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Antiepileptic effects of lacosamide loaded polymers implanted subdurally
in GAERS

Abstract
The current experiment investigated the ability of coaxial electrospun poly(D,L-lactide-co-glycolide) (PLGA)
biodegradable polymer implants loaded with the antiepileptic drugs (AED) lacosamide to reduce seizures
following implantation above the motor cortex in the Genetic Absence Epilepsy Rat from Strasbourg
(GAERS). In this prospective, randomized, masked experiments, GAERS underwent surgery for
implantation of skull electrodes (n = 6), skull electrodes and blank polymers (n = 6), or skull electrodes and
lacosamide loaded polymers (n = 6). Thirty-minute electroencephalogram (EEG) recordings were started at
day 7 after surgery and continued for eight weeks. The number of SWDs and mean duration of one SWD were
compared week-by-week between the three groups. There was no difference in the number of SWDs between
any of the groups. However, the mean duration of one SWD was significantly lower in the lacosamide polymer
group for up to 7 weeks when compared to the control group (0.004 < p < 0.038). The mean duration of one
seizure was also lower at weeks 3, 5, 6, and 7 when compared to the blank polymer group (p = 0.016, 0.037,
0.025, and 0.025, resp.). We have demonstrated that AED loaded PLGA polymer sheets implanted on the
surface of the cortex could affect seizure activity in GAERS for a sustained period.
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The current experiment investigated the ability of coaxial electrospun poly(D,L-lactide-co-glycolide) (PLGA) biodegradable
polymer implants loaded with the antiepileptic drugs (AED) lacosamide to reduce seizures following implantation above themotor
cortex in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS). In this prospective, randomized, masked experiments,
GAERS underwent surgery for implantation of skull electrodes (𝑛 = 6), skull electrodes and blank polymers (𝑛 = 6), or skull
electrodes and lacosamide loaded polymers (𝑛 = 6). Thirty-minute electroencephalogram (EEG) recordings were started at day
7 after surgery and continued for eight weeks. The number of SWDs and mean duration of one SWD were compared week-by-
week between the three groups. There was no difference in the number of SWDs between any of the groups. However, the mean
duration of one SWD was significantly lower in the lacosamide polymer group for up to 7 weeks when compared to the control
group (0.004 < 𝑝 < 0.038). The mean duration of one seizure was also lower at weeks 3, 5, 6, and 7 when compared to the blank
polymer group (𝑝 = 0.016, 0.037, 0.025, and 0.025, resp.). We have demonstrated that AED loaded PLGA polymer sheets implanted
on the surface of the cortex could affect seizure activity in GAERS for a sustained period.

1. Introduction

Epilepsy is a chronic neurological condition characterized
by recurrent seizures. The incidence of epilepsy in most
developed countries is between 50 and 100 cases per 100,000
population per year although it is estimated that up to 5%
of a population will experience nonfebrile seizures at some
point in life [1, 2]. Individuals with medically untreatable
epilepsy often have impaired ability to work or function
socially (e.g., inability to drive, difficulty at attending school,
losing jobs and friends, and anxiety regarding the possibility

of having seizure in potentially hazardous conditions) [3].
Treatment with conventional antiepileptic drugs (AEDs, e.g.,
phenytoin and lacosamide administered orally) results in
only 33% of the patients having no seizure recurrence [1, 2].
Alternatively, neurostimulation based therapy has also been
shown to reduce seizure activity but has typical reductions of
seizure frequency of approximately 40% acutely and 50–69%
after several years [4]. Surgical resection of the seizure focus
can be performed in the case of focal seizures; however, this
procedure can only be applied on selected patients depending
on the localization of the epileptic foci [5]. Indeed, the success
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of inducing long-lasting seizure remission from epilepsy
surgery ranges from a low of 25% for patients exhibiting
extrahippocampal seizure origin to 70% in appropriately
selected candidates [5].

