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C∗-ALGEBRAS ASSOCIATED TO C∗-CORRESPONDENCES
AND APPLICATIONS TO MIRROR QUANTUM SPHERES

DAVID ROBERTSON AND WOJCIECH SZYMAŃSKI

Abstract. The structure of the C∗-algebras corresponding to
even-dimensional mirror quantum spheres is investigated. It is

shown that they are isomorphic to both Cuntz–Pimsner algebras

of certain C∗-correspondences and C∗-algebras of certain labelled

graphs. In order to achieve this, categories of labelled graphs and

C∗-correspondences are studied. A functor from labelled graphs

to C∗-correspondences is constructed, such that the correspond-
ing associated C∗-algebras are isomorphic. Furthermore, it is

shown that C∗-correspondences for the mirror quantum spheres
arise via a general construction of restricted direct sum.

1. Introduction

Our original motivation for this study came from the desire to better un-
derstand the C∗-algebraic structure of mirror quantum spheres. They were
first defined in dimension 2 in [9], and then in full generality in [13], [14].
It was noted from the beginning that in even dimensions these differ on the
C∗-algebraic level from the Euclidean quantum spheres arising from quantum
groups. In particular, the Euclidean quantum spheres correspond to certain
graph C∗-algebras, [10], [12], but such a convenient description was lacking
for the even dimensional mirror quantum spheres.
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In the present paper, we show that the C∗-algebras of even dimensional
mirror quantum spheres are naturally isomorphic to both Cuntz–Pimsner al-
gebras of certain C∗-correspondences (in the sense of [16]) and C∗-algebras of
certain labelled graphs (in the sense of [4], [5]). We arrive at these two realisa-
tions in the following way. At first, we define a category of C∗-correspondences
and show that the process of associating C∗-algebras to them is functorial.
Furthermore, this functor sends restricted direct sums of C∗-correspondences
to pull-backs of their C∗-algebras. Restricted direct sums of Hilbert mod-
ules were introduced in [2], and this construction is extended to C∗-corres-
pondences in the present article. We then use a realisation of the mirror
quantum spheres as pull-backs of quantum discs to obtain the appropriate C∗-
correspondences. To this end, we must first find suitable C∗-correspondences
for the quantum discs.

A close examination of the above mentioned C∗-correspondences results in
finding labelled graphs for the mirror quantum spheres. The explicit forms of
the isomorphisms are obtained by comparing the defining relations.

Our paper is organised as follows. We begin Section 2 by recalling the
definition of C∗-correspondences and the C∗-algebra associated to them, fol-
lowing the approach of Katsura [16]. We also show that the class of C∗-
correspondences, together with appropriately defined morphisms forms a cat-
egory. Thus, we obtain a functor which maps a C∗-correspondence (X,A)
to the C∗-algebra OX , and sends morphisms between C∗-correspondences to
C∗-homomorphisms.

In Section 3, we consider restricted direct sums of C∗-correspondences,
which were first defined on the level of Hilbert modules by Bakić and Guljaš
in [2]. We show that this construction lifts to a pull-back on the level of
corresponding C∗-algebras.

We use this result in Section 4 in order to obtain a new representation
of the even dimensional mirror quantum spheres. The C∗-algebra of such a
quantum sphere is defined as the pull-back of two copies of the 2n dimen-
sional quantum disc algebra C(D2n

q ) over the obvious surjection to the 2n − 1
dimension quantum sphere algebra C(S2n−1

q ), with one copy of the disc pre-
composed with a ‘flip’ automorphism. We show that they can be realised as
C∗-algebras associated to certain explicitly constructed C∗-correspondences.

In Section 5, we first introduce a category of labelled graphs and construct
faithful representations of C∗-algebras associated to them. Then we show
existence of a functor from this category of labelled graphs to the category of
C∗-correspondences which preserves the associated C∗-algebras. Finally, we
explicitly construct labelled graphs giving rise to the C∗-algebras of the even
dimensional mirror quantum spheres.
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2. Category of C∗-correspondences

In this section, we construct a category of C∗-correspondences in such
a way that the association of C∗-algebras to the correspondences becomes
functorial. These C∗-algebras first arose in the work of Pimsner in [22]. How-
ever, in this original definition the left action was required to be injective as
non-injective left actions often led to degenerate C∗-algebras. This definition
included a large class of C∗-algebras, for example crossed product C∗-algebras
and Cuntz–Krieger algebras. However, the above mentioned restriction did
lead to the exclusion of many interesting C∗-algebras, notably graph algebras
where the underlying directed graph had sinks. This problem was resolved
by Katsura in [16], and his definition reduces to that of Pimsner when the
left action is injective. This larger class of C∗-algebras now contains examples
such as crossed products by partial automorphisms, graph algebras associated
to graphs with sinks, and as we shall show in this paper, the labelled graph
algebras of Bates and Pask, [4].

We begin this section by recalling the definition of a C∗-correspondence,
see, for example, [16], [20].

For a C∗-algebra A, a right Hilbert A-module is a Banach space X equipped
with a right action of A, and an A-valued inner-product satisfying
(1) 〈ξ, ηa〉 = 〈ξ, η〉a;
(2) 〈η, ξ〉 = 〈ξ, η〉∗; and
(3) 〈ξ, ξ〉 ≥ 0 and ‖ξ‖ =

√
‖ 〈ξ, ξ〉‖

for all ξ, η ∈ X and a ∈ A.
We denote by L(X) the set of all adjointable operators on X ; that is, linear

operators T : X → X such that there exists a linear operator T ∗ called the
adjoint of T such that

〈Tξ, η〉 =
〈
ξ,T ∗η

〉
for all ξ, η ∈ X . If the adjoint T ∗ exists, it is unique. With the usual operator
norm ‖T ‖ = sup{‖Tx‖ : ‖x‖ ≤ 1}, L(X) is a C∗-algebra

For ξ, η ∈ X , define θξ,η to be the operator satisfying

θξ,η(ζ) = ξ〈η, ζ〉.
This is an adjointable operator with (θξ,η)∗ = θη,ξ . We call

K(X) = span{θξ,η : ξ, η ∈ X}
the set of compact operators. It is a closed two-sided ideal in L(X).

Definition 2.1. We say that a right Hilbert A-module X is a C∗-corres-
pondence over A when a ∗-homomorphism φX : A → L(X) is given. We call
φX the left action of the C∗-correspondence.

Example 2.2. Let D be a C∗-algebra. Then there is a natural way to
realise (D,D) as a C∗-correspondence by defining the left and right actions
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by multiplication and inner-product 〈a, b〉 = a∗b for a, b ∈ D. With a C∗-
correspondence defined in this manner, there is a canonical isomorphism

ιD : K(D) → D

satisfying ιD(θa,b) = ab∗. For details, see [24, Example 2.26].

For C∗-correspondences (X,A) and (Y,B) and a continuous linear map
ψX : X → Y a ∗-homomorphism ψ+

X : K(X) → K(Y ) is defined satisfying

ψ+
X(θξ,η) = θψX(ξ),ψX(η).

To see that this map is well defined, we refer the reader to [15], [22] and [2,
Proposition 3.10]. If (Z,C) is another C∗-correspondences and ψY : Y → Z
is a continuous map, then we have the following composition law: ψ+

Y ◦ ψ+
X =

(ψY ◦ ψX)+.
Now we aim to define the category of C∗-correspondences and introduce a

covariant functor F from the category of C∗-correspondences to the category
of C∗-algebras, satisfying F (X,A) = OX where OX is the C∗-algebra associ-
ated to (X,A) in the sense of Katsura [16]. To this end, we first define after
Katsura ([16]) an ideal JX of A by

JX :=
{
a ∈ A : φX(a) ∈ K(X) and ab = 0 for all b ∈ ker(φX)

}
.

Note that JX = φ−1
X (K(X)) whenever φX is injective.

