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Abstract

In this thesis we consider axially symmetric evolving hypersurfaces mostly with

boundary conditions between two parallel planes. The speed function is a fully

nonlinear function of the principal curvatures of the hypersurface, homogeneous of

degree one. We have results for several boundary conditions. Specifically, with a

natural class of Neumann boundary conditions we show that evolving hypersurfaces

exist for a finite maximal time. The maximal time is characterised by a curvature

singularity at either boundary. Generally, the singularities of the flow are classified

as Type I in the case of pure Neumann boundary conditions. In addition to the

“curvature pinching estimate” that is obtained, Sturmian theory is applied to show

the discreteness of singularities. Furthermore, some results carry over to higher de-

grees of homogeneity. Finally, we have some additional results including a gradient

bound for the hight function in the volume preserve case.



Certification

I declare that this thesis, submitted in fulfilment of the requirements for the award

of Doctor of Philosophy, in the School of Mathematics and Applied Statistics, Uni-

versity of Wollongong, is wholly my own work unless otherwise referenced or ac-

knowledged. This document has not been submitted for qualification at any other

academic institution.

Fatemah Mofarreh

2015

iii



Acknowledgements

First of all, I praise God, for giving me this opportunity and for blessing me with

many great people supporting me professionally and personally to carry on this

project and proceed successfully. I would like to offer my thanks and appreciation

to all of them.

Firstly, a special thank to my parents for their love and support, your prayers

for me was what sustained me thus far.

I express my deep sense of gratitude to my supervisor Associate Professor James

McCoy, I would not be where I am today without your help and support. Your

consistent willingness to help me with warm encouragement will not be forgotten.

To Dr. Valentina-Mira Wheeler, I will always appreciate your assistance and

efforts to help me.

For his advice and comments, I thank Professor Graham Williams.

I specially want to thank my husband Yahya for believing in me and supporting

me. I am so thankful for having you in my life. I also thank my beloved son Rami

for all his patience and understanding on those weekends when I was studying.

To my sisters and brothers, to my friends Norah and Weam, thanks a lot. Every

one of you helped me in some way.

I also thank Wollongong University generally and School of Mathematics and

Applied Statistics specifically with all wonderful experiences and lovely people, for

having me as Ph.D student at this esteemed University. As I move forward in life I

will remember my time here.

Finally, I would like to acknowledge that I was not able to complete this degree

without the financial support from Princes Nora University.

iv



List of Publications

The following publications have been emerged from this thesis:

[1] James A. McCoy, Fatemah Y. Y. Mofarreh and Graham H. Williams, Fully

nonlinear curvature flow of axially symmetric hypersurfaces with boundary con-

ditions. Annali di Matematica Pura ed Applicata, V. 193, Issue 5, pp 1443-1455,

2014, doi: 10.1007/s10231-013-0337-7 [54]

[2] James A. McCoy, Fatemah Y. Y. Mofarreh and Valentina M. Wheeler, Fully

nonlinear curvature flow of axially symmetric hypersurfaces. Nonlinear Dif-

ferential Equations and Applications NoDEA, V. 22, Issue 2, pp 325-343, 2015,

doi: 10.1007/s00030-014-0287-9 [55]

[3] Additional publication under preparation

v



List of Figures

2.1 The hypersurface M0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 ω, ν, ii and τ1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

—

vi



Contents

Abstract ii

Certification iii

Acknowledgements iv

List of Publications v

List of Figures vi

1 Introduction 1

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Mean curvature flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Notation 7

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Parabolic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Nonlinear parabolic comparison principle . . . . . . . . . . . . . . . 8

4 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Geometric background . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1 Differential geometry . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 Axially symmetric hypersurfaces . . . . . . . . . . . . . . . . . 10

3 Evolution equations and preliminary results 17

1 Fully nonlinear curvature flow . . . . . . . . . . . . . . . . . . . . . . 17

vii



2 Evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 The Singularity 51

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2 The evolving graph function . . . . . . . . . . . . . . . . . . . . . . . 51

3 Behaviour of the flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Short time existence . . . . . . . . . . . . . . . . . . . . . . . 55

