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ABSTRACT  

 

This paper introduces manufacturing constraints into a recently developed evolutionary algorithm for 

shape optimisation of CFS profiles. The algorithm is referred to as “self-shape optimisation” and 

uses Genetic Algorithm (GA) together with the Augmented Lagrangian (AL) method to avoid ill-

conditioned problems. Simple manufacturing rules derived from the limitations of current cold-

forming processes, i.e. a limited ability to form continuously curved surfaces without discrete bends, 

are described in the paper and incorporated into the algorithm. The Hough transform is used to 

detect straight lines and transform arbitrarily drawn cross-sections into manufacturable ones. Firstly, 

the algorithm is verified against a known optimisation problem and found to accurately converge to a 

manufacturable optimum solution. Secondly, the algorithm is applied to singly-symmetric CFS 

columns each of which is subject to an axial compressive load of 75 kN and has a uniform wall 

thickness of 1.2 mm. The strength of the columns is evaluated by the Direct Strength Method (DSM) 

and all buckling modes are considered. Various column lengths (from 500 mm to 3,000 mm) and 

numbers of roll-forming bends were investigated. The optimised cross-sections are presented and 

discussed.  

 



 2 

KEYWORDS  

 

Shape optimisation; Cold-formed steel structures; Hough transform; Genetic Algorithm. 

  



 3 

1 INTRODUCTION 

 

Cold-formed steel (CFS) profiles are usually an attractive and cost-effective building structural 

solution relative to more “conventional” building materials, such as hot-rolled steel and concrete. 

They are thin-walled structural members with a high capacity-to-weight ratio [1] and can be pre-

fabricated off-site and readily installed on-site.  

 

The main advantage of CFS members lies in their manufacturing processes that allow the formation 

of almost any cross-sectional shape at room temperature. The profiles are typically formed by 

bending coils of thin steel sheets (up to 6 mm thick) with a finite number of rollers (roll-forming) or 

die blocks (brake-pressing). However, despite this flexibility, the use of CFS sections has been 

mainly restricted to Cee, Zed and Sigma cross-sectional shapes, with or without stiffeners, as 

shown in Fig. 1. As the cross-sectional shape controls the strength of CFS members, there is a real 

potential to eventually discover new optimised cross-sectional shapes tailored to specific 

applications, such as purlins, girts and studs for buildings, and uprights for storage racks for 

instance. Such discoveries will enhance the competitiveness of CFS structures and are now 

facilitated by the development of a new structural design method, the Direct Strength Method (DSM) 

[2], which allows any cross-sectional shapes with the same degree of complexity to be designed. 

 

This paper aims at incorporating manufacturing constraints for optimising the cross-sectional shape 

of CFS columns by minimising the cross-sectional area for a given design axial compressive load. 

Optimisation for specific applications is not considered in the present study, and will be investigated 

in the future. Simple roll-forming (or brake-pressing) manufacturing rules are defined and 

incorporated into the recently developed “self-shape optimisation” algorithm [3, 4] as manufacturing 

constraints. The specificity of the algorithm is briefly described in the paper. The Hough transform, 

used to detect straight lines and transform non-manufacturable cross-sections into manufacturable 

ones, is explained herein. The algorithm is verified against a known optimisation problem, being the 

optimisation of the cross-sectional shape of a doubly-symmetric closed thin-walled profile for given 
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second moments of area. The verified algorithm is then used to optimise simply-supported, singly-

symmetric and free-to-warp open-section CFS columns. The optimised manufacturable cross-

sections are presented and discussed in the paper. For comparison purposes, the algorithm is also 

run to obtain non-manufacturable cross-sections.  

  

2 BACKGROUND 

 

2.1 General 

 

One of the early studies on shape optimisation of CFS profiles is attributed to Liu et. al. [5]. A 

knowledge-based global optimisation algorithm, aiming at optimising the capacity of CFS columns 

manufactured from coils of set width and thickness, was used. Leng et. al. [6] optimised the cross-

sectional shapes of CFS open columns using three different optimisation algorithms, namely 

gradient-based steepest descent method, Genetic Algorithm (GA) and Simulated Annealing (SA). 

Sections having a wall thickness of 1 mm and a perimeter of 280 mm were divided into 21 elements 

and optimised. ‘‘Open circular’’ and ‘‘S’’ cross-sections were found. Moharrami et. al. [7] improved 

the study in [6] by introducing various types of boundary conditions into the algorithm. Gilbert et. al. 

[3] proposed a GA-based Augmented Lagrangian (AL) constraint-handling shape optimisation 

method for CFS profiles. The accuracy of the algorithm was verified against an optimisation problem 

for which an analytical solution is known. Gilbert et. al. [4] then applied the verified algorithm to 

optimise the cross-sectional shape of CFS simply-supported, singly-symmetric and open-section 

columns, subjected to a certain axial compressive load. A set of rules to accurately determine the 

local and distortional elastic buckling stresses from the Finite Strip signature curves was also 

developed.  

 

Manufacturing constraints were first introduced into shape optimisation algorithms for CFS profiles 

by Leng et. al. [8]. The authors introduced partial manufacturing and construction (geometric end 

uses) constraints using an SA algorithm. The constraints were implemented by defining (i) flat 
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“horizontal” flanges, (ii) minimum dimensions for the “vertical” web, flanges and lips, (iii) allowance 

passage for utilities between lips and (iv) no overlapping elements in the cross-sections. The study 

was improved in Leng et. al. [9] by introducing a limited number of rollers (representing the number 

of discrete bends between flat segments, see Section 2.3). These enhancements resulted in 

manufacturable cross-sections with improved capacities when compared to conventional Cee-

sections of identical cross-sectional area. Leng et. al. [10] also presented optimised cross-sectional 

shapes, i.e. singly-symmetric “Cee” and “Sigma” and anti-symmetric “S”, with both manufacturing 

and construction constraints. Franco et. al. [11] proposed CFS shape grammar rules, with an 

“alphabet”, for shape optimisation of CFS profiles. Manufacturing constraints, with given stiffener 

sizes, were intrinsic to the shape grammar resulting in manufacturable cross-sections. Genetic 

Algorithm (GA) was used in [11] as a search algorithm. 

 

2.2 Present shape optimisation algorithm  

 

The algorithm referred to as “self-shape optimisation” and developed in [3, 4] is used in the current 

study. The method rigorously explores the natural evolution process and the latent potential of GA in 

an innovative way. GA was initially developed by Holland [12] and is an adaptive heuristic search 

algorithm that mimics the Darwin’s evolutionary survival of the fittest theory. It is less susceptible to 

be self-trapped into local optima, and is able to handle non-linear problems. The classical GA 

principles can be found in Adeli and Sarma [13]. 

 

GA is an unconstrained optimisation method, and constrained problems are transformed into 

unconstrained problems by using a fitness function f expressed as,  

 

 ∑ ∑
n

i

k

ni

iiii )x(hβ)x(gα)x(ff
1 1 



                                         

(1)  
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where f(x) is the objective function, x is the vector of design variables, gi(x) and hi(x) are the ith 

inequality and equality constraint violations (n inequality and k-n equality constraints), respectively, 

and αi and βi are penalty factors. The algorithm aims at minimising f.  

