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A NONCOMMUTATIVE FRAMEWORK FOR TOPOLOGICAL INSULATORS

C. BOURNE, A. L. CAREY, AND A. RENNIE

Abstract. We study topological insulators, regarded as physical systems giving rise to topological
invariants determined by symmetries both linear and anti-linear. Our perspective is that of noncommu-

tative index theory of operator algebras. In particular we formulate the index problems using Kasparov

theory, both complex and real. We show that the periodic table of topological insulators and super-
conductors can be realised as a real or complex index pairing of a Kasparov module capturing internal

symmetries of the Hamiltonian with a spectral triple encoding the geometry of the sample’s (possibly

noncommutative) Brillouin zone.

Keywords: Topological insulators, KK-theory, spectral triple
Subject classification: Primary: 81R60, Secondary: 19K35, 81V70

Contents

1. Introduction 1
1.1. Overview 1
1.2. Outline of the paper 2
2. Review 3
2.1. Motivating example: the integer quantum Hall effect 3
2.2. Symmetries and invariants 5
2.3. Contributions in the mathematical literature 6
2.4. The bulk-edge correspondence 8
3. Bulk theory 9
3.1. Symmetry types and representations 9
3.2. Symmetries, group actions and Clifford algebras 11
3.3. Internal symmetries and KK-classes 13
3.4. Spectral triples and pairings 17
3.5. The Kasparov product and the Clifford index 20
3.6. Some brief remarks on disordered systems 22
4. Applications 23
4.1. Insulator models 23
4.2. The Kasparov product and the bulk-edge correspondence 25
Appendix A. Kasparov theory for real algebras 26
A.1. Basic notions 26
A.2. Higher-order groups 27
Appendix B. Simplifying the product spectral triple 29
References 29

1. Introduction

1.1. Overview. This paper is an investigation of the links between topological states of matter and real
Kasparov theory. It is independent of (though motivated by) our previous paper [14], where we examined
a discrete (tight-binding) model of the integer quantum Hall effect in complex Kasparov theory, which
we briefly describe.

The discrete model of the quantum Hall effect gives rise to a spectral triple in the boundary-free (bulk)
system (we explain this terminology later). When a boundary/edge is added to the model, bulk and
edge systems can be linked by a short exact sequence [42]. In [14] we proved that the bulk spectral triple
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can be factorised as the Kasparov product of a Kasparov module representing the short exact sequence
with a spectral triple coming from observables concentrated at the boundary of the sample.

In [14], we commented that the method used allowed the Hall conductance to be computed without
passage to cyclic homology and cohomology as in [40, 42, 44], and that this would be useful for detecting
torsion invariants that cyclic theory cannot detect.

In this paper, we show that Kasparov theory in the real case (that is KKO-theory) may be used to
give a noncommutative framework for topological insulators in which torsion invariants may be detected
and effectively computed. Our invariants are (real) Kasparov classes, and so automatically topological
invariants. These Kasparov modules can be naturally identified with Clifford modules, and then with
KO-classes (of a point) via the treatment of KO-theory by Atiyah-Bott-Shapiro [4]. This procedure is
in contrast to the more usual methods of obtaining Z2-invariants in the literature. Eigenvalue counting
(mod 2) and similar methods do not a priori produce topological invariants, necessitating an extra step
to prove homotopy invariance.

One motivation for writing this article as a review is to give some background on the application of
Kasparov theory to topological states of matter. The interested reader can go further into the study
of index theory applicable to systems that require real K-theory and noncommuative methods. At the
level of the algebra of observables, systems with anti-linear symmetries require the algebra to be real or
Real (note the capitalisation). Elsewhere we will see that the K-theoretic formulation of index theory
provides a framework to consider disordered systems and the bulk-edge correspondence for topological
insulatorsa.

The ‘periodic table for topological insulators’ has a long history. We refer the reader to the work of
Altland and Zirnbauer [1], Ryu et al. [80, 81] and Kitaev [46]. The idea of these and other authors is to
show how the bulk invariants of interest in systems with symmetries, such as topological insulators, can
be related to real and complex (commutative) K-theory. More recently, papers of a more mathematical
nature have appeared establishing the K-theoretic properties of topological insulators [23, 25, 28, 39, 86].

The approach of these papers is adapted to the study of the (commutative) geometry of the Brillouin
zone. It is widely appreciated that the introduction of disorder will require a noncommutative approach.
One purpose of this article is to propose a methodology flexible enough to handle noncommutative ob-
servable algebras. Whilst not completely addressing the issue of disorder, we do show that our technique
extends to the noncommutative algebra of disordered Hamiltonians provided that they retain a spectral
gap.

We remark that even in the commutative viewpoint the links between the bulk-edge correspondence,
real/Real K-theory and K-homology are less studied. In this article we examine how real Kasparov
theory can be used to derive the invariants of interest for bulk systems (i.e. systems with no boundary).
In a separate work we will show how the framework developed here is employed to establish a bulk-edge
correspondence of topological insulators in arbitrary dimension.

The novelty of our approach is that it exploits the full bivariant KK-theory as developed by Kas-
parov [36], and utilises the unbounded setting as developed in [7, 16, 24, 33, 50, 64, 66] so that all our
constructions are explicit and have natural physical and/or geometric interpretations.

1.2. Outline of the paper. The new results in this article begin in Section 3 after a review in Section
2 of previous work. These new results concern a derivation of the K-theoretic classification of topological
states of matter in Kasparov theory, complex and real. The work in [28, 39, 86] also translates into this
language.

While a derivation of the periodic table is not exactly new, both in the physics and mathematical
literature, we are of the opinion that an understanding of the systematic application of Kasparov’s
powerful machinery to the insulator problem is critical for further developments, such as ‘index theorems’
for torsion invariants and the incorporation of disorder. (Note that the approach to index theorems for
insulators using the non-commutative Chern character, [73, 74], is not applicable to torsion invariants.
See [28] for an alternative viewpoint to ours.) In the second half of Section 3 we show how invariants
arise through a Clifford module valued index using the Kasparov product.

In the last section we show how our general method applies to some of the examples of interest in
the physics and mathematics literature. This includes the well-known Kane-Mele model of time-reversal
invariant systems as well as 3-dimensional examples.

For the reader’s benefit, we also include an appendix that compiles some of the basic definitions and
results of Kasparov theory for real C∗-algebras.

aIn work in progress [15] we have explored these issues in some detail.
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The second stage in this program is to study the bulk-edge correspondence of topological insulators
using Kasparov theory. We make some preliminary comments in Section 4.2, but delay a full investigation
for future work [15]. The use of Kasparov theory and the intersection product to study systems with
boundary can potentially be extended further to systems with disorder and continuous models.

Acknowledgements. The authors thank Hermann Schulz-Baldes for useful discussions. We also thank
Johannes Kellendonk, Guo Chuan Thiang and Yosuke Kubota for a careful reading of an earlier version
of this paper. All authors thank the Hausdorff Institute for Mathematics for support. CB and AC thank
the Advanced Institute for Materials Research at Tohoku University for hospitality while some of this
article was written. All authors acknowledge the support of the Australian Research Council.

2. Review

2.1. Motivating example: the integer quantum Hall effect. Our framework for topological insu-
lators builds from the use of noncommutative geometry to explain the quantum Hall effect by Bellissard
and others (see [8, 67]), which uses the language of Fredholm modules. In our previous work [14] we
preferred the language of spectral triples because of the close relationship with (unbounded) Kasparov
theory which formed an essential tool in our approach. Recall that a complex spectral triple (A,H,D)
consists of an algebra A of (even) operators on a Z2-graded separable complex Hilbert space H and a
distinguished densely defined (odd) self-adjoint operator D (herein referred to as a ‘Dirac-type’ operator)
with the properties that commutators [D, a] are bounded for all a ∈ A and products a(1 + D2)−1/2 are
compact for all a ∈ A.

2.1.1. The discrete integer quantum Hall system. We review the discrete or tight-binding quantum Hall
system as considered in [8, 42, 59]. This model motivates our later discussions and allows our construc-
tions and computations to be as transparent as possible.

In the case without boundary, where H = `2(Z2), we have magnetic translations Û and V̂ acting as
unitary operators on `2(Z2). These operators commute with the unitaries U and V that generate the
Hamiltonian H = U + U∗ + V + V ∗. We choose the Landau gauge so that

(Uλ)(m,n) = λ(m− 1, n), (V λ)(m,n) = e−2πiφmλ(m,n− 1),

(Ûλ)(m,n) = e−2πiφnλ(m− 1, n), (V̂ λ)(m,n) = λ(m,n− 1),

where φ has the interpretation as the magnetic flux through a unit cell and λ ∈ `2(Z2). We note that

Û V̂ = e−2πiφV̂ Û and UV = e2πiφV U , so C∗(U, V ) ∼= Aφ, the rotation algebra, and C∗(Û , V̂ ) ∼= A−φ.
We can also interpret A−φ ∼= Aop

φ , where Aop
φ is the opposite algebra with multiplication (ab)op = bopaop.

To see this identification we compute,

UopV op = (V U)
op

= e−2πiφ (UV )
op

= e−2πiφV opUop.

Our choice of gauge also means that C∗(U, V ) ∼= C∗(U) oη Z, where V is implementing the crossed-
product structure via the automorphism η(Um) = V ∗UmV .

The topological properties of the quantum Hall effect come from two pieces of information: the Fermi
projection of the Hamiltonian and a spectral triple encoding the geometry of the (noncommutative)
Brillouin zone. Provided the Fermi level µ /∈ σ(H), then the Fermi projection Pµ defines a class in the
complex K-theory group [Pµ] ∈ K0(Aφ).

Proposition 2.1 ([14]). Let Aφ be the dense ∗-subalgebra of Aφ generated by finite polynomials of U
and V , and let X1, X2 be the operators on `2(Z2) given by (Xjξ)(n1, n2) = njξ(n1, n2). Then(

Aφ, `2(Z2)⊗ C2 =

(
`2(Z2)
`2(Z2)

)
,

(
0 X1 − iX2

X1 + iX2 0

)
, γ =

(
1 0
0 −1

))
is a complex spectral triple.

We consider the index pairing of K-theory and K-homology,

K0(Aφ)×K0(Aφ)→ K0(C) ∼= Z
([Pµ], [X]) 7→ Index(Pµ(X1 + iX2)Pµ),
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where [X] is the K-homology class of the spectral triple from Proposition 2.1. A key result of Bellissard
is that the Kubo formula for the Hall conductance can be expressed in terms of this index pairing [8].
Namely,

(2.1) σH =
2πie2

h
T (Pµ[∂1Pµ, ∂2Pµ]) =

e2

h
Index(Pµ(X1 + iX2)Pµ),

where T is the trace per unit volume and ∂j(a) = −i[Xj , a] for j = 1, 2.
The tracial formula for the conductance, also called the Chern number of the projection Pµ, gives a

computationally tractable expression for the index pairing. The expression comes from translating the
index pairing of K-theory and K-homology into a pairing of cyclic homology and cyclic cohomology.
This can be done for integer invariants but can not be done for torsion invariants, e.g. the Z2-invariant
associated to the time-reversal invariant systems. Therefore a cyclic formula does not arise in general
topological insulator systems and instead we must deal with the K-theoretic index pairing directly.

Let us also briefly review the bulk-edge correspondence for the quantum Hall effect as studied by Kel-
lendonk, Richter and Schulz-Baldes [41, 42, 43, 44]. The algebra Aφ acts on a system without boundary
and is considered as our ‘bulk algebra’. Kellendonk et al. consider a system with boundary/edge and
construct a short exact sequence of C∗-algebras

0→ C∗(U)⊗K[`2(N)]→ T → Aφ → 0,

where C∗(U) acts on `2(Z) and T is a Toeplitz-like extension [69]. We consider elements in C∗(U) ⊗
K[`2(N)] as observables concentrated at the boundary of our system with edge. Kellendonk et al. define
an ‘edge conductance’ from the algebra C∗(U), a topological invariant, and show that under suitable
hypothesis this invariant is the same as the Hall conductance associated to Aφ. Kellendonk et al. prove
this result by considering the Hall conductance (and edge conductance) as a pairing between K-theory
and cyclic cohomology. Recently, the authors adapted Kellendonk et al.’s general argument to Kasparov
theory, avoiding the passage to cyclic cohomology [14]. In future work, we will refine this argument to
deal with real algebras and torsion invariants, which is required in topological insulator systems with
time-reversal or charge-conjugation symmetry [15] (a brief summary is given in Section 4.2).

2.1.2. Higher-order Chern numbers. We may also consider higher-dimensional magnetic Hamiltonians
as elements in Adφ, the noncommutative d-torus. We take the dense ∗-subalgebra Adφ ⊂ Adφ of finite

polynomials of (twisted) shift operators. As studied in [73, 74], there is a natural extension of our
quantum Hall spectral triple to arbitrary dimension.

Proposition 2.2. The tupleAdφ, `2(Zd)⊗ CN ⊗ Cν ,
d∑
j=1

Xj ⊗ 1N ⊗ γj


is a spectral triple, where the matrices γj ∈Mν(C) satisfy γiγj+γjγi = 2δi,j and so generate the complex

Clifford algebra C`d. If d is even, the spectral triple is graded by the operator γ = (−i)d/2γ1 · · · γd.

We obtain ‘higher order Chern numbers’ by taking the index pairing of this spectral triple with the
Fermi projection or some unitary u ∈ A (see also [73, 74]).

To put this in the language of Kasparov theory we need the Kasparov product. In general this product
requires three C∗-algebras A,B,C and it gives a composition rule for KK-classes of the form

KK(A,B)×KK(B,C)→ KK(A,C).

We will not attempt to review the construction of the Kasparov product here referring to [10, 36] for
details. In this paper we will exploit explicit constructions of the product at the level of (unbounded) rep-
resentatives of Kasparov classes. For these constructions it is not necessary to understand Kasparov’s ap-
proach in detail, but to utilise the work of Kucerovsky [50] in simplifying the issues in geometric/physical
examples.

For d even the particular Kasparov product relevant to our discussion will be the following:

KK(C, A)×KK(A,C)→ KK(C,C) ∼= Z

The relevance of this product is due to the fact that KK(C, A) is isomorphic to the K-theory of the
algebra A while elements of KK(A,C) are represented by spectral triples and the integer constructed
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by the pairing in this instance is, in fact, a Fredholm index. Applying this language of Kasparov theory
to the even-dimensional systems, we have the product

KK(C, Adφ)×KK(Adφ,C)→ KK(C,C) ∼= Z

and the integer constructed from this product is given by

Cd := [Pµ]⊗̂A

Adφ, `2(Zd)⊗ CN ⊗ Cν , X =

d∑
j=1

Xj ⊗ 1N ⊗ γj , γ


= Index(PµX+Pµ),

where X =

(
0 X−
X+ 0

)
is decomposed by representing the Z2-grading γ =

(
1 0
0 −1

)
. The case of d

odd has an analogous formula but we are taking a product of KK(C`1, Adφ) with KK(Adφ,C`1).
In this paper we will replace this complex index pairing by its real analogue. We remark however that

in the real picture, when one considers time-reversal and charge-conjugation symmetry, the index given
by KKO-theory is naturally Clifford module valued and the identification with elements of Z or Z2 is
an additional step.

