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Abstract 

Brine management of coal seam gas (CSG) produced water is a significant concern for the 

sustainable production of CSG in Australia. Membrane distillation (MD) has shown the potential to 

further reduce the volume of CSG reverse osmosis (RO) brine. However, despite its potential, the lack 



2 
 

of appropriate MD membranes limits its industrial use. Therefore, this study was aimed on the 

fabrication of a robust membrane for the treatment of real RO brine from CSG produced water via an 

air gap MD (AGMD) process. Here, graphene/polyvinylidene fluoride (G/PVDF) membranes at 

various graphene loadings (0.1 to 2.0 wt% w.r.t. to PVDF) were prepared through a phase inversion 

method. Surface characterization revealed that all G/PVDF membranes exhibited favorable membrane 

properties having high porosity (>78%), suitable mean pore size (<0.11µm), and high liquid entry 

pressure (>3.66 bar). AGMD test results (feed inlet: 60.0 ± 1.5oC; coolant inlet: 20.0 ± 1.5 ºC) for 24 

h operation indicated a high water vapor flux and salt rejection of 20.5 L/m2h and 99.99%, 

respectively for the optimal graphene loading of 0.5 wt%, i.e., G/PVDF-0.5 membrane (compared to 

11.6 L/m2h and 99.99% for neat PVDF membrane). Long-term AGMD operation of 10 days further 

revealed the robustness of G/PVDF membrane with superior performance compared to commercial 

PVDF membrane (85.3% final normalized flux/99.99% salt rejection against 51.4%/99.95% for 

commercial membrane). Incorporation of graphene has resulted to improved wetting resistance and 

more robust membrane that has the potential for the treatment of RO brine from CSG produced water 

via AGMD. 

 

Keywords: Graphene/PVDF membrane, CSG produced water, RO brine, air gap membrane 

distillation, phase inversion 

 

1. Introduction 

Coal seam gas (CSG), also known as coal seam methane or coal bed methane, is a natural gas 

located in the coal seams underground (300 ~ 1,000 m). CSG exploration has recently emerged as a 

major industry in Australia [1]. The CSG industry is developing quickly responding to the rapid 

growth of the export business. However, CSG extraction also involves the co-production of a large 

volume of water, termed as produced water, which is basically saline groundwater.  In Australia, CSG 

produced water is mainly composed of sodium, bicarbonate and chloride [1,2]. Due to potential 

impacts of directly discharging CSG produced water on local ecological systems, there is a strong 

need to develop sustainable treatment process for its environmental safety [1,3,4,5]. CSG produced 
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water requires advanced technologies for treatment such as RO because the salt removal from CSG 

produced water is a crucial point [4,6]. Treating CSG produced water with RO leads to the production 

of more concentrated CSG produced water called brine [1]. The management of this CSG RO brine is 

a significant concern for the sustainable production of CSG [3]. As policies on the storage and 

disposal of CSG produced water become more stringent, it is imperative to further reduce the volume 

of CSG RO brine or to recover some minerals from it as saleable products.  One emerging technology 

that could be utilized to further concentrate the RO brine near saturation is membrane distillation 

(MD).   

 In MD, only water vapor is allowed to pass through a barrier, usually a hydrophobic porous 

membrane and is condensed in the permeate side as pure water. The driving force is the partial vapor 

pressure difference resulting from the thermal gradient between the hot feed and cool permeate 

streams [7,8]. Theoretically, it can reject 100% of the salts and non-volatile components at the feed. 

One advantage of MD is that it can work at low heating temperature, thus it is possible to utilize solar 

energy, low grade or waste heat to maintain lower energy consumptions than the conventional 

distillation systems. Recent studies reported the feasibility of treating many feed water types using 

MD such as salty water, impaired water resources, and CSG RO brine [3,9]. Duong et al. [3] has 

successfully demonstrated a pilot-scale study of a spiral-wound air gap MD to treat CSG RO brine 

with 80% water recovery. However, MD has still not been fully implemented in industrial level, 

wherein the lack of an efficient and specially-designed membrane is one of the major reasons. Though 

the commonly used microfiltration (MF) membranes can be utilized, they still have wetting issues and 

are of sub-optimal performance.  Hence, there is a need to develop new, robust membranes specific 

for MD process. Ideal MD membranes possess high hydrophobicity, high porosity, adequate pore size 

and narrow pore size distribution, and good chemical stability.  