 

In theory, the penalty factors in Eq. (1) increase when the constraint violations decrease and 

convergence can be facilitated by increasing the penalty factors. Nevertheless, large values of the 

penalty factors lead to ill-conditioned problems or slow down the algorithm [14, 15]. To avoid the 

problem of having penalty factors increasing to infinity, the Augmented Lagrangian (AL) constraint-

handling method for GA proposed by Adeli and Cheng [14] is used in this research to solve the 

problem. The fitness function f is then re-arranged as,  
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where γi and µi are penalty function coefficients and real parameters associated with the ith 

inequality and equality constraints, respectively. γi and µi are automatically updated at each GA 

generation but are kept to finite values [14].  

 

The main characteristics of the “self-shape optimisation” principle [3] are summarised below: 

• The initial population in the GA is generated by arbitrarily drawing cross-sections using self-

avoiding random walks in a defined design space. These random walks enable cross-sections 

to be generated without presumptions of their shapes.   

• A floating-point type GA is used, implying that a cross-section is defined by floating-point 

numbers representing the coordinates of the points constituting the cross-section. 

• Cross-over and mutation operators are performed in relation to the design space but not to the 

floating-point variables. The cross-over operator allows for the merging of two cross-sections 

to generate off-springs bearing similarity in cross-sectional shapes to the two parents. In the 

mutation operator, a part of the cross-section is deleted and redrawn. 
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2.3 Manufacturing constraints 

 

2.3.1 Traditional manufacturing processes 

 

CFS profiles are typically mass-produced by two main cold-forming processes, referred to as “roll-

forming” and “brake-pressing”. Both processes involve bending a flat sheet of steel to a desired 

cross-sectional shape. In roll-forming operations, as shown in Fig. 2 (a), the sheet is gradually rolled 

to a desired cross-sectional shape through successive rollers. This continuous manufacturing 

process allows long profiles to be manufactured. In brake-pressing operations, as shown in Fig. 2 

(b), the sheet is repetitively pressed between differently shaped brake punches and die blocks to 

bend it to the desired cross-sectional shape. Brake-pressing is limited in manufacturing long 

members. Both manufacturing processes can only bend the flat sheet of metal at discrete bending 

locations, leaving flat (straight) segments between bends. This limitation needs to be considered in 

the shape optimisation algorithms to obtain manufacturable cross-sections. 

 

2.3.2 Simple manufacturing rules 

 

Simple manufacturing rules have been defined herein based on the basic roll-forming constraints 

encountered by a European steel storage rack manufacturer. They consist of three main rules: 

(1) The minimum internal bending radius r to steel sheet thickness t ratio is 1.0; 

(2) The minimum length of a single flat segment is 10 mm; 

(3) The number of flat segments per cross-section cannot exceed 20 (i.e. a maximum number of 

19 bends per open cross-section and 10 flat segments per half cross-section). 

 

In the present study, Rule (1) is neglected since it does not affect the basic shape of the optimised 

manufacturable cross-section, and only Rules (2) and (3) are considered. A nil internal bending 
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radius (i.e. perfect bends) is assumed to simplify the algorithm. Actual bending radii can be added to 

the optimised cross-section prior to manufacture. 

 

2.3.3 Hough transform 

 

The Hough transform is used in this paper to detect straight lines, i.e. flat manufacturable segments, 

in the cross-section. This transform is commonly used in image processing to detect regular shapes, 

such as straight lines, circles and ellipses, from the discrete points forming the image [16].  

 

The method consists of defining a “parametric space” in which each straight line in the image is 

represented by its orientation angle θ, with respect to the Cartesian x-axis, and its normal distance r 

to the origin, as shown in Fig. 4(a). If θ is restricted to the interval [0˚; 180˚[, each straight line is 

represented by an unique coordinate (r, θ) in the parametric space. An image point of coordinate (xi, 

yi) in the Cartesian x-y space is transformed into a sinusoidal curve in the parametric r-θ space as 

 

θsinyθcosxr ii                                                            (3) 

 

Sinusoidal curves having common intersecting points have collinear (aligned) points in the image. 

This is illustrated in Fig. 4(b) with 4 points aligned on the line of coordinate (r = 10 mm, θ = 60˚) in 

the parametric space. 

 

For image processing purposes, an array referred to as the accumulator array (or accumulator 

matrix), is created in the discretised parametric space. The columns of the array correspond to the 

increasing values of θ, at Δθ intervals, and the lines to increasing values of r, at Δr intervals. Aligned 

image points are detected as, 

 Step 1: Set θ = 0˚.  
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 Step 2: For each image point (i) calculate its r value from Eq. (3) for the set value of θ, (ii) 

calculate the closest discrete r value matching the lines of the accumulator array and (iii) add 

the point reference number to the corresponding cell in the accumulator array. 

 Step 3: Set θ = θ + Δθ. If θ ≥ 180˚ go to Step 4, else go to Step 2.  

 Step 4: All points sharing the same cell in the accumulator array are considered aligned. 

 

The choice of the intervals Δθ and Δr influences the ability and accuracy of the Hough transform in 

detecting straight lines. The smaller Δθ, the more refined the search space. A larger value of Δr 

(wider corridor) represents a less stringent alignment tolerance, as illustrated in Fig. 5, where two 

values of Δr are shown. A larger Δr1 results in all the four points in Fig. 5 being aligned by the 

Hough transform. A smaller Δr2 results in only two points being aligned by the Hough transform.  

 

2.3.4 Manufacturing constraints in the GA 

 

The manufacturing constraints are introduced into the fitness function (see Eq. (1)) as an equality 

constraint halign, expressed as, 

 

      1-
nbElement

nbAligned
ωhalign                                             (4) 

 

where ω is a weight associated with the constraint, nbElement is the total number of elements per 

half cross-section and nbAligned represents the number of aligned elements composed of the 

longest non-concurrent flat segments per half cross-section. The number of non-concurrent flat 

segments is taken to Nmax if there are more than Nmax non-concurrent flat segments per half cross-

section or to the actual number of non-concurrent flat segments otherwise. Nmax corresponds to a 

maximum number of flat segments per half cross-section set by the manufacturer, with Nmax less 

than or equal to the maximum possible number of flat segments defined in Rule (3) outlined in 

Section 2.3.2. In the algorithm, a flat segment is determined from the Hough transform as 
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consecutive aligned cross-sectional elements of total length equal to or greater than the minimum 

manufacturable length as defined in Rule (2) in Section 2.3.2. If the cross-section is made of less 

than Nmax flat segments, the constraint is considered satisfied and halign = 0. 

 

3 VALIDATION 

 

3.1 Optimisation problem 

 

A similar optimisation problem to the one used in [3], for which an analytical solution exists, is used 

herein to verify the ability and accuracy of the algorithm in optimising manufacturable cross-

sectional columns. It consists of minimising the cross-sectional area As of a thin-walled bisymmetric 

closed cross-section for given second moments of area, Ixt and Iyt, about the two axes of symmetry. 

Ragnedda and Serra [17] indicated that, when Ixt equals Iyt, the optimised cross-section is a circle 

and therefore a regular polygon of n sides if the cross-section is manufactured with n flat segments. 

