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Fibre Reinforced Polymer (FRP) bars has attracted a significant amount of research attention in the 

last three decades to overcome the problems associated with the corrosion of steel reinforcing bars 

in reinforced concrete members. A limited number of studies, however, have investigated the 

behaviour of concrete columns reinforced with FRP bars. Also, available design standards either 

ignore the contribution of or do not recommend the use of GFRP bars in compression members. 

This study reports the results of experimental investigations of concrete specimens reinforced with 

GFRP bars and GFRP helices as longitudinal and transverse reinforcement, respectively. A total of 

five circular concrete columns of 205 mm in diameter and 800 mm in height were cast and tested 

under axial compression. The experimental results showed that reducing the spacing of the GFRP 

helices or confining the specimens with CFRP sheet led to improvements in the strength and 

ductility of the specimens. Also, an analytical model has been developed for the axial load-axial 
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deformation behaviour of the circular concrete columns reinforced with GFRP bars and helices. The 

model has been validated with the experimental results. 

 

Keywords: Reinforced concrete, Column, Concentric load, GFRP bars, CFRP wrapping 

 

1. Introduction 

Fibre reinforced polymer (FRP) composite material in the construction of new structures and 

retrofitting of existing structures is a noble invention which has the potential to replace the 

conventional steel bars and plates, as FRP can overcome the problems associated with corrosion of 

reinforcing bars [1]. Corrosion of steel reinforcement is a considerable issue in humid and 

aggressive areas and causes large maintenance cost and the loss of the performance of structural 

components [2, 3]. Different methods such as the use of galvanised or stainless steel bars, epoxy 

coating and cathodic protection have been used to protect reinforcement from corrosion [4-7]. None 

of the methods, however, have fully eliminated the corrosion of steel reinforcement [8, 9].  

 

Despite having relatively greater tensile strength of  FRP bars in comparison with steel bars, steel 

bars cannot be replaced with the same amount of FRP bars [10]. This is because FRP bars are 

anisotropic and the modulus of elasticity of FRP bars is smaller than the modulus of elasticity of 

steel bars. Moreover, the stress-strain behaviour of FRP bars is linear elastic until failure [11, 12]. 

Few experimental studies were conducted to investigate the influence of replacing steel bars with 

FRP bars on the behaviour of square and circular concrete columns under concentric loads [13-18]. 

It was reported that the load carrying capacity of the GFRP Reinforced Concrete (RC) columns is 

about 13 to 16% smaller than the load carrying capacity of corresponding steel-RC columns. Also, 

the contribution of the GFRP longitudinal bars is about 3 to 10% of the total load carrying capacity 

of columns compared to 12 to 16% contribution of the same amount of steel bars. However, circular 
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RC columns with GFRP helices and with the same amount (volumetric ratio) of steel helices can 

achieve similar confined concrete core strength and ductility.       

 

Over the last three decades extensive studies have been conducted on the confinement of concrete 

columns with FRP sheets [19-29]. The experimental results revealed that confining concrete 

columns with FRP sheets can considerably improve the strength and ductility of concrete columns. 

This improvement in strength and ductility is because confinement restrains the lateral dilation of 

the concrete columns and holds the concrete core. Therefore, the confined concrete can carry more 

loads and undergo larger axial deformations until the rupture of the confining material. FRP 

wrapping can also act as a barrier to protect the concrete core against harsh and aggressive 

environments.       