Definition 2.3. Let (X,A) and (Y,B) be C∗-correspondences. Let ψX :
X → Y be a linear map and ψA : A → B be a C∗-homomorphism. We say
that the pair (ψX , ψA) is a morphism of C∗-correspondences if the following
conditions hold.
(C1) 〈ψX(ξ), ψX(η)〉 = ψA(〈ξ, η〉) for all ξ, η ∈ X ,
(C2) ψX(φX(a)ξ) = φY (ψA(a))ψX(ξ) for all ξ ∈ X and a ∈ A,
(C3) ψA(JX) ⊂ JY , and
(C4) φY (ψA(a)) = ψ+

X(φX(a)) for all a ∈ JX .

Proposition 2.4. Let (ψX , ψA) : (X,A) → (Y,B) be a morphism of C∗-
correspondences. Then ψX(ξa) = ψX(ξ)ψA(a) for all a ∈ A. Furthermore,
if the image ψX(X) ⊂ Y is dense, then condition (C4) automatically follows
from (C1)–(C3).

Proof. The first part follows from [1, Theorem 2.3]. For the second prop-
erty, suppose the image ψX(X) ⊂ Y is dense. It follows from the first property
and (C1) that for any θξ,η ∈ K(X) and ψX(ζ) ∈ ψX(X) we have

ψ+
X(θξ,η)ψX(ζ) = ψX(ξ)

〈
ψX(η), ψX(ζ)

〉
= ψX(θξ,ηζ).

Therefore, ψ+
X(K)ψX(ζ) = ψX(Kζ) for all K ∈ K(X). In particular, for all

a ∈ JX we have

ψ+
X

(
φX(a)

)
ψX(ζ) = ψX

(
φX(a)ζ

)
= φY

(
ψA(a)

)
ψX(ζ)
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by (C2), since φX(a) ∈ K(X). By density of ψX(X) ⊂ Y , we may now con-
clude that ψ+

X(φX(a) = φY (ψA(a)). �

The following simple example illustrates the fact that (C4) may fail if the
image of ψX is not dense.

Example 2.5. Let X be the one dimensional Hilbert space with generator
e, and Y be the two dimensional Hilbert space with generators f1 and f2. Let
A = B = C. Then by defining left and right actions as multiplication, (X,A)
and (Y,B) are C∗-correspondences. Define a pair of maps (ψX , ψA) : (X,A) →
(Y,B) by ψX(e) = f1 and ψA = id. Clearly, the image of ψX is not dense in Y .
It is easily shown that conditions (C1), (C2) and (C3) hold. But (C4) says
that we should have

ψ+
X

(
φX(1)

)
= φY

(
ψA(1)

)
⇐⇒ ψ+

X(θe,e) = φY (1)
⇐⇒ θf1,f1 = θf1,f1 + θf2,f2

which would imply that the generator f2 is zero. So (C4) does not hold.

We can now construct the desired category, which we call C. The objects
are given by

Obj(C) =
{
(X,A) : X is a C∗-correspondence over A

}
and morphisms Mor(C) as in Definition 2.3.

There are well-defined domain and codomain maps Mor(C) → Obj(C),
namely for (ψX , ψA) : (X,A) → (Y,B), we have dom(ψX , ψA) = (X,A) and
cod(ψX , ψA) = (Y,B). It is clear from the definition of morphisms that the
composition of two composable morphisms will result in another morphism.
For an object (X,A), the identity morphism is id(X,A) = (idX , idA) which is
also clearly a morphism of C∗-correspondences.

The next step is to define the C∗-algebra associated to a C∗-correspondence,
and show that this process is naturally implemented by a functor between the
categories. In order to do this, we first need to define what we mean by a
covariant representation of a C∗-correspondence on a C∗-algebra. We do this
via morphisms of C∗-correspondences.

Definition 2.6. Let (X,A) be a C∗-correspondence and let D be an ar-
bitrary C∗-algebra. A covariant representation of (X,A) on D is a mor-
phism (ρX , ρA) : (X,A) → (D,D), where (D,D) is the C∗-correspondence in-
troduced in Example 2.2.

Remark 2.7. It is easy to see that this definition is equivalent to that of
a covariant representation, given in [16]. If we consider morphisms that only
satisfy conditions (C1) and (C2), then we recover the original definition of
a representation of a C∗-correspondence. Furthermore, it follows from the
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somorphism K(D) ∼= D that JD = D, and hence condition (C3) is automatic
for morphisms of this form. Condition (C4) is the covariance condition of [16];
that is, it says that

ρ+
X

(
φX(a)

)
= ι−1

D (a),
where ιD : K(D) → D is the isomorphism from Example 2.2.

Definition 2.8 ([16, Definition 2.6]). Define the OX to be the universal
C∗-algebra generated by the image of (X,A) under the universal covariant
representation (πX , πA).

It is easy to show the existence of such a universal representation, which is
always injective by [16, Proposition 2.7].

Now, we want to construct a functor F from our category C to the category
of C∗-algebras, satisfying F (X,A) = OX . In order to do this, we must first
see that any morphism (ψX , ψA) : (X,A) → (Y,B) extends to a unique C∗-
homomorphism, which we denote by Ψ : OX → OY .

Proposition 2.9. Let (ψX , ψA) : (X,A) → (Y,B) be a morphism of C∗-
correspondences. Then this morphism extends to a unique C∗-homomorphism
Ψ : OX → OY such that the following diagram commutes.

(X,A)

(πX ,πA)

(ψX ,ψA)
(Y,B)

(πY ,πB)

OX
Ψ OY

Proof. It follows from the definition that (πY ◦ ψX , πB ◦ ψA) is a covariant
representation of (X,A) on OY . Hence, the universal property of OX implies
the existence of the required ∗-homomorphism Ψ : OX → OY such that the
diagram commutes. �

Definition 2.10. Define a map F from the category C of C∗-correspond-
ences to the category of C∗-algebras which satisfies

F (X,A) = OX

and for a morphism (ψX , ψA) : (X,A) → (Y,B) we let F (ψX , ψA) be the
unique map Ψ : OX → OY satisfying the conditions of Proposition 2.9.

Proposition 2.11. The map F is a covariant functor from the category
of C∗-correspondences to the category of C∗-algebras.

Proof. First fix C∗-correspondences (X,A), (Y,B) and (Z,C), and mor-
phisms of C∗-correspondences (ψX , ψA) : (X,A) → (Y,B) and (ωY , ωB) : (Y,
B) → (Z,C). Since idX is linear, idA is a homomorphism and idA(JX) = JX ,
we know that (idX , idA) is a morphism of C∗-correspondences. So in order to
see that F is a covariant functor, we need to show that
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(1) idF (X,A) = F (id(X,A)); and
(2) F (ψX , ψA) ◦ F (ωY , ωB) = F ((ψX , ψA) ◦ (ωY , ωB)).
For (1), we need only show that this holds on the generators {πX(ξ) : ξ ∈ X}
and {πA(a) : a ∈ A} and this follows from the commutativity of the diagram
in Proposition 2.9.

For (2), again we only see that it holds on generators, so fix ξ ∈ X and
a ∈ A. Then by three applications of the commutativity of the diagram in
Proposition 2.9 and the fact that the composition (ψX , ψA) ◦ (ωY , ωB) is a
morphism of C∗-correspondences we have

F (ωY , ωB) ◦ F (ψX , ψA)
(
πX(ξ)

)
= F (ωY , ωB) ◦ πY

(
(ψX , ψA)(ξ)

)
= πZ

(
(ωY , ωB) ◦ (ψX , ψA)(ξ)

)
= F

(
(ωY , ωB) ◦ (ψX , ψA)

)(
πX(ξ)

)
and similarly we can show that

F (ωY , ωB) ◦ F (ψX , ψA)
(
πX(a)

)
= F

(
(ωY , ωB) ◦ (ψX , ψA)

)(
πX(a)

)
as required. So F is a covariant functor from the category of C∗-corres-
pondences to the category of C∗-algebras. �

In what follows, we will just write OX for F (X,A) and use capitalised
Greek characters for induced homomorphisms between C∗-algebras.

