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Removal of emerging contaminants for water reuse by membrane
technology

Abstract
Emerging trace organic contaminants (TrOCs) are broadly defined as any synthetic or naturally occurring
chemicals that have not been routinely monitored but have the potential to enter the environment and cause
known or suspected adverse ecological or human health effects [1]. Most of these TrOCs are from municipal,
agricultural and industrial wastewater sources (see Figure 9.1). Their release to the environment had likely
occurred for a long time but was only recently recognised by new and advanced analytical methods [2]. In
some cases, emerging contaminants can also result from the synthesis of new chemicals either intentionally as
a chemical of industrial interest or unintentionally as a by-product. A notable example of the latter is the N-
nitrosamine group that can be formed as by-products due to a range of industrial activities including the
production of rocket fuel, rubber and tobacco as well as water or wastewater disinfection by chloramine [3].
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Abstract 

High pressure membrane filtration processes including both reverse osmosis (RO) and 

nanofiltration (NF) have been widely used in drinking purification and water recycling, 

particularly for the removal of trace organic contaminants (TrOCs). It is therefore essential to 

understand the transport of TrOCs through NF/RO membranes ensure adequate treatment and 

at the same time avoid over-engineering. TrOC rejection by NF/RO membranes is governed 

mainly by size exclusion, electrostatic repulsion, and hydrophobic interaction. A detailed 

characterisation of the membrane and physicochemical properties of the TrOC is a key to 

recognising the dominant mechanism. TrOC rejection by NF/RO membranes can also be 

influenced by fouling and subsequent chemical cleaning. In addition to NF/RO membranes, 

TrOC removal by several emerging membrane technologies including forward osmosis, 

membrane distillation and membrane electrodialysis was also briefly reviewed. 

Keyword: drinking water; nanofiltration; reverse osmosis; trace organic contaminants; water 

recycling.  
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9.1.  Introduction 
In this chapter, emerging trace organic contaminants (TrOCs) are broadly defined as any 

synthetic or naturally occurring chemical that has not been routinely monitored but has the 

potential to enter the environment and cause known or suspected adverse ecological or human 

health effects [1]. Most of these TrOCs are from municipal, agricultural, and industrial 

wastewater sources and pathways (Figure 9.1). Their release to the environment had likely 

occurred for a long time but was only recently recognized by new and advanced detection 

methods [2]. In some cases, emerging contaminants can also arrive from the synthesis of new 

chemical either intentionally as a chemical of industrial interest or unintentionally as a by-

product. A notable example is the n-Nitrosamine group that is can be formed as by-products 

in a range of industrial activities (e.g. the production of rocket fuel, rubber, and tobacco) and 

water or wastewater disinfection using chloramine [3]. 

[Figure 9.1] 

TrOCs can be classified into a number of groups depending on their origin, use, or properties. 

These include, but not limited to, steroid hormones, phytoestrogens, endocrine disrupting 

chemicals, pharmaceuticals and personal care products, industrial chemicals, disinfection by-

products, and pesticides. There is considerable overlap amongst these groups as they are often 

loosely defined. In most cases, TrOCs are ubiquitous in reclaimed water at concentrations in 

the range from less than one part-per-trillion (ng/L) to a few part-per-billion (µg/L). At their 

environmental concentrations, some of these TrOCs pose toxicological threats to wildlife and 

potential long-term adverse human health effects. They can only be detectable by some of the 

most advanced analytical techniques [2]. The difficulties associated with their analysis and 

accurately evaluating their impact on human health present a major scientific challenge in 

addressing water quality problems caused by these TrOCs.  

Regulatory response to the widespread occurrence of thousands of these emerging 

contaminants in both drinking and natural water varies quite significantly. Given the lack of 

affordable techniques for routinely monitoring, only some of these emerging contaminants 

have been regulated in drinking water. For example, in Australia, the guideline value of n-

Nitrosodimethylamine (NDMA), which is a carcinogenic disinfection by-product, in drinking 

water is specified at 100 ng/L or less [4]. On the other hand, more than a hundred of these 

emerging contaminants have been included in water recycling (or reuse) guideline for 

drinking water augmentation [5]. It is also noteworthy that the guideline value for water 
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recycling is often more stringent than that for drinking water. This is to reflect the ubiquitous 

occurrence of some emerging contaminants (e.g. pharmaceuticals and steroid hormones) in 

municipal wastewater. As an example, Table 9.1 illustrates the variation in guideline values of 

NDMA and several other n-nitrosamines amongst several different regulatory agencies [4-9]. 

[Table 9.1] 

9.2.  Membrane technology for water reclamation 
Conventional wastewater treatment processes include activated sludge treatment, 

coagulation/flocculation, and sand filtration were not designed for the removal of emerging 

contaminants and thus were largely ineffective. As a result, the industry relies must rely on a 

range of advanced treatment processes such as ozonation, advanced oxidation, activated 

carbon adsorption and membrane separation. In particular, high pressure membrane processes 

including both nanofiltration (NF) and reverse osmosis (RO), have been widely deployed for 

the removal of emerging contaminants. Indeed, most recent full scale NF or RO installations 

are for drinking water production from contaminated surface water and potable water 

recycling applications specifically for removing emerging contaminants [3, 10, 11] (Table 

9.2). Other noteworthy membrane processes that have the potential for removing emerging 

trace organic contaminants but have yet been applied at full scale level include forward 

osmosis (FO), membrane distillation (MD), and membrane electrodialysis (ED). Given their 

still emerging nature, this chapter will not provide an exhaustive review about FO, MD, and 

ED. Instead, only key aspects associated with the removal of emerging trace organic 

contaminants will be discussed. 

[Table 9.2] 

9.3.  NF/RO filtration 

9.3.1  Introduction 

High pressure membrane filtration is capable of removing most impurities from water. Over 

recent decades, technological advances in the production of materials and modules have 

reduced the costs of water treatment systems using high pressure membrane processes 

including both RO and NF. RO and NF membranes are differentiated by their ability to 

separate mono- and di-valent ions. For example, RO membranes are typically used for 
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seawater desalination, wastewater recycling and in the semiconductor industry where a high 

removal of salts and other dissolved contaminants, including TrOCs, is required. On the other 

hand, NF membranes have been used in drinking water treatment plants where the source (e.g. 

ground or surface water) contains divalent ions (e.g. calcium and manganese) that are of 

significant concern or has been compromised with TrOCs. However, uncertainty associated 

with the removal of TrOCs by NF/RO membranes has triggered the need for additional post-

treatment or blending with pristine water. As a result, many studies have focused on the 

mechanisms for TrOC removal in NF/RO filtration, as understanding these mechanisms can 

improve membrane system design and the quality of product water. This section focuses on 

the theories describing the transport of TrOCs in NF/RO systems which have developed over 

the past decade. 