The mechanisms by which resistance to AEDs treatment
develops are not fully understood; some evidence suggests
that this may be due to a lack of effective penetration into
the brain parenchyma; however, the drug side effects prevent
large increase in the posology [6]. Alternative therapies
aiming at improving the availability of AEDs such as the
intracranial implantation of polymer-based drug delivery
systems are being investigated [7, 8]. This targeted drug
delivery approach has shown some success in the treatment
of animal models of several neurological disorders such as
Parkinson’s disease, Huntington’s disease, and Alzheimer’s
disease [9]. Also, Halliday et al. used Levetiracetam loaded
biodegradable polymer implants in the tetanus toxin model
of temporal lobe epilepsy in rats; the results of this study
indicated that drug-eluting polymer implants represent a
promising evolving treatment option for intractable epilepsy;
however, important limitations of the study were that the
effects could only be seen for a week and only a single group
of control animals were investigated. These animals received
an injection of tetanus toxin and a sham craniotomy, without
the implantation of a polymer sheet [8].

Poly(D,L-lactide-co-glycolide) (PLGA) is the most com-
monly used biodegradable polymer as it is highly biocom-
patible and easily engineered and has been approved for
drug delivery purposes by the United States Food and Drug
Administration [10]. It has been used in numerous appli-
cations including bone and skin tissue engineering, ocular
treatment, vaccine, cancer therapy, and nerve regeneration
[11–15]. PLGA polymers have also been successfully used for
intracranial drug delivery in animal models of neurological
disorders, showing no evidence of toxic injury or immune-
mediated inflammation when implanted subdurally above
the motor cortex in rats [10].

Genetic Absent Epilepsy Rat from Strasbourg (GAERS)
is a strain of rats where 100% of the animals present with
recurrent generalized nonconvulsive seizures [16]. This ani-
mal model has become the gold standard to study the
mechanisms underlying absence epilepsy [16]. In the present
investigation, PLGA sheets loaded with the commonly used
AED lacosamide were developed and their ability to decrease
seizure activity was investigated in the GAERS. Lacosamide
stabilizes neuronalmembranes through enhancing slow inac-
tivation of voltage-gated sodium channel and is effective in
different rodent seizure models including generalized seizure
[17].

The aim of the study is to investigate the effect of
subdural implantation of biodegradable polymers (PLGA)
loaded with lacosamide on seizure activity in an animal
model of epilepsy (GAERS); the hypothesis is that sub-
dural implantation of lacosamide loaded PLGA polymers
can decrease seizure activity of the GAERS. Our results
demonstrated that focal delivery of lacosamide can achieve
partial sustained antiepileptic effect in an animal model of
generalized epilepsy.

2. Materials and Methods

The study was designed as a randomized controlled masked
experiment. The experiment was approved by St. Vincent’s
Hospital (Melbourne) Animal Ethics Committee and con-
ducted in accordancewith theAustralianCode of Practice for
the Care and Use of Animals for Scientific Purposes (2004).

2.1. PLGA Polymer Mat Production. Lacosamide-laden poly-
mer mats were produced using a coaxial electrospinning
method [18], with the core composed of lacosamide and
75 : 25 PLGA (lactide/glycolide = 75 : 25) and the shell com-
posed of 85 : 15 PLGA (lactide/glycolide = 85 : 15). The core
solution was prepared at 17%w/v 75 : 25 PLGA in dimethyl-
formamide (DMF), to which lacosamide was added to give
a range of final concentration of 2.5, 12.5, or 20%w/w
relative to the polymer. The shell solution was prepared at
20%w/v 85 : 15 PLGA in a binary solvent system comprising
dichloromethane and DMF (dichloromethane/DMF = 7/3).
Coaxial electrospinning was conducted using a nanoelec-
trospinning system (NANON-01A, MECC Co. Ltd.) at an
applied DC voltage of 23 kV. A coaxial spinneret with a
diameter of 0.2mm for the core and 0.8mm for the sheath
nozzles was connected to the core and shell solutions and
a feed rate of 5 𝜇Lmin−1 and 20 𝜇Lmin−1 for the core and
shell solutions, respectively. Fiber mats were collected on a
grounded plate collector that was set 15 cm away from the
spinneret tip. The drug-free, coaxially spun polymer mats
were also prepared using the above procedure.

Depending on lacosamide loading in the core, the as-
prepared, coaxially electrospun polymer mats were denoted
as PLGA-2.5%, PLGA-12.5%, and PLGA-20%. The drug-free
mats are denoted as blank polymers. All the samples were
finally dried in a vacuum oven at 40∘C for 72 h to remove
residual solvent and were stored at −20∘C prior to subsequent
physiochemical characterization and animal studies.