In this paper we also use real spectral triples. The definition is the same with real replacing complex
everywhere. These will enter our discussion in Section 3.4. We begin, however, with some background
on symmetries.

2.2. Symmetries and invariants. Topological insulators can be loosely described as physical systems
possessing certain symmetries which give rise to invariants topologically protected by these symmetries.
The symmetries of most interest to physicists are time-reversal symmetry, charge-conjugation symmetry
(also called particle-hole symmetry) and sublattice symmetry (also called chiral symmetry). We do,
however, note that other symmetries such as spatial inversion symmetry may be considered though they
will not play a central role here.

The integer quantum Hall effect motivates our approach as it is topological: the Hall conductance
can be expressed in terms of a pairing of homology classes of certain bundles over the Brillouin zone
(momentum space) of our sample. Of course, in order to properly understand the meaning of a bundle
over the Brillouin zone in the case of irrational magnetic field, one has to pass to the noncommutative
picture. Because the quantised Hall conductance is a topological property, it is stable under small
perturbations and the addition of impurities into the system. Indeed, disorder plays an important role
in the localisation of electrons and the stable nature of the Hall conductance in between jumps [8].

The integer quantum Hall effect is linked to topological information but does not possess any of the
additional symmetries discussed above. Hence the effect can be considered as an example of a topological
insulator without additional symmetry.

Much more recently, the prediction of a new topological state of matter came from Kane and Mele [35],
who consider two copies of a Haldane system (that is, a single-particle Hamiltonian acting on a honeycomb
lattice) and impose time-reversal symmetry on their model. By considering the topology of the spectral
bands of the Hamiltonian under time-reversal symmetry (considered as bundles over the Brillouin zone),
the authors associate a Z2 parameter to their system. This number is ‘topologically protected’ because
one cannot pass from one value of the parameter to the other unless time-reversal symmetry is broken.

A non-trivial Kane-Mele invariant is predicted to be related to the existence of edge channels that
carry opposite currents along the edge of a sample. These edge channels are said to be spin-oriented;
that is, the spin-up and spin-down electrons separate and give currents travelling in opposite directions.
The net current is zero, but each spin component has a non-trivial conductance that can be linked
to topological invariants of classical bundles over the Brillouin zone. Such an effect is also called the
quantum spin-Hall effect.

The quantum spin-Hall effect was initially predicted to occur in graphene, but this is difficult to verify
experimentally. The effect was later predicted to be found in HgTe [9], a compound much more amenable
to experimental analysis, and subsequently the theoretical prediction was measured in [47].

At the time of writing, more recent experimental work has called into dispute the link between time
reversal invariance and the existence of robust edge channels. Edge channels have been experimentally
observed in quantum spin-Hall systems with an external magnetic field of up to 9T [60]. Hence there is
still work to be done to determine whether a 2-dimensional time-reversal invariant system gives rise to
stable edge currents.
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Despite the current experimentation issues, the Kane-Mele invariant opened up a new avenue of
theoretical research. The existence of a torsion invariant in this system has provoked substantial effort in
understanding whether similar invariants of a finer type could be found in other models and systems. This
included higher-dimensional time-reversal invariant insulators, experimentally found in [32]. Particle-
hole/charge-conjugation symmetric systems were also considered, which drew a link to superconductors,
whose current can be considered as the scattering of an electron by a hole (see for example [76, 81]).

Many possible models were quickly discovered and the question began to turn towards how to properly
classify such systems from their symmetry data. This involved showing how the ‘topological numbers’
derived in the various systems could be connected to algebraic topology, specifically classifying spaces
and homotopy groups of symmetry compatible Hamiltonians. While there are many papers on this topic,
one of the most influential came from Kitaev [46], who outlined how symmetry data can be linked to
Clifford algebras and, in particular, K-theory. Specifically, if one considers a system with time-reversal,
charge-conjugation or sublattice symmetry, then then one finds ten different outcomes depending on the
nature of the symmetry (see [46, 80] for more on this). Kitaev argued that these different outcomes
correspond precisely to the 10 different K-theory groups (8 real groups and 2 complex groups), where
the K-theory is again coming from bundles over the Brillouin zone. The paper also showed how the
dimension of the system affects the kind of invariant that may arise.

The work of Kitaev and Ryu et al. has been expanded and developed in newer papers by Stone et
al. [85] and Kennedy and Zirnbauer [45]. To briefly summarise, Stone et al. and Kennedy-Zirnbauer are
able to link the symmetries of interest to stable homotopy groups and Clifford algebras in a way that
is more physically concrete than Kitaev’s original outline. In particular, Kennedy and Zirnbauer show
how the Bott periodicity of complex and real K-theory can be understood in terms of the symmetries
of the system [45].

2.3. Contributions in the mathematical literature. While there has been a plethora of articles
in the physics literature about topological insulators and their properties, there are comparatively few
mathematical physics papers on the subject (that is, papers with a mathematical focus, but with physical
applications in mind). Despite this, there have been some important contributions from mathematical
physicists in understanding the mechanics of insulator systems, particularly with regard to making
Kitaev’s K-theoretic classification more explicit. We briefly review the work that has been done on these
problems, focusing on the more K-theoretic papers as these are closest to our viewpoint. We do not
claim that our review is comprehensive or complete although from the work cited here a comprehensive
bibliography could be built. Our purpose is to highlight what is understood and what remains open.

Almost commuting matrices and insulator systems (Loring et al.) Some of the first mathematical at-
tempts to understand the topological insulator problem came from Loring in collaboration with Hastings
and Sørensen [29, 30, 54, 55, 56, 57, 58].

Very roughly speaking, these papers start with the model of a finite lattice on a torus or sphere.
There are translation operators Ui between atom sites that commute. However, when these operators
are compressed by the Fermi projection PµUiPµ, they may no longer commute. The observation of the
authors is that the act of approximating the matrices PµUiPµ with commuting matrices can be viewed
as a lifting problem in C∗-algebras. The authors then argue that the obstructions to approximating
almost-commuting matrices with commuting matrices lead to K-theory invariants (both complex and
real). These obstructions can then be related back to the various symmetries that arise in insulator
systems.

The papers of Loring, Hastings and Sørensen are able to mathematically establish a link between
insulator systems and K-theory of operator algebras, though the physical models used (a finite lattice
on a d-torus or d-sphere) do not line up easily with the models that are usually considered. Another
drawback is that the methods Loring et al. use are quite different to any other treatment of such systems
(including the various explanations of the integer quantum Hall effect) and so are difficult to adapt to
the physical interpretations of such systems.

By considering the topological insulator problem and it’s link to real/Real K-theory, there have
also been some useful mathematical papers explaining KKR and KO-theory [12, 11]. In particular,
the paper [11] provides a helpful characterisation of all 8 KO-groups in terms of unitary matrices and
involutions.

Bloch bundles and K-theory (De Nittis-Gomi). An alternate viewpoint comes from the papers of De
Nittis and Gomi [19, 20, 21, 22], who are developing a more explicitly geometric interpretation of the
insulator invariants that arise. This is done by constructing a theory of Real or quaternionic or chiral
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vector bundles, and showing how the topological properties of insulator systems can be interpreted
as geometric invariants of these bundles over the Brillouin zone. This work serves to correct some
inconsistencies in the physics literature, where many of the bundles considered are trivial and symmetry
structures implemented globally. De Nittis and Gomi show that when only local trivialisations are
considered, much more care needs to be taken to properly construct and work with the invariants of
interest.

The Bloch bundle picture is advantageous as it links much more clearly to the geometric explanations
of the integer quantum Hall effect by [88] and others, explicitly relating physical quantities to homology
theories and pairings. The limitation of such a viewpoint is that it cannot fully take into account the
situation with a magnetic field present, which may include systems with sublattice/chiral symmetry. In
such a picture, one would need to perform an analysis similar to that of Bellissard for the integer quantum
Hall effect and handle the noncommutative Brillouin zone. It is also generally acknowledged that to work
disorder into the Bloch bundle viewpoint requires a further development of the noncommutative method
of Bellissard et al [8].

Chern numbers, spin-Chern numbers and disorder (Prodan, Schulz-Baldes). A concerted attempt to
adapt the ideas and constructions of Bellissard’s noncommutative Brillouin zone and Chern numbers
into the general insulator picture has been made by Prodan and Schulz-Baldes in several papers [70,
71, 72, 83, 84]. Part of this process involves showing how Bellissard’s cocycle formula for the Hall
conductance has natural generalisations to higher dimensions [73, 74].

Another important aspect of Prodan and Schulz-Baldes’ work has been defining the so-called spin-
Chern numbers. Roughly speaking, certain 2-dimensional systems with odd time-reversal symmetry can
be split into the ±1 eigenspaces of a Pauli matrix representing a component of spin (say sz). One can
then take the Fermi projection P , restrict it to the +1 or −1 eigenspace of the spin, P±, and take the
Chern number of this restriction Ch(P±), denoted the spin-Chern number. Due to the time-reversal
symmetry, Ch(P ) = 0, but the two separate spin-Chern numbers may be non-zero. Hence one can
interpret these invariants as capturing the conductance of the spin-up and spin-down currents of the
quantum spin-Hall effect. One can also associate a Z2 number to systems with spin-Chern numbers
by considering Ch(P±) mod 2. It is a key result of [84] that the Z2 number associated to systems with
well-defined spin-Chern numbers can be related to real K-theory, specifically KO2(R), which is the group
that ‘classifies’ 2-dimensional strong topological phases with odd time reversal symmetry.

The use of noncommutative methods also means that the models considered by Schulz-Baldes and
Prodan are among the few that allow disorder to be included in the system (see [83] for more details).

Prodan and Schulz-Baldes are able to import techniques from complex pairings and cyclic cohomology
to define their Z2 invariant. However, we emphasise that in torsion pairings arising from real K-theory
can not in general be described as a complex pairing modulo 2. See for example the discussion in
Witten [89, Section 3.2]. Let us briefly explain why these difficulties arise.

Early results of Connes show that the pairing of K-theory classes with cyclic cocycles is the same as
the index pairing of K-theory classes with finitely summable Fredholm modules representing K-homology
classes over complex algebras [17]. However, such a relation breaks down in the case of torsion invariants,
which are common in the K-groups of real/Real algebras. An extra argument is therefore required to
link torsion invariants from real K-theory with pairings involving cyclic cohomolgy. We do however note
that the complex Chern numbers of systems of arbitrary dimension considered by [73, 74] and in [13]
can be applied to insulator systems where only sublattice/chiral symmetry is considered.

Since in general we must avoid using the pairings in cyclic cohomology and homology, we deal directly
with the K-theory and K-homology groups directly for complex, and Real/real algebras, since these
pairings can detect torsion invariants. This is the picture adopted in the later works [23, 28]. We
also adopt this viewpoint, but from the perspective of KK-theory (which is necessary to consider the
bulk-edge problem).

We briefly mention the recent paper of Katsura and Koma [38], which also uses (complex) noncommu-
tative methods and obtains similar results to Schulz-Baldes and Prodan, particularly [84]. Katsura and
Koma associate a Z2 invariant to 2-dimensional systems with odd time-reversal symmetry and show it is
stable under perturbations and disorder, the Kane-Mele invariant being an important example. Implicit
in [38] is that the defined Z2 invariant is a particular representation of the Clifford index that classifies
KO2(R) ∼= Z2 (see [51, Chapter II.7] for more on the Clifford index). We would like to extend such a
picture to more general models and symmetries.
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Symmetry groups and equivariant K-theory (Freed-Moore, Thiang). So far our various symmetries have
been considered on a case by case basis with no unifying theory linking systems together as Kitaev
outlined. Such a theory in the commutative setting was developed by Freed and Moore [25], and then
generalised to possibly noncommutative algebras by Thiang [86].

The paper by Freed and Moore is very long and detailed so we will only give the most basic of
summaries. The symmetries of interest to us (time-reversal, charge-conjugation and sublattice) are put
together in a symmetry group G. Then, symmetry compatible Hamiltonians correspond to projective
unitary/anti-unitary representations of G (or a subgroup thereof). Using the Bloch-bundle viewpoint to
derive topological invariants of the system under consideration, the quantities of interest can be derived
by looking at the equivariant K-theory of subgroups of G. In certain cases, lattice symmetries and
the crystallographic group of the lattice of the sample can also be incorporated, giving rise to possibly
twisted equivariant K-theory classes and invariants.

The work of Thiang showed how Freed-Moore’s constructions can be carried out in the noncommuta-
tive setting. In particular, Thiang links symmetry data to Clifford algebras and constructs a homology
theory similar to Karoubi’s Kp,q-theory (see [34, Chapter III]) that encodes these symmetries. Such a
construction means that the classification by Kitaev and Ryu et al. (also called the 10-fold way) can be
described in a unified framework.

Freed-Moore and Thiang’s work allows all the symmetry data to be considered on an equal footing
and gives a mathematical argument for Kitaev’s classification. The work of Thiang in particular opens
the door to further research as it provides a concrete framework to consider disordered systems and
impurities. The main limitation is that the theory deals solely with a bulk system and K-theory. The
use of K-homology or a system with edge is not considered.

Recent work by Kellendonk also provides a systematic study of symmetry compatible Hamiltonians
and algebras with van Daele’s formulation of K-theory [39]. Using slightly different grading structures to
Freed-Moore and Thiang, Kellendonk derives Kitaev’sK-theoretic classification for discrete or continuous
systems with disorder, and a Hamiltonian with spectral gap. Again, K-homology or systems with
boundaries are not considered.

KR-Theory and pairings (Grossmann-Schulz-Baldes). A recurring characteristic of the literature on
topological insulators, both physical and mathematical, is that the links to topology are solely discussed
via K-theory. However, as shown in Equation (2.1), the expression for the Hall conductance is not
just a K-theory construction, but a pairing (i.e. Kasparov product) between a K-theory class and a
K-homology class coming from a particular spectral triple or Fredholm module. Most literature on
topological insulators does not consider this extra K-homological information, though an exception are
the papers of Schulz-Baldes and co-authors [23, 28].