3. Gluing C∗-correspondences

The purpose of this section is to show that the functor F constructed
above is well-behaved with respect to taking pullbacks. This will be useful in
applications when we consider noncommutative spaces as being constructed
by gluing two underlying spaces together over a common boundary. The idea
of taking pullbacks on the level of C∗-correspondences motivates the following
definition, which is due to Bakić and Guljaš, [2].

Definition 3.1. Given (X,A), (Y,B) and (Z,C) ∈ C, and morphisms of
C∗-correspondences (ψX , ψA) : (X,A) → (Z,C), (ωY , ωB) : (Y,B) → (Z,C),
define the restricted direct sum

X ⊕Z Y :=
{
(ξ, η) ∈ X ⊕ Y : ψX(ξ) = ωY (η)

}
.

Proposition 3.2. The restricted direct sum X ⊕Z Y is a C∗-correspond-
ence over the C∗-algebra A ⊕C B defined to be the pullback C∗-algebra of A
and B along ψA and ωB .

Proof. It follows from [2, Lemma 2.1] that X ⊕Z Y is a Hilbert A ⊕C B-
module. In order to prove that it is also a C∗-correspondence we need a left
action φX⊕ZY . For (ξ, η) ∈ X ⊕Z Y and (a, b) ∈ A ⊕C B, we define

φX⊕ZY (a, b)(ξ, η) :=
(
φX(a)ξ,φY (b)η

)
.
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To see that this is an element of X ⊕Z Y , first recall that (πZ ◦ ψA, tZ ◦ ψX)
is a covariant representation of (X,A) on OZ and (πZ ◦ ωY , πC ◦ ωB) is a
covariant representation of (Y,B) on OZ . Then

πC ◦ ψA

(
φX(a)ξ

)
= (πC ◦ ψA)(a)(πZ ◦ ψX)(ξ)
= (πC ◦ ωB)(b)(πZ ◦ ωY )(η)
= πC

(
ωB

(
φY (b)η

))
and then since πZ is injective, it follows that ψA(φX(a)ξ) = ωB(φY (b)η). It is
clear from the definition that it is a ∗-homomorphism so φX⊕ZY : A ⊕C B →
L(X ⊕Z Y ) is a left-action and (X ⊕C Y,A ⊕C B) is a C∗-correspondence. �

The following theorem is the main result of this section.

Theorem 3.3. Let (X,A), (Y,B) and (Z,C) be C∗-correspondences. Fix
morphisms of C∗-correspondences (ψX , ψA) : (X,A) → (Z,C), (ωY , ωB) : (Y,
B) → (Z,C) satisfying
(1) (ψX , ψA) and (ωY , ωB) are surjective morphisms with ψA(ker(φX)) =

ωB(ker(φY )),
(2) φX(A) ⊂ K(X) and φY (B) ⊂ K(Y ), and
(3) the ideals ker(φX) and ker(φY ) are complemented; that is, there exist

ideals JA � A and JB � B such that A = JA ⊕ ker(φX) and B = JB ⊕
ker(φY ).

Then
OX⊕ZY

∼= OX ⊕OZ
OY ,

where OX ⊕OZ
OY is the pullback C∗-algebra of OX and OY along Ψ and Ω.

We begin by showing that there is a covariant representation of the re-
stricted direct sum correspondence (X ⊕Z Y,A ⊕C B) on the pullback C∗-
algebra OX ⊕OZ

OY . First, we need a definition.

Definition 3.4. Let (ρX , ρA) be a covariant representation of a C∗-corre-
spondence (X,A) on a C∗-algebra D. Then we say that (ρX , ρA) admits a
gauge action if for z ∈ T there exists a ∗-homomorphism αz : C∗(ρX , ρA) →
C∗(ρX , ρA) such that αz(ρA(a)) = ρA(a) and αz(ρX(ξ)) = zρX(ξ) for all a ∈ A
and ξ ∈ X . We say an ideal I ⊂ C∗(ρX , ρA) is gauge invariant if αz(I) ⊂ I
for all z ∈ T.

It is well known that the universal covariant representation (πX , πA) of
(X,A) admits a gauge action.

Lemma 3.5. Let (ψX , ψA) be a morphism of C∗-correspondences, with as-
sociated C∗-homomorphism Ψ : OX → OY . Then ker(Ψ) is a gauge invari-
ant ideal of OX . Furthermore, if we assume that (ψX , ψA) is surjective,
φX(A) ⊂ K(X) and ker(φX) is complemented then ker(Ψ) is the ideal gen-
erated by πX(ker(ψA)).
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Proof. Let γ : T → Aut(OX) be the gauge action. To see that ker(Ψ) is
a gauge invariant ideal it is enough to show that Ψ commutes with the au-
tomorphism γz for any z ∈ T. This is easily seen to hold the generators
{tX(ξ) : ξ ∈ X} and {πX(a) : a ∈ A}.

Now suppose the morphism satisfies the extra hypotheses. We begin by
showing that the ideal ker(ψA) is X-invariant and X-saturated in the sense
of [21]. That is, we need to show that

(1) φX(ker(ψA))X ⊂ X ker(ψA), and
(2) a ∈ JX and φX(a)X ⊂ X ker(ψA) =⇒ a ∈ ker(ψA).

For (1), suppose ξ ∈ X ker(ψA). Then [18, Proposition 1.3] implies that
〈ξ, ξ〉 ∈ ker(ψA), so we have ψX(ξ) = 0 by definition of a morphism. Like-
wise, if ξ ∈ ker(ψX), then 〈ξ, ξ〉 ∈ ker(ψA) so [18, Proposition 1.3] implies
ξ ∈ X ker(ψA). So we have ker(ψX) = X ker(ψA) and condition (1) easily
follows.

For condition (2), fix a ∈ JX and suppose φX(a)X ⊂ X ker(ψA). From
the argument above this is equivalent to ψX(φX(a)X) = {0}. Since ψX is
surjective, this means we must have φY (ψA(a)) = 0 and hence ψA(a) = 0
since ψA(a) ∈ JY and φY is injective on JY . So a ∈ ker(ψA).

Finally, [21, Theorem 6.4] implies that ker(Ψ) is the ideal generated by
πX(π−1

X (ker(Ψ))) = πX(ker(ψA)) as required. �

Definition 3.6. Define a pair of maps (ρX⊕ZY , ρA⊕CB) : (X ⊕Z Y,A ⊕C

B) → OX ⊕OZ
OY as follows. The map ρA⊕CB satisfies

ρA⊕CB(a, b) =
(
πA(a), πB(b)

)
and ρX⊕ZY satisfies

ρX⊕ZY (ξ, η) =
(
πX(ξ), πY (η)

)
.

Proposition 3.7. The pair (ρX⊕ZY , ρA⊕CB) is an injective covariant rep-
resentation of the restricted direct sum (X ⊕Z Y,A ⊕C B) on the pullback
C∗-algebra OX ⊕OZ

OY . Furthermore, this representation admits a gauge
action.

Proof. It is easy to see from the definition that ρA⊕CB is a ∗-homomorphism
and that ρX⊕ZY is a linear map. Furthermore, routine calculations show that
conditions (C1) and (C2) are satisfied. We know ρA⊕CB is injective because
the universal homomorphisms πX and πY are injective. Remark 2.7 implies
that (C3) is automatic in this case. For (C4), since πX and πY are covariant
representations, it is enough to show that (a, b) ∈ JX⊕ZY implies a ∈ JX and
b ∈ JY . First, notice that we have an inclusion K(X ⊕Z Y ) ⊂ K(X) ⊕ K(Y )
given on generators by

θ(ξ,η),(ξ′,η′) �→ (θξ,ξ′ , θη,η′ ).
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So (a, b) ∈ JX⊕ZY implies φX(a) ∈ K(X) and φY (b) ∈ K(Y ). Now, fix c ∈
ker(φX). Then since ψA(ker(φX)) = {0} = ωB(ker(φY )) we can find an ele-
ment d ∈ ker(φY ) so that (c, d) ∈ ker(φX⊕ZY ). Hence

(a, b)(c, d) = 0 =⇒ ac = 0

and we see that a ∈ JX . Likewise, we may show that b ∈ JY and we have an
injective covariant representation as required.