9.3.2  Removal mechanisms 

Transport through NF/RO membranes is often described by the solution-diffusion model in 

which solutes diffuse through the membrane from the feed side to the permeate side, leading 

to a concentration gradient across the membrane. In diffusion-governed separation processes, 

the separation depends on the mobility of the diffusing species in the membrane polymer 

chains and the local environment at the membrane surface. There are many different TrOCs 

and commercial NF/RO membranes, all of which have different physicochemical properties, 

and the reported rejection depends on both the TrOC considered and the membrane. Hence, 

correlation of TrOC rejections with the physicochemical properties of these compounds and 

the properties of the membrane is key to providing comprehensive guidance on TrOC removal 

in NF/RO systems, and has been extensively researched using both experimental and 

theoretical studies. The mutual interaction between TrOCs and membranes are essentially 

divided into three broad categories – size, electrostatic, and hydrophobic interactions – all of 

which are described in this section. 

9.3.2.1 Size exclusion 

Size exclusion plays a primarily role in the separation of TrOCs using NF/RO membranes. 

The effect of compound size is particularly noticeable when the rejection of neutral TrOCs are 

compared [12]. Separation by size exclusion occurs by a sieving mechanism, in which large 

TrOCs are blocked and smaller TrOCs readily diffuse through the membrane. In other words, 

the level of rejection of a TrOC is determined by the difference in size of the TrOC and the 

free-volume (between polymer chains) of the active skin layer of the membrane. Hence, 
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characterisation of the relative sizes of TrOCs and membrane free-volumes is essential to 

understanding how size interactions influence TrOC rejection by NF/RO membranes. 

9.3.2.1.1  Molecular size 

The molecular size of TrOCs can be expressed by a variety of terms. The evaluation of TrOC 

rejection by NF/RO membranes is commonly performed with the molecular weight (MW) [13, 

14]. Typically, the rejection of TrOCs by a given membrane increases with their molecular 

weight due to the sieving effect. Despite its enormous popularity in the field, the MW does 

not provide any information on the TrOC geometry and cannot be used to accurately predict 

TrOC rejection. Indeed, TrOCs with similar MWs can have vastly geometries (e.g. length and 

width). Other terms used to describe molecular size, such as molecular volume and stokes 

radius, also fail to provide information on the compound geometry and cannot be used to 

accurately predict TrOC rejection.  

The transport of TrOCs through NF/RO membranes can be better described by the molecular 

width (MWd). The term MWd was first proposed by Kiso et al. [15] to describe the projected 

two-dimensional area of a molecule, and it is critical to understanding the passage of 

compounds through the free-volume holes of a membrane. As illustrated in Figure 9.2, the 

MWd is calculated from the area (S) of the minimum rectangle area perpendicular to the L-

axis (the line connecting the two most distant atoms of the molecule) [16]. A more detailed 

description of MWd is given elsewhere [16]. In fact, the minimum projection area (MPA) and 

its derivative property – MWd – of neutral TrOCs are strongly correlated with their rejection 

by a given membrane [16-18]. However, these correlations are limited to hydrophilic neutral 

TrOCs. Strongly hydrophobic compounds (e.g. bisphenol A, log D = 4.0) are poorly rejected 

[17] which impacts the correlation between the minimum projection area of TrOCs and their 

rejection (Figure 9.3). Hence the removal mechanism responsible for the observed rejection of 

neutral TrOCs cannot be explained by the molecular size alone. The impact of hydrophobic 

interactions on TrOC rejection will be discussed in a later section. 

[Figure 9.2] 

[Figure 9.3] 

9.3.2.1.2  Free-volume hole 

Internal structure of active skin layer of NF/RO membranes have not been adequately 

characterised at the relevant sub-nanometre scale level. Thus, an accurate description of the 
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transport of small solutes through NF/RO membranes based on the molecular size and 

membrane properties has yet been developed. Unlike microfiltration (MF) and ultrafiltration 

(UF) membranes, where separation occurs by sieving through micro-pores that can be 

accurately visualised and measured, it is widely accepted that free-volume holes exist in the 

active skin layer of NF/RO membranes.  

The separation performance of NF membranes has been traditionally described with the term, 

molecular weight cut-off (MWCO). MWCO is defined as the molecular weight of a 

compound that is 90% rejected by the membrane. MWCOs of typical NF membranes 

normally range from 200 to 1000 g/mol. While the transition between NF and RO membranes 

seems to be in the range 100-200 g/mol, it is not common to specify RO membranes using the 

MWCO. As the MWCO is an experimentally measured value, it reflects the effect of multiple 

rejection mechanisms including size and hydrophobic interactions. Moreover, MWCO does 

not provide any information about the dimensions (e.g. length and width) of a free-volume 

hole. As a result, the MWCO alone does not provide sufficient information on the rejection of 

different sized molecules by a NF membrane. In fact, the ability of MWCO to predict the 

rejection of a TrOC by a NF membrane is often limited [19].  

It is evident that free-volume hole size is a more appropriate term than MWCO to evaluate the 

size exclusion removal mechanism. Recently, advances in positron annihilation lifetime 

spectroscopy (PALS) [20-22] have enabled the measurement of mean free-volume hole size in 

the active skin layer of NF/RO membranes [23, 24]. The size of free-volume holes is 

determined using the lifetime of positrons discharged into the membrane sample at a different 

depths in the skin layer. The reported free-volume hole radii of seawater RO, low pressure RO, 

and NF membranes are comparable at 0.26-0.28, 0.20-0.29, and 0.26-0.28 nm, respectively. 

Despite this, the reported rejection of a neutral solute, n-Nitrosodimethylamine, ranges from 

4-78% for these membranes [25]. In fact for a variety of RO membranes, the rejection of a 

neutral solute did not correlate with the membrane free-volume hole-size (analysed using 

PALS) except when the membranes were produced using the same manufacturing method and 

similar materials [24, 26]. As a result, the size exclusion mechanism cannot solely be 

described by the free-volume hole size. Other properties that may influence the diffusion of 

neutral solutes through a membrane include the shape and size distribution of free-volume 

holes. In addition, other membrane properties such as the free-volume fraction and thickness 

of the active skin layer could alter the diffusion of solutes though the membrane. A more 

detailed discussion on these membrane properties is provided elsewhere  [25].  
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9.3.2.2 Electrostatic interactions 

The second key factor influencing the rejection of TrOCs by NF/RO membranes is 

electrostatic interactions. Electrostatic interactions are characterised by the electrostatic 

repulsion or attraction between two charged objects – a charged compound and membrane. 

