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Anonymous Identity-Based Broadcast Encryption with
Revocation for File Sharing

Jianchang Lai, Yi Mu, Fuchun Guo, Willy Susilo, and Rongmao Chen

Centre for Computer and Information Security Research,
School of Computing and Information Technology
University of Wollongong, Wollongong, Australia

{jl967,ymu,fuchun,wsusilo,rc517}@uow.edu.au

Abstract. Traditionally, a ciphertext from an identity-based broadcast encryp-
tion can be distributed to a group of receivers whose identities are included in
the ciphertext. Once the ciphertext has been created, it is not possible to remove
any intended receivers from it without conducting decryption. In this paper, we
consider an interesting question: how to remove target designated receivers from
a ciphertext generated by an anonymous identity-based broadcast encryption?
The solution to this question is found applicable to file sharing with revocation.
In this work, we found an affirmative answer to this question. We construct an
anonymous identity-based broadcast encryption, which offers the user revocation
of ciphertext and the revocation process does not reveal any information of the
plaintext and receiver identity. In our proposed scheme, the group of receiver
identities are anonymous and only known by the encryptor. We prove that our
scheme is semantically secure in the random oracle model.

Keywords: Identity-Based Encryption, Revocation, Anonymity

1 Introduction

In a broadcast encryption system, a file can be encrypted for a group of receivers such
that any receiver in the group can decrypt the ciphertext using its respective private
key. The users outside the group learn nothing about the encrypted file even if they
collude. Broadcast encryption is a useful way for data sharing, where receivers can
obtain the broadcast (or shared) data with their private keys. However, directly applying
a broadcast encryption for data sharing in database systems or cloud computing might
suffer from some drawbacks. For example, it cannot preserve the receiver privacy, since
all receiver identities must be attached with the ciphertext. Therefore, if applying an
identity-based broadcast encryption scheme to file sharing, an anonymous broadcast
encryption would be more desirable.

We consider an application scenario using an anonymous identity-based broadcast
encryption, where the file sharing system for a company is supplied by a cloud ser-
vice. Without losing generality, let’s assume that the system involves a cloud server, file
owner, and a group of users. The file owner first encrypts a file for a selected group S,
and then stores the encrypted file in the cloud for sharing. When some usersR leave the
company, the server must revoke them from accessing all files. If the revoked users are



in S, they cannot decrypt the ciphertext after the server conducts revocation. Mostly im-
portant, it requires the cloud server to be able to revoke users from a ciphertext without
knowing the encrypted file and the identities of receivers.

A trivial solution to the scenario is to adopt the “decrypt then re-encrypt” approach.
It requires the server to have the ability to decrypt the ciphertext. When some identities
should be revoked, the server first decrypts the ciphertext and removes them from the
original authorized user set. It then re-encrypts the file using the new authorized user
set. However, in this trivial solution, the cloud server is able to learn the content and
the identity of authorized users who can access the file. Alternatively, the cloud server
without decryption right can encrypt the ciphertext by using the broadcast encryption
scheme (e.g. [21]) where anyone can decrypt the ciphertext except the revoked users.
This method guarantees that the cloud server cannot get any useful information about
the content and the authorized users’ identities from the original ciphertext. The limi-
tation is that this method could cause a collusion attack. For example, let IDi be the
identity of User i; if ID1 /∈ S ∪ R, ID2 ∈ S ∩ R, ID1 can use its private key to
help ID2 recover the original ciphertext, then ID2 uses its private key to decrypt the
original ciphertext.

Our Contributions. We notice that there is no ideal trivial solution to the aforemen-
tioned problem. In this work, we provide a solution to the stated problem earlier and
show how to revoke users’ identities from the ciphertext without the knowledge of the
plaintext and the knowledge of the receivers. We propose a new cryptographic notion
called anonymous identity-based broadcast encryption with revocation (AIBBER) to
realize this. Our novel solution allows the cloud server to revoke users’ identities with-
out decryption and achieves full anonymity where only the sender knows the receivers’
identities. We present two security models to meet the requirements of the proposed no-
tion and show that our construction is secure under the attacks in the proposed model.
In our setting, both the system public key and user private key are constant. The com-
putation in revocation phase is small, more precisely O(t), where t is the number of
revoked identities.

1.1 Related Work

Anonymous Broadcast Encryption. Since Fiat and Naor [15] formally introduced
broadcast encryption, subsequent works [9, 10, 3, 8, 16, 25, 6] have proposed broadcast
encryption systems with different properties. They mainly focused on reducing public
key sizes, private key sizes, ciphertext sizes and computational costs for encryption
and decryption. The notion of identity-based broadcast encryption was introduced by
Sakai and Furukawa [26], and Delerablée’s work [8] achieves constant size ciphertext
and private keys. In these schemes, the receiver identities must be attached with the
ciphertext, which exposes the privacy of the receivers.

The first work addressing the anonymity in broadcast encryption appeared in [1].
The authors presented the notion of private broadcast encryption to protect the iden-
tities of the receivers and gave a generic construction from any key indistinguishable
CCA scheme, which achieves receiver anonymity and CCA security. The security in [1]
depends on a strongly secure one-time signature. Boneh, Sahai and Waters [4] extended



this notion to construct private linear broadcast encryption and proposed a fully collu-
sion resistant tracing traitors scheme with sublinear size ciphertexts and constant size
private keys. However, the receivers cannot be arbitrary sets of users. Subsequently,
many anonymous ID-based broadcast encryption schemes were proposed [18, 22, 14,
28, 12].