2.2. Morphology Study. The morphology of the electrospun
mats (with and without drug) was examined using a field
emission scanning electron microscope (FESEM, JEOL JSM-
7500FA). The samples were sputter-coated with gold prior to
FESEM to avoid sample charging.

2.3. Determination of Drug Loading in Polymer Mats. An
extraction method was used to determine the drug loading
in the electrospun mats. Briefly, each sample (1 cm × 1 cm)
was weighed and placed into 1mLmethanol for 12 hours after
which the methanol was removed and replenished with 1mL
of fresh methanol. This extraction procedure was repeated
four times with each methanol sample allowed to evaporate
to leave residual drug behind which was reconstituted in
methanol (1mL), diluted 20 times with the HPLC mobile
phase (see below), and filtered through a 0.2 𝜇m syringe filter.
The fourth reconstituted sample showed no presence of drug
indicating that the entire drug had been extracted from the
electrojetted sample.
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2.4. In Vitro Drug Release. The lacosamide loaded polymers
(1 cm × 1 cm) were suspended in 1mL of aCSF, and the release
experiment was conducted at 37∘C in a shaker water bath
(Julabo Pty. Ltd.). The aCSF contained NaCl (0.866%w/v),
KCl (0.224%w/v), CaCl

2

-2H
2

O; (0.0206%w/v), and MgCl
2

-
6H
2

O (0.0164%w/v) in 1mM phosphate buffer (pH 7.4) [8].
For each sample, the release medium solution was collected
and replenished with fresh aCSF at various time points and
stored at −20∘C prior to HPLC analysis being undertaken.
The eluted samples were analyzed by HPLC using a modified
method on an Agilent 1260 Infinity HPLC system [19]. An
AtlantisⓇ T3 C18 column (250mm × 4.6mm, 5 𝜇m) was
employed as the analytic column and set at 40∘C.The mobile
phase was composed of water, acetonitrile, and methanol
(65 : 26.2 : 8.8, v/v/v), and the injection volume was 10 𝜇L
with the flow rate of 0.8mL/min. The eluting lacosamide
was detected using a UV-vis detector set at a wavelength
of 230 nm (𝜆max of lacosamide). To convert the UV-vis
absorbance to drug concentration a standard curve was
established by plotting in triplicate the UV-vis peak areas
against respective concentrations of standard solutions (10,
20, 50, 100, 200, and 500 𝜇M lacosamide).

2.5. Animals. Adult female GAERS were obtained from the
University of Melbourne (Parkville, Victoria, Australia) and
housed individually in inverted 12-hour light/dark cycles
(the light was turned off between 6 am and 6 pm) with ad
libitum access to food and water. Six-month-old rats were
randomly allocated to a control group (no implant; 𝑛 =
6), blank polymer group (bilateral implantation of blank
PLGA polymers not containing lacosamide; 𝑛 = 6), or
treatment group (bilateral implantation of lacosamide loaded
PLGA polymers; 𝑛 = 6). The randomization was performed
using the random function in Microsoft Excel 2007. The
group attribution list was kept concealed from the researchers
performing the EEG analysis.

2.5.1. Implantation Surgery. Immediately prior to surgery,
rats were weighted and anaesthetized using a balanced
anesthesia protocol including an intraperitoneal injection
of ketamine (75mg/kg) and xylazine (10mg/kg). Following
anesthesia induction rats were placed in a stereotaxic appa-
ratus, given isoflurane (0.5 to 1% in oxygen, 1 L/min) via a
nose-cone as needed, and given subcutaneous (SQ) carprofen
(5mg/kg) for pain relief and 0.9% sodium chloride (2mL) for
cardiovascular support.

Rats from the control group underwent surgery for EEG
recording electrode implantation whereas surgeries for the
rats from the blank polymer group, the treatment group, and
the silicone group also included bilateral craniotomies for
subdural placement of two identical implants. Over the scalp
of all rats, the hair was clipped and the skin was aseptically
prepared. A single incision was made down the midline, the
skull cleared of tissue, and the exposed bone dried with 3%
hydrogen peroxide. Five extradural electrodes, consisting of
small jeweller’s screws, were implanted caudal to the intended
polymer implantation sites through burr holes. Four were
implanted cranially to the interaural line (two on each side

of the sagittal suture) and one was implanted caudally to the
interaural line on the right side of the sagittal suture (Figures
1(a) and 1(b)). The electrodes were then connected to an
adaptor and secured with dental cement.

