like graphene gel was formed via vacuum filtration of 

rGO solution. This rGO wet gel was peeled off and immersed in water for 6h to remove the 

impurities.  

Prior to PPy electropolymerization, rGO gel was immersed into the aqueous solution of 

0.1 M pyrrole and 0.1 M sodium p-toluenesulfonate (pTS) overnight at 4 
o
C. PPy was 

electrodeposited galvanostatically onto rGO gel at a current density of 1 mA cm
-2

 for 20, 40 

or 60 min. The obtained rGO-PPy hybrid papers were rinsed with deionized water for several 

times and then soaked in water overnight to remove the excess monomer or dopant.  

 

2.2 Characterization and electrochemical properties 

The surface morphology and cross-sectional view were observed by a field-emission 

scanning electron microscope (FESEM, JEOL JSM7500FA). The elemental analysis and 

mapping of the materials were conducted by Bruker X-Flash 4010 energy dispersive X-ray 

(EDX) detector on FESEM. Raman measurements were performed on a confocal Raman 

spectrometer (Jobin Yvon HR800, Horiba) utilizing 632.8 nm diode laser. FT-IR spectra 

were recorded on a FT-IR spectrometer (IRpretige-21, Shimadzu) over the range from 700 to 

2000 cm
-1

. The thermal stability was characterized by TGA (Q500, TA instruments), and the 

measurements were tested under nitrogen at a ramp rate of 5° min
-1

. X-ray photoelectron 

spectroscopy (XPS) was conducted using XPS system equipped with a hemispherical energy 

PHOIBOS100/150 analyzer.  
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The rGO or rGO-PPy paper was assembled into Swagelok-type cell (X2 Labwares Pte 

Ltd.) to construct symmetric supercapacitor device. The electrolyte used was 1 M H2SO4. An 

all solid state supercapacitor was fabricated using PVA-H3PO4 polymer electrolyte following 

the procedure reported previously [8]. Cyclic voltammetry of the cells was tested using a CHI 

650D (CH Instruments, Inc.) and scanned over a range of 0.0 to 1.0 V. Galvanostatic 

charge/discharge tests were performed using a BTS3000 battery test system (Neware 

Electronic Co.) over a potential range of 0.005-1.0 V. Electrochemical impedance 

spectroscopy (EIS) measurements were performed using a Gamry EIS 3000 system, and the 

frequency range was spanned from 100 kHz to 0.01 Hz with an amplitude of 10 mV at open 

circuit potential.   

 

3. Results and discussion 

The procedure used to prepare rGO-PPy paper is summarized in Figure 1a. With the 

assistance of vacuum filtration, the self-gelation of rGO occurs due to the intersheet π-π 

attractions, forming a lamellar structured graphene wet gel [25]. This gel was then soaked in 

a pyrrole solution overnight to allow the monomer and dopant to infiltrate into the gel. The 

polymerization of PPy occurred both on the surface and throughout the gel interior, creating a 

layered graphene-PPy hybrid structure. The rGO-PPy hybrid papers were named as rGO-

PPy20, rGO-PPy40 and rGO-PPy60 according to the deposition time of 20, 40 or 60 min. 

Their areal mass was 1.80, 2.36 and 2.70 mg cm
-2

, respectively. It was 1.13 mg cm
-2

 for the 

control sample, an unmodified pure rGO paper. The estimated PPy content in rGO-PPy20, 

rGO-PPy40 and rGO-PPy60 ratio was 37%, 52% and 58%, respectively. Longer deposition 

time was not necessary since PPy growth tended to saturate after 60 min. The rGO-PPy was 

flexible, as demonstrated in Figure 1b and can be used directly as binder-free electrode. 
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The cross-sectional view of rGO paper and rGO-PPy hybrid papers are shown in 

Figure 2a-c. The rGO paper presents a typical compact layered structure with a thickness of 

~3.7 μm, due to the strong π-π interaction between graphene sheets (Figure 2a). In contrast, 

rGO-PPy paper displays an expanded layered structure (Figure 2b, 2c, 2d). PPy acts as spacer 

between rGO sheets, leading to an enlarged thickness in the range of 12 to 15 μm. All the 

rGO-PPy papers display similar structure, taking rGO-PPy40 as an example, it clearly shows 

a lamellar structure with nodule-like PPy on the graphene layers at higher magnification 

(Figure 2f). An rGO-PPy paper displays a surface morphology with more wrinkles, lumps or 

islands (Figure 2h) compared to a smoother feature for an rGO paper (Figure 2g).   

