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Developing an Optimum Maintenance Policy by Life Cycle Cost Analysis 

 A Case Study   

                                

 

Abstract 

This paper focuses on developing maintenance policies for critical assets to improve the production 

performance based on life cycle cost (LCC) analysis. A general approach is adopted for conducting 

the LCC analysis.   

The investigation is based on a case study to demonstrate how an optimum maintenance policy is 

determined. The relevant LCC structure in the case study is defined for the decision process which 

involves determination of the optimum life, repair limit and selection of materials, and trade-off 

between repair and replacement. The LCC analysis is based on statistical data modeling which 

facilitates decision making on the optimal replacement of an asset and its remaining life. Based on the 

optimization and remaining life criterion, the optimal maintenance policy can be made. The results 

obtained from this case study include selection of the best lining material for use, determination of the 

optimal time for refractory lining replacement, the hot repair sequence required for maintaining the 

optimum condition and the repair limit for doing cold repairs before replacement, for one type of 

electric arc furnaces (EAFs) used in the steel industry. 

 
Keywords: Maintenance policies, asset management, life cycle cost, optimum replacement,  

                   remaining useful life  

 

 

1. Development of Maintenance Policies by Considering Life Cycle Cost Approach 

Many quantitative approaches and models have been developed to deal with the 

maintenance policies but they mostly focused on repair versus replacement of machinery and 

mechanical systems (Eginhard 1977, Jarddeine 1979, Zhang 2000, Lai 2001, Motta 2002). It 

is not until recently, when practical attempts have been made to deal with the relationship 

between maintenance strategies and the overall business objective of organizations (Tsang 

2002, Pinjala and Pintelon 2006, Muchiri et. al. 2010, El-Akruti 2012). The same can be said 

about the development of quantitative models that use LCC to cover the impact of 

maintenance policies on the overall performance and value contribution to the organization 

(Khan 2001, Motta. and Colosimo 2002, Hartman 2004, Scarf et.al. 2007, Shahata and Zayed 

2008, Lad 2012, Marais 2013).     

Considering the relation between maintenance strategies and the overall business objective 

of organizations, it was proposed that knowledge of developing the LCC approach and 

models were essential for the formulation of optimum maintenance policies.  In order to 

make some knowledge contribution in such direction, it was decided that a field investigation 

of an actual case study should be carried out for the dual purpose of developing the LCC 

approach as realistic as possible and for the application and evaluation of the quantitative 

optimization model through the use of past operational and cost records. 
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LCC analysis plays an important role in developing maintenance policies (e.g. Lad and 

Kulkarni, 2012; Taylor, 2012; Tähkämö et al., 2012; Mahapatra, 2008; Garcia et al., 2008; 

Shahata and Zayed, 2008; Scarf et al., 2007; Schuman and Brent, 2005; Hartman, 2004; 

Goralczyk and Kulczycka, 2003). LCC is directly influenced by decisions and activities from 

system preliminary design to utilization stage including system analysis, evaluation of 

alternatives or trade-offs. LCC may be reflected by the costs committed to and/or being 

incurred during the asset life cycle (Blanchard and Fabryky, 2010, p. 585), because asset 

operational management including maintenance is carried out through the entire asset life 

(Charles and Alan, 2005; Luan, et al., 2007). El-Akruti (2012) argues that LCC analysis is 

essential in managing the overlaps among the interdisciplinary activities in assets’ life cycle. 

Maintenance policies development is related to procurement, finance and accounting 

department which enable investment, funding and budgeting in asset development.  

During utilization of assets, maintenance policies are determined upon certain types of 

maintenance. This process may involve decision makings on outsourcing, upgrading, 

expansion, support system development, redesign, replacement or retirements of assets. To 

make these decisions requires for conducting LCC analysis. For example, Ouertani et al. 

(2008) argue that maintenance is complex and so deserves additional attention. Thus, 

maintenance policies development needs to be built on LCC among many other 

organizational activities and through all life cycle stages. Pinjala et al. (2006) discuss the 

relationship between an organization’s business objectives and some of the maintenance 

activities and Khan (2001) presents that system reliability is related to LCC. A strategic 

approach to making maintenance strategies and policies has been recognized especially in 

capital-intensive industries (Tsang, 2002; Pinjala et al., 2006; Muchiri et al., 2010).     

Integration of LCC into decision making models requires defining requirements, 

performance targets, availability of input data, priorities and alternatives for solution, cost 

contributors and cause-effect relationship; and setting an appropriate cost breakdown 

structure (Blanchard and Fabrycky, 2010). In the policies development, LCC is a critical 

factor in decisions related to dealing with one or more issues as follows:       

1) During the utilization of the asset, replacement cost must be considered as a function 

of the current system’s behavior to establish the remaining costs of the asset life.   

2) The decision logic on repair/replacement must lead to economically optimized repair 

frequency and replacement time interval.        

3) Prediction and estimation of asset condition may require condition monitoring system 

with breadth and depth for visibility.          

4) At design phase, the investment as well as system operation and support costs need to 

be estimated. It is usually difficult to estimate/predict accurately the future operation 

and support costs.       

5) Trade-off decisions may involve capital vs. running costs; labor & materials vs. 

reduced services and reduced safety.       
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6) Decisions on alternatives need to be made based on the comparison criteria for asset 

management according to maintenance strategies, policies or methods and balancing 

the cost of a new item against the cost of maintaining efficiency of the old.   