Membrane surfaces are typically negatively charged and negatively charged TrOCs are 

repelled by the membrane, resulting in a higher rejection these compounds. In contrast, 

positively charged TrOCs are essentially attracted to the membrane, which results in a lower 

rejection of these compounds. Uncharged TrOCs are not subject to electrostatic interactions 

with the membrane. Consequently, it is important to attain information regarding the charge 

of both TrOCs and NF/RO membranes during system operation.  

9.3.2.2.1  Molecular charge 

Most ionisable compounds can be classified as either negatively or positively charged. A 

compound that contains both negatively and positively charged functional groups at a specific 

pH is called zwitterion. The compound charge of ionisable TrOCs depends on the ionisation 

sate of its ionisable functional groups. For example, a carboxyl group (COOH) on a 

compound acts as an acid when present in its dissociated form (COO-). Similarly, an amine 

group (NH2) in its protonated form (NH3
+) acts as a base. The degree of dissociation of a 

compound can be estimated using the acidity constant (Ka) or base constant (Kb). These 

constants are generally expressed as pKa and pKb, and are defined as a negative logarithm of 

equilibrium constants Ka and Kb, respectively. pKa is defined as the pH at which a compound 

exists 50% in its dissociated form. As a result, there is a range of pH around the pKa and pKb 

at which both dissociated and neutral species coexist. It is also important to note that the pKa 

and pKb values depend on the solution temperature.  

The speciation of two ionisable TrOCs over a wide pH range is presented in Figure 9.4 for 

illustration purposes. Ibuprofen, which contains a COOH group on its molecular structure, is 

not charged at low solution pH (pH 3 or lower) (Figure 9.4a). However, as the solution pH 

increases from 3 to 7, the COOH group begins to dissociate and almost all ibuprofen 

molecules are negatively charged at when the solution pH is above 7. Amitriptyline (pKb = 

9.8) is positively charged at low solution pH (pH ≤8) and mostly becomes neutral at high 

solution pH (pH ≥12) (Figure 9.4b). In drinking and municipal wastewater applications, the 

pH of the feed to the NF/RO is typically adjusted to between 6 and 8; thus, the speciation of 

compounds over this range is of considerable importance. 
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[Figure 9.4] 

9.3.2.2.2  Membrane charge 

NF/RO membranes are commercially produced from several different materials. To determine 

the charge interaction between the membrane and charged TrOCs, it is important to know the 

charge of a given membrane over a pH range (e.g. pH 3 to 10). The material used for the 

active layer of NF/RO membranes is usually a polyamide derivative, sulphonated polyether-

sulphone, cellulose acetate or titanium-based ceramic. Many water recycling and seawater 

desalination plants employ thin film composite NF/RO membranes with a polyamide active 

separation layer. Thus, a special focus is placed on polyamide-based NF/RO membranes in 

this section. 

The surface charge of membranes (including MF, UF, NF and RO) is typically determined by 

the zeta potential. The active skin layer of commercial polyamide NF/RO membranes 

contains ionisable functional groups such as carboxyl (COOH) and sulfonic (SOH) groups. 

These functional groups are dissociated and negatively charged at high pH; thus, the zeta 

potential of polyamide NF/RO membranes decreases with the solution pH (Figure 9.5). It is 

important to note that the measured charge varies as a function of the variety and 

concentration of background electrolytes (e.g. KCl). 

Over the typical pH range for NF/RO feeds (i.e. pH 6-8), the surface charge of commercial 

NF/RO membranes is typically negative due to deprotonated functional groups (e.g. sulfonic 

acid and carboxylic acid) of the active skin layer. A list of typical NF/RO membranes and 

their zeta potentials is presented in Table 9.3 [27]. Recently, NF and RO membranes with a 

weak negative charge have been developed to reduce membrane fouling by minimising the 

charge interactions between the membrane and charged organic matter. Both LFC3 (RO) and 

ESNA-LF (NF), which are supplied by Hydranautics, are reported to have a weak negative 

charge [28]. However, since the negative charge of these membranes is weaker than typical 

NF/RO membranes, the charge interactions between the membrane and charged TrOCs may 

also be hindered. 

[Figure 9.5] 

[Table 9.3] 
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9.3.2.2.3  Effect of electrostatic interactions 

A series of experimental results illustrating the effect of charge interactions is presented in 

Figure 9.6. The NF270 membrane used in the work carries a negative surface charge at pH 8. 

No apparent difference was found in the rejection of charged and uncharged TrOCs for large 

compounds (MPA >60 Å). However, the effects of electrostatic repulsion became noticeable 

when the MPA dropped below 50 Å. The rejection of negatively charged compounds was 

generally higher (approximately >90%), with exception of triclosan (MPA = 39Å). Of the 

TrOCs studied, Triclosan is the most hydrophobic compound (log D = 4.57) and therefore 

subject to hydrophobic interactions. Hydrophobic interactions are described in the following 

section. The enhanced rejection of negatively charged compounds is driven by the 

electrostatic repulsion force between the membrane and charged compounds. Although the 

compound size still influences the permeation of the negatively charged TrOCs through the 

NF270 membrane, the relationship between rejection and MPA does not follow the same 

trend as neutral TrOCs (Figure 9.6). In contrast, the rejection of positively charged TrOCs 

was generally lower than negatively charged TrOCs. This is due to electrostatic attraction 

between the positively charged compounds and the negatively charged membrane. The 

attracted compounds are concentrated at the membrane surface while negatively charged 

compounds remain in the bulk solution, resulting in a lower measured rejection of positively 

charged compounds compared to their negatively charged counterparts [29]. This 

phenomenon is commonly called charge concentration polarisation [30]. 

[Figure 9.6] 

9.3.2.3 Hydrophobic Interactions  

Hydrophobic interactions between nonpolar (hydrophobic) TrOCs and hydrophobic NF/RO 

membranes can influence the separation of these compounds. Hydrophobic substances, 

including hydrophobic TrOCs, do not mix well with water but adsorb onto other hydrophobic 

materials such as membranes. The adsorbed compound is concentrated at the membrane 

surface, resulting in a lower measured rejection. Consequently, hydrophobic interactions need 

to be considered when evaluating the rejection of hydrophobic TrOCs by NF/RO membranes.  