Phase inversion is a commonly-used technique in fabricating membranes by exposing a 

homogeneous polymer solution into a non-solvent bath, inverting a single phase into a two-phase 

system. However, current phase inverted membranes still suffers from low hydrophobicity and low 

porosity [10], which consequently affect the membrane permeability and rejection. Several membrane 

design and surface modification techniques have been carried out to enhance the membrane properties 
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such as plasma treatment [11], addition of pore additives (e.g. polyethylene glycol) [12] and 

incorporation of inorganic nanoparticles such as clay [13], calcium carbonate [14], CuO [15], carbon 

nanotube [16,17] and activated carbon [18]. The addition of nanoparticles is known to affect the 

morphology, porosity, pore size and mechanical properties of the membrane, and provides additional 

diffusion pathway. The various modification techniques have led to improvements in MD 

performance to some extent, but the membrane still suffers from wetting issues and not so high 

permeate flux. In addition, most of the reported studies only utilized either direct contact MD (DCMD) 

or vacuum MD (VMD) configurations, and limited themselves on only testing NaCl solution at 

various concentrations as feed.  

In the present study, an air gap MD (AGMD) was employed to treat RO brine from CSG 

produced water utilizing a composite phase inverted flat-sheet membrane incorporated with graphene 

nanoparticles. AGMD is better than DCMD process in terms of temperature polarization due to a high 

heat transfer resistance, which leads to increasing operation duration with stable flux and rejection 

performances. Graphene, an allotrope of carbon composed of sp2 bonded atoms arranged in hexagonal 

lattice, possesses many interesting properties for MD application such as high hydrophobicity, ion 

selectivity and water vapor transport, good thermal stability and mechanical properties [19,20]. 

Graphene has attracted considerable attention in recent years for water treatment and purification 

processes as it improves the membrane properties and adds functionalities such as anti-fouling 

properties [21,22]. The possibility of cheaper synthesis of large area of graphene as recently reported 

makes it more interesting for modern use [23]. Graphene shows great potential as filler material and is 

ought to be explored. To the best of our knowledge, this research is the first attempt to fabricate phase 

inversion composite membranes containing graphene as additives for treatment of RO brine from 

CSG produced water by AGMD process. The addition of a small amount of graphene in the 

membrane was expected to improve the membrane hydrophobicity, liquid entry pressure (LEP), 

porosity, and consequently better flux and salt rejection.  
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2. Experimental methods 

2.1 Material 

Polyvinylidene fluoride (PVDF, Kynar® 761, Mw = 441,000 g/mol) was purchased from 

Arkema Inc., Australia, and N,N-dimethylformamide (DMF) and LiCl were purchased from Sigma-

Aldrich. The graphene used in the present study was xGNP-C500-grade materials (XG-Science, USA). 

It has a nominal diameter of  1 ~ 2 microns, average thickness of 2 nm, and average surface area of 

500 m2/g. Ethanol was purchased from Ajax Finechem Pty Ltd for measuring porosity. For the 

AGMD performances, sodium chloride (NaCl, Chem-supply) and deionized (DI) water from a 

Millipore Milli-Q water system were used. All chemicals were used as received. In addition, a 

commercial PVDF membrane (herein referred to as C-PVDF) (Durapore®-GVHP, pore size of 0.22 

µm) was purchased from Merck Millipore for comparison. 

 

2.2 Dope preparation 

A neat 10 wt% PVDF solution was prepared by dissolving a certain amount of PVDF powder 

in DMF solvent with 3 wt% LiCl and overnight stirring (200 rpm) at 80°C. To prepare the 

graphene/PVDF (G/PVDF) solutions, graphene powders were first dispersed in a certain amount of 

DMF for at least 2 h by bath sonication (Soniclean). After sonication, the G/DMF solution was mixed 

with 10 wt% PVDF powder and 3 wt% LiCl by stirring (200 rpm) at 80°C for 24 hours. Afterwards, 

the neat PVDF and G/PVDF solutions were further stirred (150 rpm) at 30°C for at least 72 hours. 

The solution composition used in this study is listed in Table 1. Hereinafter, G/PVDF-x refers to 

graphene/PVDF membrane with graphene concentration of x wt%. For instance, G/PVDF-0.1 

indicates composite membrane with 0.1 wt% graphene content. 

 

(Table 1) 

 

2.3 Fabrication of G/PVDF flat-sheet membrane by phase inversion (casting) 

A certain amount of neat PVDF or G/PVDF solution was poured over a glass plate and was 

gently lathered by a casting knife at a gap of 300 µm. Then, the lathered film solution was 



6 
 

immediately immersed into a coagulation bath (DI water) for 1 h. After completing coagulation, the 

membrane was transferred and immersed into another coagulation bath (DI water) for 24 h to remove 

the residual solvents, and afterwards, it was rinsed with DI water, followed by drying in the air at 

room temperature until a dry flat-sheet membrane was obtained.   