Finally, it is easy to show that (ρX⊕ZY , ρA⊕CB) admits a gauge action
simply because both of the universal representations πX and πY admit gauge
actions. �

So we have an injective covariant representation of (X ⊕Z Y,A ⊕C B) on the
pullback C∗-algebra OX ⊕OZ

OY so in particular, the universality of OX⊕ZY

implies that there exists a homomorphism P : OX⊕ZY → OX ⊕OZ
OY . We

want to see that this is an isomorphism. To do this, we use the gauge-invariant
uniqueness theorem, originally proved for the injective left-action case in [8]
and then in the general case by Katsura, [17, Theorem 6.4]. It is restated
without proof here for the readers convenience.

Theorem 3.8 ([17, Theorem 6.4]). For a covariant representation (ρX , ρA)
of a C∗-correspondence (X,A), the ∗-homomorphism P : OX → C∗(ρX , ρA) is
an isomorphism if and only if (ρX , ρA) is injective and admits a gauge action.

We now have the required results to begin the proof of Theorem 3.3.

Proof of Theorem 3.3. We have an injective, covariant representation ρ =
(ρX⊕ZY , ρA⊕CB) of X ⊕Z Y on the pullback C∗-algebra OX ⊕OZ

OY . So the
universality of OX⊕ZY induces a homomorphism φ : OX⊕ZY → OX ⊕OZ

OY .
Let α,β be the gauge actions on OX and OY respectively. Then clearly we
get a gauge action α ⊕ β on the pullback OX ⊕OZ

OY that is compatible
with ρ. So the gauge invariant uniqueness theorem implies that φ is in fact
an injection. It only remains to be seen that this map is a surjection.

Fix (x, y) ∈ OX ⊕OZ
OY . Since the C∗-correspondence morphisms (ψX , ψA)

and (ωY , ωB) are surjective, we can find an element (x, y′) ∈ OX⊕ZY with y′ ∈
Ω−1(Ψ(x)). By definition of this element, we must have Ω(y) = Ω(y′) = Ψ(x)
and hence y − y′ ∈ ker(Ω). Hence, we can write (x, y) as a sum

(x, y) =
(
x, y′) + (0,w)

with (x, y′) ∈ OX⊕ZY and w = y − y′ ∈ ker(Ω). So to see that (x, y) ∈ OX⊕ZY ,
we need only show that (0,w) ∈ OX⊕ZY . It is enough to show that ker(Ω) is
the ideal generated by πY (ker(ωB)), and this follows from Lemma 3.5.

So we have the required isomorphism. �
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4. Construction of 2n-dimensional mirror quantum spheres

As an application of Theorem 3.3, in this section we present a realisation
of the 2n dimensional mirror quantum sphere C(S2n

q,β) where q ∈ (0,1), as a
C∗-algebra associated to a C∗-correspondence. For the original construction
and results on this object, we refer the reader to [14]. We recall the basic
definition here for the convenience of the reader.

Firstly, fix n ∈ N. We construct the 2n dimensional quantum sphere by
gluing two 2n dimensional quantum discs along their boundary, a 2n − 1
dimensional quantum sphere. The ‘mirroring’ is obtained by pre-composing
one of the discs with an automorphism that ‘flips’ it prior to gluing. More
concretely, we construct it as the pullback of the following diagram

C(D2n
q )

β◦π

C(D2n
q ) π

C(S2n−1
q )

where π : C(D2n
q ) → C(S2n−1

q ) is the natural surjection and β is an element
of Aut(C(S2n−1

q )).
The first step is to represent each C∗-algebra as a C∗-algebra generated

by a C∗-correspondence. We know from [14] that C(D2n
q ) is isomorphic to

the graph algebra C∗(Mn), where Mn is the graph with n + 1 vertices M0
n =

{v1, . . . , vn+1}, edge set M1
n = {ei,j : 1 ≤ i ≤ n, i ≤ j ≤ n + 1} and range and

source maps r and s satisfying s(ei,j) = vi and r(ei,j) = vj .
Consider the vector space

X = span{wi,j : i = 1, . . . , n, j = i, . . . , n + 1}

and the C∗-algebra A generated by mutually orthogonal projections

{Pi : i = 1, . . . , n + 1}.

Define an A valued inner-product on X satisfying

〈wi,j ,wk,l〉 = δi,kδj,lPj

and a right action of A on X satisfying

wi,jPk = δj,kwi,j .

Define a left action φX : A → L(X) satisfying

φX(Pk)wi,j = δi,kwi,j .

Then it is easily checked that X ∼= Cc(M1
n) and A ∼= C0(M0

n) and the C∗-
correspondence structure matches that defined in [16, Section 3.4], so [16,
Proposition 3.10] implies that we have an isomorphism OX

∼= C(D2n
q ).
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Similarly for C(S2n
q ), consider the vector space

Z = span{zi,j : i = 1, . . . , n, j = i, . . . , n}

and C∗-algebra C generated by mutually orthogonal projections

{Si : i = 1, . . . , n}.

Then OZ
∼= C(S2n−1

q ). We refer the reader to [14] for the details of the directed
graph that we are using to construct Z and C.

Now, we want to see that there exists a morphism of C∗-correspondences
(ψX , ψA) : (X,A) → (Z,C) such that the induced homomorphism Ψ : OX →
OZ and the surjection π : C(D2n

q ) → C(S2n
q ) are intertwined by the isomor-

phism OX
∼= C(D2n

q ) and the isomorphism OZ
∼= C(S2n

q ). Define

ψX(wi,j) =

{
zi,j for 1 ≤ i ≤ n and i ≤ j ≤ n,

0 if i = n, j = n + 1

and

ψA(Pi) =

{
Si for 1 ≤ i ≤ n,

0 if i = n + 1.

Then it is routine to show that this is a morphism of C∗-correspondences and
the induced map Ψ : OX → OZ is the desired homomorphism. So we have

Ψ
(
πA(wi,j)

)
= πZ(zi,j) for i = 1, . . . , n, j = i, . . . , n,

Ψ
(
πA(wn,n+1)

)
= 0,

Ψ
(
πA(Pi)

)
= πC(Si) for i = 1, . . . , n,

Ψ
(
πA(Pn+1)

)
= 0.

For the mirroring, we compose with the automorphism β ∈ Aut(OZ) satis-
fying

β
(
πZ(zi,j)

)
= πZ(zi,j) for i = 1, . . . , n − 1, j = i, . . . , n − 1,

β
(
πZ(zn,n)

)
= πZ(zn,n)∗,

β
(
πC(Si)

)
= πC(Si).

However, we are not yet ready to use Theorem 3.3 because the map β ◦ Ψ
does not come from a C∗-correspondence morphism from (X,A) to (Z,C).
So we must find another C∗-correspondence (Y,B) and a C∗-correspondence
morphism (ωY , ωB) : (Y,B) → (Z,C) such that OY

∼= C(D2n
q ) and the exten-

sion Ω : OY → OZ of (ωY , ωB) is the C∗-homomorphism β ◦ Ψ.
Let Y1 := {xi,j : 1 ≤ i ≤ n − 1, i ≤ j ≤ n+1}, Y2 := {xi,n,j : 1 ≤ i ≤ n − 1, j ≥

1} and Y3 := {y, y′, yi : i ≥ 1} be sets of generators and define a vector space

Y := span(Y1 ∪ Y2 ∪ Y3).
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Let B be the C∗-algebra generated by a set of n + 1 mutually orthogonal
nonzero projections {Ri : i = 1, . . . , n + 1} and a set {Qj : j ≥ 1} of mutually
orthogonal projections satisfying Qj ≤ Rn for all j ≥ 1.