 

It has been observed in a comprehensive literature review that most of the previous studies focused 

on the effects of replacing steel bars with GFRP bars and investigated the contribution of GFRP 

bars in the load carrying capacity of the columns. A limited number of studies discussed the effects 

of GFRP bars and GFRP helices on the confinement of concrete core and ductility. Moreover, 

analytical studies on the behaviour of concrete columns reinforced with GFRP bars and helices are 

very limited. Tobbi et al. [30] proposed two set of equations to predict the ultimate confined 

concrete strength and the corresponding strain for confined square concrete columns with different 

GFRP and CFRP tie configurations  based on the test results of 23 square columns under concentric 

loads. However, there is no empirical equation to predict the strength of circular columns confined 

with GFRP helices. It is noted that available models to predict the ultimate confined concrete 

strength and the corresponding strain for confined concrete with steel helices cannot be directly 

used for confined concrete with GFRP helices because of the differences in the mechanical 

properties of GFRP and steel. In this study, a total of five circular concrete column specimens were 
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tested under concentric axial loads to investigate the axial compressive behaviour of the specimens. 

The specimens were reinforced with either GFRP bars and GFRP helices or only GFRP helices. 

One of the specimens reinforced with GFRP bars and helices was externally confined with CFRP 

sheets. The confinement conditions and the axial load-axial deformation behaviour of the specimens 

were investigated. Also, an analytical model has been developed which can well simulate the axial 

load-axial deformation behaviour of circular concrete columns reinforced with GFRP bars and 

helices.                 

 

2. Experimental program 

2.1 Configuration of specimens 

The GFRP bars and helices used in this study had a sand-coated surface to enhance the bond 

between the bars and the surrounding concrete. The GFRP bars and helices were provided by V-

Rod Australia [31]. Sand coated #4 (nominal diameter=12.7 mm) GFRP bars were used for 

longitudinal reinforcement and sand coated #3 (nominal diameter=9.5 mm) GFRP helices were 

used for transverse reinforcement. One of the specimens was confined with CFRP sheets to 

investigate the influence of CFRP wrapping on the strength and ductility of the specimens. The 

CFRP sheet was 75 mm wide with a unidirectional fibre density of 340 g/m2 and thickness of 0.45 

mm. One specimen was wrapped with two layers of CFRP sheets with a total thickness of 0.9 mm. 

Also, an overlap length of 100 mm was maintained to prevent debonding of the CFRP wrapping. 

 

A total of five circular RC column specimens were cast and tested under monotonic axial 

compression. The specimens were 205 mm in diameter and 800 mm in height. The dimensions were 

chosen to be suitable to the condition and capacity of the available testing facility in the laboratory. 

All the specimens were cast on the same day with ready mix concrete. The design compressive 

strength of concrete was 32 MPa. The maximum size of the coarse aggregate for the concrete was 
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10 mm. Table 1 provides dimensions, reinforcement schemes and configurations of the tested 

specimens. The specimens were identified by the longitudinal reinforcement material and its 

number and the transversal reinforcement material and its spacing. For example, Specimen G6-G60 

is reinforced longitudinally with six GFRP bars and transversally with GFRP helix at 60 mm pitch. 

Specimen 00-G30 is reinforced only transversally with GFRP helices at 30 mm pitch.  

 

2.2 Preparation and casting of specimens 

The formwork used for casting the concrete specimens was PVC pipe. The longitudinal GFRP bars 

were cut to 760 mm in order to have 20 mm clear cover at the top and bottom of the reinforcement 

cage. The GFRP helices were manufactured in a coil shape with 170 mm outer diameter by the 

manufacturer [31]. The concrete clear side cover was 17.5 mm for all the specimens. The PVC 

moulds were fixed vertically in a wooden formwork and the reinforcement cages were inserted into 

the PVC moulds. Concrete was placed into the formwork in three stages. In every stage concrete 

was vibrated using an electric vibrator to compact and to remove air bubbles. The specimens were 

cured by covering with wet hessian and plastic sheets after 24 hours of casting to maintain the 

moisture conditions. The curing process lasted 28 days before testing. After curing, the surface of 

Specimen CG6-G60 was cleaned and grinded to prepare for wrapping with two layers of CFRP 

sheets in the hoop direction by using wet layup technique. A mixture of epoxy resin and hardener at 

a ratio of 5:1 was used as a bonding agent. An overlap length of 100 mm was applied in the hoop 

direction to maintain sufficient bonding strength. Afterwards, the wrapped specimen was placed in 

room temperature for 14 days to harden and cure the epoxy. 