 

2.4 Characterization and measurements 

2.4.1. Morphology 

The surface and cross-sectional morphologies of the fabricated membranes were observed by 

scanning electron microscopy (SEM, Zeiss Supra 55VP, Carl Zeiss AG) and energy dispersive x-ray 

spectroscopy (EDX). Samples taken from each membrane were first lightly coated with Au/Pd. The 

SEM imaging was carried out at an accelerating voltage of 10 kV, and multiple image magnifications 

at various areas were taken for each sample.  

 

2.4.2. Contact angle  

The membrane contact angle (CA) was measured by the sessile drop method using an optical 

subsystem (Theta Lite 100) integrated with an image-processing software. Sample membranes were 

placed on a platform, and droplets of 5-8 µL were dropped carefully on the membrane surface. A real-

time camera captured the image of the droplet, and the CA was estimated by a computer. At least 5 

measurements were taken for each membrane sample and the average value is reported here. 

 

2.4.3. Surface roughness  

Membrane surface roughness was analyzed by atomic force microscopy (AFM) imaging. 

AFM was carried out under ambient conditions in non-contact mode with silicon probes (Dimension 

3100 Scanning Probe Microscope, Bruker). All membranes were scanned three times, and each time 

the scan position was randomly selected [24,25]. 

 

2.4.4. Porosity  
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The membrane porosity, defined as the volume of pores divided by the total volume of the 

membrane, was measured via a gravimetric method [7]. Membrane samples with equal sizes of 2 cm 

× 2 cm were immersed in ethanol (Scharlau). The weight of the samples was measured before and 

after saturation of ethanol, and the membrane porosity was determined by the following equation:  

𝜀 =
(𝑊1−𝑊2)/𝐷𝑒

[(𝑊1−𝑊2)/𝐷𝑒]+𝑊2/𝐷𝑝
                                                                                                                  (1)        

 

2.4.5. Liquid entry pressure  

Liquid entry pressure (LEP) is the minimum pressure required to enable water to penetrate the 

membrane pores. LEP is affected by the membrane hydrophobicity, maximum pore size and pore 

shape, and can be calculated using the Laplace equation [26]. In the present study, the LEP of the 

membrane was obtained using a home-made LEP apparatus as shown schematically in Figure 1. The 

reservoir was first filled with 25 mL distilled water and then a dry membrane sample (effective 

surface area = 7 cm2) was tightly secured in the cell. Nitrogen gas was then supplied through the 

bottom of the water-filled chamber, raising the pressure step wise thereby pushing the water up to the 

membrane sample. The first sign of water bubble on the top of the membrane was regarded as the 

LEP. To reduce the error, triplicate measurements were taken and averaged. 

 

(Figure 1) 

 

2.4.6. Solution viscosity  

Solution viscosity was measured using a rotational rheometer (LVF model, Brookfiled). A 

motor speed was selected and the spindle was allowed to rotate for 3 ~ 5 min until the monitor on the 

dial attained a constant value. Seven measurements per solution were performed and the average and 

standard deviations were reported. 

 

2.4.7. Pore size and pore size distribution  
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The mean pore size of the commercial and fabricated membranes was measured by capillary 

flow porometry (Porolux 1000). All samples were first applied with N2 gas to determine the gas 

permeability. Then the dry samples were wetted by Porefil (a wetting liquid with a low surface 

tension of 16 dynes/cm) and tested under the same condition. The mean pore size of the samples was 

calculated at wet, dry, and half dry conditions. 

 

2.4.8. Tensile property  

The mechanical properties of the different membrane samples were measured using a 

Universal Testing Machine (UTM LS, Lloyd) equipped with a 1 kN load cell. The test was conducted 

using a constant elongation velocity of 5 mm/min under room temperature. 

 

2.4.9. X-ray diffraction 

X-Ray diffraction (XRD) (Siemens D5000) was carried out over Bragg angles ranging from 

10° to 50° (Cu Kα, λ=1.54059Å). 