Libert, Paterson and Quaglia [22] examined the security of the number-theoretic
construction in [1] and suggested the proof techniques without the random oracle. The
authors proposed an anonymous broadcast encryption scheme that achieves adaptive se-
curity without random oracles. The ciphertext in their schemes are linear of the number
of receivers and the security depends on a one-time signature. Later, Fazio and Per-
era [14] formalized the notion of outsider-anonymous broadcast encryption, which lies
between the complete lack of protection that characterizes traditional broadcast encryp-
tion scheme [15] and the full anonymity in [1]. Their constructions achieve sublinear
ciphertext length but fail to obtain anonymity among the receiver.

The work of Kiayias and Samari [19] aimed to study the lower bounds for the ci-
phertext size of private broadcast encryption. They showed that an atomic private broad-
cast encryption scheme with fully anonymous must have a ciphertext size of Ω(n · k),
where n is the number of broadcast set and k is the security parameter. Recently, Fazio,
Nicolosi and Perera [13] studied the broadcast steganography and introduced a new con-
struction called outsider-anonymous broadcast encryption with pseudorandom cipher-
texts, which achieves sublinear ciphertext size and is secure without random oracles.

Revocation. The revocation schemes in the literature only guarantee the revoked users
cannot decrypt the ciphertext. While the revocation in our paper focuses on how to
revoke the identities from a group of users S. Only the users who are in S but not in the
revocation set can retrieve the plaintext. Revocation system is a variant of the broadcast
encryption system, where it takes a set of revoked users as input to the encryption
function. Several elegant revocation constructions [23, 24, 11, 17, 5, 21, 20] have been
proposed. Naor, Naor and Lotspiech [23] presented a technique called subset-cover
framework, and based on this framework they proposed the first stateless tree-based
revocation scheme which was secure against a collision of any number of users. Boneh
and Waters [5] introduced a primitive called augmented broadcast encryption which
was claimed to be sufficient for constructing trace and revoke schemes. The authors
proposed a revocation scheme with sublinear size ciphertexts and private keys. The
scheme was proved to be secure against adaptive adversaries.

Lewko, Sahai and Waters [21] proposed a revocation system with very small pri-
vate keys using the “two equation” technique. The primary challenge is to achieve full
collusion resilience. Anyone can decrypt the ciphertext and get the broadcast message
except the revoked users even if they collude. In Lewko et al.’s scheme, the ciphertext
size is O(t) and the size of the public key is constant, where t is the number of revoked
users. Recently, to narrow the scope of decrypter in [21], a single revocation encryption
(SRE) scheme was presented by Lee et al. [20], which allows a sender to broadcast a
message to a group of selected users and one group user is revoked. Any group member
can decrypt the ciphertext except the revoked user. The authors then proposed a public



key trace and revoke scheme by combining the layered subset difference scheme and
their SRE scheme.

Broadcast Proxy Re-Encryption. The concept of proxy re-encryption (PRE) was in-
troduced by Blaze, Bleumer and Strauss [2], which provides a flexible and secure way
to share data. PRE allows an honest-but-curious proxy to turn a ciphertext intended for
a receiver into another ciphertext intended for another receiver. While, the proxy cannot
learn any useful information about the plaintext during the transformation. Chu et al. [7]
extended this notion to construct the proxy broadcast re-encryption (PBRE). Compared
with PRE, PBRE allows the proxy to transform a ciphertext intended for a receiver set
to another ciphertext intended for another receiver set. Recently, motivated by the cloud
email system, Xu et al. [27] presented a conditional identity-based broadcast proxy re-
encryption scheme with constant ciphertext based on [8]. In both the PRE and PBRE
system, the data owner has to delegate a re-encryption key to the proxy and the proxy
knows the new receivers’ identities.

Organization. The rest of the paper is organized as follows. In Section 2, we give
some preliminaries including complexity assumption, the formal definition of anony-
mous identity-based broadcast encryption with revocation and the corresponding secu-
rity models. The concrete construction is presented in Section 3. In Section 4, we show
the security proofs of our scheme. Finally, we conclude the paper in Section 5.

2 Preliminaries

2.1 Complexity Assumption

Let G and GT be two cyclic groups of the same prime order p. A bilinear map is a map
e : G×G→ GT which satisfies the following properties:

1. Bilinear: For all P,Q ∈ G and a, b ∈ Z∗p, we have e (aP, bQ) = e(P,Q)
ab.

2. Non-degeneracy: There exists P,Q ∈ G such that e (P,Q) 6= 1.
3. Computability: It is efficient to compute e (P,Q) for all P,Q ∈ G.

A bilinear group BG = (G,GT , e, p) is composed of objects as described above.

Bilinear Diffie-Hellman Problem (BDH). Let BG = (G,GT , e, p) be a bilinear group
with a generator P ∈ G. The BDH problem in (G,GT , e) is as follows: Given a tuple
(P, aP, bP, cP ) for some unknown a, b, c ∈ Z∗p as input, output e(P, P )abc ∈ GT . An
algorithm A has advantage ε in solving BDH in (G,GT , e) if

Pr
[
A (P, aP, bP, cP ) = e(P, P )

abc
]
≥ ε,

where the probability is over the random choice of a, b, c in Z∗p and P ∈ G.

Definition 1. We say that the BDH assumption holds in G if no PPT adversary has
advantage at least ε in solving the BDH problem in G.