            

2.   The Significance of Using Life Cycle Cost Analysis   

The purpose of conducting a quantitative LCC analysis in developing maintenance policies 

is to cover the interrelationships between maintenance activities and other relevant life cycle 

or support activities of the organization in order to avoid sub optimization and achieve 

maximized economic benefits while maintaining the optimum system performance (Khan 

2001, Schuman and Brent  2005, Muchiri et. al. 2010, El-Akruti 2012 Marais 2013). The 

quantitative LCC analysis methods can ensure a realistic selection of the maintenance 

policies together with associated activities, which maximizes the expected values if they are 

based on cost minimization and output maximization (Marais, 2013). There are many 

methods developed for carrying out a model-based LCC analysis using historical data such as 

using graphical tools (Barberá et. al., 2013) in maintenance decision making. Statistical 

methods or reliability techniques are also used for maintenance decisions and policy settings 

(e.g. Motta and Colosimo, 2002).  

LCC models can help in developing criteria to improve the overall organizational benefits 

with the same cost spent or reduce the cost with the same performance maintained in terms of 

cost/benefit mixtures. For example, in order to find the optimal LCC, control of replacement 

and/or repair frequencies is needed while considering impacts by/on other activities in the 

organization. Maintenance control is meaningless unless there is a criterion to tell when the 

control is serving the overall benefit of the organization. Such criteria do not exist and it 

involves a search for it in the context of the demand for the asset. The effectiveness of 

maintenance must allow the asset’s performance to meet the demand. It is therefore a two-

way interaction. On one hand it is demand for equipment and on the other hand it is the 

equipment condition. In between, the replacement and/or repair actions must be well planned.           

In maintenance control for optimization, there are two tasks to be completed: One is the 

determination of how to measure the performance for the overall benefit of the organization 

and the other is identification of the decision criteria with control variables which are 

manipulated by the replacement function in order to set up a policy. If the performance 

measures can be laid down clearly and can be met, the performance can be judged in terms of 

cost for providing the required service to achieve the overall organizational benefit. 

Even if availability and performance are specified, one can question the true financial 

effects of the production at each service level. Thus what are the financial effects of no 

production time due to repair/replacement and poor quality? What are the financial effects of 

delaying production resulting from not having equipment available? This gives rise to the 

need to combine both functions of minimizing LCC to achieve various service levels and 

maximizing the overall economic benefits for the organization. Finally it needs to remember 

that the way in which an asset is used in production programs will inevitably influence the 
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condition of the equipment. Sometimes, the decision is to be made on delaying production as 

against to using asset with risky condition where deterioration may be rapidly and 

catastrophically accelerated.      

In developing maintenance policies, different decisions are to be made at different 

hierarchical levels including, e.g. inspection and replacement of component, repair or 

overhaul of equipment, replacement, etc. The effect of these decisions cannot be separated. 

Their combined effects on operation and maintenance have to be assessed when dealing with 

policies development. For example, an optimum overhaul frequency for replacement of some 

components depends on the frequency of replacement of other associated components. A 

component may or may not be replaced at times of major overhauls and at time of 

breakdown. LCC is considered for replacement decision which does not have to be in the 

strict sense of the word, but perhaps maintenance decisions on repair and overhaul may be 

taken as synonymous with replacement provided that it is reasonable to assume that 

maintenance actions return the equipment to as new condition. Therefore it is not a 'one-off' 

decision, but a series of decisions. Thus the decision structure is complicated and not all 

decisions can be dealt with by considering LCC at the same time.    

In order to avoid sub optimization and determine an optimum maintenance policy that 

serves the overall benefit of the organization, a general approach to developing LCC analysis 

as given by Blanchard and Fabrycky (2010) has been adopted here by modification as 

follows:      

1) Define system requirements and technical performance measures (TPMs).   

2) Specify the system lifecycle and identify activities by phase.   

3) Develop a cost breakdown structure.   

4) Identify input data requirements.   

5) Establish costs for each category in cost breakdown structure (CBS).  

6) Select a cost model for analysis and evaluation.    

7) Develop a cost profile and summary.  

8) Identify high-cost contributors and cause-effect relationships.  

9) Develop decision making models and set up decision criteria.  

10) Conduct a sensitivity analysis.   

11) Identify priorities for problem resolution.   

12) Identify additional alternatives and select a preferred approach.     

13) Evaluate feasible alternatives and select a preferred approach.   

The similar process can be found from standards such as AS/NZS4536:1999 (1999) and 

ISO 15663-3:2001 (2001). By following the adopted approach, an optimum maintenance 

policy can be determined properly by minimizing LCC while achieving various service 

targets and maximizing the economic benefits. This will be demonstrated by a case study as 

shown in Section 3.   
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3. Case Study  EAF’s Lining Repair and Replacement Policies 

This case study focuses on providing the refractory maintenance department and operation 

department in a particular steel making company with a maintenance policy that guaranties 

and outlines the economical decision bases for replacement and repair practice.  It covers the 

role of LCC analysis in developing an optimum maintenance policy for an electric arc 

furnace (EAF) in terms of establishing decision making support quantitative model utilizing 

LCC data to help asset management: 

1. Select the appropriate refectory lining material suppliers based on performance and 

economical lining life, and 

2. Determine the optimal lining replacement cycle and repair intervals and/or limits  

3.1 EAF’s lining as a critical asset component 

EAFs are the most critical assets to maintain the production process in a steel making 

plant. The main activities applied onto the EAFs are replacement and repair of linings in its 

main components, which impact on the process availability. Fig. 1 shows a schematic 

illustration of a 90 ton/heat EAF considered in this case study which is composed of three 

main components of roof, sidewall and hearth (Gadpayle and Baxi 2014). The roof can be 

replaced by new standby one with relatively no impact or loss of production. The repair and 

replacement of the sidewall and hearth are done simultaneously and have direct effect on 

EAF productivity and refractory lining management and therefore they are considered 

together in the decision support model development.  