 

2.5 Evaluation of membrane performance by AGMD  

The commercial and fabricated membranes were tested in a home-made AGMD set-up with 

an effective membrane area of 21 cm2 and a feed channel dimension of 60 mm × 35 mm × 1 mm (L × 

W × H) (Fig. 2). The thickness of the air gap was 3 mm. The coolant plate was made of a stainless 

steel (SUS-316L) to condense the water vapor and produce pure water. The AGMD in a co-current 

flow set-up was carried out with constant inlet temperatures at the feed and the coolant sides of 60.0 ± 

1.5°C and 20.0 ± 1.5°C, respectively. The feed solution was real RO brine from CSG produced water 

(from Gloucester Basin located along the lower north coast of New South Wales, Australia) with 

conductivity and TDS concentration of around 21.8 mS/cm and 14,000 mg/L, respectively [3], and the 

coolant fluid was tap water. Key characteristics of this CSG RO brine are available elsewhere [3]. The 

feed and coolant circulation rates were both maintained at 24 L/h. The inlet and outlet temperatures on 

both feed and coolant sides were measured by thermocouples. The concentration of the feed and 

permeate water was constantly measured with electrical conductivity meters (HQ40d, Hach) 
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throughout the tests. A commercial PVDF flat-sheet membrane (pore size = 0.22 µm, Durapore®-

GVHP, Millipore) was used for comparison. The permeate flux was calculated according to the 

following equation: 

𝑱 (𝑳 𝒎𝟐𝒉⁄ ) =  
∆𝒈

𝑨 ∙𝒕
                             (2) 

where, 𝐽, ∆𝑔, 𝐴 and 𝑡 represent the water permeate flux (L/m2h or LMH), mass of permeate (L), 

effective area of the membrane (m2) and operating duration (h), respectively. The normalized flux was 

calculated according to the following equation [27]: 

𝑱 𝑱𝒐⁄  (%) =  
𝑭𝒍𝒖𝒙𝑬

𝑭𝒍𝒖𝒙𝑰
 × 𝟏𝟎𝟎                             (3) 

where, 𝐹𝑙𝑢𝑥𝐸 and 𝐹𝑙𝑢𝑥𝐼 are the flux at a specific point and the flux of the initial point, respectively. 

The equation used to calculate the rejection was as follows: 

𝑹𝑬 (%) =  
𝑪𝑰− 𝑪𝑭

𝑪𝑰
 × 𝟏𝟎𝟎                             4) 

 

(Figure 2) 

 

3. Results and discussion 

3.1 Effect of graphene loading on membrane characteristics  

3.1.1. Membrane morphology and structure 

Figure 3 shows the representative SEM images of the top and bottom surfaces and cross-

section views of the fabricated membranes. Based from the figure, it can be observed that the 

incorporation of graphene has affected the morphology of the resultant membrane wherein the 

presence of graphene resulted to more dense top surface (Fig. 3b1-g1). However, the bottom surfaces 

showed bigger pore sizes for the graphene-embedded membranes compared to neat PVDF, wherein 

the loading at 0.5 wt% showed uniformly distributed pores (Fig. 3a2-g2). However, at graphene 

loading of >0.5 wt%, the bottom surfaces tend to become much denser with decreasing number of 

pores. Cross-section images of all membranes (Fig. 3a3-g3) reveal typical asymmetric structure, i.e., a 

thin dense top surface with no open pores and a porous sub-layer/bulk morphology. Neat PVDF 

depicted finger-like structure near the top and distributed macro-voids going to the bottom surface. 



10 
 

More elongated finger-like macro-voids were observed for the graphene-loaded membranes up to 0.5 

wt%, wherein the 0.5 wt% graphene loading showed larger and straighter finger-like pores, but at 

higher loading than that, the bulk of the structure tends to be less elongated and turned to sponge-like 

macrovoids. This SEM observation is consistent with the increase in mean pore size and porosity of 

the membrane up to 0.5 wt%, and then slightly decreased at higher loadings (Table 2). The highest 

porosity and pore size was observed for G/PVDF-0.5 membrane at 84.7% and 0.11 µm, respectively. 

The phase inverted membranes also presented higher porosity (78.2 to 84.7%) but at smaller mean 

pore sizes (0.03 to 0.11 µm) compared to C-PVDF membrane (70.3% and 0.22 µm, respectively) [28].   

 

(Figure 3) 

 

Figure 4 shows that casting solution viscosity increased slightly from 420 to 470 cP as 

graphene concentration increased to 0.7 wt%. Thereafter, a significant increase in viscosity was 

observed as the graphene concentration continued to increase to 2 wt%. High casting solution 

viscosity due to a high graphene loading may have retarded the solvent/non-solvent demixing process 

and consequently the phase separation rate leading to sponge-like structure at higher graphene 

loadings [25]. In addition, the likely aggregation of graphene due to their strong hydrophobicity and 

van der Waal’s attraction at higher loading could have also affected the resulting viscosity and 

morphology of the membrane. The van der Waal’s interacted between each graphene nanoparticles 

and the C – C bonds by jointing C dangling bonds of other graphene nanoparticles [29]. Thus, the 

more tendency of graphene to aggregate at higher loadings (0.7 to 2.0 wt%) resulted to the decrease in 

pore sizes. On the other hand, the lower viscosity from 0.1 to 0.5 wt% enables the acceleration of 

water entry to the membranes, which resulted in  fast exchange between the solvent and non-solvent 