Define a B valued inner-product on Y by

〈xi,j , xk,l〉 = δi,kδj,lRj , 〈xi,j , xk,n,l〉 = δi,kδj,nQl,

〈xi,j , y〉 = 0, 〈xi,j , yk 〉 = 0,

〈xi,n,j , y〉 = 0, 〈xi,n,j , yk 〉 = 0,

〈xi,n,j , xk,n,l〉 = δi,kδj,lQj , 〈y, y〉 = Rn,〈
y, y′〉 = Q1, 〈y, yi〉 = Qi+1,〈
y′, y′〉 = Q1,

〈
y′, yi

〉
= 0,

〈yi, yj 〉 = δi,jQi+1

and a right action of B on Y given by

xi,jRk = δj,kxi,j , xi,jQk = δj,nxi,n,k,

xi,n,jRk = δn,kxi,n,j , xi,n,jQk = δj,kxi,n,j ,

yRk = δn,ky, yQk =

⎧⎪⎨
⎪⎩

yk−1 if k ≥ 2,

y′ if k = 1,

0 otherwise,

y′Rk = δn,ky′, y′Qk = δ1,ky′,

yiRk = δn,kyi, yiQk = δi+1,kyi.

We can define a left-action φY : B → L(Y ) by

φY (Rk)xi,j = δi,kxi,j , φY (Rk)xi,n,j = δi,kxi,n,j ,

φY (Rk)y = δn,k

(
y − y′) + δn+1,ky′, φY (Rk)y′ = δn+1,ky′,

φY (Rk)yi = δn,kyi, φY (Qk)xi,j = 0,

φY (Qk)xi,n,j = 0, φY (Qk)y = yk,

φY (Qk)y′ = 0, φY (Qk)yi = δi,kyi.

Tedious, but straightforward calculations show that (Y,B) is in fact a C∗-
correspondence.

Theorem 4.1. The C∗-algebras OX and OY are isomorphic.

Before we can prove Theorem 4.1, we need some preliminary results.

Lemma 4.2. The ideal JX is generated by the projections Pi for 1 ≤ i ≤ n.
Furthermore, we have

(1) φX(Pi) =
∑n

j=i θwi,j ,wi,j for 1 ≤ i ≤ n − 1; and
(2) φX(Pn) = θwn,n,wn,n + θwn,n+1,wn,n+1 .
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Proof. We can immediately see from the definition of φX that ker(φX) is
generated by Pn+1, so it will suffice to show (1) and (2). For 1 ≤ i ≤ n − 1 have(

n∑
j=i

θwi,j ,wi,j

)
(wk,l) =

n∑
j=i

wi,j 〈wi,j ,wk,l〉

=
n∑

j=i

δi,kδj,lwi,jPj

= δi,kwk,l

= φX(Pi)wk,l.

So since φX(Pi) and
∑n

j=i θwi,j ,wi,j agree on generators, they must be the
same operator. Similarly, (θwn,n,wn,n + θwn,n+1,wn,n+1)wi,j = φX(Pn)wi,j as
required. �

Lemma 4.3. The ideal JY is equal to B. Furthermore we have the following
relations:
(1) For 1 ≤ i ≤ n − 1 we have φY (Ri) =

∑n
j=i θxi,j ,xi,j ,

(2) φY (Rn) = θy−y′,y−y′ ,
(3) φY (Rn+1) = θy′,y′ ,
(4) For i ≥ 1 we have φY (Qi) = θyi,yi .

Proof. It is not hard to see from the definition that φY is injective, so to
see that JY = B we need only show that each generator is an element of K(Y ).
So it suffices to show that the relations (1) to (4) hold. This is straightforward
verification again. �

Proof of Theorem 4.1. We construct an isomorphism ΠX : OX → OY by
showing that there exists an injective covariant representation (ρX , ρA) of
(X,A) on OY and an injective covariant representation (ρY , ρB) of (Y,B) on
OX such that the induced homomorphisms are bijective and mutually inverse.

Define the linear map ρX on the generators of X by

ρX(wi,j) = πY (xi,j) for i = 1, . . . , n − 1, j = i, . . . , n + 1,

ρX(wn,n) = πY (y)∗ − πY

(
y′)∗

,

ρX(wn,n+1) = πY

(
y′)∗

and define the homomorphism ρA on the generators of A by

ρA(Pi) = πB(Ri) for 1 ≤ i ≤ n − 1,

ρA(Pn) = πB(Rn),
ρA(Pn+1) = πB(Rn+1).

Routine calculations show that (ρX , ρA) : (X,A) → OY satisfy (C1) and (C2).
We must show (C4). We know from Lemma 4.2 that JX is generated by the
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projections Pi where 1 ≤ i ≤ n. So we need to show that we have

ρA(Pi) = ρ+
X

(
φX(Pi)

)
for 1 ≤ i ≤ n. This also follows easily from Lemma 4.2. So we have a covariant
representation (ρX , ρA) of (X,A) on OY .

Now, we want to construct another covariant representation of (Y,B) on
OX . Define a linear map ρY : Y → OX by

ρY (xi,j) = πX(wi,j),
ρY (xi,n,j) = πX(wi,n)aj ,

ρY (y) = πX(wn,n)∗ + πX(wn,n+1)∗,

ρY

(
y′) = πX(wn,n+1)∗,

ρY (yi) = ai

(
πX(wn,n)∗ + πX(wn,n+1)∗)

and a ∗-homomorphism ρB : B → OX satisfying

ρB(Ri) = Pi, ρB(Qi) = ai,

where ai is the projection

ai =
(
πX(wn,n) + πX(wn,n+1)

)i
πA(Pn+1)

(
πX(wn,n)∗ + πX(wn,n+1)∗)i ∈ OX .

We can easily show from Lemma 4.3 that (ρY , ρB) : (Y,B) → OX is also a
covariant representation.

Now, each representation induces an injective map, ΠX : OX → OY and
ΠY : OY → OX so all that remains to be seen is that ΠX ◦ ΠY = 1OY

and
ΠY ◦ ΠX = 1OX

. This is straightforward, and the result follows. �

Now let ωY : Y → Z be the unique linear map satisfying πZ(ωY (ξ)) =
Ψ(ΠY (πY (ξ))) and ωB : B → C be the unique homomorphism satisfying
πC(ωB(b)) = Ψ(ΠY (πB(b))). Then it is easily checked that (ωY , ωB) is a C∗-
correspondence morphism, and furthermore Ω = β ◦ Ψ ◦ ΠY .

Before we can apply Theorem 3.3, we need to show that these C∗-corre-
spondences satisfy the hypotheses. We have both ψX and ωY surjective, and
also ψA and ωB surjective. Lemma 4.2 and Lemma 4.3 imply that both
left actions are by compact operators. Furthermore, ψA(ker(φX)) = {0} =
ωB(ker(φY )). If we set JA := C∗(P1, . . . , Pn), then it is clear that JA is an
ideal in A and A = JA ⊕ ker(φX), so ker(φX) is complemented. The ideal
ker(φY ) is just the zero ideal, so it is also trivially complemented. Hence,
we can use Theorem 3.3. There is an isomorphism between the pullback
OX ⊕OZ

OY and the C∗-algebra OX⊕ZY , where the underlying Banach space
satisfies

X ⊕Z Y = span
({

(wi,j , xi,j) : 1 ≤ i ≤ n − 1, i ≤ j ≤ n + 1
}

∪
{
(0, xi,n,j) : 1 ≤ i ≤ n, j ≥ 1

}
∪

{
(0, yi) : i ≥ 1

}
∪

{
(wn,n, y), (wn,n+1,0),

(
0, y′)})
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and the pullback C∗-algebra A ⊕C B is generated by projections{
(Pi,Ri : 1 ≤ i ≤ n)

}
∪

{
(0,Qi : i ≥ 1

}
∪

{
(Pn,Rn), (Pn+1,0), (0,Rn+1)

}
,

where (0,Qi) ≤ (Pn,Rn), and all other projections are orthogonal. So we have
shown that C(S2n

q,β) ∼= OX⊕ZY is a C∗-algebra associated to a C∗-correspond-
ence.