De Nittis, Grossmann and Schulz-Baldes show that a discrete condensed matter system with additional
symmetries naturally gives rise to a Real spectral triple in the sense of Connes [18, 26] and represents a
KR-homology class. De Nittis and Schulz-Baldes consider the 2-dimensional case [23] and Grossmann-
Schulz-Baldes generalise this to arbitrary dimension [28]. In particular, [23, 28] show that the Fermi
projection of a symmetry compatible Hamiltonian pairs with the Real spectral triple via an index and it
is this pairing that gives the various (strong) classification groups of Kitaev, Freed-Moore and Thiang.

De-Nittis, Grossmann and Schulz-Baldes’s work provides a useful picture of the bulk-theory of in-
sulators. Working the bulk-edge correspondence into such a framework remains to be done. Equally,
the work of Thiang and Grossmann-Schulz-Baldes may be related under the broader framework of KK-
theory although we will not do so here.

2.4. The bulk-edge correspondence. So far our discussion has been focused on how single-particle
Hamiltonians with certain symmetries give rise to topological invariants, but the way in which these
properties are physically realised is a key aspect of insulator materials. Namely, the observables that are
measured in experiment are said to be carried on the edge or boundary of a sample. So on the one hand,
we have a Hamiltonian acting on the whole space, often assumed to be translation invariant, which gives
topological properties of the material via the Bloch bundles over the Brillouin zone (or a noncommutative
analogue of this). On the other hand, there is also a current or similar observable concentrated at the edge
of the sample that is said to be ‘topologically protected’ by the internal symmetries of the Hamiltonian.
Loosely speaking, the relationship between the topological properties of the bulk Hamiltonian and edge
behaviour is the bulk-edge correspondence of topological insulator materials.

While a mathematical understanding of the bulk-edge correspondence for systems with anti-linear
symmetries is still in development, there have been a few important contributions. Firstly there was the
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work of [6, 83], who consider 2-dimensional time-reversal invariant systems and prove a bulk-edge corre-
spondence using the spin-Chern perspective and an argument using transfer matrices. A 2-dimensional
bulk edge correspondence for systems with time-reversal symmetry is also considered in [27]. By using
more elementary functional analytic techniques, Graf and Porta reproduce the result of [6, 83] for a
broader class of possible Hamiltonians.

These are both useful results and important contributions to the literature, though the link between
the bulk-edge picture described in these papers and the K-theoretic classification is very difficult to
establish, though the two should be compatible.

Section 7 of [54] considers the bulk-edge correspondence in arbitrary dimension. What is difficult to
determine is the link between Loring’s argument and the work of Grossmann, Schulz-Baldes and Thiang
as well as the bulk-edge picture developed by Kellendonk et al.

Papers by Mathai and Thiang establish a K-theoretic bulk-edge correspondence for complex systems
and real systems with time-reversal symmetry [62, 63]. These papers use a short-exact sequence to link
bulk and edge systems as considered by [40, 42, 44] in the case of the quantum Hall effect. One can then
check that the invariants of interest (including torsion invariants for time-reversal symmetric systems)
pass from bulk to edge in the Pimsner-Voiculescu sequence in complex or real K-theory. Mathai and
Thiang also use real and complex T-duality to show in a variety of examples that when the boundary
map in K-theory is T-dualised, the map can be expressed as a conceptually simpler restriction map. In
the real case, the Kane-Mele Z2 invariant is also identified with the 2nd Stiefel-Whitney class under T-
duality. Our work in progress directly computes theK-theoretic boundary map for systems with arbitrary
symmetry type by taking the Kasparov product with (unbounded) representatives of the extension class
in KK-theory [15].

After the submission of this work, further developments have appeared on the mathematical aspects
of the bulk-edge correspondence. In particular we briefly highlight the work of Kubota [49] and the book
by Prodan and Schulz-Baldes [75].

The book by Prodan and Schulz-Baldes is a complete analysis of complex disordered topological
insulator systems. This includes bulk invariants, edge invariants, their relation to K-theory as well as
their equality for systems with boundary [75]. The book also shows how the edge pairings can be linked
to conductivity tensors and the physical system under consideration. Real and torsion invariants are not
considered.

Kubota provides a noncommutative extension of Freed–Moore’s work. Hamiltonians compatible with
a twisted symmetry group are associated to a class in Z2-graded twisted equivariant K-theory, which is
defined using an extension of KK-theory [48]. The case of invariants related to the CT -symmetry group
are a simple example. Kubota uses the uniform Roe algebras and relates bulk and edge systems by the
boundary map in the coarse Mayer–Vietoris exact sequence in K-theory [49]. The K-theory of uniform
Roe algebras is in general very hard to compute though can be simplified by the coarse Baum–Connes
map. The use of coarse geometry allows for systems with impurities or rough edges to be considered.

3. Bulk theory

3.1. Symmetry types and representations. In our basic setup, we consider a self-adjoint single-
particle HamiltonianH acting on a complex Hilbert spaceH. We work in the tight-binding approximation
so that H will usually take the form `2(Zd)⊗CN , where d captures the dimension we are considering and
N encodes any internal degrees of freedom coming from properties such as spin or the structure of our
lattice. Our outline of the basic symmetries is quite similar to that discussed in, amongst others, [23, 28].

We consider the symmetries of our Hamiltonian H. The symmetries of interest to us are time-reversal
symmetry, charge-conjugation symmetry (also called particle-hole symmetry) and sublattice symmetry
(also called chiral symmetry). Each of these symmetries is given by an involution and we use the notation,
T ≡ time-reversal, C ≡ charge-conjugation and S ≡ sublattice. These are not independent but generate
the CT -symmetry group {1, T, C,CT} ∼= Z2 × Z2, where S = CT = TC.

Definition 3.1. A Hamiltonian H acting on a complex Hilbert space H respects time-reversal and/or
charge-conjugation and/or sublattice symmetry if there are complex anti-linear operators RT and/or RC
and/or a complex-linear operator RS acting on H such that R2

T , R
2
C , R

2
S ∈ {±1H} and

RTHR
∗
T = H, RCHR

∗
C = −H, RSHR

∗
S = −H(3.1)

In the case of RT and RC , our Hamiltonian is said to have even (resp. odd) symmetry if R2 = 1 (resp.
R2 = −1).
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Because RS is complex-unitary, the sign of its square is irrelevant (in the same way that the Clifford
algebra on one generator C`1 may have a generator that squares to +1 or −1). We note that a Hamilton-
ian may only respect a single symmetry. However, if H is compatible with two symmetries, then by the
underlying group structure it is compatible with the third symmetry. We will more explicitly examine
the link between symmetry compatible Hamiltonians and group representations in Section 3.2.

There is no general form that the symmetry operators RT , RC and RS are forced to take apart from
the properties outlined in Definition 3.1. Instead they need to be determined by the properties of the
example under consideration. However the conjugate-linear operators RT and RC , as operators acting
on a complex Hilbert space, anti-commute with the Real involution given by complex conjugation.

Example 3.2 (Anti-linear symmetries via complex conjugation). We consider the Hilbert space `2(Zd)⊗
C2N and define the operator

R =

(
0 C
ηC 0

)
,

where C is complex conjugation and η ∈ {±1}. At this stage we are not specifying whether R represents
the time-reversal or charge-conjugation involution. We note that R2 = η12N so R can represent an even
or odd symmetry depending on the sign of η. Given an operator a ∈ B[`2(Zd) ⊗ CN ] we define the
operator a = CaC. One computes that

(3.2) R

(
a b
c d

)
R∗ =

(
d ηc

ηb a

)
.

Consider the case that R is implementing a time-reversal involution. By Equation (3.2), an operator

acting on `2(Zd)⊗C2N will be time-reversal symmetric if it takes the form

(
a b

ηb a

)
. Such an operator

will also have to be self-adjoint if it is to be a time reversal symmetric Hamiltonian.
Next consider the case that R is representing the charge-conjugation involution. An operator A is

symmetric under charge-conjugation if RAR∗ = −A, so Equation (3.2) tells us that A must be of the

form

(
a b

−ηb −a

)
.

Recall the Dirac-type operator from the spectral triple of the integer quantum Hall effect (Proposition

2.1), X =

(
0 X1 − iX2

X1 + iX2 0

)
, where X1, X2 act on `2(Z2) as position operators. We see that X is

even time-reversal symmetric (that is RXR∗ = X with η = 1) or has odd charge-conjugation symmetry
(RXR∗ = −X with η = −1) depending on the symmetry that the involution R is representing.

Example 3.3 (Symmetries via spatial involution). We start with the space `2(Zd) and define the anti-

linear operator J such that (Jλ)(x) = λ(−x) for λ ∈ `2(Z2). We define on H = `2(Zd) ⊗ C2N the
operator

R =

(
0 J
ηJ 0

)
with R2 = η12N as before. As a transformation on operators acting on `2(Zd)⊗C2N , one computes that

R

(
a b
c d

)
R∗ =

(
JdJ ηJcJ
ηJbJ JaJ

)
.

We again consider the case that R models the time-reversal or particle-hole involution. Operators

that are time-reversal invariant under conjugation by R = RT have the general form

(
a b

ηJbJ JaJ

)
,

whereas charge-conjugation symmetric operators under R = RC are of the form

(
a b

−ηJbJ −JaJ

)
.

Considering again the integer quantum Hall spectral triple with Dirac-type operator X, we first note
that JXkJ = −Xk and J(±iXk)J = ±iXk for the position operators Xk, k = 1, 2. Therefore we have
that

R

(
0 X1 − iX2

X1 + iX2 0

)
R∗ =

(
0 η(−X1 + iX2)

η(−X1 − iX2) 0

)
.

This implies that X now has odd time reversal symmetry and even charge-conjugation symmetry.

Remark 3.4 (Time-reversal and charge-conjugation as 0-dimensional phenomena). The example of the
integer quantum Hall Dirac-type operator shows that changing how we represent the involutions RT and
RC may change whether an operator has a particular symmetry type. This indicates that the spatial
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involution is bringing extra data into our system (namely, that we have a d-dimensional sample with
d > 0). By comparison, time-reversal and charge-conjugation involutions can exist in 0-dimensional
samples and do not need the extra information that spatial involution does. We emphasise that systems
with anti-linear symmetries defined using spatial involution are topologically inequivalent to systems with
anti-linear symmetries defined from complex conjugation (see [61] for more detail on the inequivalence
of symmetry types).

Example 3.5 (Chiral symmetry). In most examples in the literature, the chiral/sublattice symmetry

involution is represented by the matrix RS =

(
1N 0
0 −1N

)
on `2(Zd)⊗C2N , so a self-adjoint Hamiltonian

H is chiral symmetric if H =

(
0 h
h∗ 0

)
.

An important observation is that if H obeys a particular symmetry and the Fermi level µ is in a gap of
the spectrum of H (we can assume without loss of generality that µ = 0), then the ‘spectrally flattened’
Hamiltonian sgn(H) = H|H|−1 also obeys this symmetry.

3.2. Symmetries, group actions and Clifford algebras. We have briefly explained the symmetries
that arise in our insulator systems but we would like a more structural understanding of how these sym-
metries fit into a unifying picture. Here the recent work of Thiang as developed in [86, 87, 61], and based
on [25], is applicable. One of the key insights in [25, 86] is to see that a symmetry compatible Hamilton-
ian with a spectral gap H can be expressed as a graded projective unitary/anti-unitary representation
of the finite symmetry group G ⊂ {1, T, C,CT} ∼= Z2 × Z2.

Definition 3.6. Let G be a finite group with θg a map on H for every g ∈ G and ϕ : G → {±1} a
homomorphism. The triple (G,ϕ, σ) is a projective unitary/anti-unitary (PUA) representation if θg is
unitary (resp. anti-unitary) and ϕ(g) = 1 (resp. −1) and θg1θg2 = σ(g1, g2)θg1g2 with σ : G×G → T a
2-cocycle satisfying

σ(g1, g2)σ(g1g2, g3) = σ(g2, g3)g1σ(g1, g2g3), g1, g2, g3 ∈ G,

where for z ∈ T, zg = z if ϕ(g) = 1 and zg = z if ϕ(g) = −1.

We can now re-formulate the definition of a symmetry compatible Hamiltonian in terms of group
representations.

Definition 3.7. Given a projective unitary/anti-unitary representation (G,ϕ, σ) and a gapped self-
adjoint Hamiltonian H acting on a complex Hilbert space H, we say that H is compatible with G if
there is a (continuous) homomorphism c : G→ {±1} such that

(3.3) θgH = c(g)Hθg for all g ∈ G.

Remark 3.8. Under our assumptions 0 /∈ σ(H), so we can deform a symmetry-compatible H to its
phase H|H|−1 = sgn(H) without changing Equation (3.3). This means that Γ = sgn(H) is acting as a
grading of our PUA representation. Therefore, we say that a symmetry compatible Hamiltonian on H
is precisely realised as a graded PUA representation (G, c, ϕ, σ) on H with grading Γ = sgn(H). The
map ϕ determines if the symmetry involution θg is represented unitarily or anti-unitarily and the map
c determines if the involution has even or odd grading. We emphasise that the grading of a symmetry
involution θg as even or odd is different from whether the symmetry is denoted even or odd, which comes
from whether θ2

g = 1 or −1 respectively.

Our definition of a symmetry compatible Hamiltonian may apply to any finite group G, though we
are interested in a subgroup G of the CT -symmetry group {1, C, T, CT} ∼= Z2 ×Z2. Equation (3.1) and
the surrounding discussion tells us that a symmetry compatible Hamiltonian H can be expressed as a
PUA representation of a subgroup G of the symmetry group {1, C, T, S = CT} on the Hilbert space
H = `2(Zd)⊗ CN with θg = Rg, Γ = sgn(H) and

(ϕ, c)(T ) = (−1, 1), (ϕ, c)(C) = (−1,−1), (ϕ, c)(S) = (1,−1).

Representations of G are in 1-1 correspondence with representations of the real or complex group
C∗-algebra C∗(G). From the perspective of Kasparov theory we would like to link the algebra C∗(G)
with real or complex Clifford algebras as such algebras play a fundamental role in KK-theory.
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Symmetry

generators
R2
C R2

T

Graded Clifford
representation (up to
stable isomorphism)

T +1 C`0,0
C, T +1 +1 C`1,0
C +1 C`2,0
C, T +1 −1 C`3,0
T −1 C`4,0
C, T −1 −1 C`5,0
C −1 C`6,0
C, T −1 +1 C`7,0

N/A C`0
S R2

S = 1 C`1
Table 1. Symmetry types and their corresponding graded Clifford representations [86,
Table 1].