[25] leading to more elongated finger-like structure. The thickness of the graphene/PVDF membranes 

(Table 2) also increased with increasing graphene loading (from 82.8 µm for neat PVDF to 98.4 µm 

for 2 wt% graphene/PVDF). This observed thickness increase is  primarily attributed to the increase in 

solution viscosity and the addition of more graphene [30]. 
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(Figure 4) 

 

The presence of graphene in the membrane was examined by EDX and XRD analysis. It is 

expected that graphene addition would increase the membrane carbon content if graphene is well 

dispersed in the membrane. Figure 5(a) shows increasing carbon/fluorine (C/F) ratio with increasing 

graphene loading confirming the successful incorporation of graphene in the composite membrane. 

Visual inspection showed darker color for G/PVDF membranes compared to neat PVDF mainly due 

to the presence of graphene (images not shown). XRD patterns (Fig. 5(b)) also reveal new peak at 2θ 

= 26.7º (0 0 2) [31] for the G/PVDF membranes, which is attributed to the presence of graphene. Both 

neat and G/PVDF membranes showed peaks at 18.5º and 36.3º corresponding to α-crystalline phase (0 

2 0) and at 20.5º indicating β-crystalline phase (2 0 0)/(1 1 0) of PVDF [32].  

 

(Figure 5) 

 

(Table 2) 

 

3.1.2. Membrane contact angle 

The surface contact angle of the fabricated membranes was measured with DI water by a 

sessile drop method. The CA at the top surface increased from 73.8 ± 1.5o, to 78.0 ± 1.6, 80.6 ± 0.6, 

87.2 ± 2.5, 91.7 ± 1.2, 96.5 ± 1.1 and 103.3 ± 2.0o as the concentration of graphene was increased 

from 0 to 0.1, 0.3, 0.5, 0.7, 1.0 and 2.0 wt%, respectively (Table 2). This increase is attributed to the 

presence of hydrophobic graphene in the composite membrane, wherein more graphene is exposed at 

the surface at higher concentration. Checking the surface roughness of the membranes by AFM (Fig. 

6) reveals quite similar mean roughness (23-27 nm) for all membranes, with slight increase at much 

higher graphene loading (1 and 2 wt%), which could be due to some agglomeration at that loading 

range. The G/PVDF-0.5 membrane posted slightly lower Ra but still high CA, which was maybe 

because of the good finger-like structure morphology of the membrane due to the fast exchange 

between the solvent and non-solvent leading to smoother surface [25]. It should be noted that the 
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fabricated phase inverted membranes with graphene have much lower surface roughness (17-28 nm) 

compared with the commercial PVDF membrane (145 nm, AFM image not shown here), which could 

have led to C-PVDF having higher hydrophobicity. 

 

(Figure 6) 

 

3.1.3. Membrane liquid entry pressure 

In MD, liquid water is prevented from penetrating the membrane by the water – membrane 

surface tension and a hydrophobic membrane is usually used. Membrane wetting potential can be 

determined by LEP, which is the minimum pressure for liquid water to penetrate the pores of the 

membrane, usually at least 1.5 bar to prevent membrane wetting. A high LEP value is important for 

long term MD performance. LEP is affected by the hydrophobicity of the material, maximum pore 

size and shape according to the Laplace equation. In the present study, the neat PVDF posted an LEP 

of 2.16 bar, which is very similar with that of C-PVDF (2.13 bar, GVHP membrane) (Table 2). The 

addition of different loadings of graphene in the membrane has resulted to increasing LEP values 

from 3.66 bar for G/PVDF-0.1 to as high as 7.84 bar for G/PVDF-2.0. This increase is attributed to 

the smaller mean pore sizes of the G/PVDF membranes as well as to the increased membrane 

hydrophobicity at higher graphene loading. Moreover, the less porous structure of the bulk and the 

bottom surfaces of loadings >0.5 wt% has also contributed to the higher LEP. The LEPs of the present 

G/PVDF membranes are deemed suitable for MD process. 

  

3.1.4. Membrane tensile properties 

 The tensile properties of the G/PVDF and neat membranes are shown in Table 2. 