Implants measuring 3mm by 4mm were cut from the
polymer sheets described above. Placements of the implants
were performed after 5mm by 4mm craniotomies were
created bilaterally at the level of the coronal suture (over
the motor cortices) and after excising the dura to expose
the brain surface (Figures 1(a) and 1(b)). Following implant
placements, the skull removed from craniotomy sites was
replaced. The craniotomy sites were then sealed with an
alginate-based hydrogel, the entire surgical site was covered
with dental cement, and the skin was sutured leaving exposed
only part of the dental cement. The animals were placed on
heat pads for recovery. Postoperative treatment included SQ
buprenorphine every twelve hours (0.03mg/kg, twice a day),
saline (2mL, once a day), and carprophen SID (5mg/kg, once
a day) for up to 3 days.

2.5.2. Electroencephalograph Recording and Analysis. At day
7 or 8 after surgery and at least 3 days per week for the
following 7 weeks, rats were monitored for one hour (half an
hour anesthesia recovery/acclimation time and half an hour
recording time) (Figure 1(c)). At each monitoring session,
rats were briefly anaesthetized in an induction cage with
isoflurane (4% in oxygen, 2 L/min, for 2 to 3 minutes),
and shielded cables were used to connect the recording
electrodes to the EEG acquisition system, which consisted
of TDT processors and high impedance head stages driven
by custom-designed software (Tucker Davis Technologies,
USA). The rats were allowed to recover from the anesthetic
before recordings began. The EEGs were visualized using a
custom-designed MATLAB program (The MathWorks, Inc.,
USA). During EEG recording, if the rats were perceived as
being asleep, and after confirmation of no seizure activity on
the EEG, a noise stimulus between 94 and 98 decibels was
applied. At the end of a recording session, the rats were again
briefly anaesthetized with isoflurane (4% in oxygen, 2 L/min)
to be disconnected from the shielded cable. The researcher
performing EEG analysis was masked to the treatment and
used a GAERS specific automated spike-and-wave discharges
(SWDs) detection algorithm [20].

2.6. Primary Outcome: Epileptic Activity. For each rat, the
median value and interquartile range for number of SWDs,
duration of one SWD, and cumulative duration of SWDs over
30min were calculated for eight recording blocks, each block
representing 1week of recording.Thefirst block only included
one recording at day 6 or 7 after surgery (total of 30 minutes
of EEG recording) whereas the following 7 blocks included
3 recordings per week (total of 90 minutes of EEG recording
per week) (Figure 1(c)).

2.7. Secondary Outcome: Postoperative Health Monitoring.
For a minimum of three days after surgery and until full
recovery from the surgery, the rats were monitored for
weight loss once a day and for mobility and grooming twice
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Figure 1: Schematic diagram illustrating the positioning of epidural recording screw electrodes (1–4), reference electrode (R) and polymer
(a); picture of the actual surgery (b); timeline of the study design: for a minimum of three days after surgery the rats were monitored for
weight loss once a day and for mobility and grooming twice a day. Thirty-minute electroencephalogram recording began at day 7 or 8 after
surgery and for the following 7 weeks on 3 days per week. For each rat, the mean desired values (number of SWDs, duration of one SWD, or
cumulative duration of SWDs over 30min) were calculated for eight recording blocks, each block being 1 week of duration.

a day. Those observations were given scores (Table 1). For
each day a debilitation score was calculated by cumulating
the highest grooming and mobility scores with the weight
loss score (Table 1). A debilitation score of 0, 1 to 3, 4 to
6, and 7 to 9 meant that the rat health was not affected,
mildly affected, moderately affected, and severely affected by
the surgery/polymer implantation, respectively. The highest
debilitation score of each rat over the postoperative period is
reported.

2.8. Statistical Analysis. Data analysis was performed using
a commercially available software (IBM SPSS Statistic 22;
Stata 13.0; StataCorp, 2013). The number of SWDs, mean
duration of one SWD, and cumulative duration of SWDs
were compared between the three groups using individual
Kruskal-Wallis tests for each block of the study. When
significant values were found, post hoc pairwise comparisons
were conducted for this block, comparing the control versus
lacosamide polymer and blank polymer versus lacosamide
polymer conditions using the Mann-Whitney 𝑈 test. The
debilitation scores of group lacosamide were compared to

group control and group blank polymer using a 2-tailed
Mann-Whitney exact test. Significance level was set at 5%.