 

A regular octagon (n = 8) with apothem a (at mid-wall thickness) of 20 mm and wall thickness t of 1 

mm is used herein to verify the algorithm. The cross-sectional area of the octagon Ao is 132.55 mm2 

and the length Lside of one side for the octagon is therefore 16.6 mm. Its second moments of area Ixt 

= Iyt are 28043.3 mm4. As the problem is bisymmetric, only a quarter of the cross-section in Fig. 6 is 

optimised herein and the maximum number of flat segments Nmax is therefore set to 2. The fitness 

function f derived from Eqs. (1) and (4) is expressed as, 

 

Minimise 11010 ---
nbElement

nbAligned
ωα)

I

I
,max(α)

I

I
,max(α

A

A
f align

yt

y
y

xt

x
x

o

s
             (5)  

 

where Ix and Iy are the calculated second moments of area of the cross-section, and αx, αy and αalign 

are penalty factors associated with each constraint. In Eq. (5), the constraints on the given second 
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moments of area are expressed as inequality constraints. In other words, the algorithm is not 

penalised if Ix ≥ Ixt or Iy ≥ Iyt. This was found to have significantly improved convergence. 

 

In Fig. 6, the circle with the same second moment of area and wall thickness as the octagon is also 

shown for comparison. The cross-sectional area Ac of the circle is 130.31 mm2, i.e. 1.7% less than 

that of the manufacturable octagon. 

 

The AL fitness function used in the algorithm and derived from Eqs. (2) and (5) is given as, 
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(6) 

 

where γx, γy and γalign are the AL penalty function coefficients, µx, µy and µalign are the real 

parameters associated with each penalty function coefficient. Gilbert et al. [3] investigated the 

appropriate initial values for γx and γy, and their recommendation of γx = γy = 2.0 is used herein. For 

initial values of γx and γy less than 0.5, the algorithm tends to select cross-sections with a small 

number of elements as the fittest ones. The appropriate initial value of γalign, associated with ω, is 

investigated in Section 3.3.1. Initial values of μx = μy = μalign = 0 are used, as recommended by 

Belegundu and Arorat [18]. 

 

3.2 Other parameters used 

 

An AL penalty increasing constant β of 1.05 and a convergence rate ρ of 1.5, as recommended in 

[3], are used. A value of β greater than 1.5 forces the algorithm to converge prematurely [3]. The 

design space is set to 40 mm × 40 mm [3] and the maximum number of generations to 150 per run. 

Ten runs are performed to verify the robustness of the algorithm. The number of individuals is set to 

700 per generation and the cross-sections are drawn with short elements of nominal length of 2 mm 
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(see [3] for more details). The probabilities of cross-over and mutation operations in the GA are 

equal to 80% and 1%, respectively, as used in [3]. 

 

3.3 Parametric studies and results 

 

3.3.1 AL penalty function coefficient γalign and associated weight ω 

 

In order to determine the appropriate initial value for γalign and constant value for weight ω, nine 

different combinations are investigated, as shown in Table 1. The value of γalign and ω are selected 

in the intervals [0, 1]. The alignment tolerance and step of orientation angle in the Hough transform 

are set to Δr = 0.5t and Δθ = 0.5˚, respectively, in this section.  

 

Fig. 7 illustrates the average fitness function f given in Eq. (5) over 10 runs, with α = 10, for all 

studied combinations of γalign and ω. The convergence rate improves as γalign increases from 0.01 to 

1.0. The algorithm tends not to converge when γalign is too small (equal to 0.01), as the weight of the 

alignment penalty function in the AL fitness function in Eq. (6) is too small when compared to the 

objective function. The algorithm, on the other hand, is able to converge to a solution for the 

remaining studied combinations (4) to (9). 

 

Table 2 compares the average results over 10 runs to the known optimum solution for all studied 

combinations. A negative sign in Table 2 means that the optimised results are less than the 

optimum solution. Combination (1), i.e. γalign =0.01 and ω = 0.3, experiences incomplete alignment 

with a relative alignment error of -1.1%, while all the remaining combinations allow complete 

alignment. The average second moments of area are similar to the optimum ones for all 

combinations within a maximum average error of 1.4% (combination (8)). Yet, the coefficient of 

variation (CoV) on the second moments of area is minimum for γalign = 0.1 (combination (4) to (6)). 

The minimum average cross-sectional area of 131.96 mm2 is found for combination (5) and is 0.4% 

less than the one of the optimum octagon, therefore implying this combination represents a more 
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optimal solution. Combination (5), i.e. γalign = 0.1 and ω = 0.5, is therefore chosen for further analysis 

in this study. 

 

3.3.2 Alignment tolerance Δr  

 

Table 3 shows the values of Δr and corresponding alignment tolerance ratios Δr /Lside analysed to 

find the appropriate value of the alignment tolerance to ensure convergence and accuracy of the 

algorithm. Δθ is kept constant at 0.5˚. 

 

Similar to Fig. 7, Fig. 8 plots the average fitness function f over 10 runs for all studied cases of Δr. 

The algorithm always converges to a solution. The larger the alignment tolerance Δr, the faster the 

convergence rate is, with Δr = 2.0t converging at the 50th generation approximately. The algorithm 

converges in about 100 generations for Δr = 0.5t. 

 

Table 4 summarises the average results for all studied cases of Δr. The algorithm always satisfies 

the alignment criteria and converges to consistent solutions with small CoVs (within 0.5%) for all 

cases. In the case Δr = 2.0t, the average relative errors on the cross-sectional area and second 

moments of area about the two axes of symmetry are -1.6% (CoV = 0.0%) and 0.0% (CoV = 0.1%), 

respectively. This average cross-sectional area (130.43 mm2) is closer to (less than 0.1%) the 

absolute optimum circle cross-sectional area than the targeted octagon. To illustrate, Fig. 9 plots the 

fittest optimised cross-sections, with the wall thickness of 1 mm shown, at the 150th (final) 

generation for all cases of Δr. The larger the alignment tolerance is, the closer the cross-section to 

the absolute optimum circle is. A “circle” like shape is mainly observed for the case Δr = 2.0t, while 

an “octagon” like shape is mainly observed for the other cases. Fig. 10 shows the second, third, 

second least and least fit optimised cross-sections, out of ten runs, for the stringiest alignment 

tolerance,  Δr = 0.5t. The fittest cross-section for this case is given in Fig. 9 (a). All cross-sections 

can converge to a consistent “octagon” shape outlining the robustness of the algorithm. 
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Based on the above results and as a simple rule, an alignment tolerance ratio Δr /Lside greater than 

0.03 but no more than 0.1 is used in the Hough transform through this research, as a compromise 

between accuracy and convergence rate. Alignment tolerance ratios Δr /Lside less than 0.03 would 

allow more optimal shapes, i.e. closer to the octagon, but will require a large number of generations 

to be analysed and may cause convergence issues due to a stringent alignment tolerance.       

 

4 OPTIMISATION OF CFS COLUMNS 

 

4.1 Optimisation problem 

 

The validated algorithm is applied to minimise the cross-sectional area As of manufacturable CFS 

columns subjected to an axial compressive force N* of 75 kN. The columns are simply-supported, 

symmetric and free to warp, with a uniform wall thickness t of 1.2 mm. Column lengths of 500 mm 

(short), 1,500 mm (intermediate) and 3,000 mm (long) are investigated. The yield stress fy of the 

column is 450 MPa, the Young’s modulus E is 200 GPa and the shear modulus G is 80 GPa. The 

optimisation problem is illustrated in Fig. 11. The algorithm is also run without considering the 

manufacturing constraints for comparison purposes. 