The elemental analysis of rGO-PPy40 paper surface was detected by EDX module 

associated with SEM and shown in Figure 3. Only carbon and oxygen elements can be 

detected on the surface of rGO paper (Figure 3a, b, c). The existence of sulphur and nitrogen 

elements (originated from PPy/pTS) apart from C and O proves the existence of PPy on the 

hybrid paper surface (Figure 3d, e, f). The distribution of sulphur element in the cross section 

of neat rGO or rGO-PPy40 paper was also compared. Very weak sulphur element signal was 

detected for rGO paper, and it was distributed discretely even at the sample-free area (Figure 

3j). Thus the existence of S can be excluded. In contrast, rGO-PPy40 paper displays a clear 

distribution of sulphur element, evidence of the existence of S (Figure 3l). These results 

prove that PPy was successfully grown not only on the surface but also the interior of 

graphene layers. We cannot get a clear mapping image of nitrogen, which may be due to the 

weak signal of N element.   

The successful deposition of PPy can also be confirmed by Raman spectra (Figure 

4a). There are only two peaks in the range of 1000-2000 cm
-1

 for neat rGO paper. The peak at 

around 1333 cm
-1

 (D band) is related to the defects and disorder structure in graphene. The 

peak at 1593 cm
-1

 (G band) is ascribed to the doubly degenerate zone centre E2g mode [26, 
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27]. Three new peaks can be observed for rGO-PPy paper. The peaks at 928 cm
-1

 and 971 

cm
-1

 can be assigned to C-H out of plane deformation and PPy ring deformation, respectively. 

The tiny peak at 1047 cm
-1

 represents C-H in plane deformation. PPy has characteristic peaks 

at 1335 cm
-1

, 1372 cm
-1

 and 1590 cm
-1

, which reflect the ring stretching and C=C backbone 

stretching [28]. Similar to the previously reported graphene/polypyrrole composite materials, 

they are overlapped with the D-band and G-band of graphene [29]. Since these rGO-PPy 

samples present similar IR spectra, only the IR spectroscopy from rGO-PPy40 paper are 

shown (Figure 4c). No obvious peaks were observed for neat rGO paper over the range of 

700-2000 cm
-1

 in the IR spectroscopy (Figure 4c). The rGO-PPy40 paper exhibits the 

characteristic adsorption bands of PPy and pTS dopant. The peaks at 1535 and 1446 cm
-1

 are 

assigned to C=C and C-C stretching of PPy backbone. The band at 1288 cm
-1

 and 1026 cm
-1

 

corresponds to C-N stretching vibration and C-H, N-H in-plane deformation vibrations, 

respectively [30, 31]. The band at 1150 cm
-1

 is due to the stretching vibration of the sulfonate 

group in pTS [32].  

X-ray photoelectron spectroscopy was performed to further investigate the structure 

of rGO-PPy paper. Figure 4d and 4e show the deconvoluted C1s spectra of neat rGO and 

rGO-PPy 40. The C1s of neat rGO (Figure 4d) can fit into four component peaks, 

corresponding to different chemical states of carbon. The dominant peak at 284.7 eV is 

attributed to the collective effect of sp2 and sp3 hybridized carbon [33].  Peaks at 287.9 eV 

and 291.0 eV are assigned to oxygen bonded carbon species, C=O and O-C=O [34]. The peak 

at around 286 eV in rGO-PPy C1s (Figure 4e) corresponds to C-N, C-S and C-O [33]. The 

intensity of the peak at 286 eV for rGO-PPy increased remarkably compared to that for neat 

rGO. It may be ascribed to C-N backbone bonding in polypyrrole. The N1s core level spectra 

of rGO-PPy (Figure 4f) was dominated by a main peak at 399.6 eV, which is assigned to the 

quinoid imine (=N-) in polypyrrole. The peak at a higher binding energy of 401.1 eV can be 
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ascribed to the positively charged protonated nitrogen species [33, 35]. In addition, a S2p peak 

arises at 168 eV, which corresponds to sulfonated group in dopant pTS (Figure 4g) [33].  