Incorporation of increasing graphene concentration resulted to increasing tensile strength (4.1 to 6.0 

MPa compared to 3.5 MPa for neat membrane). This confirms good dispersion of graphene in the 

PVDF membrane that led to good load transfer from PVDF to graphene resulting to enhanced tensile 

strength. In addition, the structure of the membrane itself has also affected the tensile properties. In 

general, a finger-like structure membrane has lower tensile strength than a sponge-like structure 
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membrane [33]. Looking at the SEM images in Fig. 3, G/PVDF-0.7 to G/PVDF-2.0 exhibited sponge-

like structure and together with the added effect of graphene, has resulted to increased tensile strength. 

Neat PVDF also revealed sponge-like structure, but still it was lower in tensile strength compared to 

G/PVDF-0.1 to G/PVDF-0.5 even though the latter membranes have finger-like structure, primarily 

because of the added effect of graphene incorporation that strengthens the composite membranes [21]. 

Interestingly, the elongation at break also correspondingly increased up to a loading of 0.7 wt%, but 

beyond that, it started to decrease but still higher than the neat membrane. This could be due to some 

agglomeration at higher graphene content.  

 

 

3.2 Air gap membrane distillation (AGMD) performance of the fabricated membranes 

3.2.1 Effect of graphene concentration 

The effect of different loadings of graphene onto the phase inverted PVDF membrane to the 

flux and salt rejection performance in AGMD mode was investigated. AGMD tests were carried out 

for 24 h of operation at feed and coolant inlet temperatures of 60 and 20 oC, respectively using RO 

brine from CSG produced water as feed (Fig. 7).  Results indicated increasing flux performance from 

11.6 LMH for neat membrane to 15.3, 18.5 and 20.5 LMH for G/PVDF-0.1, G/PVDF-0.3 and 

G/PVDF-0.5, respectively and then started to decrease beyond 0.5 wt% graphene loading (19.5, 18.2 

and 15.8 LMH for 0.7, 1.0 and 2.0 wt% graphene loading). This increasing trend is attributed to the 

favorable membrane properties at this graphene loading range (0.1 to 0.5 wt%). As presented in Table 

2, though higher hydrophobicity was obtained for loading >0.5 wt%, the pore size and porosity were 

drastically decreased, while the thickness was increased leading to the decrease in permeate flux. The 

loadings from 0.1 wt% to 0.5, having a combination of increasing pore sizes and porosity, and thinner 

thickness, have contributed to the increased flux. It should be noted that the flux is directly 

proportional to the pore size and porosity and inversely proportional to the thickness of the membrane.  

Larger pore size and porosity give more surface area for vapor to pass through thereby increasing the 

mass flux, while thinner thickness provides shorter path for vapor to travel across and has lower mass 

transfer resistance. In addition, the presence of graphene, which has a rapid sorption/desorption 
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capacity, could have allowed the vapor to follow a surface diffusion pattern [34], thereby aiding in the 

increase of vapor flux through the membrane. The high LEP of all the fabricated membranes resulted 

to almost 100% salt rejection with the final permeate conductivity of 3.4 µS/cm or lower. In the 

present study, the optimal graphene loading was found to be 0.5 wt%, i.e., G/PVDF-0.5 membrane 

showing the highest flux of 20.5 LMH and stable salt rejection of nearly 100%. Its finger-like 

structure and straighter pore structure (i.e., lower tortuosity), and its appropriate pore size (0.11 µm), 

highest porosity (85%), high LEP (3.89 bar) and adequate hydrophobicity (87.2o) have all contributed 

to its superior AGMD performance. Clearly, the addition of graphene in the cast PVDF membrane has 

modified the membrane structure and enhanced the membrane properties for MD application.  

 

(Figure 7)  

 

3.2.2 Long-term AGMD tests of the G/PVDF and commercial membranes 

For practical application, the membrane should maintain a stable performance for long term 

operation. In literature, only few studies have conducted long-term MD performance tests of their 

membranes. A suitable membrane should exhibit as high flux as possible but should also be robust 

enough to maintain high and stable salt rejection. In this study, the optimal G/PVDF-0.5 membrane 

was tested for 10 days (240 h) of continuous AGMD operation and was compared with that of a 

commercial PVDF membrane (C-PVDF) with RO brine from CSG produced water as feed.  