3. Results

The FESEM images obtained from the PLGA mats without
lacosamide (Figure 2(a)) show a smooth and regular mor-
phology characteristic of PLGA electrospun fibers. How-
ever, when lacosamide was incorporated into the PLGA the
fibers within the mats demonstrated a mixture of porous
and nonporous morphology when examined under FESEM
(Figure 2(b)). Measured by visual inspection of the FESEM
images, the fiber diameter ranged between 2 𝜇m and 5 𝜇m.
These observations of the PLGA-12.5% samples shown in
Figure 2(c) were also observed in the other PLGA-2.5% and
PLGA-20.0% samples.

The in vitro release results for the PLGA-lacosamidemats
are presented in Figure 2(c). The polymer containing 20%
lacosamide showed a cumulative drug release above 40%
after only 7 days. The polymers containing 2.5 and 12.5%
lacosamide both had a reduction in release after around 42
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Figure 2: Scanning electron micrographs of coaxially electrospun polymer mats of PLGA Blank (a) and PLGA-12.5% lacosamide (b) (scale
bar represents 10𝜇m). In vitro release data of lacosamide polymers with final core lacosamide concentration of 2.5, 12.5, and 20%w/w relative
to the polymer (c). Bars are representing standard deviation.

days (6 weeks); however, the total drug release was higher
for 12.5% lacosamide polymer. In consequence, the polymer
containing 12.5% lacosamide was chosen to be implanted for
the in vivo experiment.

The results for the postoperative debilitation score are
presented in Figure 3. One rat from the blank polymer group
and 3 rats from the lacosamide had a debilitation score which
were classified as moderate. One rat from the blank polymer
group and 3 rats from the lacosamide group had a debilitation
score which were classified as severe. The debilitation scores
were significantly increased for the lacosamide polymer
group when compared to the control and blank polymer
groups (𝑝 = 0.002 and 𝑝 = 0.041, resp.).

The results of the measurements performed to evaluate
the epileptic activity for the groups control, blank polymer,
and lacosamide polymer are presented in Figure 4. The
difference in the number of SWDs between the groups was
not statistically significant. However, the mean duration of
one SWD was significantly lower in the lacosamide polymer
group for up to 7 weeks when compared to the control group
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Figure 3: Postoperative debilitation scores obtained for groups
control (𝑛 = 6), blank polymer (𝑛 = 6), and lacosamide polymer
(𝑛 = 6). Rats from the lacosamide polymer group had debilitation
scores that were higher when compared to the 2 other groups (∗𝑝 =
0.002; ∗∗𝑝 = 0.041). The box indicates the interquartile range (25th
to 75th percentile), and the whiskers indicate the range.
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Figure 4: Comparison of the measurements obtained to evaluate the epileptic activity of groups control (𝑛 = 6), blank polymer (𝑛 = 6), and
lacosamide polymer (𝑛 = 6). SWD: spike-and-wave discharge; IQR: interquartile range; results are reported as median. ∗ and + represent
the time points at which the results from the lacosamide polymer group were significantly different to the control and blank polymer groups,
respectively (𝑝 < 0.05).

(𝑝 = 0.037, 0.004, 0.01, 0.025, 0.037, and 0.016 for weeks 1,
2, 3, 4, 6, and 7, resp.). The mean duration of one seizure
was also lower at weeks 3, 5, 6, and 7 when compared to the
blank polymer group (𝑝 = 0.016, 0.037, 0.025, and 0.025,
resp.). The cumulative duration of SWDs of the lacosamide
group was significantly lower when compared to the control
group at weeks 1 and 5 (𝑝 = 0.010 and 𝑝 = 0.055, resp.) and
when compared to the blank polymer group at weeks 3 and 5
(𝑝 = 0.010 and𝑝 = 0.055, resp.). Examples of EEG recordings
are presented in Figure 5.

4. Discussion

Drug release from electrospun polymeric structures typi-
cally follows zero-order kinetics [18]. Zero-order kinetics
implies a homogeneous drug distribution and a release profile
governed by the wetting properties of the material and
encapsulation of hydrophilic and neutrally charged drugs of
low molecular weight can be problematic for these types of

structures [21–24]. The interaction of these types of drug
molecules with the polymer is usually very poor and their rate
of diffusion is often faster than the rate of polymer erosion.
This fast rate of diffusion has detrimental effects on drug
release from electrospun polymer structures.