 

The constrained optimisation problem is transformed into an unconstrained problem suitable for the 

GA and involves minimising the fitness function f, 

 

 110 
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f align
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where the first term in the equation represents the objective. Asquash is the squash area, defined as 

the lower bound cross-sectional area of the profile:  
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y

*

squash

f

N
A   (8) 

 

The second term in Eq. (7) represents the constraint on the axial capacity and is expressed as an 

inequality constraint. In other words, the cross-section is not penalised if its capacity exceeds the 

targeted capacity of 75 kN. Nc is the nominal member capacity in compression, calculated from the 

Australian standard AS4600 [19] (see Section 3.1), and α is the penalty factor associated with the 

capacity constraint. The last term represents the manufacturing constraint and is expressed as an 

equality constraint (see Section 2.3.4). Nmax is the maximum possible number of flat segments per 

half cross-section set by the manufacturer, but is less than the upper limit of flat segments defined in 

Rule (3) in Section 2.3.2. In the algorithm, a flat segment is determined from the Hough transform as 

consecutive aligned cross-sectional elements of a total length equal to or greater than the minimum 

manufacturable length (10 mm), defined in Rule (2) in Section 2.3.2. If the half cross-section is 

made of less than Nmax flat segments, the constraint is considered satisfied.  

 

The AL method for GA proposed by Adeli and Cheng [14] is also used herein to handle the axial 

capacity and manufacturing constraints. The fitness function f is then expressed as, 
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where γ and γalign are the penalty function coefficients, and µ and µalign are the real parameters 

associated with each penalty function coefficient. From the parametric study in Section 3 and [3], 

initial values of γ = 2.0, γalign = 0.1, μ = μalign = 0 and ω = 0.5 are used. An AL penalty increasing 

constant β of 1.05 and a convergence rate ρ of 1.5 are also used [3].    

 

4.2 Column capacity 
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4.2.1 Design method for CFS columns 

 

Similar to [4], the DSM [2] as detailed in Section 7 of the Australian Standard AS4600 [19] is used in 

this research to calculate the nominal member capacity in compression, Nc of the cross-sections 

given as, 

 

  cdclcc N,N,NminN e  (10) 

 

where Nce, Ncl and Ncd are the nominal axial compressive capacities for global, local and distortional 

buckling, respectively (see [19] for more details).  

 

4.2.2 Determination of the elastic buckling stresses 

 

In this study, the elastic global buckling stress foc of the cross-sections is estimated from 

Timoshenko’s buckling theory, as given in Clause 3.4.3 for singly-symmetric open cross-section of 

the Australian Standard AS4600 [19]. The rules developed in [4] to automatically estimate the 

elastic local and distortional buckling stresses fol and fod, respectively, from the Finite Strip Method 

(FSM) [20] and the constrained Finite Strip Method (cFSM) [21] signature curves, are used. The 

open source software CUFSM [22] is used to perform the Finite Strip analyses.  

 

4.3 Other parameters 

 

To study the influence of the maximum number of discrete bends on the optimised cross-sectional 

shape, various maximum numbers of flat segments Nmax per half cross-section are investigated. The 

number of investigated flat segments Nmax considered for each column length is given in Table 5. Δr 

is adjusted to the value of Nmax and column lengths according to the results obtained from Section 

3.3.2. Specifically, the maximum length of the cross-sectional elements Lmax for the optimised 
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solutions was first estimated for each combination of Nmax and column length by pre-running the 

algorithm with a large alignment tolerance. Δr was then chosen for each case to satisfy Δr / Lmax 

within the interval [0.03, 0.1]. The value of Δr for each studied case is given in Table 5. The step of 

orientation angle Δθ is set to 1˚ for all cases.  

 

In view of the parameters of the GA, the design space is set to 100 mm × 100 mm [3] and the 

maximum number of generations per run to 150 for manufacturable cross-sections and 80 [4] for 

non-manufacturable ones. 10 runs are performed. The number of individuals per generation is set to 

500 and the cross-sections are arbitrarily drawn with short elements of nominal length of 4 mm [3]. 

The cross-over and mutation operators for singly-symmetric cross-sections detailed in [4] apply. The 

probabilities of the cross-over and mutation operators in the GA are equal to 80% and 1%, 

respectively [3].  

 

To improve computation time when elements are aligned, i.e. forming a flat segment, only the 

coordinates of the flat segments are entered into CUFSM [22]. However, for accuracy of the Finite 

Strip analysis [10], flat segments between 10 mm to 15 mm in length are divided into two segments 

of equal length, and flat segments longer than 15 mm are divided into three segments of equal 

length.  

 

A simplified flowchart is presented in Fig. 12 showing that half cross-sections are used in the GA 

and entire cross-sections are only formed for elastic bucking analyses in CUFSM [22]. The detailed 

flowchart of the algorithm is shown in [3]. While singly-symmetric and/or anti-symmetric sections can 

be readily incorporated into the algorithm, only singly-symmetric columns are optimised in this 

study. 

 

4.4 Results and discussion 

 



 18 

4.4.1 Convergence 

 

Fig. 13 shows the average fitness functions f given in Eq. (7) times the squash area Asquash over 10 

runs for 500 mm (Fig. 13(a)), 1,500 mm (Fig. 13(b)) and 3,000 mm (Fig. 13(c)) long columns. In Fig. 

13, the penalty factor in Eq. (7) is set to α = 10. The algorithm always converges to an optimised 

solution. Typically, the higher Nmax, the fastest the convergence is, likely because the length of the 

flat segments of the optimised cross-sections increases when Nmax decreases. The algorithm always 

converges the fastest for the non-manufacturable cases. The algorithm approaches an optimised 

solution at about the 100th generation for all manufacturable cases of the 500 mm long columns 

(Fig. 13(a)), Nmax = 5 to 7 of the 1,500 mm long columns (Fig. 13(b)) and Nmax = 5 to 8 of the 3,000 

mm long columns (Fig. 13(c)). An optimum solution is approached after the 140th generation for the 

remaining cases. For the non-manufacturable cases, 60 generations are sufficient to approach an 

optimised solution for all column lengths. 

 

The computation time is highly dependent on the number of cross-sectional elements analysed in 

CUFSM [22] (written in MATLAB), to perform the Finite Strip analyses. The greater the number of 

elements, the longer the computation time is. The main algorithm is written in Python and does not 

use parallel processing, while the Finite Strip analyses operated in CUFSM does. Up to 8 computer 

cores are selected per MATLAB analysis in a high performance computer cluster consisting of a 

mixture of SGI Altix XE and SGI® Rackable™ C2114-4TY14 servers for this purpose. The Finite Strip 

analyses take about 80% of the computation time and the main algorithm takes the remaining 20%. 

It takes on average 20, 35 and 65 minutes to optimise one generation for the manufacturable 

columns and 30, 50 and 75 minutes for the non-manufacturable ones for the 500 mm, 1,500 mm 

and 3,000 mm long columns, respectively. 