 

2.3 Preliminary test 

The compressive strength of the concrete was found by testing concrete cylinders of 100 mm in 

diameter and 200 mm in height according to AS 1012.9-1999 [32] . The average 28-day 
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compressive strength of the concrete was 37 MPa. The ultimate tensile strength and the 

corresponding strain and modulus of elasticity of the GFRP bars were determined by testing five 

pieces for each of the two diameter (12.7 and 9.5 mm) bars with a test length of 40 times the 

diameter of the bars plus the required gripping length at both ends, as recommended by ASTM 

D7205-11 [33]. The test results are reported in Table 2. The mechanical properties of the CFRP 

sheets were found by coupon test as recommended in ASTM D7565-10 [34]. Five samples of two 

layers of CFRP sheets with 25 mm width and 250 mm length were taken. The average maximum 

tensile load and the corresponding strain were 1125 N/mm and 0.0147 mm/mm, respectively. Also, 

the tensile modulus of elasticity was 85 GPa. 

   

2.4 Instrumentation and testing of specimens 

The specimens were instrumented internally and externally to capture the axial deformation of the 

specimens and strains in the reinforcement. The axial deformation of the specimens was recorded 

by two Linear Variable Differential Transducers (LVDT) attached vertically to the testing machine 

in the two opposite corners. Also, before casting the concrete, two electrical strain gages were 

attached at the mid-height of the two opposite longitudinal bars in order to capture the axial strain at 

these bars. In addition, two electrical strain gages were attached at mid-height of the two opposite 

sides of the helical reinforcement to measure the strain in the hoop direction. For the confined 

specimens with CFRP sheets, two electrical strain gages were also attached at mid-height of two 

opposite sides of the CFRP wrap to measure the strain in the hoop direction.  

 

All specimens were tested in the laboratories of the School of Civil, Mining and Environmental 

Engineering at the University of Wollongong, Australia. The Denison 5000 kN compression testing 

machine was used to test the specimens. The top and bottom of the specimens were wrapped by a 

single layer of CFRP sheet to prevent premature failure of the concrete during axial compression 
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tests. The width of CFRP sheet was 75 mm. Also, both ends of the specimens were capped with 

high strength plaster to distribute the load uniformly. The test stared with a force-controlled pre-

loading the specimens at a rate of 2 kN/s to about 10% of the yield loads of the specimens and then 

unloaded to 20 kN. Afterwards, the test resumed with displacement control loading (0.005 mm/s) 

until the resistance of the tested specimen dropped to 30% of the yield load or until the axial 

displacement reached 40 mm. The applied axial load and displacement of the tested specimens were 

recorded through the internal load cell of the Denison testing machine. Also, the experimental test 

results of the axial deformations and axial and hoop strains were recorded through the LVDTs and 

the strain gages. The applied loads were also recorded through a sensor located on the bottom of the 

testing machine. The LVDTs, strain gages and the sensor were connected to a data-logger to record 

the readings at every 2 seconds.  

 

3 Experimental results and observations 

3.1 Failure modes 

All the specimens were tested under axial monotonic load until failure. The vertical hairline cracks 

appeared at around 90% of the first peak loads in the specimens that were only confined with the 

GFRP helices. With the increase of the applied axial load, cracks propagated and caused spalling of 

the concrete cover, which reduced the axial load carrying capacity of the specimens. Afterwards, 

cracks initiated in the concrete core which dilate the concrete core and produced stresses in the 

confining materials (GFRP helices and CFRP sheets). The produced stresses in the confining 

materials held the concrete core and provided enough stiffness to carry sustained loads without 

failure. With the increasing applied load, the hoop strain in the confining materials increased until 

rupture occurred. The rupture of the confining material led to fracture of the longitudinal GFRP 

bars, crushing of concrete core and complete failure of the specimens. Figure 1 shows failure modes 

of the tested specimens. 
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3.2 Axial load-axial deformation behaviour  