5. C∗-algebras of labelled graphs

Now, we can use this characterisation to prove that C(S2n
q,β) is actually

a C∗-algebra associated to a labelled graph, first introduced by Bates and
Pask in [4]. We begin by recalling basic definitions and results from [4], and
then showing that with an appropriate notion of morphisms between labelled
spaces, the class of labelled spaces forms a category. Furthermore, there is a
functor from this category to the category of C∗-correspondences constructed
earlier.

Definition 5.1. A labelled graph (E, L) over an alphabet A is a directed
graph E together with a labelling map L : E1 → A which assigns to each edge
e ∈ E1 a label a ∈ A.

It is worth noting at this point that there are no conditions imposed on
the map L; it is not assumed to be either injective or surjective. However, in
practice we generally make L surjective by simply discarding any elements of
A which do not lie in the range of L.

Define a word to be a finite string a1a2 · · · an, with each ai ∈ A. We write
A ∗ for the collection of all words in A and then for any n ∈ N, the labelling
can be extended to En by defining L(e1e2 · · · en) = L(e1)L(e2) · · · L(en) ∈ A ∗.
We write L ∗(E) =

⋃
n≥1 L(En). An element α ∈ L ∗(E) is called a labelled

path.

Definition 5.2. Let (E, L) be a labelled graph. We say that (E, L) is
left-resolving if for all v ∈ E0, the labelling L restricted to r−1(v) is injective.

In other words, a labelled graph is left-resolving if all edges entering a
particular vertex carry different labels.

Definition 5.3. Let (E, L) be a labelled graph, let A ⊂ E0 and let α ∈
L(E∗) be a labelled path. The relative range of α in A, denoted r(A,α) is
defined to be the set

r(A,α) :=
{
r(λ) : λ ∈ E∗, L(λ) = α and s(λ) ∈ A

}
.

Now, let B ⊂ 2E0
be a collection of subsets of E0. We say that B is closed

under relative ranges if for any A ∈ B and α ∈ L ∗(E), we have r(A,α) ∈ B.
We say that B is accommodating for (E, L) if it is closed under relative ranges,
contains r(α) for all α ∈ L∗(E), contains {v} whenever v is a sink, and is also
closed under finite unions and intersections.
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Definition 5.4. A labelled space is a triple (E, L, B) where (E, L) is a
labelled graph and B is accommodating for (E, L).

Definition 5.5. Let (E, L, B) be a labelled space. We say (E, L, B) is
left-resolving if (E, L) is left resolving and we say that (E, L, B) is weakly
left-resolving if for every A,B ∈ B and α ∈ L ∗(E), we have

r(A,α) ∩ r(B,α) = r(A ∩ B,α).

Note that we will need to assume our labelled spaces are weakly left-
resolving in order for the associated C∗-algebras to be non-degenerate.

We now have the required definitions to define the C∗-algebra associated
to a labelled space.

Definition 5.6. Let (E, L, B) be a weakly left-resolving labelled space.
A representation of (E, L, B) is a collection {pA : A ∈ B } of projections and a
collection {sa : a ∈ L(E1)} of partial isometries such that:
(1) For A,B ∈ B, we have pApB = pA∩B and pA∪B = pA + pB − pA∩B where

p∅ = 0;
(2) For a ∈ L(E1) and A ∈ B, we have pAsa = sapr(A,a);
(3) For a, b ∈ L(E1), we have s∗

asa = pr(a) and s∗
asb = 0 unless a = b; and

(4) For A ∈ B define L1(A) := {a ∈ L(E1) : s(a) ∩ A �= ∅}. Then if L1(A) is
finite and nonempty, we have

pA =
∑

a∈L1(A)

sapr(A,a)s
∗
a +

∑
v∈A:v is a sink

p{v}.

As noted in Remark 3.2 of [5], there was an error in the original definition
of C∗(E, L, B), where projections at sinks would be degenerate. Hence, the
proof of the existence of the C∗-algebra associated to a labelled graph given
in [4] doesn’t hold when the underlying graph contains sinks. Since we will
be looking specifically at a labelled graph with sinks, we reprove the result in
the required generality here. The proof closely follows that of the proof of the
existence of C∗(E) when E is a directed graph with sinks.

Proposition 5.7. Let (E, L, B) be a weakly left-resolving labelled space.
Then there exists a C∗-algebra B generated by a universal representation of

{sa, pA} of (E, L, B). Furthermore, the sa’s are nonzero and every pA with
A �= ∅ is nonzero.

Proof. Fix a weakly left-resolving labelled space (E, L, B). We define a new
directed graph F by

F 0 = E0 ∪ {vi : v is a sink, i ∈ N} and F 1 = E1 ∪ {fv,j : v is a sink, j ∈ N}
and extend the range and source maps on E to F by

s(fv,i) =

{
v if i = 1,

vi−1 if i > 1
and r(fv,i) = vi.
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We also extend the labelling L on E to a labelling on F by L |(F 1\E1) = id.
Define the set BF ⊂ 2F 0

to be the smallest subset containing B ∪ {{vi} : vi ∈
F 0 \ E0} that is accommodating for (F, L). Then it is easily checked that
(F, L, BF ) is a labelled space, and weakly left resolving if and only if (E, L, B)
is. Furthermore, since F has no sinks it follows from [4, Theorem 4.5] that
C∗(F, L, BF ) exists.

Let {sa : a ∈ L(F 1)}, {pA : A ∈ BF } be the universal representation of (F,
L, BF ). Then we claim that the restriction {sa : a ∈ L(E1)}, {pA : A ∈ B } is
a representation of (F, L, BF ). Indeed, condition (1)–(3) hold in (E, L, B) as
they do in (F, L, BF ). However condition (4) is not so clear as any sink in E
is not a sink in F . So fix a set AE ∈ B satisfying the conditions of (4). If
AE does not contain any sinks then the result is obvious, so assume that AE

contains finitely many, but at least one sink.
Denote by AF the identical set considered as an element of BF . Then it is

easy to see that L1
AE

∪ {{fv,1} : v ∈ AE is a sink} = L1
AF

. So

pAE
= pAF

=
∑

a∈L1
AF

pAF
sas∗

a

=
∑

a∈L1
AE

pAE
sas∗

a +
∑

{ {fv,1}:v∈AE is a sink}
pAE

sfv,1s
∗
fv,1

=
∑

a∈L1
AE

pAE
sas∗

a +
∑

{ {fv,1}:v∈AE is a sink}
p{v}sfv,1s

∗
fv,1

=
∑

a∈L1
AE

pAE
sas∗

a +
∑

{v∈AE is a sink}

( ∑
b∈L1

{v}

p{v}sbs
∗
b

)

since L1
{v} = {fv,1}

=
∑

a∈L1
AE

pAE
sas∗

a +
∑

{v∈AE is a sink}
p{v}

since {v} ∈ BF satisfies (4)

as required. So we have the required result. �

We can now make the following definition.

Definition 5.8. Let (E, L, B) be a weakly left-resolving labelled space.
Define C∗(E, L, B) to be the universal C∗-algebra generated by representa-
tions of (E, L, B).

Now that we have the definitions in place, we are ready to prove that the
labelled spaces form a category and that there is a functor from this category
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to the category of C∗-correspondences such that the associated C∗-algebras
are isomorphic.

