
University of Wollongong
Research Online

Faculty of Engineering and Information Sciences -
Papers: Part A Faculty of Engineering and Information Sciences

2016

Public cloud data auditing with practical key update
and zero knowledge privacy
Yong Yu
University of Electronic Science and Technology of China, Guilin University of Electronic Technology, yyong@uow.edu.au

Yannan Li
University of Electronic Science and Technology of China

Man Ho Au
The Hong Kong Polytechnic University, aau@uow.edu.au

Willy Susilo
University of Wollongong, wsusilo@uow.edu.au

Kim-Kwang Raymond Choo
University of South Australia

See next page for additional authors

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au

Publication Details
Yu, Y., Li, Y., Au, M. Ho., Susilo, W., Choo, K. & Zhang, X. (2016). Public cloud data auditing with practical key update and zero
knowledge privacy. Lecture Notes in Computer Science, 9722 389-405. Melbourne, Australia Information Security and Privacy - 21st
Australasian Conference, ACISP 2016, Proceedings

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/81225316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au/
http://ro.uow.edu.au
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eispapers
http://ro.uow.edu.au/eis

Public cloud data auditing with practical key update and zero knowledge
privacy

Abstract
Data integrity is extremely important for cloud based storage services, where cloud users no longer have
physical possession of their outsourced files. A number of data auditing mechanisms have been proposed to
solve this problem. However, how to update a cloud user's private auditing key (as well as the authenticators
those keys are associated with) without the user's re-possession of the data remains an open problem. In this
paper, we propose a key-updating and authenticator-evolving mechanism with zero-knowledge privacy of the
stored files for secure cloud data auditing, which incorporates zero knowledge proof systems, proxy re-
signatures and homomorphic linear authenticators. We instantiate our proposal with the state-of-the-art
Shacham-Waters auditing scheme. When the cloud user needs to update his key, instead of downloading the
entire file and re-generating all the authenticators, the user can just download and update the authenticators.
This approach dramatically reduces the communication and computation cost while maintaining the desirable
security. We formalize the security model of zero knowledge data privacy for auditing schemes in the key-
updating context and prove the soundness and zero-knowledge privacy of the proposed construction. Finally,
we analyze the complexity of communication, computation and storage costs of the improved protocol which
demonstrates the practicality of the proposal.

Keywords
knowledge, zero, update, key, practical, auditing, data, cloud, privacy, public

Disciplines
Engineering | Science and Technology Studies

Publication Details
Yu, Y., Li, Y., Au, M. Ho., Susilo, W., Choo, K. & Zhang, X. (2016). Public cloud data auditing with practical
key update and zero knowledge privacy. Lecture Notes in Computer Science, 9722 389-405. Melbourne,
Australia Information Security and Privacy - 21st Australasian Conference, ACISP 2016, Proceedings

Authors
Yong Yu, Yannan Li, Man Ho Au, Willy Susilo, Kim-Kwang Raymond Choo, and Xinpeng Zhang

This journal article is available at Research Online: http://ro.uow.edu.au/eispapers/5724

http://ro.uow.edu.au/eispapers/5724

Public Cloud Data Auditing with Practical Key
Update and Zero Knowledge Privacy

Yong Yu1,2, Yannan Li1, Man Ho Au3, Willy Susilo4, Kim-Kwang Raymond
Choo5, Xinpeng Zhang1

1School of Computer Science and Engineering, University of Electronic Science and
Technology of China, Chengdu, 611731, China.

2Guangxi Colleges and Universities Key Laboratory of cloud computing and complex
systems, Guilin University of Electronic Technology, Guilin 541004, China.

3Department of Computing, The Hong Kong Polytechnic University, Kowloon, China.
4Center for Computer and Information Security Research, School of Computing and

Information Technology, University of Wollongong, Wollongong, NSW 2522,
Australia.

5School of Information Technology and Mathematical Sciences, University of South
Australia, Adelaide, Australia.

yuyong@uestc.edu.cn

Abstract. Data integrity is extremely important for cloud based stor-
age services, where cloud users no longer have physical possession of
their outsourced files. A number of data auditing mechanisms have been
proposed to solve this problem. However, how to update a cloud user’s
private auditing key (as well as the authenticators those keys are associ-
ated with) without the user’s re-possession of the data remains an open
problem. In this paper, we propose a key-updating and authenticator-
evolving mechanism with zero-knowledge privacy of the stored files for
secure cloud data auditing, which incorporates zero knowledge proof sys-
tems, proxy re-signatures and homomorphic linear authenticators. We in-
stantiate our proposal with the state-of-the-art Shacham-Waters auditing
scheme. When the cloud user needs to update his key, instead of down-
loading the entire file and re-generating all the authenticators, the user
can just download and update the authenticators. This approach dra-
matically reduces the communication and computation cost while main-
taining the desirable security. We formalize the security model of zero
knowledge data privacy for auditing schemes in the key-updating contex-
t and prove the soundness and zero-knowledge privacy of the proposed
construction. Finally, we analyze the complexity of communication, com-
putation and storage costs of the improved protocol which demonstrates
the practicality of the proposal.

1 Introduction

Cloud storage, which enables cloud users to move their data from local storage
systems to the cloud, is an important service offered by cloud computing [1]. This
kind of new storage service has many advantages such as relieving users’ burden

of data management and maintenance, universal data access with independent
geographical locations and avoiding capital cost on hardware and software [2].
Currently, an increasing number of users prefer to store their data in the cloud
such as Amazon S3, Google cloud storage and Microsoft Skydrive [3].