Figure 2 shows the axial load-axial deformation behaviour of the tested specimens. In general, the 

ascending part of the load-deformation curve of the specimens was similar until first peak load 

because the ascending part was dominated mainly by the concrete strength. Afterwards, the 

specimens that were only confined with GFRP helices exhibited a decrease in the load carrying 

capacity with the increase of a small amount of the axial deformation because of the spalling of 

concrete cover. After the first axial peak load, cracks were initiated in the concrete core that led to 

dilation of the concrete core. Dilation of the concrete core produced stresses in the confining 

material because of the Poisson’s effect. Therefore, the axial load-axial deformation behaviour of 

the specimens experienced a second ascending part. Hence, the second peak loads were greater than 

the first peak loads. However the second peak load of Specimen 00-G60 was smaller than the first 

peak load because the specimen was not reinforced with longitudinal reinforcement. Also, the pitch 

of the GFRP helix in 00-G60 was greater than the pitch of GFRP helix for Specimen 00-G30. Due 

to not having concrete cover in the confined specimen with CFRP sheets (CG6-G60) the transition 

between the first and second ascending parts of the load-deformation curve was a continuous 

smooth curve.       

 

3.3 Experimental results and discussion 

Table 3 reports the experimental results in terms of the first and second peak loads and the 

corresponding axial deformations and ductility. In this study, the ductility of the specimens is 

calculated as the ratio of the axial deformation corresponding to the second peak load to the axial 

deformation corresponding to the first peak load [35]. However, for the Specimen 00-G60, axial 

deformation corresponding to the second peak load was taken when the load dropped to 80% of the 

first peak load in the descending part. Also, for the Specimen CG6-G60, axial deformation 
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corresponding to the transition point between the first and second ascending parts was taken as the 

deformation corresponding to the first peak load [36].    

 

In general, the specimens with longitudinal GFRP bars performed better in comparison to the 

corresponding specimens without longitudinal bars in terms of load carrying capacity and ductility. 

The specimens with longitudinal GFRP bars achieved about 13% and 52% greater first and second 

peak loads, respectively, than the corresponding specimens without longitudinal bars. Also, the 

contribution of the longitudinal GFRP bars in the first and second peak load carrying capacities of 

the specimens was about 11 and 23%, respectively. The longitudinal GFRP bars considerably 

improved the ductility of the specimens with 60 mm pitch of GFRP helix, which may be because 

the longitudinal GFRP bars reduced the unconfined concrete areas between the helices and caused 

the concrete core to undergo a large axial deformation. However, the influence of the longitudinal 

GFRP bars in the improvement of the ductility in the specimens with 30 mm pitch of GFRP helix 

was not very significant. This may be because the smaller pitch of GFRP helix effectively confined 

the concrete core and the effect of longitudinal bars in confining the concrete core was not as 

significant. Reducing the pitch of the GFRP helices from 60 to 30 mm increased the first and 

second peak loads of the specimens by about 8% and 43%, respectively. The lesser improvement of 

the first peak load was because the hoop strain in the GFRP helices was less than 5% of the ultimate 

tensile strain, so the confinement was not considerably activated. Confining the specimens with 

CFRP sheet led to the increase of the second peak loads by 115%. Also, the ductility of the 

specimens improved considerably by reducing the pitch of GFRP helices and externally confining 

the specimens with CFRP sheets.  