Proposition 3.9 ([25], Appendix B; [86], Section 6). Let G be a subgroup of the symmetry group
{1, T, C, S = CT} with G 6= {1, S}. If a Hamiltonian H acting on H is compatible with G, then there
is a graded representation of a real Clifford algebra on H (or H ⊕ H). If G = {1, S}, then there is
a graded complex Clifford representation. The representations are summarised in Table 1 up to stable
isomorphism.

The natural grading of real Clifford algebras gives all generators of the Clifford algebra odd degree.
Therefore all generators of a Clifford representation must be odd with respect to the grading Γ = sgn(H).

Proof. The proof proceeds on a case by case basis. We first use [86, Proposition 6.2] to ‘normalise’ the
twist σ of the PUA representation so that the operators RC and RT commute and RCRT = RCT . For the
full symmetry group G = {1, C, T, CT}, we use the operators Rg for g ∈ G and consider the real algebra
generated by {RC , iRC , iRCRT }. One checks that these generators have odd grading under Γ, mutually
anti-commute and are self-adjoint (resp. skew-adoint) if they square to +1 (resp. −1). Therefore the real
algebra generated by {RC , iRC , iRCT } is precisely a graded representation of a particular real Clifford
algebra C`r,s with grading Γ = sgn(H) (our notation for Clifford algebras is explained in Appendix A).

Next, we consider the subgroup {1, C}, to which we assign the real algebra generated by {RC , iRC}
and graded by sgn(H).

Representations of the subgroup {1, S} give rise to a representation generated by RS with grading
sgn(H). Because RS acts complex-linearly, we may consider the complex span of RS as acting on H.
Hence the representation generated by RS is a graded representation of C`1.

The case of the subgroup {1, T} is a little different as RT commutes with sgn(H). For the case that
R2
T = 1, RT defines a Real structure on the Hilbert space and gives no additional Clifford generators. If

R2
T = −1, then RT defines a quaternionic structure on H under the identification {i, j, k} ∼ {i, RT , iRT }.

There is an equivalence between a graded quaternionic vector space and a graded action of C`4,0 onH⊕H.
Specifically, we take H⊕H and the real span of the Clifford generators{(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
0 −RT
RT 0

)
,

(
0 −iRT
iRT 0

)}
, Γ =

(
sgn(H) 0

0 −sgn(H)

)
.

Therefore, the subgroup {1, T} gives rise to a graded representation of C`0,0 or C`4,0. �

Corollary 3.10. Let G be a subgroup of {1, T, C,CT}. The real or complex twisted group C∗-algebra
C∗σ(G) is stably isomorphic to C`n,0 or C`n, where σ is the twist from the PUA representation and n is
determined by Table 1.

Proof. Follows from Proposition 3.9. �

Remark 3.11 (The 10-fold way). A graded PUA representation of {1, T, C,CT} gives rise to the real Clif-
ford generators {RC , iRC , iRCT }. These generators represent four different Clifford algebras determined
by the sign of R2

C and R2
T . Similarly, the representations of the subgroup {1, C} give representations for

two real Clifford algebras generated by {RC , iRC} and vary depending on whether R2
C = ±1. Graded

representations of {1, S} correspond to the Clifford algebra spanC{RS} ∼= C`1, which is the same whether
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R2
S = ±1 (again, these representations come with the grading Γ = sgn(H)). A Hamiltonian compatible

with the symmetry group {1, T} gives rise to two real Clifford algebras depending on whether R2
T = ±1.

In total, we have nine possible representations of symmetry subgroups as distinct Clifford algebras and
a lack of any symmetry gives us one more possibility. This is the well-known ‘10-fold way’ that arises
when we consider symmetries of this kind (see for example [81]).

Because we are interested in the link between Clifford representations and KK-theory, we may choose
representations up to stable isomorphism, where C`r+1,s+1

∼= C`r,s⊗̂M2(R) for real Clifford algebras
and C`n+2

∼= C`n⊗̂M2(C) for complex algebras. We summarise the results in Table 1.
We note that in Table 1, each symmetry type gives rise to a distinct graded Clifford representation.

Therefore (up to stable isomorphism), the process is reversible. That is, given a graded representation
of C`n,0 or C`n, we may think of this representation as encoding the symmetries of a subgroup of the
CT -group that are compatible with a gapped Hamiltonian with Γ = sgn(H).

3.3. Internal symmetries and KK-classes. In the previous section, we outlined how symmetry-
compatible gapped self-adjoint Hamiltonians give rise to a graded ∗-representation of C`n,0 or C`n with
the number n determined (up to stable isomorphism) by the symmetries present and whether they are
even or odd. Our next task is to relate this characterisation to the K-theory of our observable algebra.

Before we specify our observable algebra, we must first specify the class of of bulk Hamiltonians our
method can be adapted to. As observed in the integer quantum Hall example (cf. [8, 59]), in order to
study the geometry and topology of the Brillouin zone, we require an algebra of observables larger than
the algebra generated by the Hamiltonian (or its resolvent).

Assumption 3.12. Unless otherwise stated, we will assume the Hamiltonians we consider act on `2(Zd)⊗
CN and are represented by matrices whose entries are either finite polynomials of (possibly twisted) shift
operators or infinite polynomials with Schwartz-class coefficients. The Hamiltonians also have a spectral
gap containing the Fermi level.

If H is compatible with the symmetry group G, a subgroup of {1, T, C,CT}, then we also assume
that the symmetry action H 7→ RgHR

∗
g extends to an action on the algebra generated by the (twisted)

shift operators that generate H.

We note that essentially all tight-binding (discrete) model Hamiltonians without disorder satisfy our
criterion. We consider the algebra generated by the shift operators that give rise to H and act on `2(Zd)⊗
CN . We require that the action of symmetries on the Hamiltonian H extends to the observable algebra
(Assumption 3.12) in order to determine symmetry properties of the whole Brillouin zone. Such an
assumption is required in the case of abstract representations of the symmetry group G ⊂ {1, T, C,CT},
though is easily satisfied in the common representations that arise in examples (e.g. symmetry involutions
defined by complex conjugation or spatial involution).

Because we are starting with operators on a complex Hilbert space, if there are anti-linear symmetries,
our algebra of interest is a real subalgebra of a complex algebra. Specifically, we take the complex
C∗-algebra generated by the shift operators and then the real subalgebra that is invariant under the
involution aτ = CaC with C complex conjugation on H. Such a condition requires the shift operators to
be untwisted by an external magnetic field. This is unsurprising in the case of a time-reversal symmetric
Hamiltonian, which cannot have an external magnetic field. Systems with charge-conjugation symmetry
that contain an external magnetic field require a more careful treatment of the algebras of interest. In
the interest of brevity, we will avoid this issue and instead assume that if there are anti-linear symmetries
present, the magnetic flux vanishes. See [39] for more detail on such problems.

In the case that G = {1, T, C,CT}, {1, T} or {1, C}, we take our bulk algebra to be the subalgebra
of the matrix algebra of shift operators that generate H. Namely, we denote A ⊂ MN (C∗(Zd)) with
C∗(Zd) ∼= C∗(S1, . . . , Sd) the real C∗-algebra generated by shift operators. We note that A acts on both
the complex Hilbert space `2(Zd)⊗CN and the real Hilbert space `2(Zd)⊗RM , which will be important
when we construct real spectral triples. If G ⊂ {1, S} our shift operators may be twisted and we denote
the complex algebra AC ⊂ MN (Adφ) with Adφ the d-dimensional rotation algebra (of course we may also

take φ = 0).
We also note that our algebras are modelling systems without disorder. We have started with this

basic model for simplicity and to make our constructions as clear as possible. We will comment on some
extensions to the case of algebras modelling weak disorder in Section 3.6, though delay a full investigation
to future work.
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3.3.1. The symmetry class. We first construct a Kasparov module, real or complex, which classifies
symmetry compatible Hamiltonians by the associated C∗-algebraic K-theory. We employ the framework
of KK-classes as this allows generalisations to other symmetry groups.

Using the action of G on A ⊂MN (C∗(Zd)) we can take the crossed product AoG (similarly AC oG
for complex algebras and G = {1, S}). This is one of the key reasons we require A to be a real algebra.
In the case g = C or T , the automorphism αg(a) = RgaR

∗
g is complex anti-linear and so one can not

take the crossed product of this automorphism if A is a complex algebra. We can realise this crossed
product concretely as

AoG ∼= spanR

∑
g∈G

agRg : ag ∈ A

 ⊂ EndR(H).

There is a conditional expectation on the crossed-product, Φ : AoG→ A that has the form

Φ

∑
g∈G

agRg

 = ae ∈ A.

The next ingredient that we need to obtain a representative of a KKO-class is a bimodule, specifically
a right A-module that is also a left C∗(G)-module. This module has to be equipped with an A-valued
inner product (what this means is explained in Appendix A), and the next result uses the expectation
Φ to construct the required bimodule.

Proposition 3.13. Let G be a subgroup of the symmetry group {1, T, C,CT} with G non-trivial and
G 6= {1, S}. Then there is a real Hilbert A-module EA defined as the completion of AoG under the norm
derived from the inner product (e1|e2)A = Φ(e∗1e2) and with right-action given by right-multiplication. If
G ⊂ {1, S} then there is a complex Hilbert AC-module given by (the completion of) AC oG via the same
inner-product and norm.

Proof. That Φ : A o G → A gives an A-valued inner product is a check of the definition using the
positivity, faithfulness and A-bilinearity of Φ. To be a Hilbert A module requires EA to have a right-
multiplication by A that is compatible with the inner product. What this means is that for c ∈ A,
(e1|e2c)A = (e1|e2)Ac. Let us now see that in the situation described in the statement of the proposition
this property holds, ∑

g∈G
agRg

∣∣∣∣∣∣
∑
h∈G

bhRhc


A

= Φ

 ∑
g,h∈G

R∗ga
∗
gbhRhc


= Φ

 ∑
g,h∈G

R∗ga
∗
gbhαh(c)Rh


=
∑
g,h∈G

δg,hα
−1
g (a∗gbhαh(c))R∗gRh

as Φ evaluates at the identity. We then simplify∑
g∈G

agRg

∣∣∣∣∣∣
∑
h∈G

bhRhc


A

=
∑
g∈G

α−1
g (a∗gbg)c =

∑
g∈G

agRg

∣∣∣∣∣∣
∑
h∈G

bhRh


A

c.

We can complete A o G in the norm ‖e1‖ = Φ(e∗1e1)1/2 defined from this inner product to obtain the
real module EA. In fact, since G is finite, EA ∼= A o G as a linear space. When G ⊂ {1, S}, the same
proof yields a complex module. �

We note that elements in the crossed product A o G act on the left on EA by what are termed
adjointable endomorphisms. What this means is that the relation

(3.4) (e1e2|e3)A = Φ(e∗2e
∗
1e3) = (e2|e∗1e3)A

must hold for for any ej ∈ AoG, j = 1, 2, 3. However in this instance the previous identity is immediate.
In particular, this means that a left-action by multiplication by the real C∗-algebra C∗(G) ⊂ A o G is
adjointable. An analogous observation holds for complex algebras and modules if G ⊂ {1, S}. In the
spirit of Proposition 3.9, we obtain the following.
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Proposition 3.14. Let H be a Hamiltonian satisfying Assumption 3.12 that is compatible with a sub-
group G of the symmetry group {1, T, C,CT}. If G is non-trivial and G 6= {1, S}, then there is a

graded adjointable representation of C`n,0 on the C∗-module E⊕NA with grading determined by sgn(H)
and N ∈ {2, 4}. If G ⊂ {1, S}, then there is a graded representation of C`n, with n determined by Table
1.

Proof. We first note that left-multiplication by Rg is adjointable for any g ∈ G by Equation (3.4). The
same argument applies to show that the grading sgn(H) ∈ A is an adjointable operator.

From this point our proof is quite similar to the proof of Proposition 3.9 and is done on a case by
case basis. We can once again use [86, Proposition 6.2] to normalise our symmetry involutions so RT
commutes with RC and RTRC = RCT .

We start with the full group G = {1, T, C,CT} and define a left-action on EA ⊕ EA given by left-
multiplication by the real algebra generated by the elements{(

RC 0
0 −RC

)
,

(
0 RC
RC 0

)
,

(
0 −RCT

RCT 0

)}
, Γ =

(
sgn(H) 0

0 sgn(H)

)
.

One readily checks as in Proposition 3.9 that the generating elements have odd grading and mutually
anti-commute. The left-action generated by these elements gives rise to four distinct Clifford algebras
depending on whether R2

T = ±1 and R2
C = ±1.

Similarly for the case G = {1, C} we take a left-action generated by{(
RC 0
0 −RC

)
,

(
0 RC
RC 0

)}
, Γ =

(
sgn(H) 0

0 sgn(H)

)
.

We obtain an adjointable left-action of either C`2,0 or C`0,2 depending on whether R2
C = ±1.

If G = {1, S} then we take the (complex) left-action generated by RS on the complex module EAC

with grading sgn(H). Hence the left-action is a graded representation of C`1.
Once again the case of G = {1, T} is slightly more complicated as RT is evenly graded. If R2

T = 1,
then RT implements a Real involution on the module EA and gives no additional Clifford representation.
If R2

T = −1, then RT encodes a quaternionic structure on EA. There is an equivalence between graded
quaternionic modules and graded real modules with a left C`4,0-action. Specifically, we take EA ⊕ EA
and consider the real action generated by{(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
0 −RT
RT 0

)
,

(
0 −iRT
iRT 0

)}
, Γ =

(
sgn(H) 0

0 −sgn(H)

)
.

We may also replace i with

(
0 −1
1 0

)
and iRT with

(
RT 0
0 −RT

)
in order to consider the real action

on E⊕4
A . In either case we obtain a graded adjointable representation of C`4,0. �

Corollary 3.15. Let H be a Hamiltonian satisfying Assumption 3.12 that is compatible with a subgroup
G of the symmetry group {1, T, C,CT}. Then for G non-trivial and G 6= {1, S} the tuple(

C`n,0, E
⊕N
A , 0,Γ

)
is a real Kasparov module with the left action and grading given by Proposition 3.14. If G ⊂ {1, S} then
the Kasparov module is complex.

Proof. Because the Dirac-type operator is 0 and E⊕NA is finite projective, the remaining conditions
required to be a Kasparov module are satisfied. �

Hence given a symmetry compatible gapped HamiltonianH, we obtain aKK-theory class that encodes
the PUA representation of G with respect to the grading sgn(H).