9.3.2.3.1  Molecular hydrophobicity 

The hydrophobicity of TrOCs is typically quantified using the octanol/water partitioning 

coefficient (Log Kow) or effective octanol/water partitioning coefficient (Log D). Log Kow is 

defined as the ratio of the concentration of unionised compounds in the octanol phase to the 
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concentration in the water phase. Log Kow is generally used for neutral (uncharged) 

compounds. On the other hand, Log D takes into account the ratio between the ionised over 

unionised form of the compound at a specific pH value. Therefore, the hydrophobicity of 

ionisable compounds, as determined by the Log D, is specific to the solution pH. For a non-

ionisable compound Log D and Log D are the same. In NF/RO systems, the transition of 

compounds from hydrophobic to hydrophilic typically occurs at a Log D (or Log Kow) value 

in between 2 and 3 [12, 31]. Consequently, TrOCs with a Log D above 3 are classified as 

hydrophobic and may adsorb on the membrane surface due to hydrophobic interactions. In 

contrast, hydrophilic compounds (Log D < 2) are not subject to hydrophobic interactions with 

the membrane.  

9.3.2.3.2  Membrane hydrophobicity 

The hydrophobicity of a NF/RO membrane surface is evaluated experimentally by measuring 

the contact angle. The contact angle is defined as the angle between the solid surface 

(membrane) and the liquid (water) droplet, and is measured using a goniometer. The contact 

angle of NF/RO membrane surfaces ranges from 20 to 50° [27]. It is worth mentioning that 

the surface hydrophobicity can change over long-term system operation due to fouling and 

chemical cleaning. While the surface contact angle describes the hydrophobicity of membrane 

surfaces well, no techniques have been established to directly measure the hydrophobicity of 

the free-volume hole walls of the active skin layer (though this is where TrOCs diffuse 

through). Unlike for TrOCs, there are no clear quantitative criteria for distinguishing 

hydrophobic and hydrophilic membranes based on the measured contract angle. Rather, 

membranes are qualitatively described as more or less hydrophobic based on their observed 

potential for hydrophobic interactions. All commercial NF/RO membranes are generally 

considered hydrophobic, regardless of their measured contact angle.  

9.3.2.3.3  Impact of hydrophobic interactions 

TrOCs adsorb onto a membrane surface as a result of hydrophobic interactions, though this is 

a slow process in NF/RO filtration. The effect of hydrophobic interactions can be clearly 

identified in experiments using a closed loop filtration system, commonly employed for 

laboratory-scale evaluations. As a result of adsorption, the concentration of a compound at the 

membrane surface becomes higher than the concentration in the bulk feed solution. The 

increased concentration at the surface allows more compounds to permeate through the 

membrane, thereby lowering the compound rejection. As described earlier, the adsorption of 
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compounds onto the membrane by the hydrophobic interaction mostly occurs for hydrophobic 

compounds (Log D > 2). The adsorption effect may become more noticeable for strongly 

hydrophobic compounds, for example bisphenol A (log D = 4.0) as shown in Figure 9.3.  

Due to the effect of adsorption, the feed concentration of a compound will gradually decrease 

while the permeate concentration will increase during operation of a closed loop system.  

Depending on the membrane and compound considered, this phenomenon may continue for 

several hours to days as presented in Figure 9.7 [32]. Evaluating the rejection of TrOCs before 

a steady state is obtained can lead to an overestimation of the membrane separation 

performance. It is also important to note that strongly hydrophobic compounds may be 

depleted over time in a closed filtration system due to adsorption, which prevents evaluation 

of their rejection. The potential overestimation of rejection is almost negligible in full-scale 

NF/RO filtration systems that have been operated at steady state for months. 

[Figure 9.7] 

9.3.3  Membrane types and materials 

9.3.3.1 Polyamide 

Interfacial thin-film composite (TFC) RO membranes became the industry standard in the 

1970s [33, 34], and have been widely used in a variety of water treatment applications ever 

since. The membranes are produced in a flat sheet style and are supplied in spiral-wound 

modules. A typical TFC membrane has a 0.05-0.2 nm thick active skin layer which is 

responsible for the separation. The active skin layer sits on top of a polysulfone microporous 

supporting layer, which is further supported by a polyether non-woven fabric backing layer. 

The active skin layer of commercial NF/RO membranes typically has a complex structure 

with a surface roughness of 0.05 to 0.20 µm [27, 35]. The surface roughness of the skin layer 

can be observed using scanning electron microscopic (SEM), as seen in the image of the 

ESPA2 RO membrane (Hydranautics) (Figure 9.8) [36], which is used at many water 

recycling plants. The top dense layer (also called the active skin layer) is responsible for the 

separation of TrOCs, which selectively pass through the free-volume holes of the membrane 

(Figure 9.9) [21, 23, 37, 38].  

[Figure 9.8] 

[Figure 9.9]  
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9.3.3.2 Cellulose triacetate 

While a technique for producing a asymmetric cellulose acetate RO membrane was first 

developed by Loeb and Sourirajan in the 1960s [39], the majority of current membrane 

manufacturers produce and supply TFC NF/RO membranes. Only a small percent of the RO 

market uses cellulose triacetate (CTA) RO membranes. Recently, CTA-based RO membranes 

have re-emerged as they have a significant advantage over TFC RO membranes when treating 

difficult water with high fouling potential. In fact, CTA membranes can be operated with up 

to 1 mg/L chlorine in the feed stream, which can suppress biological growth on the membrane 

surface. The CTA RO membranes commercially available today are produced as thin hollow 

fibres (<0.2 mm outer diameter). The water permeability of CTA RO membranes is lower 

than TFC RO membranes, which requires RO systems using CTA membranes to be operated 

at a lower permeate flux than systems using TFC membranes. Despite this, systems with CTA 

RO membranes still have a smaller footprint than systems with TFC RO membranes, because 

the thin hollow fibres allows a higher membrane packing density in CTA modules [40].  