However, at the meantime, cloud storage also brings a number of challenging
security problems [4] despite of its appealing features. Due to losing physical pos-
session and control of their outsourced data, cloud users would worry that their
data might be tampered or deleted due to the following reasons [5]. Firstly, da-
ta loss could happen in any infrastructure regardless of the reliability measures
the service providers would take. Secondly, in cloud storage, the cloud server
may not be fully trusted. As a result, the server may discard the data which
has been rarely accessed for financial reasons but claims that the data are well
stored, or hides data loss incidents to maintain their reputation. Cloud Security
Alliance (CSA) conducted a systematic investigation into reported vulnerabil-
ities in cloud computing such as outages, downtimes, and data loss. CSA also
released a white paper [6] in 2013 which revealed that the top three threats were
“Insecure Interfaces & APIs”, “Data Loss & Leakage” and “Hardware Failure”.
These three threats accounted for 64% of all cloud outage incidents while “Data
Loss & Leakage” accounted for 25%. Therefore, guaranteeing the integrity of
the data, or data auditing, in cloud is a highly desirable security requirement
for secure cloud storage.

Traditional cryptographic approaches to checking data integrity such as hash
functions or digital signatures are not directly applicable for cloud storage since
a copy of the original file is required in the verification procedure of these prim-
itives. Downloading entire file from cloud is not economical because it leads to
unacceptable communication cost. In comparison with traditional cryptographic
techniques for data integrity, secure auditing is much more practical for verifying
data storage correctness. In 2007, Ateniese et al. proposed the notion of prov-
able data possession (PDP) [7,8] to check the integrity of remote data. Ateniese
et al. [9] also demonstrated how to construct data auditing schemes from ho-
momorphic identification protocols. Juels et al. presented the concept of proof
of retrievability (POR) [10], in which error-correcting codes and spot-checking
technologies are utilized to achieve the properties of possession and retrievabil-
ity of data files. Shacham and Waters proposed compact proofs of retrievabili-
ty [11]. One of their constructions built from the BLS signature and secure in
the random oracle model achieves the shortest query and response among all
the proof-of-retrievability schemes with public verifiability. Because of the ele-
gant properties of BLS signature [12,13], this construction was widely employed
to build auditing schemes with additional properties, such as privacy-preserving
public auditing [14–17,20], data dynamic auditing [14,18,19,21,22], efficient user
revocation [23–26], etc. Note that Wang et al. [26] proposed a novel public au-
diting mechanism for the integrity of shared data with efficient user revocation
using the similar primitive called proxy re-signatures. While employing similar
tools, our idea of making use of proxy re-signature is different from that of Wang
et al. In Wang et al.’s scheme [26], it is the cloud server who re-signs the blocks

since the cloud server has the re-signing key. However, in our security model,
we assume the cloud server is not fully trusted and the key update is to be con-
ducted by the user. In particular, a user may choose to update his key since it
could be compromised, we assume the attacker (which is the cloud server in the
model), can obtain the user’s old key (say sk). This security requirement makes
construction in our model non-trivial. Specifically, it rules out the straightfor-
ward solution of releasing a re-signing key defined as ∆ = sk′/sk, where sk′ is
the new user secret key, for many of the discrete logarithm based scheme in-
cluding the aforementioned schemes from BLS signature The reason is that the
cloud server can find out the user’s new key (sk′) from sk and ∆ easily. To date,
there are two main mechanisms for data auditing, namely mechanisms based
on public key infrastructure (PKI) and those based on pseudorandom functions
(PRF). The proposals based on PRF are privately verifiable, which means only
the data owner can check the integrity of the outsourced data. In comparison,
auditing schemes with public verifiability allow external auditors to verify the
data integrity on-demand. In this paper, we consider publicly verifiable auditing
schemes only, as they are more practical in many applications. The key technique
to realize public verifiability is the homomorphic authenticators introduced by
Ateniese et al. [7].

In the PKI system, a certificate authority (CA) is involved, whose prima-
ry role is to digitally sign and issue certificates for certified users. Public-key
cryptography makes use of certificates to address the issue of impersonation. A
certificate is an electronic document used to associate the identity of an indi-
vidual, a company or any other entity with a public key for a specified validity
period. A critical problem in PKI is how to deal with the problem of user secret
key exposure or expiration. Key expiration indicates certificate of a user is no
longer valid while key exposure brings serious security threat to a valid user.
As a consequence, for practical purpose, certificate revocation and re-issuing are
critical aspects of maintaining the security of the PKI which underpins secure
communication on the internet. A certificate may be worth revoking when it has
had its private key compromised, the owner of the certificate no longer controls
the domain for which it was issued, or the certificate was mistakenly signed.
Without the ability to revoke a certificate, a CA has no direct means of marking
a certificate as untrusted before the expiry of the certificate, which could be a
few years away. In cloud storage, when a user needs to change his/her public
key due to various reasons, a dilemma arises on how to verify the integrity of
the outsourced data hosted in the cloud since old authenticators stored in the
cloud are not valid any longer under the updated public key. A trivial solution
for this problem is downloading all the file blocks and authenticators from the
cloud, re-computing the authenticators for each block and uploading the blocks
and authenticators to the cloud again. This approach will lead to unacceptable
communication cost on both the cloud user and the cloud server and at the same
time, bring significant computation cost on the cloud users. Addressing the issue
of efficient key-updating and authenticator-evolving in data auditing protocols
is highly essential to make cloud storage really practical.