The lining within each component is divided into permanent lining and working lining. 

Working lining is the layer in contact with molten metal and permanent lining is the layer 

between working lining and the metal structure of the EAF as shown in Fig. 1.  The most 

important element of EAFs with respect to its operation is its working lining. It is the 

sidewall working lining’s life and its replacement that determines the campaign time and the 

furnace availability. However, both sidewall and hearth are interrelated in terms of the lining 

layers which are in direct contact with the molten metal. The maintenance policy for working 

lining, i.e. replacement and/or repair to a large extent impacts on the availability and 

productivity of the process, resulting in a great effect on the unit cost of liquid steel produced.    

 

 
(Figure 1  is a bout here) 

 

Repair of simple erosion in localized spots of the working lining can be done between 

heats during operation using gunning and fettling on sidewall and/or ramming for the hearth 

while the EAF is hot; this is called hot repair. Repair can also be done after stopping and 

cooling the EAF by replacing ramming or bricks of damaged areas due to excessive localized 

erosion; this is called cold repair. The repair/replacement action to be taken on EAFs involves 

decision making in cyclic manner as illustrated by a tree diagram as shown in Fig. 2. It is 

clear from the tree diagram that at any stage (at the end of any heat) of production, there is a 
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decision point where one out of five alternatives is selected. Although due to safety 

inspection is required after tapping each heat, decisions that are based on personal judgment 

will not optimize the practice in the absence of a decision support model to determine optimal 

criteria.        

 
 

    (Figure 2  is a bout here) 

 

The service life of the working lining is dependent on operation conditions and repair 

practice. The amount and quality of material used and the time required to do hot repair are 

the main factors in considering hot repair cost. Cold repair is usually resorted to when 

deterioration or damage cannot be handled by hot repair. It is time consuming because it 

requires cooling the EAF down which results in a great loss of EAF's availability. The time 

required for cooling EAF and the time required for repairing are the main factors in 

considering cold repair cost. Hence it would be more appealing to enhance the quality of 

lining to withstand the working condition for longer replacement intervals.     

Two types of lining replacement exist from the procedure shown in Fig. 2. One is 

replacement of permanent lining and the other is replacement of working lining. Permanent 

lining replacement takes place after a fixed time period, denoted as, tp. tp is adopted as 5000 

~ 6000 heats in the current policy in the case study as per designer’s recommendation. 

Replacement of working lining takes place more frequently and it has direct impact on 

operation. The time period between two working lining replacement actions is denoted as tw. 

In practice, it may take 2 to 3 or more years before tp reaches 5000 heats, for example, but 

working lining replacement may take place from 3 to 9 times in one year depending on 

demand for production, operation conditions and raw material quality. Therefore, tw is more 

relevant than tp for determining maintenance optimization criteria and the effect of tp on 

EAF's refractory cost is relatively small. 

According to information obtained from refractory lining suppliers and benchmarking 

done by the case study company, the actual service life and the mechanism of replacement 

and repair of EAF working lining is different from one steel plant to another depending on 

environment, raw material and operational conditions. The range of variation of actual tw 

from one steel plant to another is in the vicinity of 140 to 500 heats.  

Comparatively, tp is longer than tw. Permanent lining replacement is at a fixed time period 

and based on designer recommendation.  As a result, it has relatively little or no effect on the 

economics of EAF lining maintenance and is considered irrelevant to optimal maintenance 

policy development for EAF lining. Working lining replacement is the most relevant aspect 

because it is directly related to the overall cost of replacement and repair, and costs and/or 

losses due to stoppage of the EAF for repair. Consequently an assessment of working lining 

replacement cost in terms of lining material and the costs and/or losses due to stoppage of the 

EAF for replacement is required for constructing the LCC model. The costs or losses that 

Figure 2  Description of the decisions involved in replacement and repair procedure 
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result from the stoppage of the EAF due to repair or replacement are included in the cost 

breakdown structure as a cost element called stoppage cost.      

The maintenance policies concerned in this case study include hot repair, cold repair and 

replacement of working lining. Cold repair is considered as a partial replacement where the 

EAF has to be cooled down. Hence it can be concluded that hot and cold repair are as 

relevant aspects as working lining replacement because they have direct impact on LCC 

which involves the overall cost of replacement and repair, and stoppage cost. Consequently 

the hot and cold repair costs in terms of materials used and stoppages should be taken into 

account in the LCC structure. Furthermore the two types of repair costs need to be considered 

separately as hot repair is applied as required and hence does not require application decision 

whereas cold repair requires an application limit as a decision variable in the model and 

which has to be estimated according to the decision criteria.    

In summary, there is a need to develop cost-effective criteria for determining the optimal 

maintenance policy based on LCC and each plant has to develop its own convenient 

replacement and/or repair policy.      

 

3.2 Decision models and LCC criteria    

The aim of this case study is to demonstrate and establish the modeling procedure using 

LCC to set up a maintenance policy that economically control the replacement and repair 

practice of refractory working lining in EAFs. The main decisions involved in modeling an 

economical maintenance policy are:  

1) Minimizing the LCC per unit production in treating of replacement and repair, so as to 

obtain the optimum life of EAF's working lining (economical life); 

2) Determining the cold repair economical limit in terms of cost and life;  

As a result, it involves answering the following questions in this case study:  

1) Which lining type (supplier) is better?    