Several factors are responsible for the variations in the
release profiles of AEDs, namely, the solubility of the drug in
the mat, the morphology of the fibers within the mat, and the
distribution of the drug throughout the fibers (i.e., the degree
of drug encapsulation within the core of the coaxial spun
mats).The solubility of lacosamide (465mg/L) contributes to
the relatively fast elution of that drug from the polymer. Also,
the morphology of the fibers within the electrospun mats
shows a porous nature for the PLGA-lacosamide structures
which increases the rate at which the release media (aCSF)
can infuse into the internal region of the fibers and promote
the elution of the drug.

The initial rapid drug release observed in the in vitro
experiment for the polymer mats tested with a final core
lacosamide concentration of 12.5% (Figure 2(c)) coincided
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Figure 5: Example of EEG recording from 3 rats belonging to group control (a), blank polymer (b), and lacosamide polymer (c). Figures (d)
and (e) are amplifications of spike-and-wave discharges observed during the recording shown and Figures (a) and (c), respectively.

with the postsurgical debilitation seen in most animals of
the lacosamide polymer group. It is unlikely that the surgery
alone was responsible for these adverse events as this debili-
tation was not observed to such extent in the blank polymer
group. Debilitated rats were treated with fluid therapy and
analgesic administration and they all recovered well. Looking
at the results retrospectively, one could argue that implanting
the PLGA-2.5% may have been a better choice as the initial
release of drug is not as abrupt and the constant lacosamide
release seems to last longer. Indeed the lack of effect of
lacosamide after 7 weeks correlates with the almost absence
of release of the lacosamide from the polymer. Variations in
the release profiles observed in Figure 2(a) from the samples
prepared with varying amounts of lacosamide indicate that
the interaction of the drug with the polymer (and hence its
propensity to be released from the structures) is influenced
by the drug loading. It has previously been shown that the
amount of drug loaded into electrospun fibers and drug-
polymer-electrospinning solvent interactions has an effect on
the release profiles [25–28].

Biodegradable PLGA polymer sheets containing a large
amount of lacosamide were implanted above the motor
cortices of GAERS. In the GAERS model of epilepsy, the rats
present recurrent generalized nonconvulsive seizures char-
acterized by bilateral and synchronous SWD accompanied
with behavioral arrest, staring, and sometimes twitching of
the vibrissae [16]. Furthermore, the GAERS were at least

6 months old, time at which 100% of the GAERS should
present SWDs and at which the numbers of SWDs are at their
maximum [16]. Although depth EEG recordings and lesion
experiments show that SWDs in GAERS depend on cortical
and thalamic structures with a possible rhythmic triggering
by the lateral thalamus, more recent studies indicate a seizure
initiation site within the perioral region of the somatosensory
cortex (S1po) as well as the somatosensory cortex forelimb
region (S1FL) [16, 29, 30]. Neurophysiological, behavioral,
pharmacological, and genetic studies have demonstrated that
spontaneous SWDs in GAERS fulfill all the requirements for
an experimental model of absence epilepsy [16]. Although
twenty-minute recordings were used by the original paper
describing GAERS EEGs, to try to improve the performance
of the EEG analysis 30min recordings were used during the
present experiment [16].

Although spontaneous SWDs start and end abruptly on
a normal background EEG and are quite easy to isolate, the
EEG patterns seen during sleep make it more difficult to
differentiate start and stop of SWD [20]. In previous exper-
iments, rats were stimulated when seen sleeping to improve
seizure detection [20]. This intervention was reduced during
the present experiment by inverting the light cycle of the
rats. The EEG recordings of those diurnal animals were
then recorded during the time of maximal activity reducing
sleep time EEG interferences. SWDs usually occur at a mean
frequency of 1.5 per min when the animals are in a state of
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Table 1: Postoperative health monitoring chart. For a minimum of
three days after surgery and until full recovery from the surgery,
the rats were monitored for weight loss once a day and for mobility
and grooming twice a day. For each day a debilitation score was
calculated by cumulating the highest grooming and mobility scores
with the weight loss score. A debilitation score of 0, 1 to 3, 4 to 6, and
7 to 9 meant that the rat health was not affected, middle affected,
moderately affected, and severely affected by the surgery/polymer
implantation, respectively.