Another important issue in cloud data auditing is privacy, including identity
privacy and data privacy. Wang et al. [27] [28] developed ring signatures and
group signatures based authenticators to realize that the identity of the signer
on each block in shared data is kept private from public verifiers. Data privacy
requires that the auditing process should not reveal knowledge of the challenged
files to the third party auditor. Note that merely encrypting the data is not a
viable solution, since the data on the cloud are usually non-static. Homomor-
phic encryption schemes may solve this issue in theory but current schemes are
far from practical. The early auditing schemes are not privacy preserving. In
response to a challenge, the cloud may release µi =

∑
(i,vi)

vimi where mi are
the challenged blocks and vi are the challenge generated by the auditor. Hence,
each µi reveals partial information of the data block. By challenging those block
repetitively, the auditor will learn the data. The first privacy-preserving public
auditing scheme was proposed by Wang et al. in 2010 [16]. They modified the
response in Shacham-Waters scheme by “blinding” the linear combination of
the sampled file blocks, such that the auditor cannot recover the file blocks from
the responses sent by the cloud server. Unfortunately, Xu et al. [29] found that
the protocol is vulnerable to attacks by a malicious cloud server and an outside
attacker. Subsequently, Wang et al. improved their scheme [17] such that it is
secure against forgery attack. We argue that in some real world applications, it
is not sufficient that the auditor cannot derive the whole file blocks. For exam-
ple, the auditor can launch an offline guessing attack to learn which file among
a number of files is stored on the cloud. Wang et al. proposed the notion of
“zero knowledge public auditing” to resist off-line guessing attack. However, as
a key point to capture this kind of privacy, a formal security model is missing in
their work. Yu et al. [30] recently enhanced the privacy of remote data integrity
checking protocols for secure cloud storage, but their model does not cover the
key update scenario.

Contributions. In this paper, we formalize the security model of “zero
knowledge data privacy” for auditing protocols supporting key update, and
propose a technique to settle the key update problem efficiently. To be more
specific, we utilize a simple zero-knowledge proof of discrete logarithm to make
Shacham-Waters protocol [11] reveal no any knowledge of the outsourced data to
the verifier in the context of key update. At the same time, the cloud user does
not need to download his data from the cloud when his key changes or expires.
Instead, the user downloads only the authenticators, which are much shorter in
size compared with the entire file. The user can efficiently evolve authenticators,
which reduces the communication and computation overheads drastically. We
also prove soundness of the new protocol in the random oracle model under a
new and reasonable security model. We finally analyze the complexity of the our
construction.

2 Preliminaries

In this section, we review the publicly verifiable cloud storage system model and
formalize the security model of data auditing protocols with key update in cloud
storage.

2.1 System Model of Data Auditing with Key Update

The cloud data auditing architecture with public verifiability [7,11] is illustrated
in Fig 1. Three kinds of entities are involved in the scenario, namely cloud users
or data owners, the cloud server and a third party auditor (TPA). A cloud user
generates data files and stores large amount of data on the remote cloud server
without keeping a local copy. The cloud server has significant storage space and
computation resources and provides data storage services for cloud users. TPA
can be an organization managed by the government, which has expertise and
capabilities that cloud users do not have and is trusted to check the integrity
of the hosted data on behalf of cloud users upon request. Each entity has his
own obligations and benefits. The cloud server may be self-interested, and for his
own benefits, such as to maintain its reputation, the server might even decide to
hide data corruption incidents to others. Moreover, in the current time period,
the cloud server can obtain the data owner’s secret key in previous time periods.
However, we assume that the cloud server has no incentives to reveal the hosted
data to TPA because of regulations and financial incentives. TPA is responsible
for checking the integrity of the cloud data on behalf the cloud users in case that
they have no time, resources or feasibility to monitor their data, and returns the
auditing report to the cloud user. In an auditing scheme with zero knowledge
privacy, the TPA cannot learn any information of the stored data during the
auditing process.

2.2 System Components and its Security

A public auditing scheme with key-updating and authenticator-evolving is a
collection of four algorithms, namely, CrsGen, KeyGen, AuthGen, AuthUpdate,
and an interactive proof system Proof between a prover and a verifier.

CrsGen(1k): This algorithm takes as input a security parameter k and out-
puts a common reference string crs, which is an implicit input to all algorithms
described below.

KeyGen(crs): On input crs, the algorithm generates a public key pk and a
secret key sk for the cloud user. The user publishes pk and keeps sk secret. Note
that this algorithm is also used for key update.

AuthGen(sk, F): It takes as input the secret key sk and a file F = (m1, · · · ,mn),
and outputs a set of authenticators {Di} for this file and a set of public verifica-
tion parameter φ, which will be used for checking the data integrity in the proof
phase.

Proof(P,V): This is an interactive protocol between the prover (P) and the
verifier (V). The common input to (P,V) is the public key pk and the public

Fig. 1: System model of publicly verifiable data auditing

verification parameter φ. P has additional input the file F = (m1, · · · , mn) and
a set of authenticators {Di} of this file. At the end of the protocol, V outputs
a bit 1 or 0 to indicate if the stored file is kept intact or not. For notational
convenience, we use P ⇔ V(pk, φ) = 1 to indicate that V outputs 1 at the end
of the interaction with P. We omit the parameters (pk, φ) when the context is
clear.

AuthUpdate(sk, pk, sk′, pk′, {Di}, φ): On input a new key pair (pk′, sk′)
and a set of authenticators {Di} valid under the old key pair (pk, sk), and the
public verification parameter φ, this algorithm outputs a set of evolved authen-
ticators {D′i} and parameter φ′ that are valid under the new key pair.

Completeness, soundness and data privacy are three security requirements
for the proposed privacy preserving public auditing scheme. Completeness means
that when interacting with the cloud server who keeps the data unchanged, the
interactive protocol Proof will always result in P ⇔ V = 1 when the cloud server
and the TPA follow the protocol honestly.

Soundness says that any prover who can convince a verifier it is storing
the data file is actually storing that file. Based on the security model due to
Shacham and Waters [11], in the following, we define the security model for a
public auditing scheme with key-updating and authenticator-evolving against
a malicious server, wherein two entities are involved, i.e., an adversary who
behaves as the untrusted server and a challenger who represents a data owner
or the auditor. The goal of the adversary is to deceive the auditor, that is,
generating a valid response without storing the original file. The key difference
between our model and that of the previous PDP or PoR models is the capturing
of key-updating and authenticator-evolving operations.