We define the objects of our category to be labelled spaces (E, L, B). A mor-
phism ψE : (E, LE , BE) → (F, LF , BF ) is a pair of maps

ψE0 : E0 ∪ {0} → F 0 ∪ {0} and ψE1 : E1 ∪ {0} → F 1 ∪ {0}

satisfying
(L1) ψE0(0) = ψE1(0) = 0,
(L2) ψE0(u) = ψE0(v) �= 0 implies v = w,
(L3) LF (ψE1(e)) = LF (ψE1(f)) �= 0 implies LE(e) = LE(f) where LE(0) =

LF (0) = 0,
(L4) {ψE0(v) : v ∈ r(a)} = {r(ψE1(e)) : LE(e) = a} for all a ∈ LE(E1),
(L5) {ψE0(v) : v ∈ A} \ {0} ∈ BF for all A ∈ BE and 0 < |L1(A)| < ∞ implies

0 < |L1(ψE0(A))| < ∞.
Properties (L3) and (L5) ensure that we can extend these maps to LE(E1)
and BE so we define ψE(a) := LF (ψE1(e)) where LE(e) = a and ψE(A) :=
{ψE0(v) : v ∈ A} \ {0} for all a ∈ L(E1) and A ∈ BE .

It is not hard to see that this gives a category with the obvious domain
and range maps, identity morphism and composition of morphisms.

Now that we want to show that C∗(E, L, B) can be naturally realised as a
C∗-algebra associated to a C∗-correspondence, and that there is a functor be-
tween the category of labelled spaces and the category of C∗-correspondences
that preserves the associated C∗-algebras up to isomorphism.

Proposition 5.9. Let (E, L, B) be a weakly left-resolving labelled space.
Then there exists a C∗-correspondence (X(E),A(E)) such that

OX(E)
∼= C∗(E, L, B).

Proof. Let A(E) be the C∗-subalgebra of C∗(E, L, B) generated by the set
of projections {pA : A ∈ B } and X(E) be the Banach subspace of C∗(E, L, B)
spanned by the elements {sapB : a ∈ L(E1),B ∈ B }. Define the right action
of A(E) on X(E) simply by multiplication, and the inner-product by

〈sapB , scpD 〉 := (sapB)∗scpD = δa,cpB∩D∩r(a).

Similarly, define the left action φX(E) by

φX(E)(pC)sapB := sapB∩r(a,C).

Then we have a C∗-correspondence. In order to see that there is an isomor-
phism between OX(E) and C∗(E, L, B), we show that there is a covariant
representation of (E, L, B) inside OX(E). Indeed, by construction of X(E)
and A(E) it is easily show that{

πA(E)(pA) : A ∈ B
}
,

{
πX(E)(sapr(a)) : a ∈ L

(
E1

)}
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is such a representation. Then since the universal covariant representation
(πX(E), πA(E)) of (X(E),A(E)) admits a gauge action, the gauge invariant
uniqueness theorem for labelled graphs, [4, Theorem 5.3] implies that C∗(E, L,
B) is isomorphic to the C∗-subalgebra of OX(E) generated by{

πX(E)(pA) : A ∈ B
}

∪
{
tX(E)(sapr(a)) : a ∈ L

(
E1

)}
.

Also, since we have πX(E)(sapA) = πX(E)(sapr(a))πA(E)(pA), this sub-algebra
contains the generators of OX(E), so we have the required isomorphism. �

Proposition 5.10. There is a functor between the category of labelled
spaces and the category of C∗-correspondences constructed earlier such that

(E, L, B) �→
(
X(E),A(E)

)
.

Proof. Fix a morphism ψE between two labelled spaces (E, LE , BE) and
(F, LF , BF ). We begin by defining a map G on object sets by G : (E, L, B) �→
(X(E),A(E)). We extend this map to the set of morphisms by defining
G : ψE �→ (ψX(E), ψA(E)) where ψX(E) : X(E) → X(F ) and ψA(E) : A(E) →
A(F ) are a pair of maps satisfying

ψX(E)(sapB) = sψE(a)pψE(B) and ψA(E)(pB) = pψE(B)

for all a ∈ LE(E1) and B ∈ BE . In order to show that G is in fact a func-
tor, we need to show that G(ψE) = (ψX(E), ψA(E)) is a morphism of C∗-
correspondences. For (C1), fix sapB and scpD ∈ X(E). It is clear from (L2)
that we have ψE(A ∩ C) = ψE(A) ∩ ψE(C) and from (L3) that ψE(a) = ψE(c)
if and only if a = c. Then〈

ψX(E)(sapB), ψX(E)(scpD)
〉

= δψE(a),ψE(c)pψE(B)∩ψE(D)∩r(ψE(a))

= δψE(a),ψE(c)pψE(B)∩ψE(D)∩ψE(r(a))

from (L4)
= δa,cpψE(B∩D∩r(a))

= ψX(E)(δa,cpB∩D∩r(a))

= ψX(E)

(
〈sapB , scpD 〉

)
as required. A similar calculation also shows that (C2) holds. Now, note that
condition (4) of Definition 5.6 implies that

JX(E) = ideal generated by
{
pA : L1

A is finite and nonempty
}
.

So (C3) easily follows from (L5). The other properties of the functor are easily
shown to hold by definition of the map. Finally, that this functor preserves
the associated C∗-algebras follows directly from Proposition 5.9. �

As an example of a labelled graph C∗-algebra, we show that for any n ∈ N,
there exists a labelled space (En, L, B) such that C∗(En, L, B) ∼= C(S2n

q,β).
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Example 5.11. Fix n ≥ 1, and define a directed graph En by

E0
n = {ui : 1 ≤ i ≤ n − 1} ∪ {vi : i ≥ 1} ∪ {w1,w2}

and

E1
n = {ei,j : 1 ≤ i, j ≤ n − 1} ∪ {fi,j : 1 ≤ i ≤ n − 1, j ≥ 1} ∪ {gi, hi : i ≥ 1}

with range and source maps which satisfy

s(ei,j) = ui, r(ei,j) = uj ,

s(fi,j) = ui, r(fi,j) =

⎧⎪⎨
⎪⎩

w1 for j = 1,

w2 for j = 2,

vj−2 for j ≥ 3,

s(gi) =

{
w2 for i = 1,

vi−1 for i ≥ 2,
r(gi) = vi,

s(hi) = vi, r(hi) = w1.

Now, define an alphabet A by

A := {eij : 1 ≤ i, j ≤ n − 1} ∪ {fi : 1 ≤ i ≤ n − 1} ∪ {g,h}

and a labelling L : E1
n → A which satisfies

L(ei,j) = ei,j , L(fi,j) = fi,

L(gi) = g, L(hi) = h

for all i, j ∈ N. Then (En, L) is a labelled graph. For example, the labelled
graph (E5, L) looks like Figure 1 where the dashed lines indicate that the
edges all carry the same label.

Note that the vertex w1 is a sink for all En. Now, it is obvious that
(En, L) is not left-resolving for any n ≥ 2, since the vertex ui emits infinitely
many edges labelled fi. So in order to associate a C∗-algebra to this labelled
graph, we must find a collection B ⊂ 2E0

n such that (En, L, B) is a weakly
left-resolving labelled space. Let

B =
{

{ui} : 1 ≤ i ≤ n − 1
}

∪
{

{w1}
}

∪ {Ai : i ≥ 1} ∪
{
A1 ∪ {w2}

}
,

where Ai = {vj : j ≥ i}. Then let B be the closure of B under finite unions
and intersections. It is easy to see that B contains r(α) for all α ∈ L(E∗), and
is closed under relative ranges.

Theorem 5.12. The C∗-algebra C∗(En, L, B) is isomorphic to the C∗-
algebra C(S2n

q,β).

Proof. We prove this by showing that there exists a morphism of C∗-
correspondences (ρX⊕ZY , ρA⊕CB) : (X ⊕Z Y,A ⊕C B) → (X(En),A(En)) that
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Figure 1. (E5, L).

induces a C∗-algebra isomorhism P : OX⊕ZY → OX(En)
∼= C∗(En, L, B).