 

In this study, a strict maximum of 75,000 solutions are evaluated (150 generations × 500 cross-

sections) per run with the algorithm often converging in less than 50,000 solutions. This number is 

of the same order of magnitude as the 40,000 solutions evaluated in [6, 23]. 
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4.4.2 Average results 

 

Table 6 to Table 8 summarise the average results over 10 runs for the 500 mm, 1,500 mm and 

3,000 mm long columns, respectively. When the algorithm is run with manufacturing constraints, the 

algorithm always satisfies the alignment criteria and converges to consistent solutions with small 

CoVs on the cross-sectional area (maximum of 0.91% when Nmax = 3 in Table 7). This further 

confirms the robustness of the algorithm. The average nominal member capacity Nc is always close 

to the targeted axial compressive capacity of 75 kN, with the largest average absolute error equal to 

0.50% for the 3,000 mm long columns when Nmax = 3 (see Table 8). For all cases, except for Nmax = 

7 and 8 of the 3,000 mm long columns, the average ultimate compressive stress (nominal axial 

capacity-to-area ratio) is always lower than the same of the non-manufacturable solutions, as the 

latter are more optimum. However, for Nmax = 7 and 8 of the 3,000 mm long columns (Table 8), the 

average ultimate compressive stress is up to 0.6% higher than the same of the non-manufacturable 

cross-sections. This outcome is due to the extremely close cross-sectional shapes between the 

manufacturable and non-manufacturable cases and the large number of elements for the non-

manufacturable cross-sections that limits the ability of the algorithm in forming perfectly curved 

cross-sections. The lowest average ultimate compressive stress of the manufacturable cases, found 

for Nmax = 3, is 1.1%, 2.5% and 1.9% lower than the same of the non-manufacturable case for the 

500 mm (Table 6), 1,500 mm (Table 7) and 3,000 mm (Table 8) long columns, respectively. This 

validates the finding in [8] that introducing manufacturing constraints into shape optimisation 

algorithms marginally reduces the performance of the sections.  

 

4.4.3 Cross-sectional shapes 

 

Fig. 14 to Fig. 18 illustrate the optimised non-manufacturable (Fig. 14) and manufacturable (Fig. 15 

to Fig. 18) cross-sections for the 500 mm long columns. Based on the value of the ultimate 

compressive stress, the two fittest and two least fit cross-sections are shown in each figure. The two 
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fittest cross-sections for all cases typically converge to “bean” cross-sectional shapes (subscripts (a-

b) in Fig. 14 to Fig. 18), while the least fit ones mostly converge to open “Cee” sections (Fig 13 (c), 

Fig. 16 (d), Fig. 17 (d) and Fig. 18 (c, d)). Fig. 17 (c) shows a closed “Cee” section, Fig. 14 (d) and 

Fig. 15 (d) a “Sigma” cross-sectional shape, and Fig. 14 (c) and Fig. 16 (c) a “bean” cross-sectional 

shape. The fittest non-manufacturable cross-section in Fig. 14 (a) has the largest ultimate 

compressive stress, 387.8 MPa, of all cross-sections. Its cross-sectional depth and width are 64.9 

mm and 36.5 mm, respectively, i.e. a depth-to-width ratio of 1.78. The case Nmax = 3 (Fig. 15 (a)) 

has the lowest ultimate compressive stress of all fittest manufacturable cross-sections, which is only 

0.9%lower than that of the fittest non-manufacturable solution (Fig. 14 (a)). Its cross-sectional depth 

and width are 5.2% and 1.4%, respectively, greater than the fittest non-manufacturable solution. 

 

Similar to Fig. 14 to Fig. 18, Fig. 19 to Fig. 24 show the fittest and least fit optimised cross-sections 

for the 1,500 mm long columns. The fittest cross-sections converge to “bean” (Fig. 19 (a, b), Fig. 20 

(a, b), Fig. 22 (b), Fig. 23 (b) and Fig. 24 (a, b)) and closed “Cee” (Fig. 21 (a, b), Fig. 22 (a) and Fig. 

23 (a)) cross-sectional shapes, while the least fit ones converge to “Sigma” cross-section shapes 

(subscripts (c, d) in Fig. 19 and Fig. 21 to Fig. 23) and nearly closed “Cee” (Fig. 20 (c, d)). For Nmax 

= 7, Fig. 24 (c, d) show closed (or nearly closed) “Cee” sections with lip stiffeners.  

 

Similar conclusions to the ones drawn for the 500 mm long columns apply: (i) the fittest non-

manufacturable cross-section (Fig. 19 (a)) has the largest ultimate compressive stress (261.0 MPa) 

of all studied cases, and (ii) the fittest manufacturable cross-section with the lowest ultimate 

compressive stress (Nmax = 3 in Fig. 20 (a)) performs similarly to the fittest non-manufacturable 

solution, with only 2.5% difference in ultimate compressive stresses between the two solutions. The 

cross-sectional depth and width of the former manufacturable cross-section are 7.5% and 2.8%, 

respectively, lower than that of the fittest non-manufacturable solution.  

 

Fig. 25 to Fig. 31 show the two fittest and two least fit optimised non-manufacturable and 

manufacturable cross-sections for the 3,000 mm long columns. All cross-sections converge to 
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“bean” cross-sectional shapes, with the least fit cross-sections usually having a more open cross-

sectional shape than the fittest ones. The large number of elements forming the non-manufacturable 

cross-sections in Fig. 25 results in not perfectly curved shapes, and the largest ultimate 

compressive stress (173.6 MPa) is found for the manufacturable case Nmax = 6 in Fig. 29 (a). 

However, this value is only 0.11 % greater than the ultimate compressive stress of the fittest non-

manufacturable case in Fig. 25 (a). The cross-sectional depth and width of the fittest cross-section 

are 134.1 mm and 82.6 mm, respectively, which represents a cross-section that is 1.8% less deep 

and 4.2% wider than the fittest non-manufacturable solution. The ultimate compressive stresses of 

the fittest cross-sections for all studied cases are close to each other and no more than 1.8% apart.  

 

4.4.4 Improvement in capacity  

 

The nominal member capacities in compression of the optimised manufacturable solutions in Table 

6 through Table 8 are compared to conventional lipped channel cross-sections that have similar 

aspect ratios to the sections manufactured in Australia by Bluescope Lysaght [24] and the same 

cross-sectional area of the optimised sections. Table 9 summarises the dimensions and capacity of 

the conventional lipped channels used for each investigated column length. The conventional 

sections in Table 9 satisfy the geometric limitations for pre-qualified DSM compression members 

given in Table 7.1.1 of Australian standard AS4600 [19].  As noted in Table 9, the nominal member 

capacities of the optimised solutions are significantly larger than the corresponding conventional 

ones. The improvement ranges from 30% for the 500 mm long columns to 151% for the 3,000 mm 

long columns. 

 

5 CONCLUSIONS 

 

This paper has defined a set of simple manufacturing rules and incorporated them into the 

previously developed “self-shape optimisation” algorithm for CFS profiles using the Hough transform. 

The objective of the fitness function is to minimise cross-sectional area subjected to a targeted axial 



 22 

member compressive capacity and manufacturing constraints. The ability and accuracy of the 

algorithm in optimising manufacturable thin-walled cross-sections have been verified against a 

known optimisation problem. The algorithm was used to shape-optimise manufacturable simply-

supported, singly-symmetric and free to warp CFS open-section columns for all buckling modes. 

Short, intermediate and long columns, with various numbers of manufacturable flat segments, were 

investigated.  The main conclusions are summarised below: 

 The robustness of the algorithm is demonstrated by the consistency of the optimised solutions 

over 10 runs. 