Soundness. To capture soundness, we first recap the definition of an ε-
admissible prover defined in [11]. An algorithm P ′ is ε-admissible with respect
to (pk, φ) if Pr[P ′ ⇔ V(pk, φ) = 1] ≥ ε. That is, it is able to convincingly answer
an ε fraction of verification challenges from an honest TPA running V.

Consider the following game between an adversary A and a challenger C.

– Init. Challenger C initialises a counter cnt = 0 and an empty table store.
It invokes CrsGen on input a security parameter k to obtain crs. It then
invokes KeyGen to generate a key pair (pkcnt, skcnt). crs, pkcnt are given to
the adversary A. We assume A can always retrieve the current value of cnt
and store.

– AuthQuery. We can safely assume a file F will be unique for each AuthQuery.
In case duplicated F is submitted, C can return the result stored in the
table store to A. A submits a file F = (m1, · · · , mn). C runs the AuthGen
algorithm with input (skcnt, F) to compute corresponding authenticators
{Di} and public verification parameter φF . C adds a row (F, {Di}, φF) to
the table store. Recall that A has read access to store and thus returned
value is omitted.

– ProofQuery.A can involve itself in a Proof protocol with C. Here, C will play
the role of the TPA (V) with input (pkcnt, φF). The output of V is sent to
A upon termination of the protocol.

– Update. When A invokes this query, C first sets cnt = cnt + 1. Next, C
invokes KeyGen again to obtain a new key pair (pkcnt, skcnt). For each row
(F, {Di}, φF) in table store, C invokes AuthUpdate(skcnt−1, pkcnt−1, skcnt,
pkcnt, {Di}, φF) to obtain {D′i}, φ′F . Update the row to (F, {D′i}, φ′F). After
that, C returns skcnt−1 to A.

– Challenge. At some point, A outputs the description of a prover algorithm
P∗.

We first recap the concept of extractor. An extractor Ext is an algorithm
which takes as input an ε-admissible prover P ′, the public key pk and the veri-
fication parameter φ, outputs a file F . We denote Ext(P ′, pk, φ) = F .

Now we are ready to define soundness. Specifically, we require that for al-
l PPT algorithm A which outputs an ε-admissible prover P∗ with respect to
(pkcnt, φ), there exists an extractor Ext such that (Ext(P∗, pkcnt, φ), pkcnt, φ) is a
row in the table store.

In other words, when an algorithm can pass the Proof protocol with proba-
bility greater than ε, it stores the original file in some format. The stored file in
whatever format can be recovered back to the original file using the extractor
algorithm.

Zero Knowledge Data Privacy. This property captures that the TPA
learns no knowledge about the content except a random file name of the stored
file based on the publicly available information. To further strengthen the prop-
erty, we allow the TPA to select two equal length files, F0 = (m0,1, . . . ,m0,n)
and F1 = (m1,1, . . . ,m1,n) and requires that given a set of meta-data as well as
interaction with the cloud server, the TPA cannot obtain any knowledge about
the file content of F0 and F1. A formal security model is described as follows.

Consider the following game between an adversary A and a challenger C.

– Init. Challenger C initialises a counter cnt = 0, counter j = 1 and an empty
table store. It invokes CrsGen on input a security parameter k to obtain
crs. It then invokes KeyGen to generate a key pair (pkcnt, skcnt). crs, pkcnt
are given to the adversary A. We assume A can always retrieve the current
value of cnt and store. C initialises an empty row R∗ = (0,⊥,⊥,⊥), which is
called the challenge row.

– AuthQuery(F). We can safely assume F will be unique for each AuthQuery.
In case duplicated F is submitted, C can return the result stored in the table
store. A submits a file F = (m1, · · · , mn). C runs the AuthGen algorithm
with input (skcnt, F) and obtains corresponding authenticators {Di} and
public verification parameter φF . C adds a row (j, F, {Di}, φF) to the table
store and increases j by one.

– GenChallenge. This query can only be issued once. At some point, A sub-
mits two equal-length files F0 and F1 (assuming again they are distinct to
all inputs to the AuthQuery). C flips a fair coin b ∈R {0, 1} and runs the
AuthGen algorithm with input (skcnt, Fb) and obtains the corresponding au-
thenticators {Di} and public verification parameter φFb . C sets the challenge
row R∗ to be (0, Fb, {Di}, φFb). φFb is returned to A.

– ProofQuery(ĵ). A engages C in the Proof protocol. Note that j is specified
by A and refers to the j-th row in the table store or the challenge row if
ĵ = 0 (assume GenChallenge query has been issued). A plays the role of
the TPA and C plays the role of the prover with input (pkcnt, F, {Di}, φF)
where (j, F, {Di}, φF) is a row in table store if j > 0 or (pkcnt, Fb, {Di}, φFb)
if j = 0 and the GenChallenge query has been issued.

– Update. When A invokes this query, C first sets cnt = cnt+1. Next, C invokes
KeyGen algorithm again to obtain a new key pair (pkcnt, skcnt). For each row
(F , {Di}, φF) in table store ∪ R∗, C invokes AuthUpdate(skcnt−1, pkcnt−1,
skcnt, pkcnt, {Di}, φF) to obtain {D′i}, φ′F . Update the row to (F, {D′i}, φ′F).
After that, C returns skcnt−1 to A.

– Guess. At some point, A outputs a guess bit b′.

A wins the game if b = b′. The advantage of A is the probability that it wins
in the aforementioned game minus 0.51. A public cloud data auditing scheme
is called zero knowledge data private if the advantage of any polynomial-time
adversary A is negligible.

2.3 Zero-Knowledge Proofs of Knowledge

A zero-knowledge proof of knowledge protocol [?] enables a prover (P) to con-
vince a verifier (V) that some statement is true but the verifier learns nothing
except the validity of the statement. In the following, we review a simple but
powerful zero-knowledge proof of discrete logarithm instantiation introduced by

1 This is to offset the winning probability based on random guessing.

Schnorr in his identification scheme [?], which plays an important role in our pro-
tocol. This zero-knowledge proof of knowledge allows P to prove the knowledge
of x ∈ Zp such that y = gx for some y ∈ G to V.