4 Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Curvature Pinching Estimate 73

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2 Elementary flow behaviour . . . . . . . . . . . . . . . . . . . . . . . . 74

3 The pinching estimate . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 The singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Closed, axially symmetric hypersurfaces . . . . . . . . . . . . . . . . 92

6 Self-similar hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Sturmian Theorem 105

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

2 Linear case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3 Applying Sturmian theorem for fully nonlinear curvature flow . . . . 108

7 Volume Preserving Curvature Flows 112

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

2 Evolution equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

3 Evolving graph function . . . . . . . . . . . . . . . . . . . . . . . . . 123

4 The lower bound of the surface area . . . . . . . . . . . . . . . . . . 123

5 Estimate on h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 A gradient estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Application of the Sturmian theorem . . . . . . . . . . . . . . . . . . 132

viii



8 Appendix 135

1 Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

2 F homogeneous of degree α > 1 . . . . . . . . . . . . . . . . . . . . . 135

3 Interchange of two covariant derivatives . . . . . . . . . . . . . . . . 136

ix



Chapter 1

Introduction

1 Background

It is well known that heat equations are used physically to model the spread of tem-

perature from hot to cold areas and this process always happens quickly and easily.

Mathematically, this process is related to a family of geometric curvature flows.

This method is considered important because it can smoothly deform complicated

items into more easily understood ones. Recently, this area of research has been ex-

tensively studied by many mathematicians due to its many applications in physical

models. There are many kinds of curvature flow of hypersurfaces, such as Gauss

curvature flow (GCF), Ricci flow and mean curvature flow (MCF) and they are used

in different areas such as: tumbling stones on the beach [30], crystal growth [66],

image processing [60], annealing of metals [57] as well as in a proof of the Poincare

conjecture [56]. MCF can be viewed as a nonlinear heat flow on manifolds because

the partial differential equations (PDE) associated with the flow has a Laplacian as

a leading term. In fact, they have both similar and different properties, such as sin-

gularities. In particular, the Laplacian is the quasilinear Laplace-Beltrami operator,

not the standard Laplacian of the ordinary heat equation.
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2 Literature review

The foundations for the topic of this thesis are found in the following selected works.

Mean curvature flow was introduced in 1956 by Mullins [57] as a model of annealing

metals. Then Firey, in 1974 [30], proposed the motion of a convex surface by its

positive Gauss curvature as a model for the changing shape of a tumbling stone on

a beach. He conjectured, that convex surfaces contract to spherical points. Firey’s

conjecture was resolved by Andrews [5] to show the roundness of the point.

Many studies have considered the contraction of hypersurfaces using curvature

flow in a general sense where the speed function is positive and homogeneous and

the initial hypersurface is convex. For example, the existence and regularity of

solutions of Firey’s conjecture is proved by Tso [67] without limiting the shape of

the contracting surface. He also obtained the result for hypersurfaces. Additionally,

for flows modelled by powers of Gaussian curvature some similar results were shown

by Chow [24]. Another result for motion by square root of the scalar curvature was

proved by Chow [25] but it requires stronger assumption for the initial hypersurface.

Andrews in [3] introduced a class of fully nonlinear speed functions that are

homogeneous of degree one and proved that convex surfaces contract to spherical

points for all flows in the class. Later in [8] he made this class bigger using a gen-

eralisation of maximum principles of Hamilton for tensors and he further expanded

this study for surfaces in [9]. This class is extended further in Andrews, McCoy and

Zheng [16].

McCoy in [53] considered similar classes of speed of curvature flow and he showed

that, for closed hypersurfaces, not necessarily convex, under certain conditions the

only self-similar solutions are spheres. More related work appears in Han [36] and

Andrews, Langford and McCoy [12].

While Mullins [57] gave some solutions, Huisken [37] used partial differential

equations and differential geometry techniques to study mean curvature flow of

compact hypersurfaces in Rn+1 with n ≥ 2 without boundary. Huisken’s result was

about strictly convex hypersurfaces that evolve under the mean curvature flow and

contract smoothly to a spherical point in finite time. Later, in 1990 the same author

2



[39] observed neckpinch singularities developing in finite time under mean curvature

flow for rotationally symmetric two-dimensional surfaces of positive mean curvature.