2.2 Anonymous ID-Based Broadcast Encryption with Revocation

The AIBBER system is derived from Identity-Based Broadcast Encryption (IBBE)
[8] with more functions. Formally, an AIBBER scheme consists of the algorithms
AIBBER = (Setup,KeyGen, Encrypt,Revoke,Decrypt) defined as follows.

Setup (1λ): Taking a security parameter 1λ as input, it outputs a master public key
mpk and a master secrete key msk. The mpk is publicly known while the msk is kept
secretly.

KeyGen (mpk,msk, ID): Taking the master key pair (msk,mpk) and a user identity
ID as input, it outputs a private key dID for ID.

Encrypt (mpk,M, S): Taking the master public key mpk, a message M and a set of
identities S = (ID1, ID2, ..., IDn) as input, it outputs a ciphertext CT .
Revoke (mpk, R, CT ): Taking the master public key mpk, a ciphertext CT and a revo-
cation identity set R = (ID1, ID2, · · · , IDt) as input, it outputs a new ciphertext CT ′

with R.

Decrypt (mpk, CT ′, ID, dID): Taking the master public key mpk, a ciphertext CT ′,
an identity ID and the private key dID as input. It outputs the message M if ID ∈ S
and ID /∈ R.

Correctness. Note that if t = 0, the AIBBER scheme is AIBBE scheme. Thus, it
requires that for any ID ∈ S and ID /∈ R, if (mpk,msk) ← Setup(1λ), dID ←
KeyGen(mpk,msk, ID), CT ← Encrypt(mpk,M, S), CT ′ ← Revoke(mpk, R, CT ),
we have Decrypt(CT, ID, dID) =M and Decrypt(CT ′, ID, dID) =M.

2.3 Security Models

The security of AIBBER scheme requires that without a valid private key, both the
encrypted message and the intended receivers are unknown to the adversary. Let CT be
the original ciphertext for receivers S, R be the revoke users and CT ′ be the ciphertext
after revocation. The security requires:

1. The message in the ciphertext CT cannot be distinguished without a valid pri-
vate key associated with an identity ID ∈ S. The message in CT ′ cannot be dis-
tinguished without a valid private key associated with an identity ID′ ∈ S and
ID′ /∈ R.

2. The identity set in the ciphertext CT cannot be distinguished without a valid pri-
vate key associated with an identity ID ∈ S. The identity set in CT ′ cannot be
distinguished without a valid private key associated with an identity ID′ ∈ S and
ID′ /∈ R.

We define the IND-ID-CPA security and ANON-ID-CPA security for the AIBBER
system in a similar way as anonymous IBBE system.

IND-ID-CPA Security. IND-ID-CPA security in AIBBER allows the adversary to issue
the private key query to obtain the private key associated with any identity ID of her
choice. The adversary is challenged on an identity set S∗, two messages M0,M1 of its
choice and a revocation identity set R∗. Adversary’s goal is to distinguish whether the



challenge ciphertext is encrypted under M0 or M1 for S∗ with some restrictions. We
say that adversary breaks the scheme if it guesses the message correctly. Specifically,
the notion of IND-ID-CPA is defined under the following game between the challenger
C and the PPT adversary A.
Setup: C runs the Setup algorithm to generate the master public key mpk and master
secret key msk. Then it sends the mpk to A and keeps the msk secretly.
Phase 1: A issues private key queries. Upon receiving a private key query for IDi. C
runs the KeyGen algorithm to generate the private key dIDi and sends the result back
to A.
Challenge: When A decides that Phase 1 is over, it outputs two distinct messages M0,
M1 from the same message space, a challenge identity set S∗ = (ID1, ID2, · · · , IDn)
and a revocation identity set R∗ = (ID′1, ID

′
2, · · · , ID′t) with the restriction that A

has not queried the private key on IDi in Phase 1, where IDi ∈ S∗ and IDi /∈ R∗. C
randomly picks a bit b ∈ {0, 1} and generates the challenge ciphertext CT ∗ as follows:

CT = Encrypt(mpk,Mb, S
∗), CT ′ = Revoke(mpk,Mb, CT ).

If R∗ 6= ∅, set CT ∗ = CT ′ as the challenge ciphertext, otherwise set CT ∗ = CT as
the challenge ciphertext, then send CT ∗ to A.
Phase 2:A issues more private key queries as in Phase 1, but it cannot query the private
key on IDi where IDi ∈ S∗ and IDi /∈ R∗.
Guess: Finally, A outputs its guess b′ ∈ {0, 1} and wins the game if b′ = b.

We refer to such an adversaryA as an IND-ID-CPA adversary and define adversary
A’s advantage in attacking the scheme as AdvIND-ID-CPA

AIBER (A) = |Pr [b = b′]− 1/2| .
The probability is over the random bits used by the challenger and the adversary.

Definition 2. We say that an AIBBER scheme is IND-ID-CPA secure if there is no IND-
ID-CPA adversary A has a non-negligible advantage in this game.