Commitment. P picks a random ρ ∈ Zp, computes T = gρ and sends T to
V.

Challenge. V selects a random c ∈ {0, 1}λ and sends c back to P.
Response. P computes z = ρ− cx (mod p) and returns z to V.
Verify. V accepts the proof if and only if T = ycgz.

3 Our construction

Our cloud data auditing protocol derives from compact proofs of retrievability
due to Shacham and Waters [11]. Their construction utilizes a homomorphic au-
thenticator based on the short signature scheme [12], which leads to the shortest
query and response of any proof of retrievability with public verifiability. For the
key-changing and authenticator-evolving, we are inspired by the idea of proxy
re-signature [31], which enables a semi-trusted proxy to transform Alice’s signa-
ture on a message m into Bob’s signature on the same message m, to evolve the
user’s authenticators without downloading the file when his/her key changes.
Regarding data privacy, we make use of zero knowledge proof of a discrete loga-
rithm [32], such that both the aggregate authenticator σ and the combinations
µi of the challenged blocks in the response are randomized. As a consequence,
the TPA learns no information of the content of the stored file except a file name
randomly picked by the data owner2. The details of the protocol are as follows.

CrsGen(1k). On input a security parameter λ, this algorithm outputs a large
prime p and G,GT , two multiplicative cyclic groups of the same order p. g is a
generator of G. e : G×G→ GT denotes a bilinear map and H0, H1 : {0, 1}∗ → G
represent two collision resistant cryptographic hash functions. In addition, this
algorithm picks randomly h, u1, u2 · · · , us ∈ G and computes η = e(g, h). The
common reference string crs is (k, p,G,GT , g, e,H0, H1, h, u1, · · · , us, η).

KeyGen(crs). On input the common reference string crs, a data owner (cloud
user) generates a signing key pair (spk, ssk), spk = gssk and another key pair
(α, v) for generating authenticators of file blocks, where α ∈ Zp and v = gα. The
secret key of the data owner is sk = (α, ssk) and the public key is pk = (spk, v).

For notational convenience, we use ηi to represent e(ui, v) for i = 1 to s.
Note that η1 = e(u1, v), · · · , ηs = e(us, v) can be pre-computed by the relevant
parties given the public key v and crs.

AuthGen(sk, F). Given a file F , the data owner firstly applies erasure codes
such as RS code to obtain a processed file F ′, and splits F ′ into n blocks. Each
block is further fragmented into s sectors {mij}1≤i≤n,1≤j≤s, which is an element
of Zp. The data owner selects a file name Fn from a sufficiently large domain.
Let t0 be Fn||n. The data owner computes t = (H0(t0))ssk and denotes the file

2 This is reasonable since the data owner tells TPA which file will be audited in
auditing request phase.

tag ft = t0||t. Then for each i, 1 ≤ i ≤ n, the owner computes an authenticator
σi for block i as

σi = (H1(Fn||i) ·
s∏
j=1

u
mij
j)α.

Finally, the data owner stores

ft||{mij}(1≤i≤n,1≤j≤s)||{σi}1≤i≤n

to cloud. (Note that there exists strict access control policies that who can access
the stored files and authenticators.) Proof(P (F, {σi}, ft), V (pk)). This is a 5-
move interactive proof protocol executed between a prover (cloud server) and a
verifier (TPA) as follows.

1. The TPA picks a random integer c and k, ψ ∈ Zp, computes Ψ = gkhψ. For
1 ≤ i ≤ c, the TPA selects a random vi ∈ Zp. The commitment Ψ and the
challenge chal = {i, vi}1≤i≤c, which locates the positions of the challenged
blocks in this auditing process, are sent to the cloud server.

2. Upon receiving (chal, Ψ), the cloud server firstly chooses r, ρr, ρ1, · · · , ρs ∈
Zp randomly, then computes

Π =
∏

(i,vi)∈chal

σvii · h
r, T = ηρrηρ11 · · · ηρss

and forwards (T,Π) to the TPA.
3. The TPA sends (k, ψ) to the server.

4. The server checks if Ψ
?
= gkhψ. If the equation does not hold, the server

aborts. Otherwise, it computes zr = ρr − kr, µi =
∑

(i,vi)∈chal
vimij , zi =

ρi − kµi(1 ≤ i ≤ s) and sends (zr, z1, · · · , zs) to the TPA.
5. The TPA verifies the file tag ft firstly by checking if the following equation

holds,
e(g, t) = e(spk,H0(t0)).

If the verification fails, reject by emitting False. Otherwise, the TPA verifies
if

(
e(Π, g)

e(
∏

(i,vi)∈chal
H1(Fn||i)vi , v)

)k
?
=

T

ηzrηz11 · · · η
zs
s
.

KeyUpdate(pk, sk). The data owner can change his/her key pair (sk, pk) by
generating a new key and as a consequence, the data owner has a updated
public key pk′ = (spk′, v′) and secret key sk′ = (α′, ssk′) where spk′ = gssk

′
and

v′ = gα
′
.

AuthEvolve(pk, sk, pk′, sk′, ft, σi). The data owner downloads ft||{σi}1≤i≤n
from the cloud and evolves the file tag and block authenticators as follows.

1. Compute t′ = t
ssk′
ssk and let ft′ = t0||t′.

2. Compute σ′i = σ
α′
α
i for 1 ≤ i ≤ n.

3. Upload ft′||{σ′i}1≤i≤n to the cloud.

4 Security of the new protocol

In this section, we show the proposed protocol achieves the properties of com-
pleteness, soundness and zero-knowledge privacy. The key update and authen-
ticator evolving are valid as well. Completeness shows the correctness of the
protocol and soundness guarantees the security against an untrusted server.