 

The confined concrete strength of the tested specimens was calculated by subtracting the loads 

carried by the longitudinal bars from the second peak load of the specimens and dividing it by the 
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area of confined concrete core. The experimental results of the confined concrete strength are 

reported in Table 4. It can be observed that specimens with longitudinal GFRP bars obtained a 

greater confined concrete strength than the corresponding specimens without longitudinal GFRP 

bars. This may be because the longitudinal bars can reduce the area of unconfined concrete between 

the helices pitch and increase the hoop strain at the confining materials. The ratio of hoop rupture 

strain to the ultimate tensile strain of the GFRP helices was about 0.33 and 0.25 in the specimens 

with and without longitudinal GFRP bars, respectively. Also, the hoop rupture strain of the CFRP 

sheet was about 0.75 of its ultimate tensile strain. 

 

4 Analytical modelling 

The specimens tested in this study can be broadly divided into three components: (i) longitudinal 

GFRP bars, (ii) unconfined concrete cover, and (iii) confined concrete core with GFRP helices. For 

the specimen confined with CFRP sheets (CG6-G60), the concrete cover was confined with CFRP 

sheets and the concrete core was confined with GFRP helices and CFRP sheets.  

 

4.1 Longitudinal GFRP bras 

Based on the experimental studies on GFRP bars [11, 12] the stress-strain behaviour of the bars is 

linear elastic until failure. Therefore, the axial stress of the longitudinal GFRP bars at different 

points can be represented by Eq. (1), by assuming that perfect bonding exists between the GFRP bar 

and the surrounding concrete. Also, it is assumed that the axial strain of the concrete and GFRP bars 

are equal at any point. 

 (1) 

where  is the stress of the longitudinal GFRP bars,  is the axial strain of the concrete and  is 

the modulus of elasticity of the GFRP bars.  
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4.2 Unconfined concrete  

The stress-strain behaviour of unconfined concrete proposed by Yang et al. [37] has been adopted 

in this study to model the behaviour of unconfined concrete cover. 

1
 (2) 

0.20 exp 0.73 for  (3) 

0.41 exp 0.77 for  (4) 

10

. 2300 .

 (5) 

where  is the axial concrete strain at any concrete stress ,  is the unconfined concrete strength 

which is equal to 85% of cylinder compressive strength  at age 28 days,  is the unconfined 

concrete strain corresponding to , and  is the density of concrete which can be taken as 2400 

kg/m3 for normal-weight concrete. The elastic modulus  and strain of unconfined concrete are 

calculated using Eq. (6) and (7) as proposed in ACI 318-14 [38] and Légeron [39], respectively. 

4730 MPa  (6) 

0.0005 .      (MPa) (7) 

 

4.3 Confined concrete  

Lateral confinement leads to the improvement in the strength and strain of concrete as the concrete 

core is restricted laterally. The peak strength and the corresponding axial strain can be calculated 

using Eq. (8) and (9), respectively, as proposed in Karim et al. [40].   

 (8) 

 (9) 

5
0.5

  (10) 
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where  is the confinement coefficient factor and  is the ultimate confined concrete strain 

corresponding to the peak confined concrete strength .  is the lateral confining pressure that can 

be calculated using Eq. (12) and (13) for GFRP helices and CFRP sheets, respectively. 

2
 (11) 

2
 (12) 

where 	  is the area of the GFRP helices,  is the ratio of the hoop rupture strain to the ultimate 

tensile strain of the confining materials, 	  is the tensile strength of the bent GFRP bar or GFRP 

helix,  is the diameter of the confined concrete core measured as the distance between the centre 

line of the GFRP helices,  is the pitch of the GFRP helices, 	  is the thickness of the CFRP sheet, 

 is the ultimate tensile strength of the CFRP sheet and  is the diameter of the specimens. The 

value of  is recommended as 0.55 for the CFRP sheet according to ACI 440.2R-08 [41]. 

However, 0.55 underestimates the hoop rupture strain [27, 42, 43]. Therefore,  is calculated 

using Eq. (13) as proposed in Ozbakkaloglu and Lim [44]. 