The thermal stability of these papers was investigated using thermal gravimetric 

analysis (Figure 4h). The weight loss of neat rGO paper over 25-600 °C is about ~10 %, 

which can be attributed to the decomposition of residual oxygen-containing groups [36]. For 

pure PPy/pTS film, the major weight loss (45%) occurred at the temperature range of 

200~600 °C, which is mainly due to the removal of counter ion pTS [37, 38]. A total weight 

loss of 19%, 24% and 28% was displayed for rGO-PPy20, rGO-PPy40 and rGO-PPy60, 

respectively, which is related to the increase amount of PPy. 

The capacitive performance of rGO or rGO-PPy paper electrode was studied using 

cyclic voltammetry (CV) in a three electrode system (Figure 5). No obvious redox peaks 

were observed for the rGO paper over the potential range -0.5~ 0.5 V (vs. Ag/AgCl) (Figure 

5a). The rectangular CV shape indicates a nearly ideal electric double-layer capacitive 

behaviour. The rGO-PPy electrodes presented features of a pseudocapacitive activity which 

combining faradic and non-faradic responses. The redox peak of PPy can be observed at 

around -0.2 V and 0.2 V (Figure 5b, c, d) [39]. This pseudocapacitive behaviour became 

more significant with the increase amount of PPy. 

The paper electrodes were then assembled into symmetric supercapacitors for 

evaluation. Different form the three electrode system, the rGO-PPy paper based symmetric 

supercapacitor did not show the remarkable redox peaks of PPy (Figure 6). It is typical for a 

two-electrode cell system since one electrode was oxidized while its symmetric electrode was 

reduced, resulting in negligible redox peaks [11, 40]. Over the scan rate range from 20 to 100 

mV s
-1

, all the rGO-PPy papers displayed nearly rectangular CVs even for that with a high 

areal mass loading of 2.7 mg cm
-2

. All these reveal their ideal capacitive behaviour. This 

result is in sharp contrast to that of MnO2-graphene paper electrode with similar areal mass 
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loading but presented highly distorted a CV curve at 20 mV s
-1

 [41, 42]. The areal 

capacitance at 20 mV s
-1

 was 298, 349 and 410 mF cm
-2

 for rGO-PPy20, rGO-PPy40 and 

rGO-PPy60, respectively. The rGO-PPy60 paper delivered the highest capacitance, which is 

over 2 times than that of the neat rGO paper (174 mF cm
-2

 at 20 mV s
-1

). Our rGO-PPy 

papers offer much higher areal capacitance than those of the previously reported graphene-

PPy film/membrane electrodes, which delivered a lower capacitance (151~175 mF cm
-2

) even 

at a scan rate of 10 mV s
-1

 [22, 23, 43].    

The charge/discharge tests were performed and the results are shown in Figure 7. Neat 

rGO delivered a gravimetric capacitance of 164 F g
-1

 at 0.5 A g
-1

. It slightly decreased to 156 

F g
-1

 at 2 A g
-1

. The rGO-PPy20 paper showed the highest gravimetric capacitance among 

these hybrid papers, 190 F g
-1

 at 0.5 A g
-1 

and 165 F g
-1

 at 2 A g
-1

. The rGO-PPy 40 and rGO-

PPy 60 paper delivered a slightly decreased gravimetric capacitance of 163 F g
-1

 and 161 F g
-

1
 at 0.5 A g

-1
, but still comparable to the rGO papers in this work or the previously reported 

[6, 7, 18]. Benefited from the unique layered structure, rGO-PPy paper with 3 times thickness 

and much higher mass loading still keeps the similar gravimetric capacitance compared to 

neat rGO paper. 

The areal capacitance of neat rGO and rGO-PPy hybrid papers can be calculated from 

their gravimetric capacitance and areal mass. The areal capacitance of rGO-PPy hybrid paper 

increases with the prolonged electrodeposition time. The rGO-PPy 60 paper gave the highest 

areal capacitance of 440 mF cm
-2

 at 0.5 A g
-1

, which was 2.4 times higher than that 185 mF 

cm
-2

 of rGO paper. Meanwhile, rGO-PPy40 and rGO-PPy20 papers showed an areal 

capacitance of 380 and 342 mF cm
-2

, respectively. It should be pointed out that the current 

0.5 A g
-1

 was equal to that of 1.35, 1.18, 0.9, 0.57 mA cm
-2

 in an areal unit for rGO-PPy60, 

rGO-PPy40, rGO-PPy20 and rGO paper, respectively. The areal capacitance delivered from 