Asymptotically the behaviour of such singularities was like a cylinder.

The rotationally symmetric mean curvature flows generated more interest by

researchers Dziuk and Kawohl [26], who in 1991 show that, for a compact rotationally

symmetric surface without boundary, “the solution degenerates in the sense that its

curvature develops a singularity at exactly one point”. In 1995, Altschuler, Angenent

and Giga [2] generalised this, showing regularity of the solution of MCF except at

isolated points for compact, smooth, rotationally symmetric hypersurfaces given by

rotating a graph around an axis. Also [26] is generalised by Matioc [50] for more

general boundary conditions to enforce the formation of a singularity in finite time

using parabolic maximum principles.

Another interesting type of curvature flow is started by adding a positive “global

term” geometric property of the evolving hypersurface that will be preserved under

the flow. Surface volume or area are some of these properties. Huisken proved that

volume preserved mean curvature flow for a uniformly convex, compact manifold

without boundary converges to a sphere [38]. A similar result was obtained by

McCoy [51] for the surface area preserving mean curvature flow. For mixed volumes

the result was generalised by the same author [52]. Athanassenas [19] shows that for

rotationally symmetric, volume-preserving mean curvature flow, singularities form

a finite, discrete set along the axis of rotation. Later for axially symmetric surfaces

with Neumann boundary conditions a similar result was verified by Athanassenas

and Kandanaarachchi [21]. In addition, they classified first singularity as Type I

under an additional lower height bound on the boundary of a specific region.

Cabezas-Rivas and Sinestrari [22] prove that if the initial closed convex hyper-

surface satisfies a suitable pinching condition flow with speed it is given by a power

of the mth mean curvature plus a volume preserving term, the solution exists for

all times and converges to a round sphere. A similar result was proven [65] in Eu-

clidean space where speed is given by a positive power of the mean curvature without

assuming the curvature pinching properties or restrictions on the dimension.

3



3 Mean curvature flow

Several authors with different points of view have studied the motion of surfaces

by their mean curvature. It is particularly important to note that under mean

curvature flow the solution is evolved considering time. Therefore, there is a relation

between the normal velocity at each point and the mean curvature vector. Surfaces

of positive mean curvature shrink under the mean curvature flow. Generally, the

more highly curved regions will shrink faster, and a singularity may happen at some

point before the hypersurface disappears. The natural question here will be about

the possible limiting shapes of an evolving hypersurface when the first singular

time is approached. More specific, singularity is usually developed near the neck.

A simple example of an explicit solution to MCF is the homothetically shrinking

sphere.

For the mean curvature flow, the position vector X (x, t) of the evolving hyper-

surface Mt = X (M, t) satisfies evolution equation

∂X

∂t
(x, t) = −H (x, t) ν (x, t) ,

with initial condition

X (x, 0) = X0 (x) ,

for some initial embedding X0 of a given hypersurface M0. Here Xt : Mn → Rn+1 is

a family of smooth embeddings, possibly with boundary, H is the mean curvature

of Mt at the point X (x, t) and ν (x, t) is a smooth choice of unit normal vector. It

is well known that the H = ∆MtX where ∆Mt is the quasilinear Laplace-Beltrami

operator on the manifold Mt which leads to the possibility of considering mean

curvature flow as heat flow.

4 Structure of the thesis

The structure of this thesis is as follows:

In Chapter 1, the topic of the thesis, literature review and background are intro-

4



duced.

In Chapter 2, we set out the majority of our notation. Furthermore, we briefly de-

scribe the geometric features of axially symmetric hypersurfaces that we will require

in our analysis. In particular, we provide expressions for the Christoffel symbols and

the gradient of the Weingarten map in this setting.

In Chapter 3, we detail the properties of nonlinear speed functions under considera-

tion. Moreover, the system of evolution equations describing the position vector of

the evolving hypersurface is equivalent to a scalar evolution equation for the corre-

sponding height of the graph of the generating curve above the x1 axis. We follow

Huisken [39] to calculate all required evolution equations.