ANON-ID-CPA Security. ANON-ID-CPA security in AIBBER allows the adversary
to issue the private key query to obtain the private key of any identity ID of its choice.
Similarly, the adversary is challenged on a message M∗, two identity sets S0, S1 and
a revocation identity set R∗ of its choice. Adversary’s goal is to distinguish whether
the challenge ciphertext is generated under S0 or S1 with some restrictions. We say
that adversary breaks the scheme if it guesses the identity set correctly. Specifically, the
notion of ANON-ID-CPA is defined under the following game between the challenger
C and the PPT adversary A.
Setup: C runs the Setup algorithm to generate the master public key mpk and master
secret key msk. Then it sends the mpk to A and keeps the msk secretly.
Phase 1: A issues private key queries. Upon receiving a private key query for IDi. C
runs the KeyGen algorithm to generate the private key dIDi and sends the result back
to A.
Challenge: WhenA decides that Phase 1 is over, it outputs a messageM∗, two distinct
identity sets S0 = (ID0,1, ID0,2, ..., ID0,n), S1 = (ID1,1, ID1,2, ..., ID1,n) and a
revocation setR∗ = (ID′1, ID

′
2, · · · , ID′t). We require thatA has not issued the private



key queries on IDi in Phase 1, where IDi ∈ (S0 ∪ S1)\(S0 ∩ S1). C randomly picks
a bit b ∈ {0, 1} and generates the challenge ciphertext CT ∗ as follows:

CT = Encrypt(mpk,M∗, Sb), CT ′ = Revoke(mpk,M∗, CT ).

If R∗ 6= ∅, set CT ∗ = CT ′ as the challenge ciphertext, otherwise set CT ∗ = CT as
the challenge ciphertext, then send CT ∗ to A.
Phase 2:A issues more private key queries as in Phase 1, but it cannot query the private
key on any IDi, where IDi ∈ (S0 ∪ S1)\(S0 ∩ S1).
Guess: Finally, A outputs its guess b′ ∈ {0, 1} and wins the game if b′ = b.

We refer to such an adversary A as an ANON-ID-CPA adversary and define adver-
saryA’s advantage in attacking the scheme as AdvANON-ID-CPA

AIBER (A) = |Pr [b = b′]− 1/2| .
The probability is over the random bits used by the challenger and the adversary.

Definition 3. We say that an AIBBER scheme is ANON-ID-CPA secure if there is for
any PPT adversary A, AdvANON-ID-CPA

AIBER (A) is negligible.

3 The Proposed Scheme

3.1 Construction

Setup: Given a security parameter 1λ, the setup algorithm randomly chooses a bilinear
group BG = (G,GT , e, p) with a generator P ∈ G, s ∈ Z∗p and computes Ppub = sP .
It then picks four cryptographic hash functions H : {0, 1}∗ → Z∗p, H1 : {0, 1}∗ → G,
H2 : GT × {0, 1}∗ → G, H3 : GT × {0, 1}∗ → G. The master public key and master
secret key are

mpk = {BG, P, Ppub, H,H1, H2, H3}, msk = s.

KeyGen: Given the master key pair (mpk,msk) and an identity ID ∈ {0, 1}∗, this
algorithm outputs the private key

dID = sH1(ID).

Encrypt: Given the master public key mpk, a set of identity S = (ID1, ID2, . . . ,
IDn) and a message M ∈ G, this algorithm randomly chooses r1, r2 ∈ Z∗p and v ∈ G.
For i = 1, 2, · · · , n, it computes xi = H(IDi),

fi(x) =

n∏
j=1,j 6=i

x− xj
xi − xj

=

n−1∑
j=0

ai,jx
j mod p,

Ai = H2

(
e
(
H1(IDi), Ppub

)r1
, IDi

)
, Bi = v +H3

(
e
(
H1(IDi), Ppub

)r2
, IDi

)
.

We have fi(xi) = 1 and fi(xj) = 0 for i 6= j. Then it creates the ciphertext CT as
C0 = v +M,C1 = r1P,C2 = r2P, together with, for each i = 1, 2, · · · , n:

Qi =

n∑
j=1

aj,i−1Aj , Ui =

n∑
j=1

aj,i−1Bj .



Revoke: Given a ciphertext CT = (C0, C1, C2, Qi, Ui, i ∈ [1, n]), the master public
key mpk and a revocation identity set R, where |R| = t. It requires t < n. If R = ∅,
this algorithm sets CT ′ = CT . Otherwise, it randomly chooses u ∈ G and computes
C ′0 = u+ C0, xi = H(IDi) for IDi ∈ R,

g (x) =

t∏
i=1

(x− xi) =
t∑
i=0

bix
i mod p.

Then it sets bi = 0 for i = t+1, t+2, · · · , n−1 and for each i = 1, 2, · · · , n computes

Q′i = Qi + bi−1u.

Then it sets CT ′ = (R,C ′0, C1, C2, Q
′
i, Ui, i ∈ [1, n]).

Decrypt: Given a ciphertext CT ′ = (R,C ′0, C1, C2, Q
′
i, Ui, i ∈ [1, n]), an identity

IDi, a private key dIDi
and the master public key mpk, this algorithm computes xi =

H(IDi) and

U = U1+xiU2+x
2
iU3+ · · ·+xn−1i Un, Q = Q′1+xiQ

′
2+x

2
iQ
′
3+ · · ·+xn−1i Q′n.

Then it computes xj = H(IDj) for each IDj ∈ R to reconstruct g(x) as:

g (x) =

t∏
j=1

(x− xj) =
t∑

j=0

bjx
j mod p.

Finally, it uses the private key dIDi
to compute

v′ = U −H3

(
e(C2, dIDi), IDi

)
, u′ = g(xi)

−1 (
Q−H2

(
e(C1, dIDi), IDi

))
.

and recovers the message M = C ′0−u′− v′. If the identity IDi ∈ S and IDi /∈ R, we
have u′ = u, v′ = v, then it obtains the correct M after decryption.

Note: For simplicity, we omit the modulo operation and assume that the coefficients of
all polynomials are from Z∗p in the rest of paper.