our rGO-PPy paper is higher than that from the flexible graphene/PPy fibre electrode (107 
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mF cm
-2

 at 0.24 mA cm
-2

) [44] and carbon fibre/PPy paper electrode (198.5 mF cm
-2

 at 1 mA 

cm
-2

) [45]. At a high current density of 6 A g
-1

 (~16 mA cm
-2

), over 300 mF cm
-2

 was 

retained for rGO-PPy60 paper, 81 % of that obtained at 0.5 A g
-1

 (Figure 7e). Our rGO-PPy 

papers present better rate capability compared to the carbon fibre/PPy paper electrode, which 

demonstrated a capacity retention of only 66% when the current density increased from 1 to 

10 mA cm
-2

 [45]. This unique PPy coated graphene layered structure ensured excellent rate 

performance of the rGO-PPy hybrid paper.  

The cycle stability of rGO-PPy hybrid papers or neat rGO paper was tested at a 

current density of 2 A g
-1

 (Figure 7f). A capacitance retention of 75%, 78%, 85% and 92% 

was shown during the first 1000 cycles for rGO-PPy60, rGO-PPy40, rGO-PPy20 and rGO, 

respectively. A lower retention rate with the increased PPy ratio may be attributed to the 

decreased pseudocapacitance contribution from PPy. PPy suffers from physical changes 

associated with the doping/de-doping of ions during cycling [46, 47]. The repeated redox 

cycles can damage PPy molecule structure and promote PPy degradation, leading to the 

capacitance decay. It should be pointed out that these rGO-PPy hybrid papers can still retain 

71-80 % of the initial capacitance after 5000 cycles, comparable to or higher than that 

56~87% retention of the previously reported results for PPy or carbon-PPy based electrodes 

[48-51].  

The areal energy density and power density in the Ragone plot (Figure 8) are 

calculated using the following equations: 𝑬 = 𝑪𝒔∆𝑽
2 7200⁄ , 𝑷 = 3600𝑬 𝒕⁄ . The rGO-PPy60 

paper presented a maximum energy density of 61.3 μWh cm
-2

 at a power density of 1.2 mW 

cm
-2

, while it maintained 49.5 μWh cm
-2

 at 14.2 mW cm
-2

. Our rGO-PPy paper displayed 

higher energy density compared to the reported results for graphene paper [10], graphene-

polypyrrole film [23], graphene-PANI paper [52], or even graphene-MnO2 electrode [41] 

especially at high power density.    
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The Nyquist plots of a neat rGO or rGO-PPy paper-based electrode were obtained in 

the frequency range between 0.01 and 100 kHz, and are shown in Figure 9a. An equivalent 

circuit model is used to fit the impedance spectra (Figure 8a inset). The equivalent series 

resistance (ESR) includes solution resistance Rs, electrode-electrolyte interfacial double layer 

resistance Rdl and charge transfer resistance Rct [46, 53]. The semi-circle portion in the high 

frequency region represents two constant phase elements CPEdl and CPEf, accounting for 

imperfect double layer capacitance and faradic pseudocapacitance. The ESR of our RGO-PPy 

papers was around 3.5~5.5 Ω, close to that 2.2 Ω for the rGO paper. At low frequency region, 

more vertical plot at low frequency region indicates more ideal capacitive performance [54]. 

All the rGO and rGO-PPy papers showed nearly vertical line in this region, indicating their 

good capacitive performances. The rGO paper gave the most vertical plot among those 

papers, which can be ascribed to the fastest ion and electron transportation due to the lowest 

layer thickness.  

Dynamic electrosorption analysis (DEA) is an effective electrochemical method used 

to study ion adsorption and transport behaviour in bulk graphene based materials [55]. The 

relative ion-transport rate within a porous electrode can be implied from a characteristic 

relaxation time constant τ0, the reciprocal of the frequency where the capacitance is 50% of 

its maximum value [56, 57]. The increase of τ0 is largely attributed to the reduced average 

pore size. The τ0 of rGO-PPy papers was around 1.8 to 2.5 s, slightly higher than that of a 

neat rGO paper (1.25 s) (Figure 9b). Nevertheless, the τ0 offered by rGO-PPy paper based 

device is comparable to that 0.92-2.27 s for graphene paper based supercapacitors [55], 

indicating a good porosity for electrolyte to access.  