4.1 Completeness

The correctness of the scheme before key update is straightforward to verify
with the properties of bilinear pairings. Below we demonstrate the verification
still works after the key pair changes. If both the data owner and the server are
honest, we have

t′ = t
ssk′
ssk

= ((H0(t0))ssk)
ssk′
ssk

= H0(t0)ssk
′

Thus, e(g, t′) = e(spk′, H0(t0)) holds.
Regarding the evolved authenticators,

σ′i = σ
α′
α
i

= ((H1(Fn||i) ·
s∏
j=1

u
mij
j)α)

α′
α

= (H1(Fn||i) ·
s∏
j=1

u
mij
j)α

′

Accordingly,

e(σ′, g) = e(
∏

(i,vi)∈chal

H1(Fn||i)vi ·
s∏
j=1

u
µj
j , v

′)

holds as well.

4.2 Soundness.

An auditing scheme has the property of soundness if any cheating prover who
can convince a verifier that it is storing a file F is actually storing that file.
In other words, from the cheating prover, there exists an extractor algorithm
to extract the file blocks. The soundness proof of our protocol depends on the
soundness of the protocol from Shacham and Waters. Specifically, we prove that
if there is an adversary who can violate the soundness of our construction, we
can construct another algorithm to break the soundness of the Shacham and
Waters scheme [11] (referred to as SW scheme hereafter).

Proof. (Sketch) Suppose there is an adversary A that can break the soundness
of our scheme, we construct a simulator B that can break the soundness of SW
scheme.

– B is given a public key of the SW scheme. The value h will be generated by B
in such a way that the discrete logarithm of h to the base g, an element of the
public key of the SW scheme, is known. h and the corresponding elements
in pk∗ is treated as the crs. Only the component (v, ssk) in the public key
of the SW scheme is treated as pk∗, Let n be the number of update query
made by A. B picks a random index î ∈ {1, . . . , n} and set pkî = pk∗. For

i ∈ {1, . . . , n} \ {̂i}, B picks a random ski and computes pki = gski . pk1 is
given to A as the first public key of the system.

– (Queries at period other than î). For period not equal to î, B is in possession
of the private key and can thus answer all the queries from the adversary.

– (Update query from cnt = î − 1). When A invokes the update query when
cnt = î− 1, B does not have the corresponding secret key skî and will thus
answer the query by re-computing all the authenticators using the Auth-
Query to the underlying SW scheme. Note that the resulting authenticators
are distributed as if it is computed from the update query.

– (Update query from cnt = î). When A invokes the update query when
cnt = î, B answers the query by re-computing all the authenticators using
the secret key skî+1. The resulting authenticators are distributed as if it is
computed from the update query.

– (Output). Finally,A outputs a prover P∗. With probability 1/n, P∗ is output
during the period î. B aborts otherwise. Now we show how B outputs a prover
P ′ to the underlying SW scheme.

– (Construction of P ′). In an execution of P∗, B obtains (T,Π, k, zr, z1, . . . , zs).
B rewinds P∗ to the third step and replies with a different value k′ (this
is possible since B knows the discrete logarithm of h to base g and can
thus provide the corresponding value ψ′). Now the protocol finishes with a
different transcript (T,Π, k′, z′r, z

′
1, . . . , z

′
s). From these two set of equations,

B can compute the underlying values (r, µ1, . . . , µs). B computes σ = Π/hr

and outputs (σ, µ1, . . . , µs) on behalf of the prover P ′. Note that if P∗ is ε-
admissible, P ′ is ε2-admissible to the underlying SW scheme. In other words,
if SW scheme is sound, our scheme is sound too.

4.3 Zero Knowledge Privacy

The new protocol achieves zero knowledge privacy. That is, the data auditing
process does not leak any information of the outsourced data. To prove this
property, we construct a simulator S for the interaction between the data owner
and the cloud server.

Proof. (Sketch) We show that the probability that A can output the guess bit
correctly with probability negligibly close to 1/2. The idea is to demonstrating
how A is given a challenge that is independent of the underlying file F0 or F1.

Recall that the two files are of the same length and will be using the same name
fn since the number of blocks and the filename are supposed to be known to
the TPA.

To simulate a proof query related to the challenge file, S follows the protocol
honestly until step 3 upon receiving the values (k, ψ). S rewinds A to step 2 and
picks a random Π, zr, z1, . . . , zs and computes

T = (
e(Π, g)

e(
∏

(i,vi)∈chal
H1(Fn||i)vi , v)

)kηzrηz11 · · · ηzss .

S sends T,Π to A. Now A returns with the same (k, ψ) since this pair is
fixed by its first message Ψ . S replies with (zr, z1, . . . , zs).

It can be seen that the value passes the verification and is distributed cor-
rectly. In addition, the view of A is independent to F0 and F1 and thus the
probability that A answers correctly must be 1/2.

5 Complexity analysis

In this section, we report the complexity analysis of communication, computation
and storage costs of the improved protocol.

5.1 Parameter selection

The typical selection of the security parameter λ is 80. Due to the public ver-
ification of the proposed protocol, p should be a 2k = 160-bit prime, and the
elliptic curve should be chosen so that discrete logarithm is 2k-secure. For values
of λ up to 128, pairing-friendly elliptic curves of prime order due to Barreto and
Naehrig [33] can be employed. n� k denotes the number of blocks in a file. Re-
garding the choice of erasure codes, we follow the suggestions of the SW scheme.
That is, traditional RS style erasure codes can be applied to our construction,
but the encoding the decoding procedures take O(n2) time. For the server that
is not malicious, a system code, in which the first m blocks of the encoded file
are the file itself, can be used for much more efficient public retrievability.