In Chapter 4, we discuss the flow problem and prove some preliminary results.

We characterise the maximal time as the time of blow-up of the norm of the second

fundamental form and we show that in this setting, as is the case with convex sur-

faces [3, 9], the singularity is Type I.

In Chapter 5, we obtain a lower bound on the rotational curvature that is inversely

proportional to the height of the evolving graph; this implies a similar bound on

the axial derivative of the graph function. We prove the crucial pinching estimate,

listing several important corollaries including a bound on the ratio of the principal

curvatures. We also apply curvature pinching to remove the convexity condition in

Theorem 4.2 in the case of pure Neumann boundary conditions, and to show that

the second axial derivative of the graph function is bounded inversely proportional

to the square of the graph height. We turn our attention to contracting closed,

convex, axially symmetric hypersurfaces, showing that such hypersurfaces contract

under our class of flow to asymptotically spherical points in finite time. Moreover,

if the contraction is self-similar, then the hypersurface must be a sphere. For n ≥ 3

these are a new results: they generalise to higher dimensions the results in [9] and

5



[53] and can also be thought of as a relaxation of requirements on the speed or the

initial data of other works. We consider a more general case where the speed F in

(3.1) is replaced by F k for constant k > 0.

In Chapter 6, we study the Sturmian theorem and apply it to show that the zeros

of the second spatial derivative of the graph function are discrete and nonincreasing.

In Chapter 7, volume preserved curvature flow is introduced and the important

evolution equations are computed. Bounds of some quantities, such as area and

global term h, were obtained. Sturmian theorem is also applied in this case and

we get boundedness of the gradient and discreteness of zeros of the second spatial

derivative of the graph function.

6



Chapter 2

Notation

1 Introduction

We include in this Chapter some results and definitions. Then, we introduce geom-

etry of axially symmetric hypersurfaces.

2 Parabolic equations

Parabolic equations are used for physical or mathematical problems. Heat equations

are a well known example for parabolic equations. We consider a general parabolic

equation of the form

ut = F (x, t, u,Du,D2u),

for some nonlinear function F defined on Γ = Ω× R× R× Rn × Rn×n where Rn×n

denotes the set of all real symmetric n × n matrices. We now consider a typical

point (x, t, z, p, r) in Γ, then we can say the operator F is elliptic on some subset Γ1

of Γ if the matrix Ḟ is positive definite. Particularly

∂F

∂rij
> 0.

F is uniformly elliptic on Γ1 if there are positive functions λ and Λ such that

λ|η|2 ≤ ∂F

∂rij
ηiηj ≤ Λ|η|2,

7



for any (x, t, z, p, r) ∈ Γ1, any positive definite vector η, and if the ratio Λ/λ is

bounded on Γ1.

3 Nonlinear parabolic comparison principle

In second order elliptic and parabolic partial differential equations, maximum prin-

ciples are very useful tools to understand the behaviour of the solutions especially

uniqueness, symmetry and boundedness. For much of this work we need only a

well-known ordinary differential equation (ODE) comparison result for determining

how spatial extrema behave over time (see, for example, [34] Section 3). We will

need standard maximum principles for parabolic equations that appear for example

in [29] We also need the following nonlinear parabolic comparison principle.

Theorem 2.1. (Non-Linear Parabolic Comparison Principle)[58]

Given a compact manifold M . Let F : M × [0, T ) × R × Rn × Rn×n → R denote a

non-linear operator with F = (x, t, z, p, r) satisfying

1. F is differentiable with respect to z, p and r.

2.

(
∂F

∂rij

)
is positive semidefinite.

Let f, g : M × [0, T )→ R be twice differentiable functions satisfying

∂

∂t
f > F (x, t, f,Df,D2f),

∂

∂t
g 6 F (x, t, g,Dg,D2g),

f > g on ∂M × [0, T ),

if f > g at t = 0 then f > g on M × [0, T ).