The Clifford representations that we construct in Proposition 3.14 are analogous to the representations
in Proposition 3.9 and therefore are distinct up to stable isomorphism by Table 1. Hence, as in the Hilbert
space picture, there is a 1-1 correspondence between symmetry compatible Hamiltonians and graded
Clifford representations on the real or complex C∗-module E⊕NA (again, up to stable isomorphism).

Remark 3.16 (Extensions of our method). We note that the construction of the crossed product, AoG,
and C∗-module, EA, is independent of the finite group under consideration. Indeed, we can extend
the results of Proposition 3.14 to any finite group G that is compatible with the Hamiltonian H in
the sense of Definition 3.7 and obtain the Kasparov module (C∗(G), EA, 0, sgn(H)), which will give a
class in KKO(C∗(G), A) or KK(C∗(G) ⊗R C, AC). One of the key properties of a subgroup G of the
CT -symmetry group is that a left-action of C∗(G) or C∗(G)⊗RC gives rise to a real or complex Clifford
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action (using matrices as above), which may not hold for an arbitrary finite group G. We emphasise the
flexibility of our method, as it can accommodate symmetry groups that contain spatial involution, for
example.

3.3.2. Projective submodules and KK-classes. Proposition 3.14 gives a graded representation of Clifford
algebras on the C∗-module coming from the crossed product AoG. Rather than use the full C∗-module
EA, which may be too large, one is often interested in projective submodules PEA, where P is some
projection with even grading.

In the case of KK-classes coming from gapped Hamiltonians, our obvious choice for a projection is the
Fermi projection Pµ = χ(−∞,0](H). In the case of only time-reversal symmetry we immediately obtain
the following result.

Proposition 3.17. Let H be a gapped Hamiltonian that is compatible with G ⊂ {1, T}. Then the tuple(
C`n,0, PµE

⊕N
A , 0, Γ

)
is a Kasparov module with N ∈ {1, 4} and n determined by Table 1

Proof. The Fermi projection Pµ commutes with RT . Hence the proof of Corollary 3.15 carries over. �

We see that if G is trivial, then the algebras and modules in Proposition 3.17 can be complexified to
obtain the module (C, PµAA, 0,Γ) with Γ a grading on A and Pµ degree 0. If A is trivially graded, then
this module is exactly the representative of the Fermi projection [Pµ] ∈ K0(A) translated into KK(C, A).
Hence Proposition 3.17 can be considered as an extension of the class of the Fermi projection to systems
with time reversal symmetry.

Of course we would like an analogue of Proposition 3.17 for when G contains charge conjugation or
sublattice symmetry. This presents us with an issue as

RCPµR
∗
C = 1− Pµ, RSPµR

∗
S = 1− Pµ

and so the left-action on EA from Proposition 3.14 will not descend to the projective submodule.
The solution to this issue requires us to consider a different grading on the crossed product A o G

and is similar to the recent work of Kellendonk [39]. We assume G = {1, S}, {1, C} or {1, C, T, CT} and
define a grading on EA by AdRS or AdRC . The Hamiltonian H ∈ AoG is now odd with respect to this
grading and the operators RC and RS are now even.

Next we consider the new C∗-module given by the graded tensor product (E⊗̂C`0,1)A⊗̂C`0,1 . The

right-action of C`0,1 is given by right-multiplication and the product space has inner product

(e1⊗̂ν1 | e2⊗̂ν2)A⊗̂C`0,1 = Φ(e∗1e2)⊗̂ν∗1ν2.

Inside of E⊗̂C`0,1 is the element H̃ = H⊗̂ρ, where ρ is the odd generator of C`0,1 that is skew-adjoint

and squares to −1. Because both H and ρ are odd, H̃ is even and by the properties of graded tensor
products H̃∗ = (H⊗̂ρ)∗ = −H⊗̂−1 = H̃. Therefore H̃ is self-adjoint and invertible with inverse H−1⊗̂ρ.

Thus P̃µ = χ[0,∞)(H̃) is an even projection in (AoG)⊗̂C`0,1 and we have the following result.

Proposition 3.18. Let H be a gapped Hamiltonian compatible with G = {1, C} or {1, C, T, CT}. Then(
C`n,1, P̃µ(E⊗̂C`0,1)⊕2

A⊗̂C`0,1
, 0, AdRC ⊗̂γC`0,1

)
is a real Kasparov module with n given in Table 1. If G = {1, S}, then(

C`2, P̃µ(E⊗̂C`1)⊕2
AC⊗̂C`1

, 0, AdRS ⊗̂γC`1
)

is a complex Kasparov module.

Proof. We first take the operators RC and RS to be self-adjoint and commuting by [86, Proposition 6.2].
Next we consider the operators

RC⊗̂ρ, RS⊗̂ρ,

which are odd, skew-adjoint and square to −R2
C⊗̂1 and −R2

S⊗̂1 respectively. Furthermore we check that

(RC⊗̂ρ)(H⊗̂ρ)(−RC⊗̂ρ) = (−RCH⊗̂(−1))(−RC⊗̂ρ)

= −RCHRC⊗̂ρ = H⊗̂ρ.

Hence RC⊗̂ρ commutes with H̃ and so is an adjointable operator on P̃µ(E⊗̂C`0,1) (similarly RS⊗̂ρ).
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For the group {1, C, T, CT} we define the left-action on P̃µ(E⊗̂C`0,1)⊕2 generated by{(
RCT ⊗̂ρ 0

0 −RCT ⊗̂ρ

)
,

(
0 RC⊗̂ρ

−RC⊗̂ρ 0

)
,

(
0 −iRC⊗̂ρ

iRC⊗̂ρ 0

)
,

(
0 1⊗̂ρ

1⊗̂ρ 0

)}
.

A careful check shows that the generators mutually anti-commute and are odd under the grading
AdRC ⊗̂γC`0,1 ⊕ AdRC ⊗̂γC`0,1 . The matrix with entries 1⊗̂ρ is a generator of C`0,1. The remaining

generators square to −R2
CT ⊗ 12, R2

C ⊗ 12 and R2
C ⊗ 12 respectively. Thus the left action gives a repre-

sentation of a real Clifford algebra C`r,s on the projective module with r and s determined by R2
C and

R2
CT . As the Dirac-type operator is 0, we obtain a real Kasparov module.
If G = {1, C}, we take the left action generated by{(

0 RC⊗̂ρ
−RC⊗̂ρ 0

)
,

(
0 −iRC⊗̂ρ

iRC⊗̂ρ 0

)
,

(
0 1⊗̂ρ

1⊗̂ρ 0

)}
, Γ =

(
AdRC ⊗̂γC`0,1 0

0 AdRC ⊗̂γC`0,1

)
.

which will give a representation of C`2,1 or C`0,3.
Finally for G = {1, S} the operator we take the left action generator by{(

RS⊗̂ρ 0
0 −RS⊗̂ρ

)
,

(
0 1⊗̂ρ

1⊗̂ρ 0

)}
, Γ =

(
AdRS ⊗̂γC`1 0

0 AdRS ⊗̂γC`1

)
which gives a C`2-action on P̃µ(E⊗̂C`1)⊕2. �

If A is trivially graded, we can relate the class of the Kasparov modules considered in Propostion 3.18
to K-theory by the identification

KKO(C`n,0⊗̂C`0,1, A⊗̂C`0,1) ∼= KKO(C`n,0⊗̂C`1,1, A) ∼= KOn(A),

where we have used stability of KKO and Proposition A.12 (similarly complex K-theory).
We shall denote the class of the projective Kasparov modules constructed in Proposition 3.17 and

3.18 in KKO(C`n,0, A) (or in the complex case KK(C`n, AC)) by [HG].
For trivially graded algebras, the class [HG] defines a class in either KOn(A) or Kn(Adφ). Indeed for

A = MN (C∗(Zd)), we have that

KKO(C`n,0,MN (C∗(Zd))) ∼= KOn(C∗(Zd)) ∼= KO−n(Td),

where we have used stability and Proposition A.12. Hence we recover Kitaev’s classification for models
with discrete translation symmetry [46], though we note that the noncommutative method allows for
more complicated algebras and spaces to be considered. We can use the Pimsner-Voiculescu sequence
with trivial action to find that KOn(C∗(Zd)) ∼= KOn(C∗(Zd−1))⊕KOn−1(C∗(Zd−1)) and therefore

KOn(C∗(Zd)) ∼=
d⊕
k=0

(
d

k

)
KOn−k(R),

see [69, 86].

Remark 3.19 (Anti-linear symmetries and Real C∗-algebras). We have shown how the symmetries com-
ing from the group {1, T, C,CT} can be linked to real C∗-algebras and KKO-theory. One may ask
whether we can also study this question from the perspective of Real C∗-algebras and KKR-theory.
The construction of the crossed product AoG where αg(a) = RgaR

∗
g will not hold in the Real category

if G = {1, T, C,CT} as this will involve two anti-linear automorphisms αC and αT . However, if we con-
sider the subgroups {1, T} or {1, C} with RT or RC defining a Real structure on the (complex) Hilbert
space H, then αT (a) = RTaR

∗
T (or αC(a) = RCaR

∗
C) defines a Real involution a 7→ aτ on the complex

algebra A⊗R C ⊂MN (C∗(Zd)⊗R C) with aτ = αh(a) for h = T or C.
We expect similar results to hold in the Real picture provided G = {1, T} or {1, C}. In the interest of

brevity, we will leave a proper investigation of the wider links between insulator systems and KKR-theory
to another place.

3.4. Spectral triples and pairings. Our discussion up to this point has centred on the connection of
symmetries with KKO-theory, but this is not the end of the story. Recall from Section 2.1 that one also
obtains topological information coming from the geometry of the (possibly noncommutative) Brillouin
zone.
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For complex discrete systems without disorder, a Hamiltonian H that satisfies Assumption 3.12 is
contained in MN (Adφ). We can consider a dense ∗-subalgebra AC of finite polynomials of (twisted) shift
operators and construct the complex spectral triple

(3.5)

AC, `
2(Zd)⊗ CN ⊗ Cν ,

d∑
j=1

Xj ⊗ 1N ⊗ γj , γ = (−i)d/2γ1 · · · γd
 ,

where the matrices γj have the relation γiγj + γjγi = 2δi,j . In [73, 74], one obtains ‘higher order Chern
numbers’ by taking the index pairing of this spectral triple with the Fermi projection or some unitary
u ∈ A.

For d even the index pairing is given by the map

KK(C, AC)×KK(AC,C)→ KK(C,C) ∼= Z.

Recall that KK(C, AC) is isomorphic to the K-theory of the algebra A while elements of KK(AC,C) are
represented by spectral triples and the integer constructed by the pairing in this instance is a Fredholm
index.

Specialising now to the case in hand we can form a product:

Cd = [Pµ]⊗̂Adφ

AC, `
2(Zd)⊗ CN ⊗ Cν , X =

d∑
j=1

Xj ⊗ 1N ⊗ γj , γ


= Index(PµX+Pµ),

where X =

(
0 X−
X+ 0

)
is decomposed by the grading γ. The case of d odd has an analogous formula

except that in this instance we are taking a product of KK(C`1, AC) with KK(AC,C`1). Our goal below
is to refine this complex index pairing so that it applies to the real picture. This is of course essential
when one considers time-reversal and charge-conjugation symmetry.

3.4.1. The bulk spectral triple. Spectral triples over real algebras require representations on real Hilbert
spaces. Hence, we take A ⊂MN (C∗(Zd)) acting on the bulk Hilbert space Hb, which can be `2(Zd)⊗RN
or `2(Zd)⊗ CM , where C ∼= R⊕ iR is considered as a real space.

If a Hamiltonian H satisfies Assumption 3.12, then we take A to be the ∗-algebra of finite polynomials
of matrices of shift operators (or infinite polynomials with Schwartz-class coefficients) over R. Such an
algebra A is dense in A. We require a dense subalgebra in order to deal with the commutator condition
in spectral triples and also for unbounded Kasparov modules over C∗(Zd). Using constructions similar
to [37, 53] for the Hodge-de Rham spectral triple, we have the following result.

Proposition 3.20. If a Hamiltonian H satisfies Assumption 3.12 with A ⊂MN (C∗(Zd)), then

λ =

A⊗̂C`0,d, Hb ⊗∧∗ Rd, D =

d∑
j=1

Xj ⊗ γj , γ∧∗ Rd


is a real spectral triple, where Xj is the position operator on `2(Zd) and acts diagonally on Hb. The
left-action of C`0,d is generated by the operators {ρj}dj=1 and the operators {γj}dj=1 generate C`d,0. The

Clifford algebras C`0,d and C`d,0 are represented as left and right actions on
∧∗ Rd respectively by the

formulae

ρj(ω) = ej ∧ ω − ι(ej)ω, γj(ω) = ej ∧ ω + ι(ej)ω,(3.6)

with ω ∈
∧∗ Rd, {ej}dj=1 the standard basis of Rd and ι(v)ω the contraction of ω along v. The

grading γ∧∗ Rd is given in terms of the isomorphism C`0,d⊗̂C`d,0 ∼= EndR(
∧∗Rd), where γ∧∗ Rd =

(−1)dρ1 · · · ρd⊗̂γd · · · γ1.

One can check that ρj and γk anti-commute (i.e. they graded-commute). We note that, despite a right-
action by C`d,0 on

∧∗Rd, we do not get an A⊗̂C`0,d-C`d,0 Kasparov module as the graded-commutator
of 1⊗ γk with

∑
j Xj ⊗ γj is not bounded (see [53, Section 4.3] for a more detailed discussion on these

Clifford actions and the link to Kasparov’s fundamental class).
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Proof of Proposition 3.20. The generators ρj of the left action of C`0,d graded-commute with
∑
j Xj⊗γj

so we just need to check that [Xj⊗1N , a] is bounded for all j and a(1+D2)−1/2 is compact for a ∈ A. We
let Sα = Sα1

1 · · ·S
αd
d for Sj a shift operator and α = (α1, . . . , αd) ∈ Zd. Then, for ψ ∈ Dom(Xj) ⊂ `2(Zd),

[Xj , S
α]ψ(x) = xjψ(x− α)− (xj − αj)ψ(x− α)

= αj(S
αψ)(x),

Therefore [Xj , a] extends to a bounded operator for a any finite polynomial of Sα on `2(Zd). Because
matrices of such elements generate A, [Xj ⊗ 1N , a] is bounded for any a ∈ A.