5.2 Performance analysis

Communication cost. In the Proof phase, the TPA sends Φ and chal to the
cloud server, which is of binary length log2 c+ (c+ 1) log2 p. We can shorten this
challenge dramatically by selecting a pseudo-random permutation to compute
the locations i of the challenged blocks and a pseudo-random function to calcu-
late the random challenge values vi. In this circumstance, the TPA sends only
keys of the pseudo-random permutation and pseudo-random function, which is
of log2 p bits each. In the second step, the cloud server returns two points of
elliptic curves, T and Π, to the TPA, which is of 320 bits. In the third step, the
TPA sends (k, φ) to the server, which is of binary length 2 log2 p. In the next

step, the cloud server sends (zr, z1, · · · , zs) to the TPA, which is of binary length
(s+ 1) log2 p.

Storage cost. In terms of the storage cost of the protocol, both the files
and the corresponding metadata including the file tag and block authenticators
need to be stored on cloud server due to public verifiability. Our scheme enjoys
the advantage of flexible tradeoff between storage and communication in [11].
That is, a parameter s is used to give a tradeoff between response length and
storage overhead. Each block is composed of s elements of Zp called sectors.
Each block instead of each sector has an authenticator, reducing the storage
overhead to (1 + 1

s)×. The data owner only needs to store the public key pk =
(spk, v), the private key sk = (α, ssk), so the storage cost of the data owner
is almost 2 log2 p + 320 bits. The TPA needs to store the public key of a user,
which is of binary length 320 bits. During the auditing process, the TPA stores
k, φ, chal, Φ, T, zr, z1, · · · , zs for validating a response from the server, which is
of binary length (c+ s+ 3) log2 p+ 320 bits in total.

Computation cost. We report the computation cost from the viewpoint of
the data owner, the cloud server and the TPA. We only consider the expensive
operations including bilinear maps, exponentiations and multiplications in G and
GT . Tpair denotes the time cost of computing a bilinear map of two points of an
elliptic curve, and ignore some highly efficient operations, say, computing a hash
function. Texpg and Texpgt stand for the time cost of an exponentiation in G and
GT respectively. Tmulg and Tmulgt denote the time overhead of a multiplication
in G and GT respectively.

The dominating computation of the data owner is generating authenticators
for file blocks as σi = (H1(Fn||i) ·

∏s
j=1 u

mij
j)α, in which the time cost is (s +

1)Texpg + sTmulp for one authenticator. Regarding the authenticators evolving,
the data owner needs to perform n+ 1 exponentiations in G, and the time cost
is (n+ 1)Texpg. As a consequence, the main computation cost of the data owner
during the protocol is (sn+2n+1)Texpg+nsTmulp. To generate and verify a proof,
the TPA needs to compute Φ and validate the file tag and the response, and thus
the total computation cost of the TPA is (4Tpair + (c+ 2)Texpg + (s+ 2)Texpgt).
To produce a proof, the cloud server has to compute Π,T and zr, z1, · · · , zs, the
primary computation cost of the server is (c + 2)Texpg + (c + 1)Tmulg + (s +
1)Texpgt + sTmulgt.

6 Conclusion

In this paper, we investigate two important issues of secure cloud data auditing
to make cloud storage more practical: (1) how to evolve the authenticators of
outsourced files efficiently when a cloud user’s key changes, and (2) how to pre-
serve the privacy of the stored files in auditing protocols with key update. We
formalized the security model of soundness and zero knowledge data privacy for
cloud data auditing process supporting key update. We also provided a concrete
construction by cooperating the well-known Shacham-Waters scheme [11] and
several novel cryptographic techniques. We proved the security including sound-

ness and zero knowledge privacy of the proposed scheme in the new security
model. The performance analysis shows that the new scheme is efficient and can
be used in practice.
Acknowledgements. This work is supported by the Fundamental Research
Funds for the Central Universities under Grant ZYGX2015J059.

References

1. P. Mell, and T. Grance, “Draft NIST working definition of cloud comput-
ing,” Reference on June. 3rd, 2009. http://csrc.nist.gov/groups/SNC/cloud-
computing/index.html.

2. M. Xie, H. Wang, J. Yin, and X. Meng, “Integrity auditing of outsourced data,”
in VLDB ’07: Proceedings of the 33rd International Conference on Very Large
Databases, pp. 782-793, 2007.

3. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility,” Future Generat. Comput. Syst., vol. 25, no. 6, pp. 599–616, Jun.
2009.

4. Cloud Security Alliance. “Top threats to cloud computing,”
http://www.cloudsecurityalliance.org., 2010.

5. K. Yang, and X. H. Jia, “Data storage auditing service in cloud computing: chal-
lenges, methods and opportunities,” World Wide Web, vol. 15, no. 4, pp. 409-428,
2012.

6. Cloud Security Alliance, online: http://www.cert.uy/wps/wcm/connect/

975494804fdf89eaabbdab1805790cc9/Cloud_Computing_Vulnerability_

Incidents.pdf/?MOD=AJPERES., 2010.
7. G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L. Kissner, Z. N. J. Peterson,

and D. X. Song, “Provable data possession at untrusted stores,” in Proc. of ACM
Conference on Computer and Communications Security 2007: 598-609, 2007.

8. G. Ateniese, R. C.Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. N. J.
Peterson, and D. Song, “Remote data checking using provable data possession,”
ACM Trans. Inf. Syst. Secur.,14, 1–34, 2011.

9. G. Ateniese, S. Kamara, J. Katz, “Proofs of storage from homomorphic identifica-
tion protocols”, Proc. of ASIACRYPT 2009, pp. 319-333, 2009.

10. A. Juels, and B. S. K. Jr. Pors, “Proofs of retrievability for large files,” in Proc of
CCS 2007, Alexandria, VA, USA, November, 2007, pp. 584-597, ACM.