4 Function spaces

We will introduce some relevant function spaces and associated norms on M and

on M × [0, T ), as in [52]. Similar definitions for domains appear in [47]. For k ∈

8



N, Ck(M) is the Banach space of real valued functions on M that are k−times

continuously differentiable, equipped with the norm

‖u‖Ck(M) =
∑
|β|≤k

sup
M
|∇β

u|.

Here β is a standard multi-index for partial derivatives and ∇ is the derivative on

M . We further define, for α ∈ (0, 1], Ck,α to be the space of functions u ∈ Ck(M)

such that the norm

‖u‖Ck,α(M) = ‖u‖Ck(M) + sup
|β|=k

sup
x,y∈M
x 6=y

|∇β
u(x)−∇β

u(y)|
|x− y|α

,

is finite. Here |x − y| is the distance between x and y in M . On the space-time

domain M × I where I = [a, b] ⊂ R, we denote by Ck(M × I) the space of real

valued functions u which are k−times continuously differentiable with respect to x

and [k
2
]−times continuously differentiable with respect to t such that the norm

‖u‖Ck(M×I) =
∑

|β|+2r≤k

sup
M×I
|∇β

Dr
tu|,

is finite, where Dt denotes the time derivative. Here [k
2
] is the largest integer not

greater than k
2
. We also denote by Ck,α(M × I) the space of functions in Ck(M × I)

such that the norm

‖u‖Ck,α(M×I) = ‖u‖Ck(M×I) + sup
|β|+2r=k

sup
(x,s),(y,t)∈M×I

(x,s)6=(y,t)

|∇β
Dr
tu(x, s)−∇β

Dr
tu(y, t)|

(|x− y|2 + |s− t|)α2

is finite. For most of this work we will have M = [0, a] or M = Sn.

5 Geometric background

In this part, we introduce the geometry that we need for hypersurfaces, axially

symmetric hypersurfaces. The height of the graph we use will be introduced as in

[26]. We will define geometric quantities like the metric, second fundamental form,

9



the Weingarten map and state fundamental relations like the Codazzi equations.

5.1 Differential geometry

We will consider a family of smooth immersions X : Mn×[0, T )→ Rn+1 that defines

the evolving n−dimensional hypersurface, Mt = X(Mn, t). Suppose i1, ...., in+1 is

the standard basis in Rn+1. We will define the induced metric and the second

fundamental form on Mt by g = (gij) and A = (hij) respectively. The inner product

in Rn+1 will be used in form 〈. , .〉. We compute the metric components as

gij(x, t) = 〈∇iX(x, t),∇jX(x, t)〉, x ∈Mn, t ∈ [0, T ),

where ∇ is the covariant derivative on Mn. The second fundamental form is

hij(x, t) = 〈∇iν(x, t),∇jX(x, t)〉 = −〈ν(x, t),∇i∇jX(x, t)〉,

where ν(x, t) is the outer unit normal to Mt. The induced connection on Mt is

defined via the Christoffel symbols

Γkij =
1

2
gkl
(
∇igjl +∇jgil −∇lgij

)
,

and therefore the covariant derivative on Mt of a smooth tangent vector field Y =

Yjτj is given

∇jY =
n∑
k=1

(
∇jYk + ΓkijYi

)
τk.

The divergence on Rn+1 will be denoted by divR while the divergence on the manifold

will be denoted by div.

5.2 Axially symmetric hypersurfaces

Consider the n−dimensional hypersurfaceM0 in Rn+1 obtained by rotating the graph

of u0 about the x1 axis with Neumann boundary condition u
′
0(0) = u

′
0(a) = 0 . The

n-dimensional axially symmetric hypersurface M can be specified by a corresponding

strict positive and suitably smooth function on the bounded interval u : [0, a] → R

10



Figure 2.1: The hypersurface M0

such that M is parametrised by X : [0, a]× Sn−1 → Rn+1, where

X (x, ω) = (x, u (x)ω) . (2.1)

We will assume that u is smooth enough on [0, a] for all derivatives we use to

make sense. Throughout the thesis, derivatives at the endpoints x = 0 and x = a

are interpreted naturally as one-sided.