The performance of an all solid-state supercapacitor based on rGO-PPy40 electrodes 

using polymer electrolyte PVA-H3PO4 was also investigated. Nearly triangular 

charge/discharge curves at the unbent state with a slightly lower gravimetric capacitance 



12 

 

compared with that with liquid electrolyte (Figure 10a), 140, 118, 96 F g
-1

 at 0.5, 1 and 2 A g
-

1
, respectively were obtained. That may be ascribed to the deceased ion diffusion or transport 

within the polymer electrolyte. The capacitive behavior at the bent state was nearly the same 

as that at the relaxed state (Figure 10b). It can retain 99% and 97% of its capacitance when it 

was bent 90° and 180°, indicating the robustness of this flexible supercapacitor. 

 

4. Conclusion 

Wet graphene gel was used to prepare free standing graphene/PPy hybrid papers via 

electropolymerization. PPy was uniformly coated onto the surface and interior of the 

graphene gel, creating a layered graphene/PPy structure with an increased thickness. The 

areal mass loading of the hybrid paper can be easily controlled by adjusting the 

electrodeposition time. Benefiting from this unique structure, these hybrid papers with 

enlarged thickness showed a gravimetric capacitance comparable to the graphene paper yet 

with a much higher areal capacitance. This hybrid paper also exhibited excellent rate 

performance. The high areal-normalized power density and high energy density make such 

flexible hybrid papers promising materials for the application in flexible energy storage 

devices.  
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Captions for Figures 

 

Figure 1 (a) Schematic procedures to fabricate a rGO-PPy paper include the following steps: 

formation of a wet rGO paper via filtration, soaking the wet paper in pyrrole monomer solution, PPy 

electropolymerization followed by drying. (b) Digital image of a rGO-PPy40 paper  

 

Figure 2 SEM images of the cross section of a neat rGO (a), rGO-PPy20 (b), rGO-PPy40 (c) and 

rGO-PPy60 paper (d); Surface morphology and cross-sectional view of a neat rGO (e, g) and rGO-

PPy40 paper (f, h) at higher magnification.  

 

Figure 3 Element analysis of a neat rGO (a, b surface; g, h cross section) and rGO-PPy40 paper (d, e 

surface; j, k cross section). Element mapping of the surface of neat rGO (c), rGO-PPy40 (f), and the 

cross section  of rGO (i) and rGO-PPy40 (l).   

 

Figure 4  Raman spectra of a neat rGO or rGO-PPy40 paper (a) and the expanded view over 

500~1200 cm
-1 

(b); IR spectra of a neat rGO or rGO-PPy40 paper (c); XPS spectra of C1s in neat rGO 

(d), C1s in rGO-PPy (e), N1s in rGO-PPy40 (f) and S2p in rGO-PPy (g) (black line, experimental data; 

colour line: fitting line); TGA curves of neat rGO and rGO-PPy papers (h) 

 

Figure 5 Cyclic voltammograms of a rGO (a), rGO-PPy20 (b), rGO-PPy40 (c) or rGO-PPy60 (d) 

paper in 1 M H2SO4 between -0.5 to 0.5 V (vs. Ag/AgCl) at scan rates of 20, 50, 100 mV s
-1

.   

 

Figure 6 Cyclic voltammograms of a rGO (a), rGO-PPy20 (b), rGO-PPy40 (c) or rGO-PPy60 (d) 

paper based supercapacitors in 1 M H2SO4 at scan rates of 20, 50, 100 mV s
-1

. 
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Figure 7 Electrochemical performance of the symmetric supercapacitors using rGO, rGO-PPy 20, 

rGO-PPy40 or rGO-PPy60 paper  electrodes in 1M H2SO4. (a-d) Charge/discharge curves; (e) Areal 

capacitance versus current densities; (f) Cycle stability at a current density of 2 A g
-1

.  

 

Figure 8 Ragone plot of rGO-PPy hybrid papers in comparison to the reported graphene-based paper 

materials.   

 

Figure 9 Nyquist plots (a) (scatter: experimental plots, line: fitting plots), and frequency response (b) 

of neat rGO or rGO-PPy papers based supercapacitor. (a inset: equivalent circuit model) 

 

Figure 10 (a) Charge discharge curves of rGO-PPy40 based flexible supercapacitor. (b) CVs of rGO-

PPy40 based flexible supercapacitor (bending and relaxation state) at a scan rate of 20 mV s
-1

.   
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