2) When will lining be replaced in a cyclical manner?  

3) At what sequence is hot repair required relative to lining life? 

4) Is cold repair used before replacement and how to determine the repair limit for use?   

    The bases for making these decisions are lining life in heats and LCC. It is intended to set 

up a maintenance policy to meet the economical targets. That is to reduce LCC while 

increasing productivity and maintaining the required quality. As a result, those economical 

targets should be achieved through obtaining an optimum replacement model and a repair 

limit model.            

  

3.3 Decision models development and integration     

3.3.1 Essential assumptions 

    The relevant assumptions used in this case study are shown below: 

a. Since working lining replacement occurs 3 to 9 times in a year, the unit price of 

material is assumed to be constant over the replacement period and the unit price may 
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be updated yearly.  Similarly, no cash discounting shall be resorted to.    

b. After new working lining is installed, the lining cost is assumed to be equal to the new 

working lining cost at zero life and equal to zero at the optimum life, meaning, zero 

salvage value of lining at replacement so that the depreciation cost would be the full 

replacement cost.     

c. Operating cost will not be considered in the cost model structure and assuming that it 

does not change with the age of the lining.     

d. Replacement, hot or cold repair duration is assumed as a time period of stoppage of 

EAF; “no operation” status.        

e. All “no operation” time periods incurred for hot or cold repair or replacement are 

counted in calculation of stoppage cost.    

f. The cost of second hand bricks or materials used in cold repair is assumed to be zero. 

g. Cold repair limit is assumed to be evaluated on the basis of the working lining value 

(remaining age value) at any stage of production.  

h. The remaining age value is evaluated by linear regression using the statistical cycle 

length data between two replacement actions.              

 

3.3.2 Models involved and data for modeling 

The required models involve quantitative replacement modeling and repair limit prediction 

modeling. Models are developed on the basis of EAF past data that includes the deterioration 

rate and the constant random failure rate.  

The optimum replacement model and repair limit model can be obtained by statistical 

analysis and modeling of the EAF past data for determining the optimum lining life. The data 

obtained for analysis includes cost, operation and refractory lining material data of three 

different suppliers’ lining material types for the latest 5 years of operation. Data on working 

lining replacement and repair for each supplier material type was collected for each heat and 

then the data was grouped in a time period of every 10 heats for analysis. Then, the entire 

cost elements that make up the LCC are determined; which are the costs of operation, repair, 

stoppage, depreciation, etc. The average LCC per period can be determined. That is the sum 

of the depreciation cost, and operation and repair costs. The depreciation cost per period 

keeps decreasing while the operation and repair costs are increasing in usage time of EAF 

lining. Therefore, the average LCC per period will decrease from commissioning to a 

minimum level with increase of usage time due to decreasing of average depreciation cost per 

period. After that, the average LCC per period will start to go up when the increase in 

average operation and repair costs per period exceeds the decrease in average depreciation 

cost per period. This minimum level of average LCC per period represents the criterion for 

determining the optimum replacement point and the time span from the start point of 

commission of a new working lining to this optimum replacement point represents the 

“optimum replacement cycle length”. 
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The repair limit is related to determining the remaining age value of the lining. Since the 

optimum lining life is maintained statistically, the remaining age at any service stage can be 

evaluated by linear approximation as given in Equation (1) with assumption that the final age 

value (FAV) is equal to zero.   

                                                    Lv =  
OH

Hi)-(OHCw ×
                                                   (1) 

where, Lv is the remaining age value to be determined, OH is the optimum lining life which 

is the statistical average life, Hi is the service life of the lining, He is the expected remaining 

life of the lining (He = OH – Hi), Cw represents the initial age value which is equal to the 

working lining cost.   

3.3.3 Integrating models and decision criteria in practice 

The criteria may be divided into procurement and operational decision criteria. The 

procurement decision criterion is related to the alternatives in terms of types of lining 

material (suppliers), and the decision criterion variable is the minimum LCC per unit 

production, denoted for this case as average LCC per heat. The alternative with minimum 

average LCC per heat is to be selected.       

The operational decision criteria are related to the alternative repair routes as shown in Fig. 

3, which represent the integration of models within the overall operational procedure with all 

decision making events indicated.   

                                                       

(Figure 3  is a bout here) 
 

3.3.4 Cost structure breakdown and cost elements evaluation bases for modeling     

As decision criteria are based on cost data, various types of costs involved in lining repair 

and replacement must be outlined. These costs are structurally related as shown in Fig. 4. It 

should be noticed that some are not used because they either have no impact on the 

replacement and repair practice or do not change with respect to time or replacement and 

repair events. The main cost elements that have impact on decision regarding replacement or 

repair are working lining cost, cold repair and hot repair cost and stoppage cost as shown in 

Fig. 4.    

 
 

(Figure 4  is a bout here) 

 

3.3.4.1 Bases for material cost and stoppage cost evaluation     

a. Material cost  

The material cost is made up of the cost of various components which may be brick or 

mixes and/or binding material for the lining or the various used components of the repair 

material. The total material cost (Cm) is calculated by   

                                             Cm = ∑
=

×
n

1i
(i)(i) )Uc(Uw                                                          (2) 
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where, Uw(i) is the total weight of material component i and Uc(i) is the unit cost of the 

component i (cost per unit weight).    

b. Stoppage cost 

In a general sense of production, stoppage time is time loss that could have been utilized 

for production. The stoppage cost is calculated by considering the following two aspects: One 

is the loss of operation time or "no operation time" resulting in an ongoing payment of the 

fixed cost and the second is “loss of products" that could have been produced in the stoppage 

time and then sold and therefore a possible result of lost benefit. Therefore, the stoppage cost, 

Cs, is defined as Cs = NOC + LBNP, where NOC represents the "no operation cost" which is 

mainly due to contribution of the ongoing fixed cost and LBNP represents the "lost benefit 

due to no production" because of “loss of products”.  