3.2 Discussion and Correctness

One may think that after revocation, the revocation set may be updated multiple times.
Our scheme allows the server to update the revocation set. For each update, the server
uses the original ciphertext and the new revocation set to perform the Revoke algorithm.
Thus, the server needs to store the original ciphertext CT in our scheme. In our setting,
there is no requirement of R ⊂ S. The revocation set R can be arbitrary users.

From our setting, only the users in S can decryption the ciphertext CT . After revo-
cation, the revoked users cannot decrypt the ciphertext CT ′. We note that if ID ∈ R,
g(H(ID)) = 0 and g(H(ID))u = 1G. The user with identity ID cannot retrieve one
of the decryption keys u, even all users in R conclude. To obtain the decryption keys
u and v, the user must belong to S and not belong to R. Thus our scheme ensures



that even if all the revoked users collude, they still cannot access the file and learn the
identities of receivers.

Next we show that our construction meets the requirements of correctness as we
claimed in the Section 2.3. If xi = H(IDi) is computed correctly, for any IDi ∈ S
and IDi /∈ R, we have g(xi) 6= 0 and

Q = Q′1 + xiQ
′
2 + x2iQ

′
3 + · · ·+ xn−1i Q′n

=
(
Q1 + xiQ2 + x2iQ3 + · · ·+ xn−1i Qn

)
+
(
b0 + b1xi + b2x

2
i + · · ·+ bn−1x

n−1
i

)
u

= (a1,0A1 + a2,0A2 + · · ·+ an,0An)
+ xi (a1,1A1 + a2,1A2 + · · ·+ an,1An) + · · ·
+ xn−1i (a1,n−1A1 + a2,n−1A2 + · · ·+ an,n−1An) + g(xi)u

=
(
a1,0 + a1,1xi + a1,2x

2
i + · · ·+ a1,n−1x

n−1
i

)
A1

+
(
a2,0 + a2,1xi + a2,2x

2
i + · · ·+ a2,n−1x

n−1
i

)
A2 + · · ·

+
(
an,0 + an,1xi + an,2x

2
i + · · ·+ an,n−1x

n−1
i

)
An + g(xi)u

= f1(xi)A1 + f2(xi)A2 + · · ·+ fn(xi)An + g(xi)u
= Ai + g(xi)u

u′ = g(xi)
−1 ·

(
Q−H2

(
e(C1, dIDi

), IDi

))
= g(xi)

−1 ·
(
Ai + g(xi)u−H2

(
e(C1, dIDi

), IDi

))
= g(xi)

−1 ·
(
H2

(
e
(
H1(IDi), Ppub

)r1
, IDi

)
−H2

(
e
(
r1P, sH1(IDi)

)
, IDi

)
+ g(xi)u

)
= g(xi)

−1 · (g(xi)u)
= u.

The user IDi uses its private key dIDi
to remove Ai from Qi via above computation.

As g(xi) 6= 0 , the user can obtain u.

U = U1 + xiU2 + x2iU3 + · · ·+ xn−1i Un
= (a1,0B1 + a2,0B2 + · · ·+ an,0Bn)
+ xi(a1,1B1 + a2,1B2 + · · ·+ an,1Bn) + · · ·
+ xn−1i (a1,n−1B1 + a2,n−1B2 + · · ·+ an,n−1Bn)

=
(
a1,0 + a1,1xi + a1,2x

2
i + · · ·+ a1,n−1x

n−1
i

)
B1

+
(
a2,0 + a2,1xi + a2,2x

2
i + · · ·+ a2,n−1x

n−1
i

)
B2 + · · ·

+
(
an,0 + an,1xi + an,2x

2
i + · · ·+ an,n−1x

n−1
i

)
Bn

= f1(xi)B1 + f2(xi)B2 + · · ·+ fn(xi)Bn
= Bi

v′ = U −H3

(
e(C2, dIDi

), IDi

)
= Bi −H3

(
e
(
r2P, sH1(IDi)

)
, IDi

)
= v +H3

(
e
(
P,H1(IDi)

)sr2
, IDi

)
−H3

(
e
(
H1(IDi), Ppub

)r2
, IDi

)
= v.

After recovering u and v, we get the message asC ′0−u′−v′ =M+v+u−u−v =M .

4 Security Analysis

Theorem 1. Suppose the hash functions H1, H2, H3 are random oracles. If the BDH
problem is hard, the proposed scheme is IND-ID-CPA secure. Specifically, suppose



there is an IND-ID-CPA adversaryA that has advantage ε against our proposed scheme.
A makes at most qE private key queries and qH1

, qH2
, qH3

queries to the functions H1,
H2 and H3 respectively. Then there is an algorithm S to solve the BDH problem with
advantage ε′ ≥ ε

n·e·qE ·(qH2
+qH3

) , where n is the number of the broadcast identities.

Proof. Suppose there exists an adversary A who can break our scheme with advantage
ε. We build a simulator S that can solve the BDH problem with advantage ε′ by running
A. Let (P, aP, bP, cP ) be a random instance of BDH problem taken as input by S and
its goal is to compute e(P, P )abc. In order to use A to solve the problem, S needs to
simulate a challenger and respond all the queries for A. For simplicity, we assume that
the H2 and H3 query is after the H1 query for the same identity. S works by interacting
with A in an IND-ID-CPA game as follows:
Setup: S sets Ppub = aP and creates mpk = (p, P, Ppub, e,H).
H1-queries:AmakesH1 queries. S responds to a query on IDi as follow. S maintains
a list L1 of a tuple (IDi, ci, ri, hi). This list is initially empty. S first checks the L1.
If the query IDi already appears on the L1 in a tuple (IDi, ci, ri, hi), it returns the
corresponding hi as the value of H1(IDi). Otherwise, do the following:

1. Select ci ∈R {0, 1} with Pr[ci = 0] = δ for some δ (determine later).
2. Pick ri ∈R Z∗p, if ci = 0, compute hi = ribP . If ci = 1, compute hi = riP .
3. Add the tuple (IDi, ci, ri, hi) to the L1 and respond with hi to A.