 The Hough transform accurately allows the formation of manufacturable CFS cross-sections, 

and the algorithm always converges to optimised solutions. The convergence rate for 

manufacturable cross-sections is slower than for non-manufacturable ones.  

 However, the computation time per generation to shape-optimise short to long manufacturable 

columns is approximately 26% to 66% faster than for non-manufacturable ones, because in 

CUFSM it takes more time to analyse non-manufacturable cross-sections composed of a 

large number of short elements than to analyse manufacturable ones with a small number of 

flat segments.  

 Introducing manufacturing constraints into shape optimisation algorithms was found to 

marginally affect the performance of the resulting sections, with the average ultimate 

compressive stress of the manufacturable columns being within 1.1% of that of the non-

manufacturable ones. 

 The manufacturable cross-sectional shapes were usually found to be similar. “Bean” and 

closed “Cee” cross-sectional shapes without local stiffeners were mainly found to be the 

fittest, and likely represent optimum manufacturable or non-manufacturable cross-sectional 

shapes. Typically, local buckling is prevented by shaping these rounded optimum cross-

sections rather than forming local stiffeners in the algorithm.  

 The optimised singly-symmetric manufacturable cross-sections have a capacity 30% to 151% 

higher than that of the conventional lipped channel sections. 
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FIGURES 
 

 

 (a) (b)  (c) 

Fig. 1: Conventional CFS profiles with or without stiffeners, (a) Cee, (b) Z and (c) Σ-sections 

 

            

  (a) roll-forming (b) brake-pressing 

Fig. 2: Cold-forming processes (Courtesy of CustomPartNet Inc.) 

 

 

Fig. 3: Manufacturing rules 
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(a) Cartesian coordinate system                   (b) Hough parameter space 

Fig. 4. Hough transform from Cartesian space to Hough parametric space 

 

 

Fig. 5. Alignment tolerance for Hough transform 
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Fig. 6. Optimum octagon, only a quarter section shown 

 

 

Fig. 7. Average fitness f for parametric study of AL penalty function coefficient γalign and weight ω 

 



 28 

 

Fig. 8. Average fitness f for parametric study of alignment tolerance Δr 

 

    

 (a) Δr = 0.5t (b) Δr = 1.0t  (c) Δr = 1.5t  (d) Δr = 2.0t 
 As = 131.7 mm2  As = 131.0 mm2  As = 130.9 mm2  As = 130.4 mm2 
 Ix = 28096.6 mm4  Ix = 27989.9 mm4  Ix = 28011.2 mm4  Ix = 28036.7 mm4 
 Iy = 28076.7 mm4  Iy = 27984.8mm4  Iy = 28019.4 mm4  Iy = 27999.2 mm4 

Fig. 9. Fittest optimised cross-sections at the last generation (150th) for all cases of Δr from (a) to (d) 
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 (a) Second fittest  (b) Third least fit  (c) Second least fit  (d) Least fit 
 As = 131.8 mm2 As = 132.1 mm2  As = 132.3 mm2  As = 132.4 mm2 
 Ix = 28024.9 mm4  Ix = 28021.5 mm4  Ix = 27985.3 mm4  Ix = 28074.3 mm4 
 Iy = 28114.3 mm4  Iy = 28246.1 mm4  Iy = 27972.3 mm4  Iy = 28034.9 mm4 

Fig. 10. Optimised cross-sections at the last generation (150th), for the second fittest (a), third fittest 

(b), second least fit (c) and least fit (d) cross-sections out of 10 runs for the case Δr = 0.5t 

 

 

Fig. 11: Optimisation problem  

 

 

Fig. 12: Simplified flowchart of the algorithm 
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(a) 

 

(b)  
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(c)  

Fig. 13: Average fitness f for the (a) 500 mm, (b) 1,500 mm and (c) 3,000 mm long columns 

 

    

  (a) As = 193.8 mm2 (b) As = 193.7 mm2 (c) As = 195.8 mm2 (d) As = 196.9 mm2 
 Nc = 75.16 kN Nc = 75.07 kN  Nc = 74.90 kN Nc = 74.81 kN 
  Nc/As = 387.8 MPa Nc/As = 387.6 MPa Nc/As = 382.5 MPa  Nc/As = 379.9 MPa 

Fig. 14: Optimised cross-sections for the 500 mm long columns and the non-manufacturable case, 

(a, b) fittest cross-sections and (c, d) least fit cross-sections  
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  (a) As = 195.1 mm2 (b) As = 195.3 mm2 (c) As = 197.7 mm2 (d) As = 199.4 mm2 
 Nc = 74.98 kN  Nc = 75.00 kN Nc = 74.97 kN Nc = 75.00 kN 
  Nc/As = 384.3 MPa Nc/As = 384.0 MPa Nc/As = 379.2 MPa  Nc/As = 376.1 MPa 

Fig. 15: Optimised cross-sections for the 500 mm long columns and Nmax = 3, (a, b) fittest cross-

sections and (c, d) least fit cross-sections  

 

    

  (a) As = 194.7 mm2  (b) As = 194.8 mm2 (c) As = 196.0 mm2 (d) As = 196.9 mm2 
 Nc = 75.00 kN  Nc = 75.00 kN Nc = 75.04 kN Nc = 75.01 kN 
  Nc/As = 385.2 MPa Nc/As = 384.9 MPa Nc/As = 383.0 MPa  Nc/As = 380.9 MPa 

Fig. 16: Optimised cross-sections for the 500 mm long columns and Nmax = 4, (a, b) fittest cross-

sections and (c, d) least fit cross-sections  
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  (a) As = 194.0 mm2  (b) As = 194.2 mm2 (c) As = 197.2 mm2 (d) As = 198.4 mm2 
 Nc = 74.95 kN  Nc = 75.00 kN Nc = 75.00 kN Nc = 75.05 kN 
  Nc/As = 386.3 MPa Nc/As = 386.2 MPa Nc/As = 380.2 MPa  Nc/As = 378.3 MPa 

Fig. 17: Optimised cross-sections for the 500 mm long columns and Nmax = 5, (a, b) fittest cross-

sections and (c, d) least fit cross-sections  

 

    

  (a) As = 193.9 mm2  (b) As = 194.2 mm2 (c) As = 197.9 mm2 (d) As = 198.2 mm2 
 Nc = 74.93 kN  Nc = 75.01 kN Nc = 75.01 kN Nc = 74.98 kN 
  Nc/As = 386.4 MPa Nc/As = 386.3 MPa Nc/As = 379.0 MPa  Nc/As = 378.3 MPa 

Fig. 18: Optimised cross-sections for the 500 mm long columns and Nmax = 6, (a, b) fittest cross-

sections and (c, d) least fit cross-sections  
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 (a) As = 287.6 mm2 (b) As = 287.7 mm2 (c) As = 289.0 mm2 (d) As = 288.8 mm2 
 Nc = 75.05 kN Nc = 75.06 kN  Nc = 74.95 kN Nc = 74.84 kN 
  Nc/As = 261.0 MPa Nc/As = 261.0 MPa Nc/As = 259.3 MPa  Nc/As = 259.1 MPa 

Fig. 19: Optimised cross-sections for the 1,500 mm long columns and the non-manufacturable case, 

(a, b) fittest cross-sections and (c, d) least fit cross-sections 

 

    