First, define the linear map ρX⊕ZY : X ⊕Z Y → C∗(En, L, B) by

ρX⊕ZY (wi,j , xi,j) = Sei,j P{uj }, 1 ≤ i, j ≤ n − 1,

ρX⊕ZY (wi,n, xi,n) = SfiPA1 , 1 ≤ i ≤ n − 1,

ρX⊕ZY (wi,n+1, xi,n+1) = Sfi

(
P{w1} + (P{w2} ∪A1 − PA1)

)
, 1 ≤ i ≤ n − 1,
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ρX⊕ZY (wn,n, y) = SgPA1 ,

ρX⊕ZY (wn,n+1,0) = ShP{w1},

ρX⊕ZY (0, xi,n,j) = Sfi(PAj − PAj+1), 1 ≤ i ≤ n − 1, j ≥ 1,

ρX⊕ZY

(
0, y′) = Sg(PA1 − PA2),

ρX⊕ZY (0, yi) = Sg(PAi+1 − PAi+2), i ≥ 1

and a map ρA⊕CB : A ⊕C B → A(En) by

ρA⊕CB(Pi,Ri) = P{ui }, ρA⊕CB(Pn,Rn) = PA1 ,

ρA⊕CB(Pn+1,0) = P{w1}, ρA⊕CB(0,Rn+1) = P{w2} ∪A1 − PA1 ,

ρA⊕CB(0,Qi) = PAi − PAi+1 .

By definition, ρX⊕ZY is a linear map and it is easy to see that ρA⊕CB is
an injective homomorphism. Furthermore, routine calculations show that
this pair (ρA⊕CB , ρX⊕ZY ) satisfies conditions (C1) and (C2). For (C4), we
must find the ideal JX⊕ZY . We know that JX ⊂ A is the ideal generated by
the projections Pi where 1 ≤ i ≤ n and the ideal JY = B, so it is not hard
to see that JX⊕ZY is the ideal generated by the projections (Pi,Ri) where
1 ≤ i ≤ n, (0,Rn+1) and (0,Qj) for j ≥ 1. Now by noticing that L1

A is finite
for all A ∈ B and {w1} ∈ B is the only subset satisfying L1

{w1} = ∅, we see that
(C3) is satisfied. Then it follows easily from condition (4) of Definition 5.6
that (ρA⊕CB , ρX⊕ZY ) satisfies (C4).

So we have a C∗-correspondence morphism, now all that remains to be seen
is that this C∗-correspondence morphism induces an isomorphism OX⊕ZY →
OX(En). To do this, we use the gauge invariant uniqueness theorem. Firstly,
if we compose our morphism with the universal covariant representation

(πX(En), πA(En))

of (X(En),A(En)) we get a covariant representation

(πX(En) ◦ ρX⊕ZY , πA(En) ◦ ρA⊕CB)

of (X ⊕Z Y,A ⊕C B) on OX(En). We know from Section 5 in [4] that there is a
gauge action on C∗(En, L, B) and it is clear from the definitions that this also
defines a gauge action on C∗(πX(En) ◦ ρX⊕ZY , πA(En) ◦ ρA⊕CB). Furthermore,
it is not hard to see that ρA⊕CB is injective and hence Theorem 3.8 implies
that P : OX⊕ZY → C∗(πX(En) ◦ ρX⊕ZY , πA(En) ◦ ρA⊕CB) is an isomorphism.
Finally, the image of the covariant representation (πX(En) ◦ ρX⊕ZY , πA(En) ◦
ρA⊕CB) contains all the generators of OX(En), so C∗(πX(En) ◦ ρX⊕ZY , πA(En) ◦
ρA⊕CB) = OX(En) and we have the required isomorphism. �

As a final result, we prove that—at least in the 2 dimensional case—the
mirror quantum sphere cannot be realised as a graph algebra. This result was
originally stated in [9], though there was no proof given. We present the full
proof here to fill this gap in the literature.
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Theorem 5.13. There is no directed graph E such that C∗(E) ∼= C(S2
q,β).

Proof. Suppose, by way of contradiction, that E is a directed graph such
that C∗(E) ∼= C(S2

q,β). Since C∗(E) is unital, graph E has only finitely many
vertices, but a priori it is possible that E has infinitely many edges. There
exists an exact sequence

0 −→ K ⊕ K −→ C∗(E) −→ C
(
S1

)
−→ 0,

see [9], [13], [14]. It follows that K ⊕ K is the commutator ideal of C∗(E)
and thus it is invariant under all automorphisms of C∗(E). In particular,
the ideal K ⊕ K is invariant under the gauge action of the circle group on
C∗(E). Thus, by Theorem 3.6 and Corollary 3.5 of [3], there exists a (non-
empty) saturated hereditary subset H of E0 and a subset B of Hfin

∞ such that
K ⊕ K equals JH,B and C(S1) ∼= C∗((E/H) \ β(B)). (See the definitions of the
relevant symbols in [3].) It is not difficult to verify that there exists precisely
one graph (comprised of one vertex and one edge) whose corresponding C∗-
algebra is C(S1). It follows that B = Hfin

∞ and there is a vertex w0 such that
E0 \ H = {w0}. Furthermore, there is exactly one edge f with both the source
s(f) and the range r(f) equal to w0. There are no edges from H to w0 but
there may exist edges from w0 to H .

Since the ideal K ⊕ K is gauge-invariant, it is itself isomorphic to a graph
algebra, [6, Lemma 1.6], and the underlying graph contains the restriction of
E to H as a subgraph. As K ⊕ K is an AF algebra, it follows that E does not
contain any loops other than (f) (see [19, Theorem 2.4] and [23, Remark 5.4]).
Consequently, H must contain some sinks. Since each sink gives rise to an
ideal isomorphic to the compacts (on some Hilbert space) and C∗(E) contains
precisely two such ideals, it follows that H contains exactly two sinks, say w1,
w2. Now, it is a consequence of the formula for K-theory of a graph algebra
(for example, see [3, Theorem 6.1], [7, Theorem 3.1] or [25, Proposition 2])
that E cannot contain vertices emitting infinitely many edges. Indeed, in such
a case the K0 group of C∗(E) could not be isomorphic to Z ⊕ Z, as the K0

group of C(S2
q,β) (see [9] and [14, Theorem 5.3]). Consequently, E is a finite

graph.
Let V be the smallest hereditary subset of E0 containing w0. Then both

w1 and w2 belong to V . Indeed, otherwise C∗(E) would admit a non-trivial
splitting as a direct sum by [11, Theorem 4.1]. This however is not possible
for C(S2

q,β), in view of the description of its irreducible representations, [9].
We now define

T =
∑

s(e)∈V

Se and P =
∑
v∈V

Pv.

T is an element of the corner C∗-subalgebra PC∗(E)P and we have T ∗T ≥ P .
Thus T admits polar decomposition in PC∗(E)P , and hence also in C∗(E):

T = U |T |.
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By construction, U is a partial isometry with domain projection U ∗U = P .
It is also clear that the range projection of U is the sum of all those vertex
projections Pv such that v ∈ V emits at least one edge. Thus, we have

UU ∗ = P − (Pw1 + Pw2).

Consequently, in the K0 group of C∗(E), we have

[Pw1 + Pw2 ] = 0,

where Pw1 and Pw2 are minimal projections in K ⊕ 0 and 0 ⊕ K, respectively.
However, such relation does not hold in the K0 group of C(S2

q,β) (see [9] and
[14, Theorem 5.3]). This is a contradiction with C∗(E) ∼= C(S2

q,β), and the
proof is complete. �

References
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[2] D. Bakić and B. Guljaš, Extensions of Hilbert C∗-modules II, Glasgow Math. Ser. III
38 (2003), 341–357. MR 2052751

[3] T. Bates, J. H. Hong, I. Raeburn and W. Szymański, The ideal structure of the C∗-
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