0.9 2.3 10 0.75 10  (13) 

where  is the tensile modulus of elasticity of the CFRP sheet. The value of  for the GFRP 

helices is still under investigations. Hence, the experimentally recorded strain value for the GFRP 

helices was used in this study. The hoop rupture strain of the GFRP helices was about 33 and 25% 

0.33	and	0.25  of the ultimate tensile strain of the GFRP bars for the specimens with and 

without longitudinal GFRP bars, respectively. The tensile strength of the bent GFRP bar or helix is 

lower than the ultimate tensile strength of the straight bars. As GFRP bar is not an isotropic 

material, different directions of the applied load leads to the reduction of the ultimate tensile 

strength of the GFRP bars [45]. The tensile strength of the GFRP helices can be calculated using 

Eq. (14) as recommended in ACI 440.1R-15 [46].   
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0.05 0.3  (14) 

where  is the inner radius of the helices,  is the diameter of the helices bars and  is the 

ultimate tensile strength of the GFRP bars.   

 

For the specimen reinforced with GFRP helices and confined with CFRP sheets, the concrete cover 

is confined by CFRP sheet and concrete core is confined by GFRP helices and CFRP sheet as 

shown in Fig. 3. The confined concrete strength can be determined using Eq. (15) as recommended 

by different authors [47-49].  

	 , ,  (15) 

where , 	and	 ,  are the confined concrete strength of the concrete core and cover, 

respectively, and 	and		  are the areas of concrete cover and core, respectively, and  is 

the gross area of the concrete cross-section. 

  

The stress-strain behaviour of confined concrete proposed by Samaan et al. [50] has been adopted 

in this study to model the behaviour of confined concrete core. 

1
⁄  

(16) 

 (17) 

0.872 0.371 6.258 (18) 

1
1

⁄ 1
 (19) 

where  is the slope of the second ascending part of axial stress–strain curve of confined concrete, 

 is the curve-shaped parameter and  is the intercept of the second slope with the stress axis. 
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5 Experimental versus analytical results 

5.1 Curve-shaped parameter  

Figure 4 shows the stress-strain behaviour of unconfined and confined concrete drawn using Eq. (2) 

and (16), respectively. It can be observed that the ascending part of the confined concrete is smaller 

than the unconfined concrete. It is evident that the differences are caused by inaccurate estimation 

of the curve-shaped parameter  calculated using Eq. (19). In general, increasing the value of  

means the reduction of the radius of the transition curve that connects the first and second ascending 

parts of the confined concrete stress-strain curve. In order to estimate a reasonable value of , it was 

assumed that the first ascending part of the stress-strain curve of unconfined and confined concrete 

are equal within the elastic limit range of the concrete core. This assumption is reasonable as 

concrete core within the elastic axial strain is not cracked and the lateral pressure is not 

considerably activated. The axial strain value at the end of the elastic limit state is assumed to be 

0.5  [51]. From this assumption, Eq. (20) is proposed. 

, . , . for 0.5  (20) 

where , . and , . are the unconfined and confined concrete stress, respectively, 

corresponding to . By substituting Eq. (16) in (20) and considering 0.5	 , the relationship 

between  and other influencing parameters can be established in Eq. (21). 

2 , . ⁄
1

2 ⁄

⁄

 (21) 

where , .  is the unconfined concrete stress corresponding to 0.5 . The , .  and  can be 

expressed as a function of  using Eq. (2), (6) and (7). Eventually, the value of  is a function of 

, 	and	 . However, the relationship between  and the parameters that affect  is complex. 

Hence, a parametric study was conducted to estimate the relationship between , 	and	  with . 

An algorithm was written in MATLAB to numerically solve Eq. (21) with the change of the 
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parameters within reasonable range to obtain a representative value of . The flow chart of the 

algorithm is shown in Fig. 5.    

 

5.2 Influence of the concrete parameters on    

Figure 6 shows the effects of  on  with fixed values of 	and	 . In this study, the values of  

was considered to vary from 20,000 to 48,000 MPa which correspond to  between 20 to 100 MPa. 