In general, the production benefit during one lining life is calculated by the following:  

                   Ppro × AD × LH × ps − Trepair/replace × Ppro × ps − Crepair/replace − Others                (3)   

where Ppro is average productivity (tons/heat), AD is average equipment availability in normal 

production, LH is lining life evaluated in number of heats, ps is sale price of the product in 

unit of dollars/ton, Trepair/replace is the time used for repair and replacement in one lining life 

(Trepair/replace is converted into number of heats in the calculation). In this equation, Trepair/replace 

× Ppro × ps is equivalent to a cost and named as lost production cost; Crepair/replace includes 

lining material cost utilized and cost paid for man-hours used for repair and replacement 

actions; and others are those costs associated with necessary facilities and production support.  

For the EAF refractory lining case, the replacement of working lining takes place 3 to 9 

times during one year and therefore replacement and repair decisions are more related to cost 

figures during the year for which the production program is determined.       

The value of the ongoing fixed unit cost (NOCu) is estimated based on the following:  

                                 NOCu = CDep-u + CIns-u + CAdm-u  + CLab-u                                            (4) 

where, CDep-u, CIns-u, CAdm-u and CLab-u are depreciation cost, insurance cost, administrative 

cost and labor cost, respectively. Each of them represents unit cost where the unit time refers 

to one hour, day or month; or each of them refers to the cost incurred per one heat, 

respectively.  

The “lost benefit due to no production”, LBNP, is obtained by   

                                          LBNP = Trepair/replace × Ppro × ps                                                 (5) 

where the meaning of each term is the same as in Eq. (3). 

      As a result, the stoppage cost is evaluated by   

                                          Cs = Trepair/replace × (NOCu + Ppro × ps ).                                         (6) 

 

3.3.4.2 Model cost elements evaluation     

Working lining replacement cost (Cw) is broken down into five basic elements, and each 

of Cold repair cost (Cc) or Hot repair cost (Ch) also includes five basic cost elements as 

shown in Fig. 4. The material cost evaluation for working lining replacement cost and Cold 

repair cost is shown in Table 1. Hot repair, however, is defined in terms of gunning and 
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fettling and hence Hot repair material cost is composed of gunning cost and fettling cost 

(including cost of material used), i.e. Chm = Cf + Cg where Chm is Hot repair material cost, 

and Cf and Cg represent the cost of gunning and the cost of fettling, respectively.      

 

3.4 Model formulation       

3.4.1 The optimum replacement cycle model formulation 

The formulation of replacement is tabulated as shown in Table 1. For simplification, the 

formulation in Table 1 is only shown in terms of the main variables that give their logical 

relations with the operation decision criteria. Here, the operation decision criterion is to find 

the optimum cycle length, OH(t).     

OH(t) is evaluated on the base of the minimum average LCC per heat (Cta) determined 

within the replacement cycle and based on the collected statistical data in each cycle. In 

utilizing the developed replacement cycle model, after each heat production the operator 

needs to check whether the optimum replacement cycle length, OH(t) determined by the 

model is reached in order to avoid doing any further repair beyond that optimum replacement 

cycle length point and replace the working lining. For the period at which replacement is 

decided to be undertaken, the hot repair cost per period (Chp) is determined as the maximum 

hot repair cost per period and denoted as Chpmax.          

Using statistical analysis, the replacement cycles for each supplier’s material type are 

assessed. The procedure for obtaining the optimum replacement cycle, OH(t) for each 

supplier’s material type is shown by the flow chart in Fig. 5. In the flow chart, Cha, Cra, Cca, 

Cwa and Cta are average value per heat of hot repair cost, replacement cost, cold repair cost, 

work lining cost and LCC, respectively; Cr is repair cost; Gp is number of gunning per period 

and Chs represents hot repair service cost. The rest terms shown in Fig. 5 have been defined 

in Table 1, 2 and 3.            

The average values of model variables and decision criteria are assessed based on average 

values per material type as shown by the chart in Fig. 6. For each supplier’s material type, a 

representative average cycle (jav) is determined, parameters are plotted and decision criteria 

are determined based on the following:       

• Determining and adopting the optimum life per material type as OH(jav) by comparing 

the LCC per period (i+1) to the previous period (i) for determining the optimum 

cycle length when Cta
( )i+1
≥≥≥≥  Cta ( )i  as illustrated in Table 2.   

• Adopting the optimum average LCC per heat as the minimum criterion, Ctamin(jav, t);        

• Identifying and adopting the maximum hot repair per period as Chpmax(jav, t); and    

• Identifying and adopting the maximum gunning per period as Gpmax(jav, t).      

    From Fig. 5, all lining material types are compared and the best material type with the 

minimum average LCC per heat is selected.   

A spreadsheet programing is developed of the formulated model which can be used to enter 

data directly from the start of utilization of the working lining while calculating the optimum 

life cycle length OH after each heat production. 
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(Table 1  is a bout here) 
 
 
 

   (Figure 5  is a bout here) 
 

 

3.4.2 The repair limit model formulation 

    The repair limit model is developed to help decide whether a cold repair is worthwhile 

based on the repair limit criterion. The procedure is dependent on the information from the 

optimum replacement model. The input variables for the model are composed of the output 

variables of the optimum replacement cycle model and the service life variable. The 

procedure involved in the repair limit model is based on defining the remaining age value and 

setting the cold repair limit in terms of remaining age value and service life. The main 

variables involved in the repair limit model are summarized with their logical relation to 

operation decisions as given in Table 2 and Table 3.  Again, the repair limit can be checked 

after each heat production if the spreadsheet program is used.  