Figure 8 shows the normalized flux and salt rejection performance of the two membranes at 

feed and coolant inlet temperatures of 60 and 20oC, respectively. The initial flux of G/PVDF-0.5 and 

commercial membrane was 20.91 LMH and 11.32 LMH, respectively. C-PVDF membrane drastically 

decreased to 80% from its initial flux in the first 24 h and then steadily decreased thereafter until 51.4% 

normalized flux after 10 d of operation. On the other hand, G/PVDF-0.5 membrane exhibited 

excellent stability with almost constant flux up until 6 d of operation, then slowly decreased to 85.3% 

normalized flux at the end of 10 d. This signifies the much superior anti-wetting ability of the 

graphene-loaded membrane compared to C-PVDF. G/PVDF-0.5 also posted very stable and high salt 

rejection of 99.99% for the whole 10 d of operation compared to 99.96% for C-PVDF. It is interesting 
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to note that even though the flux for C-PVDF has drastically decreased in the span of 10 d, its salt 

rejection was still high enough. This means that full wetting was not happening, rather there must be 

some changes in the surface characteristics of the membrane.  

 

(Figure 8) 

 

In order to verify this, the surface of the used membrane was characterized by SEM (Fig. 9). 

The surface and cross-sectional SEM images of the virgin C-PVDF membrane are shown in Figure 

S1. Indeed, C-PVDF top surface was found to have large needle-like scale deposits of salt crystals 

(Fig. 9a and c), which was determined to be mainly gypsum as evidenced by XRD (Fig. S2). This 

explains the drastic decline in flux as the deposits have constricted the surface openings of the 

membrane leading to much smaller pores and decreased porosity, hence the surface area for vapor to 

pass through has also gotten smaller. In addition, the rapid decline in flux is due to rapid growth of 

crystals deposition on the membrane, which led to decreasing membrane permeability [26,35]. On the 

other hand, G/PVDF-0.5 membrane showed clear surface similar with its virgin membrane surface 

without much trace of any deposits (Fig. 9b and d). Hence, more stable flux and salt rejection was 

observed. The more salt deposition on the commercial membrane could be due to the following: 1) the 

much rougher surface of C-PVDF (Ra = 145 nm compared to 17 nm for G/PVDF-0.5) could have 

provided more surface area for crystals to nucleate and deposit, as also observed by other studies 

suggesting that polymeric membrane surface behaves as a support to promote heterogeneous 

nucleation [35,36], and (2) the bigger pore size (0.22 µm) of C-PVDF could have allowed the salt 

crystals to slowly penetrate the pore mouth, where additional crystal growth or precipitation occurred. 

Meanwhile, the much smoother surface, small pore size and high LEP of G/PVDF-0.5 could have 

lessen the chances of heterogeneous nucleation on the surface, and prohibit the penetration of salts 

into the pore depth; hence lower tendency for scaling occurred [37,38]. Even at low flow velocity, the 

scales could have been constantly removed by the flow shear force thereby leaving the surface clean 

for longer period of time. Other studies have also indicated the anti-fouling property of graphene, 

which could have contributed to the lesser fouling tendency of G/PVDF-0.5. Generally, MD is 
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regarded to have lower fouling propensity compared to pressure-driven membrane separation 

processes [26]. 

  

(Figure 9) 

   

To elucidate the effect of graphene to the membrane performance, theoretical studies were 

carried out in the next section.  

 

 

4. Conclusion 

 Graphene/PVDF (G/PVDF) membranes were successfully fabricated by a phase inversion 

method and evaluated by AGMD process using real RO brine from CSG produced water as feed. 

Graphene nanoparticles have been dispersed well on/in the fabricated membranes, which were 

confirmed by XRD and EDX. Among all the G/PVDF membranes with various graphene 

concentrations, G/PVDF-0.5 (i.e., 0.5 wt% graphene loading) membrane showed a suitable pore size 

(0.11 µm), thickness (88 µm), porosity (85%), and LEP (3.89 bar) for AGMD process. Contact angle 

of the G/PVDF-0.5 membrane was higher than those of G/PVDF-0.1, G/PVDF-0.3, and neat 

membranes due to the presence of more hydrophobic graphene although its surface roughness was 

slightly lower than other membranes. When graphene concentration was increased over 0.7 wt%, the 

fabricated membranes tended to have smaller pore size, lower porosity, thicker thickness, and higher 

contact angle than that of G/PVDF-0.5 membrane due to the aggregation of the graphene nanoparticle. 