Next we note that (1 +D2)−1/2 = (1 + |X|2)−1/2 ⊗ 1N ⊗ 1∧∗ Rd as an operator on on Hb = `2(Zd)⊗
FN ⊗

∧∗ Rd for F = R or C. On `2(Zd),

(1 + |X|2)−1/2 =
⊕
k∈Zd

(1 + |k|2)−1/2Pk,

where Pk is the projection onto the span of e(k1,...,kd) with {ek}k∈Zd the standard basis of `2(Zd). Hence

(1 + |X|2)−1/2 is a norm-convergent sum of finite-rank operators and so is compact. From this we
conclude that (1 +D2)−1/2 is compact on Hb ⊗

∧∗Rd. �

Remark 3.21. The spectral triple from Proposition 3.20 uses the oriented structure on the (noncommu-
tative) d-torus to construct the Clifford actions and Dirac-type operator. We note that a spectral triple
can also be built using the spin structure (or spinc structure) on the torus. The spin spectral triple is
the same as the spectral triple from Proposition 3.20 up to a Morita equivalence bimodule. We use the
oriented structure to obtain explicit representations of the Clifford generators and actions. See [37, 53],
where the relationship of the spectral triple λ to the fundamental class (in the sense of Poincaré duality
in KK-theory) of the Brillouin zone is made clear. This choice of spectral triple ensures, at least in the
absence of disorder, that all Clifford module valued index pairings can be faithfully detected.

For the case of complex algebras, the spectral triple of interest is given in Equation (3.5). We think
of the real spectral triple of Proposition 3.20 as encoding geometric information of the (possibly non-
commutative) Brillouin torus, including dimension. The Kasparov module represented by [HG] on the
other hand captures information about the internal symmetries of the Hamiltonian. By taking the pair-
ing/product of the class [HG] with the spectral triple, we obtain measurable quantities which reflect the
topological properties of the system.

Remark 3.22 (Pairings and the periodic table). The construction above of an unbounded Kasparov
module gives a class [λ] ∈ KKO(A⊗̂C`0,d,R) [7]. We would like to consider an analogous notion in
real Kasparov theory of the Chern numbers. However, because we are dealing with representatives of
KKO-classes, we need to generalise the complex pairing to the internal product of [λ] with the class
[HG] from Proposition 3.17 and 3.18 that represents the symmetries of the Hamiltonian. That is we take
the Kasparov product, a well-defined map

KKO(C`n,0, A)×KKO(A⊗̂C`0,d,R)→ KKO(C`n,0⊗̂C`0,d,R)

and this leads to a Clifford module valued index

Cn,d = [HG]⊗̂A[λ].

We have to represent the index pairing as a Kasparov product rather than a pairing of a projection with a
cyclic cocyle as the latter involves a map to periodic cyclic cohomology, which is unable to detect torsion
invariants. We note that the class [HG]⊗̂A[λ] takes values in KKO(C`n,0⊗̂C`0,d,R) ∼= KOn−d(R) [36,
§6]. Therefore, by considering the various symmetry subgroups of {1, T, C,CT} that give rise to graded
Clifford representations of C`n,0 for different n outlined in Table 1, we are able to derive the celebrated
periodic table of strong topological phases, which is given in Table 2.

We summarise the discussion in this subsection in the following result.

Proposition 3.23. The periodic table of (strong) topological phases can be realised as the index pairing
(Kasparov product) of the real/complex Kasparov module [HG] from Proposition 3.17 and 3.18 with the
bulk spectral triple of Proposition 3.20 or Equation (3.5).

Remark 3.24 (The even-integer index). We note that KO4(R) ∼= Z whereas the pairings [HG]⊗̂A[λ]
that take value in KO4(R) can be associated to an even integer. The relationship is that we associate
[HG]⊗̂A[λ] to a Clifford module, which in this case can be expressed as a quaternionic Fredholm index.
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Symmetry

generators
R2
C R2

T

Graded

Representation

[HG]⊗̂[λ] ∈ KOn−d(R) or Kn−d(C)
d = 0 d = 1 d = 2 d = 3

T +1 C`0,0 Z 0 0 0
C, T +1 +1 C`1,0 Z2 Z 0 0
C +1 C`2,0 Z2 Z2 Z 0
C, T +1 −1 C`3,0 0 Z2 Z2 Z
T −1 C`4,0 (2)Z 0 Z2 Z2

C, T −1 −1 C`5,0 0 (2)Z 0 Z2

C −1 C`6,0 0 0 (2)Z 0
C, T −1 +1 C`7,0 0 0 0 (2)Z
N/A C`0 Z 0 Z 0
S R2

S = 1 C`1 0 Z 0 Z
Table 2. Symmetry types, their corresponding graded Clifford representation and the
pairing of the symmetry class with the d-dimensional spectral triple (shown for d ≤ 3).

Since both the kernel and cokernel of the relevant operator is a quaternionic space, the complex dimension
of these spaces take even values, and so we can express the index as an even integer. See Section 3.5
and [5, p23]. See also [23, Section 6.2] for some of the physical implications of an even-valued index.

3.5. The Kasparov product and the Clifford index. So far we have identified the invariants of
interest in topological insulator systems as a Kasparov product, [HG]⊗̂A[λ], of Kasparov modules cap-
turing internal symmetries and geometric information. In the case of complex algebras and modules, this
abstract pairing can be concretely represented as a Fredholm index and takes the form Index(PX+P )
or Index(PuP ) (for u a unitary) depending on whether d is even or odd. A replacement for this nu-
merical index in the real case requires the viewpoint of [4, 51] in order to express the Kasparov product
[HG]⊗̂A[λ] more concretely. The Clifford module interpretation of the index due to Atiyah-Bott-Shapiro
in KO-theory is, in fact, essential here.

In order to draw this link, we first must compute the (unbounded) product [HG]⊗̂A[λ]. The compu-
tation will change slightly depending on whether G ⊂ {1, T} or if G contains odd symmetries.

Lemma 3.25. If G contains the odd symmetries C or S, then the real Kasparov product [HG]⊗̂A[λ] can
be represented by the unbounded Kasparov moduleC`n,1⊗̂C`0,d, P̃µ(E⊕N ⊗A Hb⊗̂C`0,1)C`0,1⊗̂

∧∗
Rd,

d∑
j=1

P̃µ(1⊗∇ Xj⊗̂1)P̃µ⊗̂γj


with grading (AdR⊗̂1⊗̂γC`0,1)⊗̂γ∧∗ Rd . If G ⊂ {1, T}, then [HG]⊗̂A[λ] is represented by the spectral
triple C`n,0⊗̂C`0,d, Pµ(E⊕N ⊗A Hb)⊗̂

∧∗
Rd,

d∑
j=1

Pµ(1⊗∇ Xj)Pµ⊗̂γj , (Γ⊗̂1)⊗̂γ∧∗ Rd

 .

Proof. We will focus on the case of C or S ∈ G as the case of G ⊂ {1, T} follows by an entirely analogous
argument but without the extra C`0,1 actions and modules.

In order to take the product

KKO(C`n,1, A⊗̂C`0,1)×KKO(A⊗̂C`0,d,R)→ KKO(C`n,1⊗̂C`0,d, C`0,1),

we first need to take an external product with an identity class in KKO(C`0,d, C`0,d) on the left and an
identity class in KKO(C`0,1, C`0,1) on the right. The class in KKO(C`0,d, C`0,d) can be represented by
the Kasparov module (

C`0,d, (C`0,d)C`0,d , 0, γC`0,d

)
with right and left actions given by right and left Clifford multiplication. The class of the identity in
KKO(C`0,1, C`0,1) is represented analogously. At the level of C∗-modules, the product module is given
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by (
P̃µ(E⊕NA ⊗̂C`0,1C`0,1)⊗̂RC`0,d

)
⊗̂A⊗̂C`0,d+1

(
Hb⊗̂C`0,1C`0,1⊗̂

∧∗
Rd
)

∼= P̃µ

(
E⊕N ⊗A Hb⊗̂C`0,1C`0,1

)
⊗̂R

(
C`d,0 ·

∧∗
Rd
)

∼= P̃µ

(
E⊕N ⊗A Hb⊗̂C`0,1C`0,1

)
⊗̂R
∧∗

Rd

as the action of C`0,d on
∧∗ Rd is bijective. The projection P̃µ is defined on E⊕N ⊗A Hb⊗̂C`0,1 by

the extended H̃ = H⊗̂1⊗̂ρ, which is still self-adjoint and gapped. Furthermore, the action of C`n,1
and C`0,d on P̃µ(E⊕NA ⊗̂C`0,1) and

∧∗Rd respectively can be extended to an action of C`n,1⊗̂C`0,d on

P̃µ(E⊕N ⊗A Hb⊗̂C`0,1)⊗̂
∧∗Rd.

Next we construct the operator 1 ⊗∇ Xj on E⊕N ⊗A Hb for j ∈ {1, . . . , d}. First let EA be the
submodule of E, which is spanned by elements of the form∑

g∈G
agRg =

∑
g∈G

Rgα
−1
g (ag) =

∑
g∈G

Rgãg.

Over finite sums of such elements, we take the connection

∇ : E → E ⊗poly(a) Ω1(poly(a)), ∇

∑
g∈G

Rgag

 =
∑
g∈G

Rg ⊗ δ(ag),

where δ is the universal derivation. We represent 1-forms on Hb via

π̃(a0δ(a1))λ = a0[Xj , a1]λ, λ ∈ Hb,

from which we define, for (e⊗ λ) ∈ E ⊗A Hb,

(1⊗∇ Xj)(e⊗ λ) := (e⊗Xjλ) + (1⊗ π̃) ◦ (∇⊗ 1)(e⊗ λ).

We use a connection to correct the naive formula 1 ⊗ Xj is because 1 ⊗ Xj is not well-defined on the
balanced tensor product. Computing yields that

(1⊗∇ Xj)

∑
g∈G

Rgag ⊗ λ

 =
∑
g∈G

Rg ⊗ agXjλ+
∑
g∈G

Rg ⊗ [Xj , ag]λ

=
∑
g∈G

Rg ⊗Xjagλ.

For the case of E⊕N ⊗A Hb with N ≥ 2, we can always inflate Hb to H⊕Nb and define the operator

(1⊗∇Xj) diagonally. Hence we can define the operator
∑d
j=1 P̃µ(1⊗∇Xj⊗̂1)P̃µ ⊗ γj on the projective

module P̃µ(E⊕N ⊗A Hb⊗̂C`0,1)⊗̂
∧∗Rd. This operator has compact resolvent by analogous arguments

to the proof of Proposition 3.20.
Combining our results so far, we consider the unbounded tupleC`n,1⊗̂C`0,d, P̃µ(E⊕N ⊗A Hb⊗̂C`0,1)C`0,1⊗̂

∧∗
Rd,

d∑
j=1

P̃µ(1⊗∇ Xj⊗̂1)P̃µ⊗̂γj


with grading (AdR⊗̂1⊗̂γC`0,1)⊗̂γ∧∗ Rd . By construction, all Clifford generators have odd grading and
graded-commute with the Dirac-type operator, which also commutes with the right C`0,1 action. Hence
the tuple is an unbounded Kasparov module. A simple check shows that the Kasparov module satisfies
Kucerovsky’s criterion [50, Theorem 13] and so is an unbounded representative of the product. �

We now have an unbounded representative of the product [HG]⊗̂A[λ] ∈ KKO(C`n,0⊗̂C`0,d,R) or
KKO(C`n,1⊗̂C`0,d, C`0,1). Our task is to associate an index to this class.

Let’s begin with the simpler case of G ⊂ {1, T} and so the product [HG]⊗̂A[λ] is represented by a
real spectral tripleC`n,0⊗̂C`0,d, Pµ(E⊕N ⊗A Hb)⊗̂

∧∗
Rd,

d∑
j=1

Pµ(1⊗∇ Xj)Pµ⊗̂γj , (Γ⊗̂1)⊗̂γ∧∗ Rd

 .
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We let PX̃P denote the product operator. Representing the Z2-grading as ( 1 0
0 −1 ), we can express PX̃P =(

0 PX̃−P

PX̃+P 0

)
, where X̃± are real Fredholm operators. The operator X̃ graded-commutes with a

left action of C`n,0⊗̂C`0,d ∼= C`n,d. As PX̃P is Fredholm, Ker(PX̃P ) ∼= Ker(PX̃P )0 ⊕ Ker(PX̃P )1 is

a finite-dimensional Z2-graded C`n,d-module. Furthermore, Ker(PX̃P )0 ∼= Ker(PX̃+P ).

Definition 3.26 ([4]). Denote by M̂r,s the Grothendieck group of equivalence classes of real Z2-graded
modules with an irreducible graded left-representation of C`r,s.

The subspace Ker(PX̃P ) represents a class in the quotient group M̂n,d/i
∗M̂n+1,d, where i∗ comes from

restricting a Clifford action of C`n+1,d to C`n,d. Next, we use the Atiyah-Bott-Shapiro isomorphism [51,
Theorem I.9.27] to relate

M̂n,d/i
∗M̂n+1,d

∼= KOd−n(pt) ∼= KOn−d(R).

Definition 3.27. The Clifford index of PX̃P is given by

Indexn−d(PX̃P ) := [Ker(PX̃P )] ∈ M̂n,d/i
∗M̂n+1,d

∼= KOn−d(R).

We remark that Indexk is a generalisation of the usual index. To see this, we first note that C`0,0 ∼= R
and C`1,0 ∼= R⊕ R. A Z2-graded C`0,0-module is given by any Z2-graded finite-dimensional real vector
space V 0 ⊕ V 1. Next observe that V ⊕ V ∼= V ⊗ R2 extends to a graded C`1,0-module, which implies

that [V ⊕ 0] = −[0 ⊕ V ] in M̂0,0/i
∗M̂1,0. Hence, given a Dirac-type operator D such that Ker(D) is a

Z2-graded C`0,0-module,

Index0(D) = [Ker(D)0 ⊕Ker(D)1] ∼= [Ker(D)0 ⊕ 0]− [Ker(D)1 ⊕ 0]

∼= dimR Ker(D+)− dimR CoKer(D+) ∈ Z ∼= KO0(R).

Therefore we see that Indexk reduces to the usual Fredholm index when k = 0. We direct the reader
to [5] and [51, Chapter I.9, II.7, III.10] for more details on the Clifford index. A similar viewpoint on
expressing the invariants in KOn−d(R) as index-like maps is considered in [23, 28].

As a final detail, we must show that the spectral triple representing the product from Lemma 3.25 does

not contribute any topological information outside of Ker(PX̃P ). We relegate this detail to Appendix
B.

Let us now consider the case of odd symmetries and [HG]⊗̂A[λ] ∈ KKO(C`n,1⊗̂C`0,d, C`0,1). Because
we are now solely interested in the topological information of the product Kasparov module, we can use
stability of the KKO groups to associate [HG]⊗̂A[λ] to a class[

(C`n,d,HR, X̂, γ)
]
∈ KKO(C`n,d,R),

which is now the class of a real spectral triple. Furthermore we can suppose without issue that X̂ graded-
commutes with the left C`n,d representation (see [31, Chapter 8]). Thus we may do the same procedure

as the case of G ⊂ {1, T} and associate the Clifford index, Indexn−d(X̂) ∈ KOn−d(R), to the product
[HG]⊗̂A[λ].