Postoperative health monitoring chart Score
Percentage of weight loss

No weight loss 0
Less than 10% weight loss 1
10% to less than 20% weight loss 2
20% or more weight loss 3

Mobility score
Rat moving normally 0
Rat ataxic moving at a normal speed 1
Rat ataxic and moving slowly 2
Rat recumbent 3

Grooming score
No decrease in grooming activity 0
Middle decrease in grooming activity 1
Moderate decrease in grooming activity 2
No grooming activity 3

Total score = debilitation score 0–9

quiet wakefulness and have duration ranging from 0.5 to 75 s
[16].

Isoflurane was used for a short period to connect and dis-
connect the recording apparatus before and after each record-
ing. The authors found in previous experiments that during
that setup without the use of anaesthesia some rats were
showing stress behaviour (like crying) and in consequence
the authors opted for a short general anaesthesia/sedation
to improve animal welfare. Isoflurane was chosen for its low
blood:gas solubility (1.4) allowing quick elimination. Indeed,
rats recovered quickly from those short anaesthesia episodes
and, although it cannot be excluded, it is unlikely that after
30 minutes isoflurane could still be interfering with their
epileptic activity [31].

Implantation of the lacosamide sheets led to shorter
seizures for up to seven weeks after implantation compared
to rats that did not receive the implant.

During the first 2 weeks of the experiment, the blank
polymer group also demonstrated decrease duration of SWDs
when compared to the control group and to better understand
the effect seen, silicon sheets were implanted in four older
GAERS from the same colony (unpublished data). Although
the SWD activity in GAERS is age dependent, preventing
statistical comparison with the present experiment, the post-
surgical transient decrease in SWD’s duration was observed
again.We could assume that the PLGA sheets were not them-
selves responsible for the decreased duration of SWDs seen
in the control blank polymer group but could be attributed to
brain injuries resulting from the surgery. This assumption is

in agreement with previous publication reporting that PLGA-
based implants are very well tolerated by the brain in animal
models of other neurological disorders [32–37].

Only one EEG recording per rat was performed during
the first week at day 6 or 7 while there were three recordings
per week performed during the following seven weeks. This
study design allowed time for good surgical wound healing
before some traction could be applied to the electrodes
“adaptor.”

The lacosamide was chosen for its lipophilic properties
allowing easy drug loading within the polymer and its proven
efficacy in treating absence epilepsy [38]. Knowing that the
polymer mats were implanted over the motor cortex and that
previous investigations have shown that substances released
from intraparenchymally implanted polymers are able to
penetrate around 3mm, it is possible that the lacosamide
released from the sheets in our study may not have reached
the seizure triggering focus in high enough concentration to
stop seizure from happening [39–42]. However, lacosamide
reduces the ability of epileptic neurons to endure extended
firing burst by enhancing slow inactivation of voltage-gated
sodium channel [43]. This would explain the unchanged
number of SWDs but significant decrease in SWDs duration.
The total duration of SWDs during the recording of SWD
reflects the arithmetic product of the number of seizures
and the mean duration of SWDs. Another AED alternative
could have been the use of valproic acid which is one of the
drugs of choice for the treatment of absence seizure. Its use
could have provided additional support for the validity of the
novel delivery method. Lastly, now that it has been shown
that lacosamide loaded PLGA polymer sheets implanted
on the surface of the cortex could affect the duration of
the individual SWDs in GAERS, performing dose-response
experiments in order to determine optimal concentrations of
the drug in PLGA would be required to effectively improve
the treatment and the novel delivery method.

From the statistical perspective, Bender and Lange rec-
ommended that data of exploratory studies be analyzed
without multiplicity adjustment [44]. However, the lack of
adjustment for multiple comparisons as well as the pilot
nature of our study means that caution needs to be exercised
when interpreting the results of this exploratory study. A
larger study is needed to confirm these findings.

Although temporary side effects were seen, we have
demonstrated that lacosamide loaded PLGA polymer sheets
implanted on the surface of the cortex could affect seizure
activity in GAERS by decreasing the mean duration of the
SWDs events for a sustained period of up to 7 weeks. With
improvements in polymer technologies and episodic release
offering potentially much longer lasting release durations,
intracranial polymer-based drug delivery systems may pro-
vide an effective therapeutic strategy for chronic epilepsy.
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