Figure 7 shows the relationship between 	and	 . It can be observed that the value of  increased 

with increasing of  because increasing the value of  leads to the reduction of the radius of the 

transition curve between the first and second ascending parts of the confined stress-strain curve.   

 

Figure 8 shows the effect of changing  on  with fixed values of 	and	 . It is clear that the 

radius of the transition curve should be reduced with the increase in the value of  in order to have 

the ascending part of the confined stress-strain curve the same as the ascending part of the 

unconfined concrete. To demonstrate the influence and relationship between 	and	 , the values of 

 were considered to vary from 0 to 10,000 MPa which are equivalent to the ratio of ⁄  

between 1 to more than 7. It can be observed that increasing the value of  leads to the reduction 

of  as shown in Fig. 9.  

 

Figure 10 shows the effects of changing  on the value of  with fixed values of 	and	 . It is 

clear that reducing the value of  leads to the increase of the value of  in order to have the 

ascending part of the confined stress-strain curve the same as the ascending part of the unconfined 

concrete. The values of  was varied between 20 to 150 MPa (Fig. 11). 

 

The relationship between the different parameters and the value of  are drawn in Fig. 12, based on 

the parametric study discussed above. A regression analysis was performed to propose an equation 
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to estimate the value of . The proposed equation (Eq. 22) can estimate the value of  in such a way 

that the ascending part of the confined concrete stress-strain curve within the elastic range is the 

same as the ascending part of unconfined concrete (refer to Fig. 4).          

0.4 .  (22) 

. 10  (23) 

where the units of , 	and	  are in MPa 

 

5.3 Verification of the analytical results 

The axial load-axial deformation behaviour of each component of the GFRP-RC columns was 

drawn in Fig. 13 based on the stress-strain behaviour presented in Section 4. An Excel spreadsheet 

was used to perform the calculations and drawing of the axial load-axial deformation behaviour of 

the specimens. The axial load of a specimen at any axial deformation can be calculated using Eq. 

(24).          

	 , ,  (24) 

where  is the total load of the specimens; , ,  and , 	 are the axial stresses in 

the longitudinal GFRP bars, the concrete core and the concrete cover, respectively; and ,  

and  are the areas of the longitudinal bars, the concrete core and the concrete cover, 

respectively. Table 4 reports the experimental and calculated confined concrete strength of the 

specimens. Also, Fig. 14 shows comparisons between the experimental and analytical axial load-

axial deformation behaviour of the tested specimens. The analytical axial load-axial deformation 

curve of the specimens consisted of the superposition of the axial load-axial deformation of the 

different components (longitudinal bars, confined concrete core and unconfined concrete cover) of 

the specimens.  A reasonable agreement can be observed between the experimental and analytical 

axial load-axial deformation behaviours particularly at the ascending part until the first peak load. 
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This is because the behaviour of the load-deformation curve of the different components of the 

specimens at the ascending part was relatively linear until the first peak load. The estimated value 

of  governed the transition curve between the first and second ascending parts of the axial load-

axial deformation behaviour reasonably close to the experimental results. Also, it can be seen that 

the second peak load of the axial load-axial deformation behaviour of the experimental results have 

close agreement with the analytical results. This close agreement essentially means that the 

developed analytical model calculated confined concrete strength and the corresponding axial strain 

in reasonable agreement the experimental results.    

 

6 Conclusions 

In this study, a total of five circular column specimens were tested under concentric axial loads. The 

specimens were reinforced either with GFRP bars and GFRP helices or only with GFRP helices. 

Also, one specimen was externally confined with CFRP sheets. The effects of reducing the spacing 

of the GFRP helices and externally confining the specimen with CFRP sheet were investigated. An 

analytical model has been developed for the axial load-axial deformation behaviour of circular 

concrete columns reinforced with GFRP bars and helices. Based on the experimental and analytical 

investigations carried out in this study, the following conclusions are drawn: 

1. Longitudinal GFRP bars improved the first and second peak loads, the ductility and the 

confined concrete strength of the GFRP-RC specimens because the longitudinal bars reduced 

the area of unconfined concrete core and increased the hoop strain in the confining materials 

particularly for the specimens with large spacing of GFRP helices. 