 
(Table 2  is a bout here) 

 
(Table 3  is a bout here) 

 

3.5 Model results analysis and implication 

3.5.1 Model results 

    By entering the required historical data, e.g., operation and maintenance data of each of the 

three lining types from the three different suppliers for a period of analysis of 5 years into the 

developed model, solutions are obtained for every working lining replacement of all 

suppliers’ lining material types for the 5 years period. An average replacement cycle is 

obtained from the solutions for each supplier’s lining material type and denoted as the 

average value for each supplier’s lining material. These average solutions for the three 

different suppliers’ lining materials provided basis for comparison and a view on the 

economics of repair and replacement for decision making based on the LCC per heat, repair 

cost per heat and the gunning consumption per period. They also provided a view on the 

impact of using cold repair and/or the change in the hot repair frequency and amount used in 

terms of gunning and fettling on the optimum replacement cycle length. For the purpose of 

this paper, it is not possible to present all solutions but as a sample solution, Figs. 6 (a) and 6 

(b) show the results from analysis that determined the optimum replacement cycle length and 

frequency of hot repairs for one supplier lining material. Fig. 6 (a) shows optimization with 

cold repair done on the lining while Fig. 6 (b) shows the optimization without using cold 

repair. In the two figures, Cha, Cra, Cca, Cwa and Cta are average values per heat of hot 

repair cost, replacement cost, cold repair cost, work lining cost and LCC, respectively.  
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 (Figure 6  is a bout here) 

 
3.5.2 Model analysis and implication 

 

   The sensitivity analysis provided by the model as shown in Table 4, is based on generated 

values from historical data considering the main decision variables and their impacts on the 

overall benefit of the organization. 

 

(Table 4  is a bout here) 

 

 

    From this sensitivity analysis in Table 4, it can be clearly seen that the most important 

parameter is related to the decision of purchasing the most economical type of material to 

use. As shown in Table 4, the model managed to rank the three types of refractory materials 

for purchasing purposes in their order of viability as B, A and C. It also managed to provide 

the tool for the operational control of the replacement cycle in the presence and the absence 

of a cold repair requirement. The illustrative 12 life cycle samples assessments indicate the 

losses incurred as a result of operating with the refractory lining beyond its optimum 

replacement point in each case. Sample 8 is proven to be the best which is using material type 

B, with no cold repair used and with an average hot repair per interval that costs $2226.25. 

The use of hot repair per interval seems to be higher when using material type A, e.g. in 

sample 4 which is the best for material type A, the hot repair cost per interval is $2358.75. 

Increasing the hot repair for material type A to $2762.70 helped extending the optimum life 

of the lining to 370 heats but increased the optimum LCC per ton of liquid steel produced. In 

case of material type C, increasing the hot repair per interval did not help to increase the life 

of the lining or reduce the optimum LCC per ton of liquid steel produced.  

    The hot repair interval for repairing the defects can be modeled by a 3-parameter Weibull 

distribution given by  

                                                               F(t) = 1 – exp[1 – (1 + λ t 
β)α ]                                  (7)  

with α, β of shape parameters and λ of scale parameter where F(t) is cumulative distribution 

function of the hot repair interval, t (Zhang et al., 2013).  In this case study, we got the model 

parameter estimates with α = 3.259, β = 1.387 and λ = 0.00039. The model and other 2- or 3-

parameter Weibull models could be used further to develop the relation between deterioration 

rate and repair sequence.  

    The generated values for the application of the decision variables are summarized in Table 

5 for each supplier’s material type.                                                  

 

(Table 5  is a bout here) 
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The implication of using the model outputs in decision making is to determine the 

optimum policy results in cost reduction for the company. The evidence can be extracted 

from Table 5 as follows:    

• An annual saving of 10% to 15% in the refractory cost with comparing Supplier-A to 

Supplier-C (about $1,700,000) is expected to achieve when managerial decision is made 

for material type selection based on the model output.      

• An annual saving of 2% to 6% in refractory cost is expected to achieve when operational 

decisions are based on the model output.            

 

4. Conclusion, Recommendation and Further Research    
 

     LCC is a critical and essential measure used in decision making for maintenance 

management. In this paper, an approach is developed for fitting the LCC analysis procedure 

into maintenance policies development based on a case study. This approach to the 

maintenance policies development based on LCC analysis is believed to be a useful guideline 

which is able to be adapted to other systems in industry. The provided case study gives 

details of the application of the approach.       

    Through the case study, it is demonstrated that LCC analysis is utilized to develop a 

replacement model in which the procedure for analysis for the determination of the optimum 

policy based on the LCC decision criteria are described. The decision criteria are used as 

bases for decision making regarding the actions of replacement, repair and selection of the 

material suppliers. They can be used for decision making within the direct and support 

functions of the company. Therefore, the developed LCC-based model can serve as a 

decision support system as illustrated in the case study.                              

   The application of the results is carried out in terms of the values determined by the model 

analysis for the decision parameters as given in Table 5. A decision process has been 

developed for using these values together with relations to the management system of the 

company for decision making. The decision making also allows for taking into account the 

advantage of arranging replacement or repair of any furnace in utilization when there is no 

full demand required.  