  (a) As = 292.5 mm2  (b) As = 296.3 mm2 (c) As = 296.1 mm2 (d) As = 301.7 mm2 
 Nc = 75.03 kN  Nc = 75.87 kN Nc = 74.52 kN Nc = 75.29 kN 
  Nc/As = 256.5 MPa Nc/As = 256.1 MPa Nc/As = 251.7 MPa  Nc/As = 249.6 MPa 

Fig. 20: Optimised cross-sections for the 1,500 mm long columns and Nmax = 3, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 
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  (a) As = 291.0 mm2  (b) As = 291.6 mm2 (c) As = 294.0 mm2 (d) As = 293.5 mm2 
 Nc = 75.08 kN  Nc = 75.17 kN Nc = 74.96 kN Nc = 74.67 kN 
  Nc/As = 258.0 MPa Nc/As = 257.8 MPa Nc/As = 255.0 MPa  Nc/As = 254.4 MPa 

Fig. 21: Optimised cross-sections for the 1,500 mm long columns and Nmax = 4, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 

 

    

 (a) As = 290.1 mm2  (b) As = 289.8 mm2 (c) As = 290.3 mm2 (d) As = 292.6 mm2 
 Nc = 75.22 kN  Nc = 75.13 kN Nc = 74.92 kN Nc = 75.02 kN 
 Nc/As = 259.3 MPa Nc/As = 259.3 MPa Nc/As = 258.0 MPa  Nc/As = 256.4 MPa 

Fig. 22: Optimised cross-sections for the 1,500 mm long columns and Nmax = 5, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 
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 (a) As = 288.7 mm2  (b) As = 288.8 mm2 (c) As = 290.4 mm2 (d) As = 292.1 mm2 
 Nc = 75.01 kN  Nc = 75.02 kN Nc = 74.93 kN Nc = 74.98 kN 
 Nc/As = 259.8 MPa Nc/As = 259.8 MPa Nc/As = 258.1 MPa  Nc/As = 256.7 MPa 

Fig. 23: Optimised cross-sections for the 1,500 mm long columns and Nmax = 6, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 

 

    

   (a) As = 288.3 mm2   (b) As = 288.4 mm2  (c) As = 289.8 mm2 (d) As = 291.5 mm2 
 Nc = 75.02 kN Nc = 75.02 kN Nc = 75.00 kN Nc = 74.97 kN 
  Nc/As = 260.2 MPa Nc/As = 260.1 MPa  Nc/As = 258.8 MPa  Nc/As = 257.2 MPa 

Fig. 24: Optimised cross-sections for the 1,500 mm long columns and Nmax = 7, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 
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 (a) As = 437.4 mm2 (b) As = 435.8 mm2 (c) As = 434.2 mm2 (d) As = 436.4 mm2 
 Nc = 75.86 kN  Nc = 75.52 kN Nc = 74.78 kN Nc = 74.94 kN 
  Nc/As = 173.4MPa Nc/As = 173.3 MPa Nc/As = 172.2MPa Nc/As = 171.7 MPa 

Fig. 25: Optimised cross-sections for the 3,000 mm long columns and the non-manufacturable case, 

(a, b) fittest cross-sections and (c, d) least fit cross-sections 

 

      

  (a) As = 439.8 mm2  (b) As = 441.6 mm2 (c) As = 446.2 mm2 (d) As = 447.4 mm2 
 Nc = 75.17 kN  Nc = 75.31 kN  Nc = 75.24 kN Nc = 75.30 kN 
  Nc/As = 170.9 MPa Nc/As = 170.5 MPa Nc/As = 168.6 MPa  Nc/As = 168.3 MPa 

Fig. 26: Optimised cross-sections for the 3,000 mm long columns and Nmax = 3, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 
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  (a) As = 438.8 mm2  (b) As = 439.0 mm2 (c) As = 442.8 mm2 (d) As = 442.0 mm2 
 Nc = 75.57 kN  Nc = 75.23 kN  Nc = 75.38 kN Nc = 75.19 kN 
  Nc/As = 172.2MPa Nc/As = 171.4 MPa Nc/As = 170.2 MPa  Nc/As = 170.1 MPa 

Fig. 27: Optimised cross-sections for the 3,000 mm long columns and Nmax = 4, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 

 

    

  (a) As = 437.8 mm2  (b) As = 435.7 mm2 (c) As = 436.9 mm2 (d) As = 436.7 mm2 
 Nc = 75.78 kN  Nc = 75.22 kN  Nc = 75.04 kN Nc = 75.01 kN 
  Nc/As = 173.1 MPa Nc/As = 172.6 MPa Nc/As = 171.8 MPa  Nc/As = 171.8 MPa 

Fig. 28: Optimised cross-sections for the 3,000 mm long columns and Nmax = 5, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 
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 (a) As = 436.3 mm2  (b) As = 434.3 mm2 (c) As = 436.0 mm2 (d) As = 437.4 mm2 
 Nc = 75.75 kN  Nc = 75.11 kN  Nc = 74.81 kN Nc = 74.80 kN 
  Nc/As = 173.6 MPa Nc/As = 172.9 MPa Nc/As = 171.6 MPa  Nc/As = 171.0 MPa 

Fig. 29: Optimised cross-sections for the 3,000 mm long columns and Nmax = 6, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 

 

    

 (a) As = 433.9 mm2  (b) As = 433.0 mm2 (c) As = 434.5 mm2 (d) As = 435.4 mm2 
 Nc = 75.17 kN  Nc = 74.90 kN  Nc = 74.98 kN Nc = 75.07 kN 
  Nc/As = 173.2 MPa Nc/As = 172.9 MPa Nc/As = 172.6 MPa  Nc/As = 172.4 MPa 

Fig. 30: Optimised cross-sections for the 3,000 mm long columns and Nmax = 7, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 
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  (a) As = 433.1 mm2  (b) As = 433.3 mm2  (c) As = 435.4 mm2 (d) As = 437.3 mm2 
 Nc = 74.99 kN  Nc = 75.00 kN Nc = 75.02 kN  Nc = 74.93 kN 
  Nc/As = 173.2 MPa Nc/As = 173.1 MPa Nc/As = 172.3 MPa  Nc/As = 171.4 MPa 

Fig. 31: Optimised cross-sections for the 3,000 mm long columns and Nmax = 8, (a, b) fittest cross-

sections and (c, d) least fit cross-sections 
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TABLES 

 

Table 1. AL penalty function coefficient γalign and associated weight ω selected for parametric study 

Combination 
γalign 

0.01 0.10 1.00 

ω 

0.3 (1) (4) (7) 

0.5 (2) (5) (8) 

0.7 (3) (6) (9) 

 

Table 2. Average results over 10 runs for parametric study of γalign and ω 

Combination 

Cross-sectional area 
Second moment 

of area Ix 
Second moment 

of area Iy 
nbAligned / 
nbElement 

As 
(mm2) 

Error(1) 
(%) 

CoV 
(%) 

Error(2) 
(%) 

CoV 
(%) 

Error(2) 
(%) 

CoV 
(%) 

Error 
(%) 

CoV 
(%) 