2. Reducing the spacing of the GFRP helices or confining the specimens with CFRP sheets 

enhanced the performance of the specimens in terms of the first and second peak loads, the 

ductility and the confined concrete strength by providing more lateral confinement pressure 

and increasing the confined concrete core area. 
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3. A parametric study was undertaken to propose an equation for the axial load-axial 

deformation curve-shape parameter . The proposed equation can estimate the value of  in 

such a way that the ascending part of the confined concrete stress-strain curve is the same as 

the ascending part of the stress-strain curve of unconfined concrete. 

4. The analytical axial load-axial deformation behaviour of the GFRP-RC column specimens 

was drawn by the superposition of the load-deformation behaviour of the different 

components (longitudinal GFRP bars, confined concrete core and unconfined concrete 

cover) of the specimens. The analytical and experimental load-deformation curves agree 

reasonably well.    
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Table 1. Test Matrix 

Specimen 

Longitudinal reinforcement Transverse reinforcement 

Confinement Diameter 

(mm) 
Number 

Diameter 

(mm) 

Spacing  

(mm) 

G6-G60 12.7 6 9.5 60 - 

G6-G30 12.7 6 9.5 30 - 

00-G60 - - 9.5 60 - 

00-G30 - - 9.5 30 - 

CG6-G60 12.7 6 9.5 60 CFRP sheet 
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Table 2. Mechanical properties of steel and GFRP bars and CFRP sheet 

Material 
Diameter 

(mm) 

Ultimate tensile 

strength  

(MPa) 

Elastic tensile 

modulus  

(GPa) 

Strain corresponding to 

ultimate tensile strength 

(mm/mm) 

GFRP #4 12.7 1600 66 0.0242 

GFRP #3 9.5 1700 76 0.0224 
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Table 3. Experimental results 

Specimen 

First peak Second peak 

Ductility Load  

(kN) 

Deformation 

(mm) 

Load  

(kN) 

Deformation 

(mm) 

G6-G60 1220 1.60 1425 5.15 3.2 

G6-G30 1309 1.56 2041 7.60 4.9 

00-G60 1063 1.40 940 3.20a 2.3 

00-G30 1170 1.35 1343 6.52 4.8 

CG6-G60 1320 b 1.24b 3068 8.18 6.6 

a Corresponding to 80% of the first peak load in the descending part 

b Corresponding to the transition point between the first and second ascending part   
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Table 4. Experimental and analytical confined concrete strength 

Specimen 
Load carried by the bars (kN) Confined concrete strength (MPa)

First peak Second peak Experimental Analytical 

G6-G60 148 307 55.6 55.5 

G6-G30 138 494 76.9 75.8 

00-G60 - - 46.8 49.8 

00-G30 - - 66.8 66.1 

CG6-G60 - 593 75.8 76.1 
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Fig. 1. Failure modes of the tested columns 
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Fig. 2. Axial load-axial deformation behaviour of the tested specimens 
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Fig. 4. Comparison between existing and proposed  value 
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Fig. 6. Influence of  on stress-strain behaviour 
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Fig. 7. Influence of  on  
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Fig. 8. Influence of  on stress-strain behaviour 
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Fig. 9. Influence of  on  
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Fig. 10. Influence of  on stress-strain behaviour 
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Fig. 11. Influence of  on  
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Fig. 13. Analytical axial load-axial deformation behaviour of different components of the specimens 
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Fig. 14. Comparison between experimental and analytical axial load-axial deformation behaviour of the 

tested columns; (a) G6-G60; (b) G6-G60; (c) 00-G60; (d) 00-G30; (e) CG6-G60 
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