

University of Wollongong Research Online

Illawarra Health and Medical Research Institute

Faculty of Science, Medicine and Health

2016

Effect of a glucagon-like peptide 1 (GLP-1) receptor agonist, liraglutide, on cognition and body weight during antipsychotic treatment

Ilijana Babic University of Wollongong, ib171@uowmail.edu.au

Ashleigh Gorak University of Wollongong, ag676@uowmail.edu.au

Jason Hughes University of Wollongong, jhughes@uow.edu.au

Martin Engel University of Wollongong, mengel@uow.edu.au

Dominic Sellers University of Wollongong, das752@uowmail.edu.au

See next page for additional authors

Publication Details

Babic, I., Gorak, A., Hughes, J., Engel, M., Sellers, D., Else, P., Lufe, L., Obeid, A. L., Osborne, A., Le Mesurier, P., Pai, N., Huang, X. F. & Weston-Green, K. (2016). Effect of a glucagon-like peptide 1 (GLP-1) receptor agonist, liraglutide, on cognition and body weight during antipsychotic treatment. International Journal of Neuropsychopharmacology, 19 (Suppl. 1), 55-55.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Effect of a glucagon-like peptide 1 (GLP-1) receptor agonist, liraglutide, on cognition and body weight during antipsychotic treatment

Abstract

abstract of poster that was presented at the 30th CINP World Congress of Neuropsychopharmacology, 3-5 July, Seoul, Republic of Korea.

Publication Details

Babic, I., Gorak, A., Hughes, J., Engel, M., Sellers, D., Else, P., Lufe, L., Obeid, A. L., Osborne, A., Le Mesurier, P., Pai, N., Huang, X. F. & Weston-Green, K. (2016). Effect of a glucagon-like peptide 1 (GLP-1) receptor agonist, liraglutide, on cognition and body weight during antipsychotic treatment. International Journal of Neuropsychopharmacology, 19 (Suppl. 1), 55-55.

Authors

Ilijana Babic, Ashleigh Gorak, Jason Hughes, Martin Engel, Dominic Sellers, Paul Else, Luisa Lufe, Anita-Louise Obeid, Ashleigh Osborne, P Le Mesurier, Nagesh B. Pai, Xu-Feng Huang, and Katrina Weston-Green Psychopathology, self-esteem, and self-perceived stigma were also measured using the Positive and Negative Syndrome Scale, the Rosenberg Self-Esteem Scale (SES), the Beck Depression Inventory (BDI), the Beck Hopelessness Scale, and the Korean version of the Internalized Stigma of Mental Illness scale (K-ISMI).

Results

- Of the total of 87 participants, 20 (23%) had attempted suicide. Patients with a history of suicide attempts had significantly higher scores on the BDI (p=0.036) and K-ISMI (p=0.009), and significantly lower scores on the SES (p=0.001). Analysis of covariance revealed that the SES scores were significantly lower in patients with a history of previous suicide attempts than in those with no history, after controlling for K-ISMI and BDI scores (p = 0.039).

Conclusion

- Low self-esteem appears to represent a psychological dimension that is closely related to suicide risk. Therefore, clinical attention should be paid to the evaluation and enhancement of low self-esteem in schizophrenia patients with suicidality. A longitudinal prospective study is required to ascertain whether low self-esteem leads suicide attempts.

PM426

Effect of a glucagon-like peptide 1 (GLP-1) receptor agonist, liraglutide, on cognition and body weight during antipsychotic treatment

Babic I^{1,2,3}, Gorak A^{1,2}, Hughes J², Engel M², Sellers D^{1,2}, Else P², Lufe L^{1,2}, Obeid AL^{1,2}, Osborne AL^{1,2}, Le Mesurier P^{1,2}, Pai N^{2,3}, Huang XF^{1,2} and Weston-Green K^{1,2}

¹Centre for Translational Neuroscience, University of Wollongong, NSW 2522 ²Illawarra Health and Medical Research Institute, NSW 2522 ³Illawarra Shoalhaven Local Health District, NSW 2500

Abstract

Background: Second-generation antipsychotics (SGAs), such as olanzapine, are used to treat schizophrenia; however, they have minimal benefits for cognitive deficits and cause metabolic side-effects such as obesity [1, 2]. Obesity has been linked to increased cognitive impairment [3], complicating the health issues of people with schizophrenia. Liraglutide is a synthetic glucagon-like peptide-1 (GLP-1) receptor agonist with antiobesity and neuroprotective properties [4, 5]; however, whether liraglutide can improve cognition during olanzapine treatment is unclear. The aim of this study was to examine the effects of liraglutide co-treatment on cognition and metabolic parameters during olanzapine treatment.