3.6. Some brief remarks on disordered systems. Following Bellissard and others, [8], if we wish
to consider systems with disorder or impurities, our algebra of interest is the twisted crossed product
C(Ω) oφ Zd (if the algebra is real, we take the twist φ = 0). The compact space Ω is the disorder space
of configurations and carries a probability measure such that the action {Tα : α ∈ Zd} on Ω is invariant
and ergodic. The disordered Hamiltonian Hω is indexed by ω ∈ Ω such that Hω ∈ πω(C(Ω) oφ Zd)
and {πω}ω∈Ω is a family of representations linked by the covariance relation Ŝαπω(b)Ŝ−α = πTαω(b) for

Ŝα = Ŝα1
1 · · · Ŝ

αd
d a (possibly twisted) translation operator and b ∈ C(Ω) oφ Zd [8].

If for every ω ∈ Ω, Hω still has a spectral gap at 0, then sgn(Hω) will still give a grading for the
PUA representation. Hence our general method to obtain the Kasparov module encoding the internal
symmetries of the Hamiltonian will extend using the algebra πω(C(Ω) oφ Zd). The Kasparov module
gives a class in KKO(C`n,0, πω(C(Ω) oφ Zd)) and the covariance relation can then be used to ensure

that the KKO-class is independent of the choice of ω ∈ Ω (provided [Ŝα, Rg] = 0 for all g ∈ G and
α ∈ Zd, which is true in all relevant examples).
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Similarly, it is a simple extension of our existing proofs to show that

λω =

πω(A)⊗̂C`0,d,Hb ⊗
∧∗

Rd,
d∑
j=1

Xj ⊗ γj , γ∧∗ Rd


is a real spectral triple with A = Cc(Zd, C(Ω)), a dense ∗-subalgebra. Similarly the spectral triple may
include disorder in the complex case in the same way.

We compare different representations of the disorder parameter by the covariance relation, which gives
the unitarily equivalent spectral triple

ŜαλωŜ
−α =

πTαω(A)⊗̂C`0,d,Hb ⊗
∧∗

Rd,
d∑
j=1

(Xj − αj)⊗ γj , γ∧∗ Rd


as ŜαXjŜ

−α = Xj − αj . The straight line homotopy Dt =
∑
j(Xj − tαj) ⊗ γj for t ∈ [0, 1] shows

that [λω] = [λTαω] and the KKO-classes are orbit equivalent. As the action of Zd on Ω is taken to be
ergodic, all relevant Kasparov modules are independent of the choice of ω ∈ Ω. Hence the index pairing
[(HG)ω]⊗̂πω(A)[λω] is independent of ω and our topological invariants are stable under the addition of
disorder.

As already stated, our disordered model currently requires the spectral gap of the Hamiltonian to
persist under the addition of disorder. This is an unrealistic assumption. Instead an analysis must be
conducted by considering gaps in the extended state spectrum, and the phenomenon of localisation. It
is one of the key achievements of Bellissard et al. [8] that the complex pairing extends to regions under
Anderson localisation. Such an extension is also obtained for the complex pairings in [73, 74]. We delay
a full treatment of the significant problem of localisation in the real/torsion setting to another place.

4. Applications

4.1. Insulator models.

Example 4.1 (Time-reversal invariant 2D Insulators, Kane-Mele model). We take d = 2 and the subgroup
G = {1, T}. We are modelling particles with spin s = 1/2 and so the time-reversal involution RT is such
that R2

T = (−1)2s = −1. The operator RT is anti-unitary so we will work in the category of real algebras
and modules. The time-reversal operator acts on H = `2(Z2) ⊗ C2N (considered where necessary as a
real Hilbert space) by the matrix

RT =

(
0N C
−C 0N

)
,

where C is pointwise complex conjugation. A self-adjoint operator that is invariant under conjugation by

RT takes the form

(
a b
−CbC CaC

)
, where a and CaC are self-adjoint and b∗ = −CbC. Following [35, 23],

we take the Hamiltonian

HKM =

(
h g
g∗ ChC

)
,

where h is a Haldane Hamiltonian (that is, Hamiltonian of shift operators acting on a honeycomb lattice),
and g is the Rashba coupling [35]. We either require the Rashba coupling to be such that g∗ = −CgC
or it is sufficiently small so we may take a homotopy of HKM to a Hamiltonian with g = 0 [83, 23].
Typically h and g are matrices of finite polynomials of the shift operators Sj (see [6, Section 5]). Provided
h and g are such that µ /∈ σ(HKM ), HKM satisfies Assumption 3.12. Therefore we take the algebra
A = M2N (C∗(Z2)) ⊂ B[`2(Z2) ⊗ C2N ] as a real C∗-algebra. Because the Fermi projection commutes
with RT , we may consider the Kasparov module from Proposition 3.17 given by(

C`4,0, PµE
⊕2
A , 0,Γ

)
.

The Kasparov module gives a class [HG] ∈ KKO(C`4,0,M2N [C∗(Z2)]), which can be simplified by
stability of KKO-groups to KKO(C`4,0, C

∗(Z2)).
We can also consider the dense subalgebra A ⊂ A and apply Proposition 3.20 to obtain the real

spectral triple

λ =
(
A⊗̂C`0,2, `2(Z2)⊗ C2N ⊗

∧∗
R2, X1 ⊗ 12N ⊗ γ1 +X2 ⊗ 12N ⊗ γ2, γ∧∗ R2

)
The left Clifford action is generated by ρ1 and ρ2, whose representation is given by Equation (3.6). We
can use the isomorphism of linear spaces

∧∗R2 ∼= M2(C) to write explicit generators for our Clifford
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actions as matrices, though the result is independent of the choice of generators. For example, under a
suitable identification of i as a 2 × 2 matrix that squares to −1, we can choose Clifford generators γj

such that our Dirac-type operator is of the form

X =

(
02N X1 ⊗ 12N − iX2 ⊗ 12N

X1 ⊗ 12N + iX2 ⊗ 12N 02N

)
,

which is analogous to the well-known Dirac-type operator of the quantum Hall effect.
We can then compute the product [PGµ ]⊗̂A[λ], which by Lemma 3.25 is represented by the real spectral

triple

(4.1)

C`4,0⊗̂C`0,2, Pµ(E ⊗A H)⊗ R2⊗̂
∧∗

R2,

2∑
j=1

Pµ(1⊗∇ Xj)Pµ ⊗ 12⊗̂γj ,Γ⊗̂γ∧∗ R2

 .

With EA ∼= AM (M = dimC`4,0) we have the isomorphism

Pµ(E ⊗A H)⊗ R2 ⊗
∧∗

R2 → PµHM ⊗ R2 ⊗
∧∗

R2,

and then on the right hand side the Dirac-type operator becomes
∑
j Pµ(1M ⊗Xj)Pµ ⊗ 12 ⊗ γj .

Following Section 3.5 we can associate the spectral triple of Equation (4.1) to a graded C`4,2-module.
Thus we consider the map

KKO(C`4,0, C
∗(Z2))×KKO(C∗(Z2)⊗̂C`0,2,R)→ KO2(R)(

[PGµ ], [X]
)
7→ Index4−2(PµXPµ) ∈ KO2(R) ∼= Z2

and so we obtain the well-known Z2 invariant that arises in such systems. The derived Z2 invariant
is non-trivial provided the spin-orbit coupling in h is sufficiently large and the Rashba coupling g is
controlled (see [23, 35, 38]). Using the Atiyah–Bott–Shapiro isomorphism and an explicit choice of
Clifford generators, we can express the Clifford index concretely as

Index2(PµXPµ) = dimH Ker(PµXPµ) mod 2 = dimC Ker(Pµ(X1 ⊗ 1M + iX2 ⊗ 1M )Pµ) mod 2.

Example 4.2 (3D Topological insulators). Let us now consider some 3-dimensional examples. What we
consider does not encompass every possible 3D-system, but will hopefully give a better understanding
of how we apply our general K-theoretic picture.

Consider the space H = `2(Z3)⊗ C2N and the symmetry operators

RT =

(
0N C
−C 0N

)
, RC =

(
0N iC
iC 0N

)
.(4.2)

These operators correspond to an odd time-reversal involution (R2
T = −1) and an even charge-conjugation

involution (R2
C = 1). First, we consider operators of the form

(4.3) h = i

 3∑
j=1

finite∑
kj

αkj

(
S
kj
j ⊗ 1N − (S∗j )kj ⊗ 1N

)
on `2(Z3)⊗ CN with αkj ∈ R for all kj . Using h we define

H3D =

(
0 h
h 0

)
.

Because h = h∗ and iChiC = −h, one can check that such Hamiltonians are time-reversal and charge-
conjugation symmetric for RT and RC given in Equation (4.2). We choose coefficients αkj such that H3D

has a spectral gap at 0. Then H3D satisfies Assumption 3.12 and so we can apply our general method.
Because H3D is compatible with the full symmetry group {1, T, C,CT} with R2

T = −1 and R2
C = 1,

Proposition 3.18 and Table 1 imply that the class [HG
3D] ∈ KKO(C`3,0, C

∗(Z3)).
We can use Proposition 3.20 and the dense real subalgebra A ⊂ C∗(Z3) of finite polynomials of shift

operators to build the spectral triple

λ3D =

A⊗̂C`0,3, `2(Z3)⊗ C2N ⊗
∧∗

R3,

3∑
j=1

Xj ⊗ γj , γ∧∗ R3
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with left and right Clifford actions given by Equation (3.6). The pairing [HG
3D]⊗̂A[λ3D] can be represented

by a real spectral triple [(C`3,3,H, X̂, γ)] ∈ KKO(C`3,3,R). Therefore the Clifford index [Ker(X̂)] ∈
M̂3,3/i

∗M̂4,3 reduces to the usual index

Index0(X̂) = dimR Ker(X̂+)− dimR CoKer(X̂+) ∈ Z.
Hence, in this example of d = 3 with R2

T = −1 and R2
C = 1, the invariant of interest is the usual

integer-valued index, though now seen as a special case of a much broader framework.
We now consider a different 3-dimensional Hamiltonian, defined by the matrix

H̆3D =

(
h+ h̆ 0

0 −h+ h̆

)
, h̆ = p(S1, S2, S3),

where h is given in Equation (4.3) and p is a finite polynomial with real coefficients such that p(S1, S2, S3)

is self-adjoint. The new Hamiltonian has the property RT H̆3DR
∗
T = H̆3D, but is not charge-conjugation

symmetric. Provided µ /∈ σ(H̆3D), we obtain a class [H̆G
3D] ∈ KKO(C`4,0, C

∗(Z3)) by Proposition 3.17
and Table 1. We use the same spectral triple

λ3D =

A⊗̂C`0,3, `2(Z3)⊗ C2N ⊗
∧∗

R3,

3∑
j=1

Xj ⊗ γj , γ∧∗ R3


and class [λ3D] ∈ KKO(C∗(Z3)⊗̂C`0,3,R), whose product with [H̆G

3D] is such that

[H̆G
3D]⊗̂C∗(Z3)[λ3D] ∼= Index4−3(PX̃P ) ∈ KO1(R) ∼= Z2.

We can express this index concretely as

Index1(PX̃P ) ∼= dimC Ker(PX̃P ) mod 2 = dimR Ker(PX̃+P ) mod 2.

We emphasise that the spectral triples used in the different 3-dimensional examples are the same (up
to unitary equivalence) and so represent the same KO-homology class. What differentiates the invariants
of interest in the two examples are the different classes represented by [HG] ∈ KKO(C`n,0, C

∗(Z3)) for
changing G and n. Hence the symmetries change but the Dirac type operator of the Brillouin zone
X =

∑
j Xj ⊗ γj is the same (up to equivalence of KO-homology classes) in a fixed dimension. Such an

occurrence also appears in [23, 28].

4.2. The Kasparov product and the bulk-edge correspondence. One of the main applications
of the KKO-approach is to the bulk-edge correspondence for topological insulator systems. We give a
basic overview here, though the full details are lengthy and will be dealt with elsewhere [15].

Following [40, 42, 44, 62], we link bulk and edge systems by the (real) Pimsner-Voiculescu short exact
sequence

0→ B ⊗K[`2(N)]→ T → C∗(Zd)→ 0,

where T acts on `2(Zd−1⊗N)⊗CN and B acts on `2(Zd−1)⊗CN with C∗(Zd) ∼= BoZ under the action
α(b) = S∗dbSd [69]. As B acts on `2(Zd−1)⊗CN , we think of its elements as observables concentrated at
the boundary/edge of the sample. By results in [36, §7], we can associate to this short exact sequence a
class [Ext] ∈ KKO(C∗(Zd)⊗̂C`0,1, B) (see also Equation (A.2)). In particular, we build an unbounded
representative of the extension class using a method similar to [14, Section 2] and [78].

By taking a dense subalgebra B of the ‘edge algebra’ B, we can apply Proposition 3.20 to obtain an
edge spectral triple λe that gives a class [λe] ∈ KKO(B⊗̂C`0,d−1,R).

As we will show in [15], under the intersection product

KKO(C∗(Zd)⊗̂C`0,1, B)×KKO(B⊗̂C`0,d−1,R)→ KKO(C∗(Zd)⊗̂C`0,d,R),

[Ext]⊗̂B [λe] = (−1)d−1[λb],

where [λb] is the class of the bulk spectral triple from Proposition 3.20 and for d even −[λb] denotes the
inverse of λb in K-homology. Taking the product with the symmetry KK-class [HG],

Cn,d = [HG]⊗̂A[λb] = (−1)d−1[HG]⊗̂A[Ext]⊗̂B [λe],

Therefore we can express the real index pairing as a map

KKO(C`n,0, A)×KKO(A⊗̂C`0,1, B)×KKO(B⊗̂C`0,d−1,R)→ KKO(C`n,0⊗̂C`0,d,R).

By the associativity of Kasparov product, this will either be a pairing

KKO(C`n,0, A)×KKO(A⊗̂C`0,d,R)→ KKO(C`n,0⊗̂C`0,d,R) ∼= KOn−d(R),
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the bulk invariant studied in Section 3.4, or

KKO(C`n,0⊗̂C`0,1, B)×KKO(B⊗̂C`0,d−1,R)→ KOn−d(R),

an invariant that comes from the edge algebra B of a system with boundary. The factorisation of the
bulk spectral triple ensures that regardless of our choice of K-theory class we pair with, the result is the
same for bulk and edge. In particular non-trivial bulk pairings imply non-trivial edge pairings and vice
versa, a bulk-edge correspondence. We again refer to [15] for the details.