In terms of membrane properties, the free-volume hole radius of CTA RO membranes (0.3 

nm) [41] is relatively close to that of typical TFC RO membranes (0.2-0.29 nm) [25]. Due to 

the thin structure of hollow fibres (<0.2 mm diameter), the measurement of hydrophobicity 

and zeta potential of these CTA RO membranes is technically very difficult. Similar trends 

were observed for rejection of neutral TrOCs using typical polyamide and CTA RO 

membranes [42]. Similar to their polyamide counterparts, the rejection of TrOCs by CTA RO 

membranes increases with molecular size (e.g. minimum projection area) and hydrophobic 

interactions can cause deterioration in the rejection of hydrophobic compounds [42]. In 

contrast, the effect of electrostatic interactions on the rejection of charged TrOCs is less 

significant for CTA RO membranes compared to their polyamide counterparts. Further 

membrane characterisation will be useful to precisely describe the solute-membrane 

interactions.   

9.3.3.3 Ceramic 

Ceramic NF membranes are a popular choice in water treatment applications where frequent 

chemical cleaning is required to tackle severe fouling. Commercially available ceramic NF 

membranes essentially have two layers – a microporous support layer and a thin selective 

layer. In past decades, relatively loose ceramic NF membranes (MWCO > 400 g/mol) have 

been used in water treatment applications. Recently, ceramic NF membranes with high 
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selectivity (MWCO = 200 g/mol) have emerged. These tight-pore ceramic NF membranes 

have the potential to reject many TrOCs, because the majority of regulated TrOCs have MWs 

above 200 g/mol.  

As observed using polymeric NF membranes, the rejection of neutral TrOCs by ceramic NF 

membranes increases with molecular weight of a compound [17]. However, unlike polymeric 

NF membranes, the impact of hydrophobic interactions on the rejection of neutral TrOCs by 

ceramic NF membranes is negligible due to the weak hydrophobicity of ceramic membranes. 

Furthermore, the rejection of negatively and positively charged compounds by ceramic NF 

membranes varies significantly as shown in Figure 9.10. The large difference in the observed 

rejections may be due to the charge concentration polarisation effect (i.e. electrostatic 

attraction force), which indicates that ceramic membranes have a strong negative charge.  

[Figure 9.10] 

9.3.4  Effects of membrane fouling and chemical cleaning 

Membrane fouling is an inherent phenomenon in NF/RO filtration in water recycling 

applications since municipal and industrial wastewater contains a large amount of foulants 

including organic and inorganic matter. Typical fouling observed in these applications include 

organic and colloidal fouling, bio-fouling, and inorganic scales [43]. Due to the deposition of 

foulants on NF/RO membranes, the alternation of membrane surface properties occurs, 

resulting in changes in their separation performance. In addition to membrane fouling, 

membrane surface properties could change with chemical cleaning. Chemical cleaning is 

periodically performed to remove foulants from the membrane surface and restore its 

separation performance, while these cleaning agents could chemically change membrane 

surface properties (e.g. membrane surface charge). Because these membrane surface 

properties are keys to the rejection of TrOCs, it is important to understand the impact of these 

factors (i.e. fouling and chemical cleaning) on TrOC rejection for long term system operations. 

9.3.4.1 Membrane fouling 

While many previous studies examined the effects of membrane fouling on the rejection of 

TrOCs by NF/RO membranes, the effects reported in literature are generally not consistent. In 

fact, membrane fouling could both positively and negatively influence TrOC rejection. For 

example, the rejection of 8 out of 10 TrOCs by an NF membrane (NF-4040, Dow/Filmtec) 

was reported to increase by up to 20 % with the progress of fouling at a pilot-scale RO 
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filtration system [44]. The effects of increased rejections could be due to the formation of 

organic fouling layer that could increase the negative charge of the membrane surface for 

negatively charged TrOCs and could increase the adsorption capacity for hydrophobic neutral 

TrOCs [45]. However, negative or no effect of membrane fouling on TrOC rejection has also 

been reported for hydrophilic neutral TrOCs [45, 46]. Hence, the rejection of hydrophilic 

neutral TrOCs by NF/RO membranes is of significant concern. 

Among hydrophilic neutral TrOCs, N-nitrosamines are the most compounds that are often 

reported to reveal low rejections in water recycling applications. Fujioka et al. [47] evaluated 

the effects of membrane fouling using tertiary treated wastewater and reported that membrane 

fouling on three different NF/RO membranes commonly caused an increase in N-nitrosamine 

rejection (Figure 9.11). The increased rejections were particularly apparent for low molecular 

weight N-nitrosamines including NDMA. For example, the rejection of NDMA by an RO 

membrane (ESPA2, Hydranautics/Nitto) increased from 34 to 73% as fouling progressed 

(Figure 9.11b). For a high rejection RO membrane (ESPAB, Hydranautics/Nitto), membrane 

fouling resulted in only a slight increase in NDMA rejection (from 82 to 88%) (Figure 9.11c). 

Fujioka et al. [47] suggested that the increased rejections could have been caused by the 

restriction of compound pathway (e.g. free-volume holes of the active skin layer) with small 

foulants, improving the size exclusion effect on compound rejection. In fact, a small fraction 

of low molecular weight organics that could permeate through RO membranes is present in 

the tertiary effluent [48]. This can also be supported by other experimental results using 

various model foulants in which the impact of model foulants (i.e. sodium alginate, humic 

acid, bovine serum albumin, colloidal silica) on N-nitrosamine rejection was minor or 

negligible [47]. These model foulants are larger in size than the free-volume hole-size of the 

membrane active skin layer and has a relatively narrow size distribution. As a result, the large 

model foulants can cause membrane fouling with a cake layer formation only, but it has 

negligible impact on solute rejection.   

[Figure 9.11] 

9.3.4.2 Chemical cleaning 

Chemical cleaning on NF/RO membranes can cause significant changes in membrane 

properties including surface charge, hydrophobicity and permeability, resulting in a 

deterioration in separation performance of the membrane [49]. Chemical cleaning with caustic 

agents is particularly effective to remove organic fouling from the membrane surface but can 
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also alter membrane properties significantly [50-52]. In contrast, the effects of acidic chemical 

cleaning on membrane properties are less significant [53]. Typical cleaning agents used for 

chemical cleaning include sodium hydroxide (NaOH), citric acid (CA), hydrochloric acid 

(HCl), and ethylenediaminetetraacetic acid (EDTA) [54]. In addition, formulated chemical 

cleaning reagents comprising a variety of chemicals that are typically proprietary information 

of manufacturers can also be used for chemical cleaning [49]. Caustic chemical cleaning 

generally causes a decrease in TrOC rejection. In particular, it causes a significant decrease in 

the rejection of hydrophilic neutral TrOCs (Figure 9.12). Among hydrophilic neutral TrOCs, 

the impact of chemical cleaning is more apparent for low molecular weight TrOCs, while a 

negligible impact can be observed for high molecular weight TrOCs [53]. In contrast, the 

rejection of charged TrOCs is less influenced by chemical cleaning due to the effect of 

electrostatic repulsion on top of size exclusion mechanism [55].  