11. H. Shacham, and B. Waters, “Compact proofs of retrievability,” in Proc of
Cryptology-ASIACRYPT 2008, Melbourne, Australia, Lecture Notes in Computer
Science Volume 5350, pp. 90-107, Springer, 2008.

12. D. Boneh , B. Lynn, and H. Shacham, “Short signatures from the weil pairing”,
In Proc. of Asiacrypt 2001, 514-532, 2001.

13. D. Boneh , B. Lynn, and H. Shacham, Short signatures from the weil pairing. J.
Cryptology, 17, 297-319, 2004.

14. Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability and
data dynamics for storage security in cloud computing,” in Proc. of ESORICS
2009, Saint-Malo, France, September, 2009, Lecture Notes in Computer Science
Volume 5789, pp. 355-370, 2009.

15. H. Cui, Y.Mu, M. H. Au, “Proof of retrievability with public verifiability resilient
against related-key attacks,” IET Information Security, vol. 9, no. 1, pp. 43-49,
2015.

http://www.cert.uy/wps/wcm/connect/975494804fdf89eaabbdab1805790cc9/Cloud_Computing_Vulnerability_Incidents.pdf/?MOD=AJPERES.
http://www.cert.uy/wps/wcm/connect/975494804fdf89eaabbdab1805790cc9/Cloud_Computing_Vulnerability_Incidents.pdf/?MOD=AJPERES.
http://www.cert.uy/wps/wcm/connect/975494804fdf89eaabbdab1805790cc9/Cloud_Computing_Vulnerability_Incidents.pdf/?MOD=AJPERES.

16. C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public auditing for
data storage security in cloud computing,” in Proc of IEEE INFOCOM 2010, San
Diego, CA, March, 525-533, 2010.

17. C. Wang, S. S. Chow, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving public
auditing for secure cloud storage,” IEEE Trans. on Computers, 62, 362-375, 2013.

18. Y. Zhu, G. J. Ahn, H. X. Hu, S. S. Yau, H. G. An, C. J. Hu, “Dynamic audit
services for outsourced storages in clouds,” IEEE Trans. Services Computing, vol.
6, no. 2, 227-238, 2013.

19. K.Yang, and X. Jia. “An efficient and secure dynamic auditing protocol for data
storage in cloud computing,” IEEE Trans. on Parallel and Distributed Systems,
vol 24, no. 9, 1717-1726, 2013.

20. H. Wang, “Proxy Provable Data Possession in Public Clouds,?” IEEE Trans. Ser-
vices Computing, Vol. 6, no. 4, pp. 551-559, 2013.

21. A. F. Barsoum, and M. A. Hasan, “Provable multicopy dynamic data possession
in cloud computing systems,” IEEE Transactions on Information Forensics and
Security, vol. 10, no. 3, pp. 485-497, 2015.

22. E. Shi, E. Stefanov, C. Papamanthou, “Practical dynamic proofs of retrievability”,
ACM CCS 2013, 325-336, 2013.

23. J. Yuan, S. Yu, “Public integrity auditing for dynamic data sharing with multi-
user modification”, IEEE Trans. on Information Forensics and Security, 10(8):
1717-1726, 2015.

24. B.Y. Wang, B.C. Li, H. Li, “Public auditing for shared data with efficient user
revocation in the cloud”, INFOCOM 2013: 2904–2912, 2013.

25. J.W. Yuan, S.C. Yu, “Efficient public integrity checking for cloud data sharing
with multi-user modification”, IEEE INFOCOM 2014, 2121-2129, 2014.

26. B.Y. Wang, B.H. Li, H. Li, “Panda: public auditing for shared data with efficient
user revocation in the cloud”, IEEE Trans. Services Computing 8(1): 92–106, 2015.

27. B.Y. Wang, B.C. Li, H. Li, “Oruta: privacy-preserving public auditing for shared
data in the cloud”, IEEE Trans. on Cloud Computing, 2(1): 43-56, 2014.

28. B.Y. Wang, B.C. Li, H. Li, “Knox: privacy-preserving auditing for shared data
with large groups in the cloud”, Proc. of the 10th International Conference on
Applied Cryptography and Network Security (ACNS 2012), pp.507-525, 2012.

29. C. X. Xu, X. H. He, and D. A. Weldemariam, “Cryptanalysis of wang’s auditing
protocol for data storage security in cloud computing,” Prof. of ICICA (2), 422-428,
2012.

30. Y. Yu, M H Au, Y. Mu, S. Tang, J. Ren, W. Susilo, and L. Dong, “Enhanced privacy
of a remote data integrity checking protocol for secure cloud storage,”International
Journal of Information Security, 14(4): 307-318, 2015.

31. G. Ateniese, S. Hohenberger, “Proxy re-signatures: new definitions, algorithms,
and applications,” in Proc. of ACM Conference on Computer and Communications
Security, pp. 310-319, 2005.

32. J. Camenisch, and M. Stadler, “Efficient group signature schemes for large groups
(Extended Abstract),” in Proc. of Crypto 1997, LNCS 1294, pp. 410-424, 1997.

33. P. Barreto, and M. Naehrig, “Pairing-friendly elliptic curves of prime order,” in
Proc. of SAC 2005, LNCS 3897, pp. 319-331, 2006.

	University of Wollongong
	Research Online
	2016

	Public cloud data auditing with practical key update and zero knowledge privacy
	Yong Yu
	Yannan Li
	Man Ho Au
	Willy Susilo
	Kim-Kwang Raymond Choo
	See next page for additional authors
	Publication Details

	Public cloud data auditing with practical key update and zero knowledge privacy
	Abstract
	Keywords
	Disciplines
	Publication Details
	Authors

	Public Cloud Data Auditing with Practical Key Update and Zero Knowledge Privacy
	Yong Yu1,2, Yannan Li1, Man Ho Au3, Willy Susilo4, Kim-Kwang Raymond Choo5, Xinpeng Zhang1