Appendix A. Kasparov theory for real algebras

A.1. Basic notions. While there is an extensive range of applications of complex Kasparov theory there
has been much less use of the real version. Thus the basics are not well-known and there is a point to
giving a brief introduction to KK-theory for real C∗-algebras.

Definition A.1. A real C∗-algebra A is a real Banach ∗-algebra such that ‖a∗a‖ = ‖a‖2 and a∗a+1 ≥ 0
for all a ∈ A.

Remark A.2 (A note on real vs Real C∗-algebras). The real Gelfand-Naimark theorem says that com-
mutative real C∗-algebras are isomorphic to algebras of the form

C0(X)τ = {f ∈ C0(X,C) : f(xτ ) = f(x) for all x ∈ X},

where (X, τ) is a locally compact Hausdorff space with involution τ , see [2, 79].
More generally, given a Real C∗-algebra (A, τ) (a complex C∗-algebra A with anti-linear involution τ

that preserves multiplication), the subalgebra of elements in A invariant under τ , Aτ = {a ∈ A : aτ = a},
is a real C∗-algebra. There is an equivalence of the category of Real C∗-algebras with the category of
real C∗-algebras (see [56] for more detail on the relation between real and Real algebras).

Definition A.3. A real Hilbert A-module is a real linear space E over R with right action by a real
C∗-algebra A and A-valued inner product (· | ·)A such that such that for all e, f, g ∈ E, λ, ρ ∈ R and
a ∈ A,

(1) (λe) · a = λ(e · a) = e · (λa),
(2) (e|λf + ρg) = λ(e|f) + ρ(e|g),
(3) (e|f · a) = (e|f) · a,
(4) (e|f) = (f |e)∗ as a member of the C∗-algebra A,
(5) (e|e) ≥ 0 as an element of A,
(6) (e|e) = 0 if and only if e = 0,
(7) The space is complete under the norm ‖e‖2E := ‖(e|e)‖A.

Many situations where complex Hilbert C∗-modules arise have natural real analogues.

Example A.4. Let A be a C∗-algebra and consider AA, the C∗-module of A over itself defined by the
relations

a · b = ab, (a|b) = a∗b

The only condition worth checking from the definition is that (a|a) = 0 if and only if a = 0. Using the
C∗-norm condition,

(a|a) = 0⇔ a∗a = 0⇔ ‖a∗a‖ = 0⇔ ‖a‖2 = 0⇔ a = 0.

Example A.5. Take E → X to be a real vector bundle over a locally compact Hausdorff space X.
Provided that there exists a positive real-valued form (· | ·) on E, then we can define the real C∗-module
Γ0(E)C0(X,R) with right-action by multiplication and inner-product via (· | ·).

Much like the case of Hilbert spaces, we are interested in linear transformations between C∗-modules.
Though there are many similarities between operators on C∗-modules and operators on Hilbert spaces,
the adjoint operator T ∗ of a given operator T may not always be defined.

We will denote by EndA(E) the adjointable endomorphisms on the Hilbert C∗-module EA: i.e. those
T : E → E for which there exists an adjoint T ∗ : E → E. For f, g ∈ EA, define the rank-1 endomorphism
Θf,gh = f · (g|h) for h ∈ EA. We define End00

A (E) to be the endomorphisms of finite rank and are given
by the set

End00
A (E) = spanR{Θe,f : e, f ∈ E}.
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The compact operators End0
A(E) are defined by

End0
A(E) = spanR{Θe,f : e, f ∈ E} = End00

A (E),

where the closure is taken via the norm of A.

Example A.6. Take A as C∗-module over itself. Then for a, b, c ∈ A, θa,bc = ab∗c. Hence, if we take the

closure of all linear combinations of θa,b for all a, b ∈ A, then we clearly get A back. Thus, End0
A(A) = A.

We will use A,B,C to denote real C∗-algebras.

Definition A.7. A real unbounded Kasparov module for an algebra A is a 4-tuple (A, πEB ,D, γ) where
A is dense in A and

(1) γ ∈ EndB(E) is a Z2-grading of the real right-B C∗-module EB ,
(2) π is a graded real endomorphism π : A → EndB(E),
(3) D : Dom(D) ⊂ EB → EB is an unbounded operator with (1+D2) dense in EB and for all a ∈ A,

[D, π(a)]± ∈ EndB(E), π(a)(1 +D2)−1/2 ∈ End0
B(E),

where [·, ·]± is the graded commutator.

We will write Kasparov modules as (A, EB ,D) when the representation π is unambiguous.

Remark A.8 (Real Kasparov modules). Kasparov modules for Real C∗-algebras require extra structure.
Namely an anti-linear involution on the space E and algebra B such that eτE · bτB = (e · b)τE and that
(eτE | fτE )B = (e | f)τBB . One also requires the unbounded operator D : Dom(D)→ EB to be invariant
under the induced involution Dτ (e) = (D(eτ ))τ for e ∈ Dom(D).

Because we do not require the extra structure that comes with KKR-theory in this paper, we will
not investigate its properties further. We do however remark that Real algebras and modules appear
to be the correct setting to study systems with parity/spatial involution symmetry. More generally,
while complexifications of real Kasparov modules yield Real Kasparov modules, the possibility of more
complicated Real structures on a Real Kasparov module means that the two notions are distinct, [3].

The results of Baaj and Julg [7] continue to hold for real Kasparov modules, so given an unbounded
module (A, EB ,D) we apply the Riesz map (bounded transform) D → D(1 +D2)−1/2 to obtain the real
Kasparov module (A,EB ,D(1 +D2)−1/2), where A is the C∗-closure of the dense subalgebra A.

One can define notions of unitary equivalence, homotopy and degenerate Kasparov modules in the
real setting (see [36, §4]) just as in the complex case. Hence we can define the group KKO(A,B) as
the equivalence classes of real (bounded) Kasparov modules modulo the equivalence generated by these
relations.

The generality of the constructions and proofs in [36] mean that all the central results in complex
KK-theory carry over into the real (and Real) setting. In particular, the intersection product

KKO(A,B)×KKO(B,C)→ KKO(A,C)

is still a well-defined map and other important properties such as stability

KKO(A⊗̂K(H), B) ∼= KKO(A,B)

continue to hold, where K(H) is the algebra of compact operators on a separable real Hilbert space.
When we consider the unbounded picture and the product, we note that Kucerovsky’s theorem, which

gives us checkable conditions as to whether an unbounded module represents the Kasparov product,
continues to hold in KKO-setting [50, Theorem 13]. While such a result is implicit in Kucerovsky and
Kasparov’s work, the modules and products we consider are simple enough that these technicalities will
not play a role, and all computations are explicit.

A.2. Higher-order groups. Clifford algebras are used to define higher KKO-groups and encode peri-
odicity. In the real setting, we define

C`p,q = spanR
{
γ1, . . . , γp, ρ1, . . . , ρq

∣∣ (γi)2 = 1, (γi)∗ = γi, (ρi)2 = −1, (ρi)∗ = −ρi
}
.

Example A.9. Consider the real space Rp,q with basis {e1, . . . , ep, ε1, . . . , εq} from which we construct
the exterior algebra

∧∗Rp,q. We can define an action of C`p,q on
∧∗Rp,q by Clifford multiplication. We

define ηj(ω) = ej ∧ω+ ι(ej)ω for 1 ≤ j ≤ p and νj(ω) = εj ∧ω+ ι(εj)ω for 1 ≤ j ≤ q, where ι(v) denotes
the contraction of a form along v. One readily checks that the ηj and νj satisfy the requirements to be
generators of C`p,q.
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Similarly, given Rd we can construct
∧∗Rd and define representations of C`d,0 and C`0,d with the

generators

γj(ω) = ej ∧ ω + ι(ej)ω, ρj(ω) = ej ∧ ω − ι(ej)ω

respectively. We note the sign change that ensures (ρj)2 = −1.

We define higher-order KKO-groups by tensoring with real Clifford algebras. Kasparov defines

(A.1) Kp,qK
r,sO(A,B) := KKO(A⊗̂C`p,q, B⊗̂C`r,s).

The definition from Equation (A.1) simplifies immediately with the following result.

Theorem A.10 (§5, Theorem 4 of [36]). Given real algebras A and B, then for a fixed difference
(p− q)− (r − s) the groups Kp,qK

r,sO(A,B) are canonically isomorphic.

Proof. We note that C`n,n ∼= EndR(
∧∗Rn). Therefore C`n,n ∼= K(H) for H =

∧∗Rn and by stability
KKO(A⊗̂C`r,s, B) ∼= KK(A⊗̂C`r+1,s+1, B), since C`r+1,s+1

∼= C`r,s⊗̂C`1,1. Hence

KKO(A⊗̂C`p,q, B⊗̂C`r,s) ∼= KKO(A⊗̂C`p,q⊗̂C`s,r, B) ∼= KK(A⊗̂C`p+s,q+r, B).

Up to stable isomorphism, the algebra C`p+s,q+r depends solely on (p+s)−(q+r) = (p−q)−(r−s). �

Remark A.11. Theorem A.10 implies that it is sufficient to define higher KKO-groups by tensoring by
real Clifford algebras of the form C`n,0 or C`0,n (though cases like C`r,s may still arise in examples).

By Theorem A.10, we find that

KKO(A⊗̂C`n,0, B) ∼= KKO(A,B⊗̂C`0,n).

It is clear that in the real picture the placement of a Clifford algebra on the left or right in the bivariant
group KKO(·, ·) is important. Furthermore, there is a difference between the algebra C`n,0 and C`0,n
that does not occur in the complex theory.

We now clarify the relation between real KK-groups and real K-theory.

Proposition A.12 ([36], §6 Theorem 3). For trivially graded, σ-unital real algebras A, we have the
isomorphism KKO(C`n,0, A) ∼= KOn(A).

Proposition A.12 implies that if A ∼= C(X) for some compact Hausdorff space X, then the group
KKO(C`n,0, C(X)) ∼= KO−n(X) (note the sign change that one can ignore in the complex setting)
and so we are back in the setting of Atiyah’s KO-theory for spaces (see, for example, [51] for more on
topological KO-theory). The reader may also consult [11] for a useful characterisation of KOn(A) for
real C∗-algebras A in terms of unitaries and involutions.

Like the complex case, there is an equivalence between short exact sequences of real C∗-algebras and
certain real Kasparov modules, where

ExtR(A,B) ∼= KKO(A⊗̂C`0,1, B) ∼= KKO(A,B⊗̂C`1,0)(A.2)

for real, nuclear and separable algebras A and B [36, §7].
We also briefly consider Bott periodicity. Because KK-groups are stable and Clifford algebras en-

code an algebraic periodicity with C`0,8 ∼= C`8,0 ∼= M16(R), it follows that KKO(A⊗̂C`8,0, B) ∼=
KKO(A,B⊗̂C`8,0) ∼= KKO(A,B). We would like to relate the algebraic periodicity of the KK-groups
to a topological periodicity. Kasparov defines the suspension of an algebra A by ΣA = C0(R)⊗A, where
ΣA has the Z2-grading coming from A only. A complicated argument (involving the product) shows that

KKO(ΣnA⊗̂C`n,0, B) ∼= KKO(A,B) ∼= KKO(A,ΣnB⊗̂C`n,0),

which relates algebraic periodicity to the more familiar topological periodicity (see [36, §5] for a proof).
In the real setting, one also has the ‘dual suspension’ coming from the real algebra

C0(iR) =
{
f ∈ C0(R,C) : f(x) = f(−x)

}
,

where we define Σ̂A = C0(iR) ⊗ A (with C0(iR) trivially graded). The two suspensions arise because
the complex algebra C0(R,C) has two different Real involutions, namely pointwise complex conjugation

and fτ (x) = f(−x). Taking the real subalgebras of C0(R,C) invariant under the Real involutions gives
C0(R) and C0(iR) respectively. One finds that

KKO(Σ̂nA⊗̂C`0,n, B) ∼= KKO(A,B) ∼= KKO(A, Σ̂nB⊗̂C`0,n)

or KKO(ΣΣ̂A,B) ∼= KKO(A,B) ∼= KKO(A,ΣΣ̂B). See [82] for more information.
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Appendix B. Simplifying the product spectral triple

Recall from Lemma 3.25 that the real index pairing [HG]⊗̂A[λ] for G ⊂ {1, T} is represented by the
unbounded module

(B.1)

C`n,0⊗̂C`0,d, Pµ(E⊕N ⊗A Hb)⊗
∧∗

Rd,
d∑
j=1

Pµ(1⊗∇ Xj)Pµ ⊗ γj , (Γ⊗ 1)⊗̂γ∧∗ Rd

 .

We let PX̃P =
∑d
j=1 Pµ(1 ⊗∇ Xj)Pµ ⊗ γj and H = Pµ(E⊕N ⊗A Hb). Associated to the real spectral

triple of Equation (B.1) is the real Fredholm module(
C`n,d,H, F̃ , γ

)
,

where F̃ = PX̃P (1 + (PX̃P )2)−1/2 [7]. Because PX̃P is self-adjoint and graded-commutes with the

Clifford action, so does F̃ . Hence [π(c), F̃ ]± = π(c)(F̃ − F̃ ∗) = 0 for any c ∈ C`n,d. What stops the

Fredholm module being degenerate is that (1− F̃ 2) ∈ K(H) is not necessarily zero.

We use the (real) polar decomposition of F̃ = V |F̃ | from [52, Theorem 1.2.5] and note that Ker(V ) =

Ker(F̃ ) = Ker(PX̃P ). Because Ker(V ) = Ker(F̃ ), we can take the operator homotopy Ft = V |F̃ |t,
t ∈ [0, 1] to obtain the Fredholm module (C`n,d,H, V, γ), which represents a class in KKO(C`n,d,R).
The partial isometry V is a real Fredholm operator as 1H−V ∗V is a finite-rank projection and so V has
a pseudo-inverse.

Finally we write (C`n,d,H, V, γ) =
(
C`n,d,Ker(PX̃P ), 0, γ

)
⊕ (C`n,d, V

∗VH, V, γ), and the second

summand is degenerate. Thus the KK-class and so the index depends only on the former module.
Summing up our discussion, the topological properties of the product spectral triple of Equation (B.1)

are wholly contained in the real Fredholm index of V and, hence, are determined by Ker(V ) = Ker(PX̃P ).

Therefore it suffices to consider the Clifford module properties of Ker(PX̃P ) as we have done in Section
3.5.
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