H2-queries: A makes H2 queries. S responds to a query on (Xi, IDi) as follow. S
maintains a list L2 of a tuple (Xi, IDi, λi). This list is initially empty. S first checks
the L2. If the query (Xi, IDi) already appears on the L2 in a tuple (Xi, IDi, λi), it
returns the corresponding λi as the value ofH2(Xi, IDi). Otherwise, S randomly picks
a λi ∈ G as the value of H2(Xi, IDi), then adds the tuple (Xi, IDi, λi) to the L2 and
responds to A with λi.
H3-queries: A makes H3 queries. S responds to a query on (Yi, IDi) as follow. S
maintains a list L3 of a tuple (Yi, IDi, γi). This list is initially empty. S first checks
the L3. If the query (Yi, IDi) already appears on the L3 in a tuple (Yi, IDi, γi), it
returns the corresponding γi as the value of H3(Yi, IDi). Otherwise, S randomly picks
a γi ∈ G as the value of H3(Yi, IDi), then adds the tuple (Yi, IDi, γi) to the L3 and
responds to A with γi.
Phase 1: A issues the private key queries on IDi for several times as needed. For each
time, S first runs the H1 query to get the corresponding ci and ri. If ci = 0, S aborts.
If ci = 1, S computes dIDi = sH1(IDi) = ariP = riPpub.
Challenge: WhenA decides Phase 1 is over, it outputs two distinct messages M0,M1,
a challenge identity set S∗ = (ID1, ID2, · · · , IDn) and a revocation identity setR∗ =
(ID′1, ID

′
2, · · · , ID′t) under the restriction that A has not queried the private key on

IDi in Phase 1, where IDi ∈ S∗ and IDi /∈ R∗. S randomly picks a random bit
b ∈ {0, 1} and does the follows:
Case 1: R∗ = ∅. In this case, S randomly picks r∗ ∈ Z∗p, C∗0 ∈ G, for each IDi ∈ S∗,
i = 1, 2 · · · , n, randomly chooses Ai, B∗i ∈ G and computes x∗i = H(IDi),

fi(x) =

n∏
j=1,j 6=i

x− x∗j
x∗i − x∗j

=

n−1∑
j=0

ai,jx
j ,



Then S generates the challenge ciphertext CT ∗ as C0, C
∗
1 = r∗cP,C∗2 = cP , together

with, for each i = 1, 2, · · · , n :

Q∗i =

n∑
j=1

aj,i−1A
∗
j , U∗i =

n∑
j=1

aj,i−1B
∗
j .

Case 2: R∗ 6= ∅. In this case, S does the follows:

1. Pick r∗ ∈R Z∗p, v∗, u∗ ∈R G, compute C ′∗0 = v∗ + u∗ + Mb, C∗1 = r∗cP ,
C∗2 = cP .

2. For each (IDi ∈ S∗) ∧ (IDi /∈ R∗), S randomly chooses Ai, B∗i ∈ G. For each
(IDi ∈ S∗) ∧ (IDi ∈ R∗), S gets ri from the L1 (If IDi is not in the L1, do H1

queries to get ri). Then it computes Xi = e(aP, cP )r
∗ri and checks whether the

tuple (Xi, IDi) in the L2. If yes, it obtains the corresponding λi and sets A∗i = λi.
Otherwise, it randomly choose A∗i ∈ G and adds the new tuple (Xi, IDi, A

∗
i ) to

the L2. Then S computes Yi = e(aP, cP )ri and checks whether the tuple (Yi, IDi)
in the L3. If yes, it obtains the corresponding γi and sets w∗i = γi. Otherwise, it
randomly chooses w∗i ∈ G and adds the new tuple (Yi, IDi, w

∗
i ) to the L3, and

computes B∗i = w∗i + v∗.
3. For each IDi ∈ S∗, i = 1, 2 · · · , n, compute x∗i = H(IDi),

fi(x) =

n∏
j=1,j 6=i

x− x∗j
x∗i − x∗j

=

n−1∑
j=0

ai,jx
j ,

Q∗i =

n∑
j=1

aj,i−1A
∗
j , U∗i =

n∑
j=1

aj,i−1B
∗
j .

4. Compute x′∗i = H(IDi) for IDi ∈ R∗ and

g (x) =

t∏
i=1

(x− x′∗i ) =
t∑
i=0

bix
i.

Then set bi = 0 for i = t+ 1, t+ 2, · · · , n− 1. For 1 ≤ i ≤ n, compute

Q′∗i = Q∗i + bi−1u
∗,

and set CT ∗ = (R∗, C ′∗0 , C
∗
1 , C

∗
2 , Q

′∗
i , U

∗
i , i ∈ [1, n]).