(1) 132.01 -0.4  0.5 -0.1  3.7 -0.2  2.1 -1.1  3.4 

(2) 132.32 -0.2  0.6 0.5  2.3 -0.3  1.6 0.0  0.0 

(3) 132.36 -0.1  0.6 0.5  2.0 0.4  0.8 0.0  0.0 

(4) 132.13 -0.3  0.4 0.1  0.6 0.4  0.6 0.0  0.0 

(5) 131.96 -0.4 0.2 0.1 0.2 0.1 0.3 0.0 0.0 

(6) 132.20 -0.3  0.3 0.0  0.2 0.4  0.6 0.0  0.0  

(7) 132.88 0.2  0.3 0.2  0.7 0.6  1.0 0.0  0.0  

(8) 133.12 0.4  0.9 1.4  4.0 0.2  0.5 0.0  0.0  

(9) 133.71 0.9  0.6 1.0  2.5 0.6  1.1 0.0  0.0  

Note: the negative error represents the optimised results are less than the optimum octagon’s 
(1): Relative error when compared to Ao = 132.55 mm2 of the optimum octagon 

(2): Relative error when compared to Ixt = Iyt are 28043.3 mm4 of the optimum octagon 

 

Table 3. Alignment tolerance Δr selected for parametric study 

Δr (mm) Δr / Lele 

0.5t 0.03 

1.0t 0.06 

1.5t 0.09 

2.0t 0.12 

 

Table 4. Average results over 10 runs for parametric study of Δr 

Case 
of Δr 

Cross-sectional area 
Second moment 

of area Ix 
Second moment 

of area Iy 
nbAligned / 
nbElement 

As 
(mm2) 

Error(1) 
(%) 

CoV 
(%) 

Error(2) 
(%) 

CoV 
(%) 

Error(2) 
(%) 

CoV 
(%) 

Error 
(%) 

CoV 
(%) 

0.5t 131.96 -0.4 0.2 0.1 0.2 0.1 0.3 0.0 0.0 

1.0t 131.06 -1.1 0.1 -0.1 0.2 0.1 0.1 0.0 0.0 

1.5t 131.23 -1.0 0.1 0.2 0.4 0.1 0.3 0.0 0.0 

2.0t 130.43 -1.6 0.0 0.0 0.1 0.0 0.1 0.0 0.0 

Note: the negative error represents the optimised results are less than the optimum octagon’s 
 (1): Relative error when compared to Ao = 132.55 mm2 of the optimum octagon 

(2): Relative error when compared to Ixt = Iyt are 28043.3 mm4 of the optimum octagon 
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Table 5: Alignment tolerance Δr proposed for various Nmax and column length (t = 1.2 mm) 

500 mm Column 1,500 mm Column 3,000 mm Column 

Nmax  
Δr 

(mm) 
Lmax  
(mm) 

Δr / Lmax Nmax 
Δr 

(mm) 
Lmax  
(mm) 

Δr / Lmax Nmax  
Δr 

(mm) 
Lmax  

(mm) 
Δr / Lmax 

3 1.5t 40 0.045 3 2.5t 50 0.060 3 4.0t 65 0.074 

4 1.3t 32 0.049 4 2.5t 44 0.068 4 3.7t 60 0.074 

5 1.0t 32 0.038 5 2.0t 36 0.067 5 3.5t 46 0.091 

6 1.0t 32 0.038 6 1.5t 36 0.050 6 3.5t 46 0.091 

- - - - 7 1.5t 36 0.050 7 3.0t 40 0.090 

- - - - - - - - 8 2.5t 36 0.083 

 

Table 6: Average results over 10 runs for the 500 mm long columns 

Nmax 

Cross-sectional 
area 

Nominal member capacity 
Ultimate 

compressive 
stress 

Alignment 

As 
(mm2) 

CoV 
(%) 

Nc 
(kN) 

Error(2) 
(%) 

CoV 
(%) 

Nc / As 
(MPa) 

Error 
(%) 

CoV 
(%) 

3 196.8 0.64 74.99 0.06 0.08 381.0 0.00 0.00 

4 195.4 0.33 75.01 0.04 0.05 383.9 0.00 0.00 

5 196.1 0.63 74.98 0.05 0.07 382.4 0.00 0.00 

6 195.6 0.74 75.00 0.03 0.04 383.4 0.00 0.00 

∞(1) 194.7 0.48 75.00 0.16 0.19 385.2 -- -- 
(1): Algorithm ran without manufacturing constraints (non-manufacturable cross-section) 

(2): Absolute error when compared to N* = 75 kN 

 

Table 7: Average results over 10 runs for the 1,500 mm long columns  

Nmax 

Cross-sectional 
area 

Nominal member capacity 
Ultimate 

compressive 
stress 

Alignment 

As 
(mm2) 

CoV 
(%) 

Nc 
(kN) 

Error(2) 
(%) 

CoV 
(%) 

Nc / As 
(MPa) 

Error 
(%) 

CoV 
(%) 

3 297.0 0.91 75.30 0.40 0.49 253.6 0.0 0.00 

4 292.1 0.56 74.97 0.23 0.29 256.7 0.0 0.00 

5 290.4 0.27 74.99 0.12 0.13 258.5 0.0 0.00 

6 289.6 0.35 75.07 0.06 0.06 259.0 0.0 0.00 

7 289.1 0.31 75.01 0.04 0.05 259.4 0.0 0.00 

∞(1) 288.1 0.26 74.97 0.16 0.20 260.2 -- -- 
(1): Algorithm ran without manufacturing constraints (non-manufacturable cross-section) 

(2): Absolute error when compared to N* = 75 kN 
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Table 8: Average results over 10 runs for the 3,000 mm long columns 

Nmax 

Cross-sectional 
area 

Nominal member capacity 
Ultimate 

compressive 
stress 

Alignment 

As 
(mm2) 

CoV 
(%) 

Nc 
(kN) 

Error(2) 
(%) 

CoV 
(%) 

Nc / As 
(MPa) 

Error 
(%) 

CoV 
(%) 

3 444.7 0.64 75.37 0.50 0.35 169.5 0.0 0.00 

4 440.3 0.32 75.30 0.40 0.32 171.0 0.0 0.00 

5 436.5  0.20 75.15 0.20 0.30 172.2 0.0 0.00 

6 435.8  0.23 75.10 0.13 0.34 172.3 0.0 0.00 

7 434.3  0.19 75.03 0.04 0.16 172.8 0.0 0.00 

8 434.5  0.29 75.02 0.02 0.08 172.7 0.0 0.00 

∞(1) 435.3  0.35 75.16 0.21 0.54 172.7 -- -- 
(1): Algorithm ran without manufacturing constraints (non-manufacturable cross-section) 

(2): Absolute error when compared to N* = 75 kN 

 

Table 9: Results of conventional lipped channel cross-sections 

Column 
length 
(mm) 

Conventional lipped channel section 

Improvement 
in capacity (2)  

(%) 
Depth 
(mm) 

Width 
(mm) 

Lip 
(mm) 

Thick-
ness 
(mm) 

Cross-
section 
area(1)  
(mm2) 

Nominal 
member 
capacity 

(kN) 

Ultimate 
compressive 

stress 
(MPa) 

500 68.6 42.3 10.8 1.2 196.0 57.7 294.4 30 

1,500 118.6 55.3 13.1 1.2 290.3 39.3 135.4 91 

3,000 195.2 75.2 16.5 1.2 435.3 29.9 68.7 151 
(1): Equal to the average optimised cross-sectional area of manufacturable cases 

(2): Compared to the average optimised capacity of manufacturable cases 
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