In order to have evolution equations later on Mt, as in [39], we will consider

τ1, ...., τn a local orthonormal frame on Mt which satisfies

〈τl, i1〉 = 0 for l = 2, ...., n and 〈τ1, i1〉 > 0. (2.2)

Specifically, τ1 is the tangent to the generating curve given by u in the direction of

i1 while τ2, ...., τn are tangents to the n− 1 sphere.

We will define v as a gradient function which is a geometric quantity related

to
√

1 + u2x for more details see Section 2 in Chapter 4. More specific, we define

ω = X̂

|X̂| as the unit outward normal to the cylinder over the n − 1 dimensional

sphere, see Figure 2.1, where

X̂ = X − 〈X, i1〉i1. (2.3)

11



Let

v = 〈ω, ν〉−1, (2.4)

and y = 〈X,ω〉 where y is the height function

y =

√
|X|2 − 〈X, i1〉2. (2.5)

We introduce

p = 〈τ1, i1〉y−1, q = 〈ν, i1〉y−1, (2.6)

where i1 is the unit vector in the x1 axis direction. As in [39] we can write

p2 + q2 = y−2. (2.7)

Particularly

q = −y′ p, (2.8)

and

∇1y = −qy, (2.9)

in addition to

k = 〈∇τ1ν, τ1〉 =
−y′′

(1 + y′2)
3
2

, p =
1

y

√
1 + y′2

, (2.10)

where p and k are the eigenvalues of the second fundamental form. There are n− 1

eigenvalues equal to p.

y and u are two different interpretations of the same physical object. Clearly,

y(x, t) is the height function and y : Mn × [0, T ) → R while u(x, t) is the radius

function such that u : [0, a]× [0, T )→ R as in [43]. In a slight abuse of notation, we

will often write u in place of y to emphasise the dependence of the graph function

only on the axial direction.

The function y = (|X|2 − |〈X, i1〉|2)
1
2 agrees with y0 at time t = 0. M0 remains

12



axially symmetric and we will later have the evolution equations as a generalization

of Huisken work [39].

Similar notations as in [37] are used. The metric and second fundamental form are

given respectively as g = gij, A = hij and |A| the norm of the second fundamental

form |A|2 = gijglmhilhjm = hjlh
l
j where gij is the (i, j)-entry of the inverse of the

matrix (gij). The Weingarten map has entries hij = gikhkj where we sum over

repeated indices from 1 to n unless otherwise indicated. It has everywhere the useful

diagonal structure. In detail the metric, second fundamental form and Weingarten

map of M are given respectively by

gij =

 1 + u2x 0

0 u2 σij

 , hij =

 − uxx√
1+u2x

0

0 u√
1+u2x

σij

 ,

and hi j =

 k 0

0 p I

 =

 κ1 0

0 κ2 I

 =

 − uxx

[1+u2x]
3
2

0

0 1

u
√

1+u2x
I


=

1√
1 + u2x

 − (arctan (ux))x 0

0 1
u
I

 ,

(2.11)

where where σij denotes the metric on Sn−1 and I is the (n− 1)× (n− 1) identity

matrix. Here and throughout the thesis we will write ux = ∂u
∂x

and u2x =
(
∂u
∂x

)2
.

It is important to know that through this thesis we define, as in [39], κ1 = k and

κ2 = · · · = κn = p as axial and rotational curvatures respectively.

Because of the axial symmetry, many of the derivatives of the second fundamental

form for axially symmetric surfaces are identically equal to zero. We compute them

explicitly, via the Christoffel symbols.

Lemma 2.1. In normal coordinates at any particular point, the only nonzero Christof-

fel symbols of the induced metric of axially symmetric hypersurfaces of the form (2.1)

are

Γ1
11 =

uxuxx
1 + u2x

,

13



and for any k ≥ 2,

Γ1
kk = − uux

1 + u2x
, Γk1k = Γkk1 =

ux
u

.

Proof: The required formulae follow by direct computation using

Γkij =
1

2
gkl
(
∇igjl +∇jgil −∇lgij

)
,

and the facts that

∇1gij =
∂

∂x1
gij =


2ux uxx i = j = 1,

2uux σij, i, j ≥ 2

0 otherwise

and for k ≥ 2, ∇kgij = 0.