Phase 2: A issues private key queries as needed, but it cannot query the private key on
IDi, where IDi ∈ S∗ and IDi /∈ R∗. S responds as in Phase 1.
Guess: Finally, A outputs its guess b′ ∈ {0, 1}.
Probability Analysis. Note that in the case R∗ = ∅, we can view v∗ as the encryp-
tion key to encrypt the challenge message. Let W = (e(H1(IDi), Ppub)

c, IDi) where
IDi ∈ S∗. In the real scheme, B∗i = v∗ + H3(W ), thus we also can regard H3(W )
as the encryption key to encrypt v∗. Before querying the H3 value of W , the result
of H3(W ) is unknown and random. From the view of adversary, v∗ is encrypted with



a random number key independent of W . Therefore, B∗i is a one-time pad. In other
words, the challenge ciphertext is a one-time pad. According to the assumption(A can
break our scheme with advantage ε), the adversary will query H3 on W . In this case,
simulator decides the corresponding hard problem’s solution is in the L3 and can solve
it with probability δ

n .
WhenR∗ 6= ∅, we can view v∗ and u∗ as the encryption key to encrypt the challenge

message. However, in this case, the adversary can retrieve v∗ by querying the private
key of (IDi ∈ S∗) ∧ (IDi ∈ R∗). That is, the message encryption key is only u∗. Let
Ω =

(
e(H1(IDi), Ppub)

r∗c, IDi

)
, where (IDi ∈ S∗)∧ (IDi /∈ R∗). Similarly, in real

scheme Q∗ = A∗i + g(x∗i )u
∗ = H2(Ω) + g(x∗i )u

∗, we can regard Ω as the encryption
key to encrypt u∗. Before querying the H2 value of Ω, the result of H2(Ω) is unknown
and random. From the view of adversary, u∗ is encrypted with a random number key
independent of Ω. Therefore, Q∗ is a one-time pad, that is, the challenge ciphertext is
a one-time pad. According to the assumption(A can break our scheme with advantage
ε), the adversary will query H2 on Ω. In this case, simulator can decides the solution
of the corresponding hard problem is in the L3 and solve it with probability δ

n−l where
l = |S∗ ∩ R∗|. Here, we define the query which can solve the hard problem as useful
query.

If useful query happens, it means cj = 0, H1(IDj) = rjbP and dIDj
= rjabP .

From the decryption algorithm, we have e(C∗1 , dIDj
) = e(P, P )r

∗rjabc and e(C∗2 , dIDj
)

= e(P, P )rjabc. Here S ign ores the guess ofA and picks a random tuple from the L2 or
L3. It first obtains the corresponding rj from the L1. If S picks the tuple (Xj , IDj , λj)

from the L2, it computes X(r∗rj)
−1

j as the solution to the given instance of BDH prob-

lem. If S picks the tuple (Yj , IDj , γj) from the L3, it computes X
r−1
j

j as the solution
to the given instance of BDH problem.

The above completes the description of simulation algorithm S. To complete the
security proof, it remains to show that S correctly outputs e (P, P )abc with advantage
at least ε′. According to our above analysis, we first define the following events:

E1: Simulation dose not abort in private key query.
E2: At least one of the H1 values of challenge identities contains hard problem.
E3: Adversary chooses an identity where ci = 0 to distinguish challenge message.
E4: Simulator correctly chooses the solution from the L2 or L3 list.

The simulator can successfully solve the hard problem if and only if all events happen
simultaneously. Next, we analyze the probability of all events. From the private key
query, we know when each ci = 1, simulation will not abort, thus

Pr[E1] = Pr[ci = 1, i = 1, 2, · · · , qE ] = (1− δ)qE .

All ci are chosen by simulator where ci = 0 with probability δ, ci = 1 with probability
1 − δ. When ci = 0, the value of H1 contains the hard problem, thus Pr[E2] = δ.
Since all ci are chosen by simulator and they are secretly to adversary, adversary does
not know which identity’s ci is equal to 0 or 1. That is, from adversary’s point of view,
it does not know the probabilities of ci = 0 and ci = 1. Therefore, under event E2, we



have
Pr[E3] = Pr[E3|ci = 0]Pr[ci = 0] + Pr[E3|ci = 1]Pr[ci = 1]

= 1
n−l Pr[ci = 0] + 1

n−l Pr[ci = 1]

= 1
n−l ≥

1
n .

Note that the identity IDi ∈ S∗ ∩ R∗ allows to query the corresponding private key.
In our setting, these identities cannot be used to distinguish the challenge messages.
Since |S∗ ∩ R∗| = l, the potential useful identity is n − l. Thus we have above result
Pr[E3] =

1
n−l ≥

1
n .

Finally, from the simulator’s point of view, if adversary can guess the correct b′ and
with the conditions that E1, E2, E3 happen, it only knows that the solution of the hard
problem is in the L2 or L3, but it dose not know which one is, thus Pr[E4] ≥ 1

qH2
+qH3

.
It is clear that these four events are independent, therefore, we have

ε′ ≥ Pr[E1 ∧ E2 ∧ E3 ∧ E4] · ε
= Pr[E1] · Pr[E2] · Pr[E3] · Pr[E4] · ε
≥ (1− δ)qE · δ · 1n ·

1
qH2

+qH3
· ε

= (1− δ)qE · δ · ε
n(qH2

+qH3
) .

The function (1− δ)qE · δ is maximized at δ = 1
qE+1 , we have

(1− δ)qE · δ = 1

qE + 1
·
(
1− 1

qE + 1

)qE
=

1

qE
·
(
1− 1

qE + 1

)qE+1

.