Simon et al. [55] suggested that the increased rejection of neutral TrOCs by caustic cleaning 

could be due to the increased pore size of NF membranes by chemical cleaning. In fact, 

chemical cleaning considerably increased the permeability of NF membranes which is 

strongly correlated with the pore size of their active skin layer. The same observation (i.e. 

increased permeability) using caustic cleaning was also observed for polyamide RO 

membranes [53]. Simon et al. [55] explained this mechanism using a simplified schematic 

diagram (Figure 9.13). When the membranes are immersed in a high pH solution (e.g. pH>11), 

the membrane polymer structure is swelled due to the electrostatic repulsion occurring among 

the deprotonated carboxylic functional groups of the polyamide active skin layer. The 

swelling effect causes an enlargement of the membrane pore, leading to a significant increase 

in permeability and a severe deterioration in compound rejection. In contrast, the permeability 

and rejection capacity of NF membranes at a low pH (e.g. pH<3) remains almost unchanged 

from a neutral pH (e.g. pH 7), because the polyamide membranes have an isoelectric point at 

approximately pH 3 and their weakly or not charged carboxylic functional groups do not 

enlarge the pores of the active skin layer. Interestingly, the changes in pore structure caused 

by a high pH solution can be reversible as reported by Simon et al. [55]. For example, the 

decreased TrOC rejections caused by caustic cleaning were fully recovered by applying acidic 

cleaning for 4 hours [55]. The same observations using polyamide RO membranes have also 

been reported in literature [53]. These results suggest that a sequence of caustic followed by 

acidic cleaning can restore the separation capability of NF/RO membranes. 

[Figure 9.12] 
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[Figure 9.13] 

9.4.  Other membrane processes 

9.4.1  Forward osmosis 

FO is an osmotically driven process. Similar to RO, FO uses a semi-permeable membrane to 

effect separation of water from dissolved solutes. The driving force for this separation is an 

osmotic pressure gradient created by a draw solution of higher concentration (compared to 

that of the feed solution) that induces the flow of water through the membrane into the draw 

solution, thus effectively separating the feed water from its solutes. FO has been extensively 

investigated in recent years for water and wastewater treatment. When a draw solution (such 

as seawater) is freely and readily available FO can be a standalone process. However, in most 

cases, FO is used as an advanced pre-treatment for downstream processes such as RO and 

thermal distillation. 

To date, more than a dozen studies have been conducted to investigate the rejection of 

emerging trace organic contaminants by FO [56]. Overall, the rejection mechanisms are 

similar to that by NF/RO membranes. In other words, the rejections of emerging trace organic 

contaminants are governed mostly by size exclusion (or steric interaction) and electrostatic 

interaction. Affinity of specific organic molecule toward FO membrane (e.g., through 

hydrophobic interaction) may also influence the rejection, particularly when the solute is 

comparable or smaller to the pore size of the FO membrane.  

Alturki et al., [57] studied the rejection of a large range of trace organic contaminants by a 

cellulose triacetate (CTA) membrane from HTI Inc. Their results demonstrate that the 

rejection of neutral trace organic contaminants increase as the compound molecular weight 

increases (Figure 9.14). FO membranes are asymmetric, they can be deployed in either the FO 

mode (i.e., the membrane active layer is in contact with the feed solution) or the pressure 

retarded osmosis (PRO) mode (i.e., the membrane active layer is in contact with the draw 

solution). Data reported by Alturki et al., [57] showed that the PRO mode can produce a 

higher water flux but lead to a notably lower TrOC rejection compared to the FO mode 

(Figure 9.14). It was also shown that the rejection of charged TrOCs is higher than their 

neutral counterpart with a similar molecular weight (Figure 9.14). These findings are 

supported by Coday et al., [56] who corroborated TrOC rejection data from 14 recent FO 

studies (Figure 9.15).  
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[Figure 9.14] 

[Figure 9.15] 

Coday et al., [56] reported that membrane fouling can considerably alter TrOC rejection by 

FO. The exact reasons for these variations in TrOC rejection when the membrane is fouled 

remain unclear. However, similar to the NF/RO process, cake-enhanced concentration 

polarisation, addition filtration layer, and the disruption of affinity interaction between TrOC 

and the membrane polymeric surface can be the possible mechanisms.  

Unlike NF/RO, solute transport in FO is bi-directional and could result in an interesting 

phenomenon known as ‘retarded forward diffusion’ (Figure 9.16). Retarded forward diffusion 

is a phenomenon first demonstrated by Xie et al., [58] who have conducted the most thorough 

investigations of the impact of draw solute diffusion on TrOC rejection. By examining several 

different draw solutes (i.e. NaCl, MgSO4, glucose, and urea), Xie et al., [58] demonstrated 

that the forward diffusion of TrOCs could be hindered by the reverse diffusion of solutes from 

the draw solution to the feed. As a result, TrOC rejection can be enhanced by a high reverse 

salt flux.  

[Figure 9.16] 

9.4.2  Membrane distillation 
Membrane distillation (MD) is a low temperature distillation process that involves the 

transport of water in the vapour phase from a feed solution through a microporous and 

hydrophobic membrane to the distillate (product) side. The feed solution is maintained at a 

high temperature to create a vapour pressure difference between the feed and distillate. In MD, 

liquid water cannot be transported through the membrane but water vapour (gas phase) can 

freely move through the membrane dry micro-porous pores from the feed to the distillate. To 

prevent the penetration of liquid water to the pores, the membrane material must be 

hydrophobic (i.e., contact angle of more than 90°). Because mass transfer can occur only in 

the gas phase, MD can offer complete rejection of all non-volatile solutes such as inorganic 

salts and pathogenic agents. To date, much of the effort in MD research has focused on 

desalination applications. However, when waste heat or solar thermal is readily available, MD 

can potentially be used for the production of high quality distillate for water recycling 

applications [59].  
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Despite the growing interest in using MD for treatment of a range of wastewaters, there is still 

a lack of understanding of the removal of TrOCs by MD. Only a few studies have been 

conducted to elucidate the rejection of specific organic compounds by MD. Moreover, most 

of these are concerned with industrial chemicals such as benzene [60] and trichloroethylene 

[61] at an elevated feed concentration. Two recent studies by Wijekoon et al., [62, 63] are the 

only exception.  