Thus, flux of the G/PVDF-0.5 membrane was the highest among all the membranes for 24 hours of 

AGMD test. For 10 days AGMD test, G/PVDF-0.5 membrane showed more stable flux, better 

rejection performances, and lesser scaling tendency compared with commercial PVDF membrane; as 

well as, it was not wetted due to the enhanced membrane features and to the effect of the nature of 

graphene. Therefore, the present results suggest that membrane made of PVDF blended with 

nanoporous graphene nanoparticles has good potential as a robust MD membrane for the treatment of 

RO brine from CSG produced water by AGMD. 
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Nomenclature 

 

𝐴  Effective area of the membrane 

𝐶𝐹  Permeate concentration 

𝐶𝐼   Feed concentration 

𝐹𝑙𝑢𝑥𝐸   Flux of each point 

𝐹𝑙𝑢𝑥𝐼  Flux of the initial point 

J  Water vapour flux 

𝐽 𝐽𝑜⁄   Normalized flux 

RE  Rejection ratio 

𝑊1  Weight of the saturated membrane 

𝑊2  Weight of the dry membrane 

𝑡  Operating duration 

∆𝑔  Mass of permeate 

  Membrane porosity 

  Liquid density 

De  Density of ethanol 

 Dp Density of PVDF material 
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Abbreviation 

 

2D  Two-dimensional 

AFM  Atomic force microscopy 

AGMD  Air gap membrane distillation 

CA  Contact angle 

CSG  Coal seam gas 

DCMD  Direct contact membrane distillation 

DI  De-ionized 

DMF  N, N-dimethylformamide 

EDX  Energy dispersive x-ray spectroscopy 

G/PVDF Graphene/PVDF 

LEP  Liquid entry pressure 

LiCl  Lithium chloride 

MD  Membrane distillation 

MF  Microfiltration 

NaCl  Sodium chloride 

PVDF  Polyvinylidene fluoride 

RO  Reverse Osmosis 

SEM  Scanning electron microscopy 

VMD  Vacuum membrane distillation 

XRD  X-ray diffraction 
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 Highlights 

 

 PVDF membranes were fabricated by phase inversion for CSG RO brine treatment by AGMD. 

 Effect of graphene loading on membrane properties and performance was investigated.  

 Optimal graphene loading resulted to high LEP and porosity, and adequate pore size. 

 Incorporation of small amount of graphene improved the AGMD performance. 

 G/PVDF membranes presented excellent flux and performance stability for 10 days. 
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Figure list: 

Figure 1 Schematic lay-out of the LEP apparatus. 

Figure 2 Schematic diagram of the AGMD system used in the present study. 

Figure 3 SEM images of the G/PVDF and neat PVDF membranes: top surface (a1 – g1), bottom 

surface (a2 – g2) and cross section (a3 – g3). 

Figure 4 Viscosity measurements of the PVDF solutions at various graphene concentrations. 

Figure 5 (a) Carbon/fluorine (C/F) ratio by EDX and (b) XRD patterns of the G/PVDF and neat 

PVDF membranes. 

Figure 6 AFM images of the G/PVDF and neat membranes: (a) neat, (b) G/PVDF-0.1, (c) 

G/PVDF-0.3, (d) G/PVDF-0.5, (e) G/PVDF-0.7, (f) G/PVDF-1.0 and (g) G/PVDF-2.0. 

Figure 7 AGMD (a) flux and (b) the final conductivity performances of the G/PVDF and neat 

phase inversion membranes for 24 h operation. 

Figure 8 (a) Normalized flux and (b) salt rejection ratio performances of the G/PVDF-0.5 and 

commercial membranes for 10-day long term operation. 

Figure 9 Surface and cross-sectional SEM images of (a, c) C-PVDF and (b, d) G/PVDF-0.5 

membranes after 10 d AGMD test with RO brine from CSG produced water as feed. 
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Figure 2 Schematic diagram of the AGMD system used in the present study. 
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Figure 3 SEM images of the G/PVDF and neat PVDF membranes: top surface (a1 – g1), bottom 

surface (a2 – g2) and cross section (a3 – g3). 

Figure 4 Viscosity measurements of the PVDF solutions at various graphene concentrations. 

(a) (b) 
Figure 5 (a) Carbon/fluorine (C/F) ratio by EDX and (b) XRD patterns of the G/PVDF and neat 

PVDF membranes. 
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Figure 6 AFM images of the G/PVDF and neat membranes: (a) neat, (b) G/PVDF-0.1, (c) 

G/PVDF-0.3, (d) G/PVDF-0.5, (e) G/PVDF-0.7, (f) G/PVDF-1.0 and (g) G/PVDF-2.0. 
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Figure 7 AGMD (a) flux and (b) the final conductivity performances of the G/PVDF and neat 

phase inversion membranes for 24 h operation. 
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Figure 8 (a) Normalized flux and (b) salt rejection ratio performances of the G/PVDF-0.5 and 

commercial membranes for 10-day long term operation. 
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Figure 9 Surface and cross-sectional SEM images of (a, c) C-PVDF and (b, d) G/PVDF-0.5 

membranes after 10 d AGMD test with RO brine from CSG produced water as feed. 
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