For a large qE ,
(
1− 1

qE+1

)qE+1

≈ 1
e , thus we have

ε′ ≥ (1− δ)qE · δ · ε

n(qH2 + qH3)
≈ ε

n · e · qE · (qH2 + qH3)
.

This completes the proof. �

Discussion. When R∗ = ∅, the challenge message is encrypted by v∗. If the adversary
can distinguish the message, the simulator can decide it must have queried theH3 value
with the input embedding the hard problem, but simulator does not know which input
embeds the hard problem. In this case, Pr[E4] =

1
qH3
≥ 1

qH2
+qH3

. When R∗ 6= ∅, even
the inputs of H3 contain the hard problem, the adversary can retrieve v∗ by the identity
IDi ∈ S∗ and IDi ∈ R∗. Thus the useful queries are from H2 and Pr[E4] =

1
qH2
≥

1
qH2

+qH3
.

Theorem 2. Suppose the hash functions H1, H2, H3 are random oracles. The pro-
posed scheme is ANON-ID-CPA secure under the BDH assumption. Specifically, sup-
pose there is an ANON-ID-CPA adversaryA that has advantage ε against our proposed
scheme.A makes at most qE private key queries and qH1 , qH2 , qH3 queries to the func-
tions H1, H2 and H3 respectively. Then there is an algorithm S to solve the BDH
problem with advantage ε′ ≥ ε

n·e·qE ·(qH2
+qH3

) , where n is the number of broadcast
identities.



Proof. The proof of Theorem 2 is similar to the proof of Theorem 1. Given a random
instance of BDH problem (P, aP, bP, cP ), S works by interacting withA in an ANON-
ID-CPA game. The Setup, H1-query, H2-query, H3-query and Phase 1 query are the
same as in Theorem 1.
Challenge: When A decides Phase 1 is over, it outputs a challenge message M∗, two
distinct identity sets S0 = (ID0,1, ID0,2, · · · , ID0,n), S1 = (ID1,1, ID1,2, · · · , ID1,n)
and a revocation identity set R∗ = (ID′1, ID

′
2, · · · , ID′t). We require that any identity

IDi ∈ (S0 ∪ S1)\(S0 ∩ S1) has not been queried the private key in Phase 1. S picks a
random bit b ∈ {0, 1} and dose the follows:

1. Pick r∗ ∈R Z∗p, v∗ ∈ G, compute C∗0 = v∗ +M , C∗1 = r∗cP , C∗2 = cP .
2. For each IDi ∈ Sb\(S0 ∩ S1), randomly choose A∗i , B

∗
i ∈ G. For each IDi ∈

S0 ∩ S1, S first gets ri from the L1 (If IDi is not in the L1, do H1 queries to get
ri). Then it computes Xi = e(aP, cP )r

∗ri and checks whether the tuple (Xi, IDi)
is in the L2. If yes, it obtains the corresponding λi and sets A∗i = λi. Otherwise, it
randomly chooses A∗i ∈ G and adds the new tuple (Xi, IDi, A

∗
i ) to the L2. Then

S computes Yi = e(aP, cP )ri and checks whether the tuple (Yi, IDi) in the L3.
If yes, it obtains the corresponding γi and sets w∗i = γi. Otherwise, it randomly
chooses w∗i ∈ G and adds the new tuple (Yi, IDi, w

∗
i ) to the L3, and computes

B∗i = w∗i + v∗.
3. For each i = 1, 2 · · · , n, compute x∗i = H(IDi),

fi(x) =

n∏
j=1,j 6=i

x− x∗j
x∗i − x∗j

=

n−1∑
j=0

ai,jx
j ,

Q∗i =

n∑
j=1

aj,i−1A
∗
j , U∗i =

n∑
j=1

aj,i−1B
∗
j ,

and set CT = (R∗, C∗0 , C
∗
1 , C

∗
2 , Q

∗
i , U

∗
i , i ∈ [1, n]).

Case 1: R∗ = ∅. S sets the challenge ciphertext CT ∗ = CT .
Case 2: R∗ 6= ∅. S randomly chooses u∗ ∈ G and computes C ′∗0 = u∗ + C∗0 . For each
IDi ∈ R∗, S computes x′∗i = H(IDi),

g (x) =

t∏
i=1

(x− x′∗i ) =
t∑
i=0

bix
i,

and sets bi = 0 for i = t + 1, t + 2, · · · , n − 1. Finally, for each i = 1, 2, · · · , n, S
computes

Q′∗i = Q∗i + bi−1u
∗,

and sets CT ∗ = (R∗, C ′∗0 , C
∗
1 , C

∗
2 , Q

′∗
i , U

∗
i , i ∈ [1, n]).

Phase 2:A issues more private key queries, but it cannot query the private key on IDi,
where IDi ∈ (S0 ∪ S1)\(S0 ∩ S1). S responds as in Phase 1.
Guess: Finally, A outputs its guess b′ ∈ {0, 1}.

The probability analysis is almost similar to the one of Theorem 1. Due to space
constraints, we omit it here.



5 Conclusion

We presented an anonymous identity-based broadcast encryption with revocation scheme
for file sharing. The file owner can encrypt a file for sharing with a group of users and
stores the encrypted file in the cloud server (or any other third party). The server can
revoke target users without knowing the file and the receiver identities. Our scheme en-
sures that even if all the revoked users collude, they still cannot access the file and learn
the identities of receivers. The cloud server also learns nothing about the file and the
receiver identities. Finally, we proved that the proposed scheme is IND-ID-CPA secure
and ANON-ID-CPA secure under the BDH assumption in the random oracle model.
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