Wijekoon et al., [62] reported the first comprehensive investigation of TrOC removal by MD 

involving 29 compounds that occur ubiquitously in municipal wastewater. They demonstrated 

that the removal and fate and transport of TrOC during MD are governed by their volatility 

and, to a lesser extent, hydrophobicity (Figure 9.17). The Henry’s law constant (H) or pKH 

(which is defined as pKH = –Log10H) can be used to assess the volatility of TrOCs. Physical 

parameters (i.e., vapour pressure, molecular weight (MW), and water solubility) of all TrOCs 

are readily available and can be used to calculate the Henry’s law constant as: H (atm.m3/mol) 

= Vapour pressure×MW/water solubility. Wijekoon et al., [62] showed that all TrOCs with 

pKH > 9 (which can be classified as non-volatile) were well removed by MD. Among the 29 

TrOCs investigated in this study, three compounds (i.e. 4-tert-octylphenol, 4-tert-butylphenol 

and benzophenone) possess moderate volatility (pKH < 9) and therefore had the lowest 

rejection efficiencies of 54, 73 and 66%, respectively (Figure 9.17).  

[Figure 9.17] 

Wijekoon et al., [62] also hypothesized that the rejection of TrOCs with pKH < 9 is governed 

by the interplay between their hydrophobicity and volatility. Hydrophilic TrOCs having 

negligible volatility were concentrated in the feed, while hydrophobic compounds with 

moderate volatility were substantially lost due to evaporation or adsorption. When MD 

treatment was integrated with a thermophilic membrane bioreactor (MBR), near complete 

removal (> 95%) of all 29 TrOCs investigated in this study was achieved despite their diverse 

physicochemical properties (i.e. hydrophobicity, persistency and volatility). The results 

suggest that MD could be a promising post-treatment to be used in conjunction with 

thermophilic MBR for TrOC removal. 

In a subsequent investigation, Wijekoon and co-workers [63] demonstrated that MD can 

complement thermophilic biological treatment to enhance the removal of TrOCs. All TrOCs 

investigated in their study were highly removed (> 95%) by an integrated MD – thermophilic 

bioreactor system. They [63] also noted a major challenge to overcome the build-up of 
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salinity in the bioreactor due to the high salt rejection of the MD process, which may 

gradually compromise biological treatment. 

9.4.3  Membrane electrodialysis 
Membrane electrodialysis (ED) is another desalting process that has also been investigated for 

the removal of TrOCs. In ED, cations and anions are transported through ion exchange 

membranes away from the feed under the influence of an applied electric potential difference 

(Figure 9.18) [64]. Cations moves through the cation-exchange membrane toward the cathode 

while anions moves through the anion-exchange toward the anode. ED can be advantageous 

over many other desalting processes when the quantity of salt ions in the feed stream is small 

and they are highly mobile. The mobility of ionisable TrOCs are significantly lower than that 

of inorganic salts, thus, a primary interest in the removal of TrOC by ED is in the desalting of 

RO brine from water recycling applications.   

[Figure 9.18] 

In general, the removal of TrOCs by ED appears to be lower compared to all other membrane 

processes discussed in this chapter. Banasiak and Schafer [65] showed that neutral and 

hydrophobic TrOCs such as steroid hormones can adsorb significantly to the ion exchange 

membrane. This adsorption results in a temporarily high removal but only during the initial 

stage. A similar finding was reported by Vanoppen et al., [66] who studied the transport of 15 

TrOCs during ED. As expected, Vanoppen et al., also showed that the transport (i.e. removal) 

of charged TrOCs was significantly higher than neutral TrOCs which was driven mostly by 

diffusion. In addition, they reported a competition for ED transportation between charged 

TrOCs and NaCl (which was used as a model inorganic salt). The transport of charged TrOCs 

decreased significantly in the presence of NaCl. 

Conclusion 
This chapter described in details the separation of trace organic contaminants (TrOCs) by 

nanofiltration (NF) and reverse osmosis (RO) membranes. Recent advance in positron 

annihilation life-time spectroscopy (PALS) has allowed for the characterisation of the free 

hole volume radii of the NF/RO membrane active layer. TrOC rejection by NF/RO 

membranes are governed by size exclusion, electrostatic interaction, and hydrophobic 

interaction. Among these three mechanisms, size exclusion appears to the dominating one. 

Indeed, electrostatic and hydrophobic interactions are only relevant when the molecular 
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dimension of TrOCs are comparable to that of the membrane free hole volume radius. 

Although the rejections of TrOCs by NF/RO membranes of different materials (e.g. 

polyamide, cellulose triacetate, and ceramic) are broadly similar, there are some interesting 

variations. For examples, the effects of electrostatic interactions on the rejection of charged 

TrOCs is less significant for CTA RO membranes compared to their polyamide counterparts. 

In addition, the rejections of positively charged TrOCs by ceramic membranes were 

considerably lower than those of negatively charged compounds. Such variation between 

positively and negatively charged TrOCs was not observed for polyamide NF/RO membranes. 

It is noteworthy that membrane fouling and chemical cleaning could exert markedly influence 

on the rejection of TrOCs by NF/RO membranes.  

The removal of TrOCs by several other membrane processes including forward osmosis (FO), 

membrane distillation (RO), and membrane electrodialysis (ED) was also briefly reviewed. 

The separation of TrOCs by FO is similar to that by NF/RO. TrOC rejection by MD depends 

mostly on their volatility. In addition, hydrophobic interaction may also play a role in 

governing the rejection of TrOCs by MD. ED can only be used for removed charged TrOCs. 

In general, the removal efficiency by ED is low and can be negatively influenced by the 

presence of inorganic salts in the feed solution. 
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Table 9.1: Risk level and guideline level of N-nitrosamines. 

Compound 

IARC 
classifica

tion a 

CDPH 
notification 

level 

Ontario MOE 
an interim 

action level 

WHO 
guideline 

value 

ADWG 
guideline 

value 

AGWR 
guideline 

value 
 [ng/L] [ng/L] [ng/L] [ng/L] [ng/L] 

NDMA 2A 10 9 100 100 10 
NDEA 2A 10 - - - 10 
NMOR 2B - - - - 1 
Reference [6] [7] [8] [9] [4] [5] 
a 2A: probable human carcinogen; 2B: possibly human carcinogen. 
NDEA: n-Nitrosodiethylamine; NMOR: n-Nitrosomorpholine; IARC:  International Agency 
for Research on Cancer; CDPH: California Department of Public Health; Ontario MOE: 
Ontario Ministry of the Environment; WHO: World Health Organisation; ADWG: Australian 
Drinking Water Guidelines; AGWR: Australian Guidelines for Water Recycling. 
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Table 9.2: Examples of full scale NF/RO plants for either drinking water production or water 
recycling. 