   The developed model provides an attractive proposal for top management to adopt. The 

spreadsheet program application requires a very simple procedure that would not impose any 

change in the actual operation or managerial practice and can determine the decision criteria 

for replacement or repair directly from the actual data entered for the particular EAF lining in 

use.           

    The recommendation for application includes:   

• Operational recommendation  

1) Replace the lining at the optimum life or as close to it as possible.  

2) Observe gunning amount for every sequence of 10 heats and use it as an indication for 

assessing cold repair economical application limit.    
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3) Cold repair should not be applied if its cost exceeds the limit. If applied, the cost per 

heat at replacement will be higher than what it is at cold repair application.  

4) Even though hot repair should be applied as required, it is better to do it more 

frequently with small amount than less frequently with big amount.  

5) Start to do hot repair approximately after the 20th heat as required.     

6) For lining life less than 100 heats, hot repairs should be applied with a frequency from 

once per every 5 to 4 heats.       

7) For lining life beyond 100 heats, hot repair frequency should not be less than once per 

every 3 heats and it would be increased as required depending on operation condition 

where it may be done at every heat.    

• Managerial  recommendation      

1) When purchasing lining material, the decision on supplier selection should be based on 

the criterion of minimum LCC per unit production (per heat or per ton). The criterion 

relates price to performance for determining the most economical supplier.  

2) The model should be updated in case of any future development, changing condition or 

new suppliers included.      

 

Based on the approach presented and its demonstration through a case study, it is found 

that the research could be extended further to a few other research areas. The research topics 

may include: 

• Correlation analysis between LCC and operation and/or maintenance parameters,  

• The effect of operation parameters on maintenance policy selection and 

• Mathematical modeling of failure rate or probability analysis of the deterioration rate 

of EAF’s refractory lining.         
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Figure 1  A schematic cross-section of an EAF  
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Figure 2   Description of the decisions involved in replacement and repair procedure  
283x157mm (96 x 96 DPI)  
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Figure 3  Operational decision criteria and procedure  
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Figure 4  Cost structure breakdown in modelling  
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Figure 5  Optimum replacement cycle model  
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Figure 6  Determining the optimum number of replacement w/o using cold repair    
152x193mm (96 x 96 DPI)  
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Table 1   Formulation of the optimum replacement model   

 

 

Finalized Input Period Variables 
 

Evaluation  
Variables 

Decision 
Variable 

Decision 
Criterion 

Optimum 
Solution 

1 2  3  4  5=3+4 6 7=6/1  8  9  

Service 
Life or 
Periods 

(heats) 

Replac- 
ement 
Cost 

($) 

Hot 
Repair 
Cost 

($) 

Cold 
Repair 
Cost 

($) 

Repair 
Cost 
hot & 

cold 
($) 

Cumulative 
Total 
Cost 

($) 

Average 
Total 
Cost 

($) 

True 
or 

False 

 

Yes 
or 
No 

( )i  Cw ( )i  Chp ( )i  Ccp ( )i  Crp ( )i  Ct ( )i  Cta( )i  
   Cta

( )i+1
≥≥≥≥ 

         Cta( )i  
…… 

( )i =1 Cwp ( )1  Chp ( )1

=0 

Ccp ( )1

=0 

Crp ( )1

=0 

Ct ( )1 = 

Cw( )1  

Cta( )1 = 

Cw ( )1 /H(1) 

        
False 

         No 
 

 
 
 

( )i =2 

 

 

 

0 

 
 
 

Chp ( )2  

 
 
 

Ccp ( )2  

Crp ( )2 = 

Chp ( )2  

+ 

Ccp ( )2  

Ct ( )2 = 

Ct ( )1  

+ 

Crp ( )2  

 

Cta ( )2 = 

 

Ct ( )2 /H

( )2  

 
 

    False      

 
 

         No 
 
 

.. .. .. .. .. .. .. .. .. 

 
 

( )i  

 

 

 

 

0 

 
 
 

Chp ( )i  

 
 
 

Ccp ( )i  

Crp ( )i = 

Chp ( )i  

+ 

Ccp ( )i  

Ct ( )i = 

Ct ( )i−1  

+ 

Crp ( )i  

 

Cta ( )i = 

 

Ct ( )i /H( )i  

 
 

 False 

 
 

        No 
 
 

.. .. .. .. .. .. .. .. .. 

 
 
 

( )i =k 

 

 

 

0 

 
 
 

Chp ( )k  

 
 
 

Ccp ( )k  

Crp ( )k = 

Chp ( )k  

+ 

Ccp ( )k  

Ct ( )k = 

Ct ( )i−1  

+ 

Crp ( )k  

 

Cta ( )k = 

 

Ct ( )k /H

( )k  

 
 
         
True 

 
 

       Yes 
 
 

          OH(t) = k representing the optimum cycle length to be used for operation decision   
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Table 2   Identifying variables and defining the repair limit 

 

 

 

                Model Indication Variables Operation Life 

Variables 

Model Cost  

Variables 

Decision 

Variable 

Maximum  
gunning per 
 period (ton) 

Maximum  
hot repair cost  

per period  
($)  

Optimum  
cycle 
length 
(heats) 

Gunning  
 per  period 

        (ton) 

Lining  
service 
length 

  (heats) 

Cold  
 repair  
cost  

             ($) 

Replacement  
cost 

       ($) 

Remaining  
Age Value 

        ($) 

Gpmax(t)     Chpmax(t) H(K) Gp(i)  H(i)  Cc(i)  Cw(t)  Lv(i)  