Methods: Sprague-Dawley rats were administered olanzapine (2mg/kg), liraglutide (0.4mg/kg), olanzapine+liraglutide cotreatment or vehicle (control) (n=12/group) for six weeks. Body weight, food intake and locomotor activity were recorded. Novel object recognition (NOR) and T-maze tests were conducted to examine recognition and working memory. Post-mortem white adipose tissue weight was recorded.

Results: Olanzapine caused significant body weight gain and increased white adipose tissue mass (p<0.05 vs control), whereas liraglutide co-treatment significantly reduced body weight and adiposity (p<0.001 vs olanzapine). Olanzapine induced hypolocomotion (p<0.001 vs control), whereas liraglutide co-treatment significantly increased locomotor activity (p<0.05 vs olanzapine). In the NOR test, olanzapine-treated rats spent significantly

less time exploring the novel object, and this was significantly improved in the liraglutide co-treatment group (p<0.01 vs olanzapine). There was no effect of treatment on correct entries in the T-maze test (p>0.05 vs control).

Conclusion: This study demonstrates that liraglutide co-treatment can improve locomotor activity, decrease adiposity and prevent weight gain side-effects associated with olanzapine administration. Liraglutide co-treatment was able to improve recognition memory impairment caused by olanzapine treatment; however, it had no effect on working memory. Further studies are required to understand the mechanisms underlying these changes, and to elucidate whether a link exists between olanzapine-induced obesity and liraglutide's effect on cognition.

Reference

- 1. Keefe, R.E., et al., Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the catie trial. Archives of General Psychiatry, 2007. 64(6): p. 633-647.
- 2. Weston-Green, K., X.-F. Huang, and C. Deng, Second generation antipsychotic-induced type 2 diabetes: a role for the muscarinic M3 receptor. CNS Drugs, 2013. 27(12): p. 1069-80.
- 3. Prickett, C., L. Brennan, and R. Stolwyk, Examining the relationship between obesity and cognitive function: a systematic literature review. Obes Res Clin Pract, 2015. 9(2): p. 93–113.
- 4. McClean, P.L., et al., The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci, 2011. 31(17): p. 6587-94.
- 5. Porter, W.D., et al., Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice. International Journal of Obesity, 2013. 37(5): p. 678-84.

PM427

Histamine H4 receptor is involved in clozapineinduced hematopoietic toxicity: vulnerability under granulocytic differentiation of HL-60 cells Aya Goto¹, Akihiro Mouri¹, Tomoko Nagai¹, Mako Ukigai¹, Tomomi Tsubai¹, Hirotake Hida¹, Norio Ozaki², Yukihiro Noda^{1, 2}

¹ Division of Clinical Sciences and Neuropsychopharmacology, Faculty and Graduate School of Pharmacy, Meijo University, Nagoya, Japan ² Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan

Abstract

Objective: Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia, whereas it occurs fatal hematopoietic toxicity as agranulocytosis. To elucidate mechanism of hematopoietic toxicity by clozapine, we tried to develop the in vitro assay systems using HL-60 cells, and investigated the effect on hematopoiesis.

Method: HL-60 cells were differentiated by all-trans retinoic acid (ATRA) to three states according hematopoietic process: undifferentiated HL-60 cells, under granulocytic ATRA-differentiation and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis.

Result: In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, clozapine (50 and 100 µM) and doxorubicin, but not olanzapine decreased survival rate. Under granulocytic differentiation for 5 days, clozapine, even at 25 $\mu M,$ decreased survival rate without affecting granulocytic differentiation, increased caspase activity, and resulted in induction of apoptosis rather than necrosis. Lower concentrations of clozapine (1