Plant Capacity 
(m3/d) 

Membrane  Application  Reference  

Diepenveen, The 
Netherlands 

4,600 TS82 NF Drinking water [10] 

Mery-sur-Oise, Paris, 
France 

340,000 NF-200 Drinking water [11] 

West Basin, California, 
USA 

75,700 TFC-HR Water recycling [3] 

Bundamba, Queensland, 
Australia 

66,000 TFC-HR Water recycling [3] 
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Table 9.3: Zeta potential of fully aromatic polyamide commercial NF/RO membranes [27]. 
Membrane Zeta potential 

at pH 9 [mV] 
Uncoated SWC4 -20.9 
 XLE -27.8 
 LE -26.1 
 ESPA3 -24.8 
 NE90 -21.0 
 NF90 -37.0 
Coated SW30HR -1.7 
 LFC1 -13.2 
 LFC3 -6.5 
 BW30 -10.1 
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Figure 9.1: Major pathways for emerging contaminants to enter the environment. 
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0.5(S)0.5, S = [(B1 + B4) × (B2 + B3)] (Reproduced with permission from Ref. [16]. 
Copyright 2011 Elsevier Science). 

Figure 9.3: Rejection of neutral TrOCs by NF90 membrane as a function of (a) molecular 
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permeate flux 20 L/m2h, feed pH 8.0 ± 0.1, feed temperature 20.0 ± 0.1°C) (Reproduced with 
permission from Ref. [17]. Copyright 2014 Elsevier Science).  

Figure 9.4: Speciation of ibuprofen (pKa = 4.9) and amitriptyline (pKb = 9.8) as a function of 
pH. At a solution pH of 8, ibuprofen and amitriptyline exist as negatively and positively 
charged species respectively. 

Figure 9.5: Zeta potential of the virgin ESPA2 membrane as a function of pH at 30 °C (1 mM 
KCl solution, values reported as average and range of duplicate results). 

Figure 9.6: The rejection of neutral & charged TrOCs by the NF270 membrane as a function 
of minimum projection area (20 mM NaCl, 1 mM NaHCO3, 1 mM CaCl2, permeate flux 20 
L/m2h, feed pH 8.0 ± 0.1, feed temperature 20.0 ± 0.1°C) (Reproduced with permission from 
Ref. [17]. Copyright 2014 Elsevier Science). 

Figure 9.7: Change in 2-naphthol concentration during filtration test using ESNA membrane 
(Reproduced with permission from Ref. [32]. Copyright 2003 Elsevier Science). 

Figure 9.8: Scanning electron microscopy cross-section image of ESPA2 membrane showing 
(a) the position of a dense layer with an average thickness of 20 nm (cutting lines) and 
passages for filtrate flow under pressure (dotted lines) and (b) fractured ridge structure with a 
cavity on the root (Reproduced with permission from Ref. [36]. Copyright 2014 Elsevier 
Science). 

Figure 9.9: Schematic molecular structure of cross-linked polyamide chains in a typical TFC 
RO membrane [38].  

Figure 9.10: Rejection of charged TrOCs by a (a) ceramic membrane and (b) NF90 
membrane as a function of minimum projection area (Reproduced with permission from Ref. 
[17]. Copyright 2014 Elsevier Science). 

Figure 9.11: Effects of membrane fouling using tertiary effluent on the rejection of N-
nitrosamines by ESPA2 membrane (permeate flux 20 L/m2h, cross flow velocity 40.2 cm/s, 
feed temperature 20.0 ± 0.1 ºC). (Reproduced with permission from Ref. [47]. Copyright 2012 
Elsevier Science). 
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Figure 9.12: Rejection of neutral hydrophilic TrOC (Log D<3) after 24 h of filtration as a 
function of the compounds equivalent width by the virgin and chemically cleaned (a) NF270 
and (b) NF90 membrane. (Reproduced with permission from Ref. [55]. Copyright 2013 
Elsevier Science). 

Figure 9.13: Schematic drawing of a membrane top layer as a function of the membrane 
charge (i.e., background pH). (a) Shrinkage of the membrane matrix due to acidic cleaning 
rendering the membrane neutral, (b) Membrane matrix under a normal pH condition, (c) 
Swelling of the membrane matrix due to caustic cleaning and (d) Swollen membrane matrix 
subsequently after caustic cleaning in a normal pH environment. (Reproduced with 
permission from Ref. [49]. Copyright 2012 Elsevier Science). 

Figure 9.14: The rejection of neutral TrOCs by the HTI membrane as a function of molecular 
weight in (a) PRO and (b) FO modes. (Reproduced with permission from Ref. [57]. Copyright 
2013 Elsevier Science). 

Figure 9.15: Average rejection of TrOCs by virgin and fouled FO CTA membranes tested at 
the bench scale. Only those results from experiments that used NaCl or seawater draw 
solution are shown. TrOCs are grouped on the basis of their physiochemical composition near 
neutral pH and are ordered by increasing molecular weight (MW, no. of studies). Error bars 
represent the standard deviation between multiple sample results for individual studies and 
between sample results reported by multiple studies. (Reproduced with permission from Ref. 
[56]. Copyright 2014 ACS). 

Figure 9.16: Schematic diagram representing the retarded forward diffusion of feed solutes in 
the FO process by the reverse draw solutes. (Reproduced with permission from Ref. [58]. 
Copyright 2012 Elsevier Science). 

Figure 9.17: Rejection of the 29 TrOCs by DCMD and their log D and pKH values. Log D 
and pKH illustrate the values at the pH 9. Error bars represent the standard deviation from four 
replicate measurements. Synthetic solution containing approximately 5 µg/L of each TrOC in 
Milli-Q water was used as the feed. The MD was carried out at the feed and distillate 
temperatures of 40 and 20 °C, respectively. The feed and distillate circulation flow rate was 2 
L/min (corresponding to 11.7 cm/s). (Reproduced with permission from Ref. [62]. Copyright 
2013 Elsevier Science). 

Figure 9.18: Schematic diagram of an electrodialysis stack operating on a solution of sodium 
chloride. A= Anion exchange membrane, C = Cation Exchange membrane. (Reproduced with 
permission from Ref. [64]. Copyright 2013 Elsevier Science). 
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