       

           Decision criterion for assessing  cold repair  limit  is       Gp(i) ≥  Gpmax(t)     

           The Remaining Age Value is                                            Lv(i) =  Cw(t) ××××  (H(K) − H(i))/ H(K)  

           The Repair limit is determined by                                    CRL(i) =  Lv(i) − Chpmax(t)  

           or directly by ,                                                                   CRL(i) = Cw(t) ××××  (H(K) − H(i))/ H(K) − Chpmax(t)     

 

 

 

 

 

 

 

 
     Table 3    Setting the decision criteria   

 

 

 

Life 
Remaining Age 

Value 

Cold Repair 

Cost 

Cold Repair 

Limit 
Criterion Decision  

(i) Lv(i) Cc(i) CRL(i) Cc(i) ≥ CRL(i)  
Replace or 
Repair  

(1) Lv(1) Cc(1) = 0 CRL(1) No Repair 

(2) Lv(2) Cc(2) = 0 CRL(2) No Repair 

M M M M M M 

(f) Lv(f) Cc(f) = value CRL(f) Yes Replace 

Cold repair is applied as long as CRL(f) ≥  Cc(f), otherwise, there is no replacement at point (f). 
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Table 4    Sensitivity analysis provided by the model to show advantages and limitations for decisions  

 

 

 

 

 

 

Life Material Replacement Hot repair Hot repair Cold repair Cold repair Optimum Optimum Optimum Actual Actual Actual Loss beyond Average 

cycle type cost cost per cost cost application life LCC per LCC/ton of operation LCC per LCC/ton of opyimum point annual

Sample  interval interval heat liquid steel life heat liquid steel per heat loss

$ $ $ $ heats heats $ $ heats $ $ $ $

1 A 50504 2310.38 73932 28576 140 320 478.163 5.31 400 501.5 5.57 -23.34 -58342.50

2 A 50504 2542.47 81359 28576 150 320 501.372 5.57 330 503.45 5.59 -2.08 -5195.00

3 A 50504 2762.70 102220 28576 140 370 490 5.44 330 498.74 5.54 -8.74 -21850.00

4 A 50504 2358.75 75480 28576 150 320 483 5.37 330 483.83 5.38 -0.83 -2075.00

Average A 50504 2493.57 83247.75 28576 145 333 488.1338 5.42 348 496.88 5.52 -8.75 -21865.62

5 B 54840 2476.00 64376 …. …. 260 458.523 5.09 240 462.88 5.14 -4.36 -10892.50

6 B 54840 2344.96 56279 …. …. 240 462.996 5.14 240 462.996 5.14 0.00 0.00

7 B 54840 2292.00 68760 …. …. 300 412 4.58 310 416 4.62 -4.00 -10000.00

8 B 54840 2226.25 71240 …. …. 320 394.9 4.39 320 394.9 4.39 0.00 0.00

Average B 54840 2334.80 65163.75 …. …. 280 432.1048 4.80 278 434.194 4.82 -2.09 -5223.12

9 C 47691 1860.60 27909 …. …. 150 504 5.60 120 541.97 6.02 -37.97 -94925.00

10 C 47691 4143.07 58003 28576 140 140 463 5.14 270 476.71 5.30 -13.71 -34275.00

11 C 47691 4607.75 55293 28576 120 120 572 6.36 210 575.5 6.39 -3.50 -8750.00

12 C 47691 1945.45 38909 …. …. 200 433 4.81 170 442.8 4.92 -9.80 -24500.00

Average C 47691 3139.22 45028.5 …. …. 153 493 5.48 192 509.245 5.66 -16.25 -40612.50
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Table 5    Output values of the model for decision criteria and optimum status  

 

 

 

Parameter Unit Material Suppliers 

Supplier-A Supplier-B Supplier-C 

Replacement Cost $ 175,490 161,614 152,613 

Cold Repair Cost $ 91,446 91,446 91,446 

Maximum Gunning Ton 5.20 6.0 5.50 

Hot Repair Period Length Heats 10 10 10 

Max. Hot Repair Cost per Period $ 13,682 14,007 15,907 

Optim. EAF Working Lining Life Heats 278 319 229 

Cold Repair Limit Heats 120-to-130 110-to-120 80-to-90 

Cold Repair Actual Application --- Not Feasible Feasible Feasible 

Total Cost per Heat (Cta) $ 1,426 1,544 1,652 

Total Cost per Ton of Liquid Steel $ 15.6 16.8 16.8 

Expense in Terms of Use --- Cheapest Moderate Most Expensive 

Priority for Use --- First Second Third 

Optimum Life Achievement --- Always 
achieved, or 
over passed 

Rarely 
achieved but 
close to 

Never achieved 
and much less 

Priority of Safety Base on Optimum 
Life Achievement 

--- Highly safe 
since it 
overpass 

Moderately 
safe since it 
is close to 

Low safety 
since it never 

reaches 

Total Annual Cost based on use of 
each suppliers material alone 

$ 5,436,058 5,887,760 6,298,710 

Matrix for Annual Savings or Losses based on Optimum Life Criteria of one EAF 

Material Supplier Supplier-A Supplier-B Supplier-C 

Supplier-A -------- -$451,703 -$862,653 

Supplier-B $862,653 -------- -$410,950 

Supplier-C $862,653 $410,950 -------- 

Result by Comparing Actual life to 
Optimum Life 

High Savings 
by not over 
passing 

optimum life 

Almost zero 
losses by being 

close to achieving 
optimum life 

High losses 
because optimum 
life is usually not 

achieved 
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