Therefore

Γ1
11 =

1

2
g1l[∇igjl +∇jgil −∇lgij]

=
1

2
g1l[∇1g1l +∇1g1l −∇lg11]

=
1

2
g11[∇1g11 +∇1g11 −∇1g11]

=
1

2

1

(1 + u2x)
[2uxuxx���

��+2uxuxx���
��−2uxuxx]

=
uxuxx
1 + u2x

.

For any k ≥ 2

Γ1
kk =

1

2
g1l[∇kgkl +∇kgkl −∇lgkk]

=
1

2
g11[0 + 0−∇1gkk]

=
1

2

1

(1 + u2x)
[−2uux]

= − uux
1 + u2x

,

14



and

Γk1k =
1

2
gkl[∇1gkl +∇kg1l −∇lg1k]

=
1

2
gkk[∇1gkk + 0 + 0]

=
1

2

1

u2
[2uux]

=
uux
u2

=
ux
u
.

An example for other Christoffel symbols that is equal zero

Γ2
22 =

1

2
g22[∇2g22 +∇2g22 −∇2g22]

=
1

2
g22[0 + 0 + 0]

= 0.

�

Lemma 2.2. The non-zero components of ∇W for axially symmetric hypersurfaces

of the form (2.1) are

∇1h
1
1 =

−uxxx
(1 + u2x)

3
2

+
3uxu

2
xx

(1 + u2x)
5
2

,

and

∇1h
k
k =

−ux
u2
√

1 + u2x
− uxuxx

u (1 + u2x)
3
2

=
ux
u

(κ1 − κ2) .

Proof: We use the formula

∇ih
j
k = ∇ih

j
k + Γjilh

l
k − Γlikh

j
l ,

in addition to the expressions for hjk from (2.11) and Lemma 2.1. Therefore
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∇1h
1
1 = ∇1h

1
1 + Γ1

1lh
l
1 − Γl11h

1
l

= ∇1h
1
1 + Γ1

11h
1
1 − Γ1

11h
1
1

= ∇1h
1
1

=
∂

∂x

[
− uxx

(1 + u2x)
3
2

]

=
−uxxx(1 + u2x)

3
2 + 3uxx(1 + u2x)

1
2uxuxx

(1 + u2x)
3

=
−uxxx

(1 + u2x)
3
2

+
3uxu

2
xx

(1 + u2x)
5
2

,

and for k > 2

∇1h
k
k = ∇1h

k
k + Γk1lh

l
k − Γl1kh

k
l

= ∇1h
k
k + Γk1kh

k
k − Γk1kh

k
k

= ∇1h
k
k

=
∂

∂x

[
1

u
√

1 + u2x

]

= − ux

u2
√

1 + u2x
− uxuxx

u(1 + u2x)
3
2

=
ux
u

[
− 1

u
√

1 + u2x
− uxx

(1 + u2x)
3
2

]

=
ux
u

(κ1 − κ2) .

�
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Chapter 3

Evolution equations and

preliminary results

From the evolution of the position vector we can compute corresponding evolution

equations for all geometric quantities associated with the evolving hypersurface.

In this Chapter we introduce various useful evolution equations of the evolving

hypersurface.

1 Fully nonlinear curvature flow

Let Mt be an evolving family of hypersurfaces in Rn+1 with boundary, Mt is moved

by a curvature flow if it is satisfies the nonlinear parabolic equation

∂X

∂t
(x, t) = −F (W(x.t)) ν(x.t), x ∈M, t ∈ R, (3.1)

where F is the fully nonlinear speed of Mt, W(x, t) denotes the matrix of the Wein-

garten map of the evolving hypersurface Mt = X(·, t) at the point X(x, t).

In our study, we will consider the case in which the initial surface M0 in Rn

is axially symmetric generated by rotating graph u around x1 axis and we will

choose some structure conditions on F that give us similar properties as those for

mean curvature flow. The goal is to study evolution equations of fully nonlinear

curvature flow and when we move from the quasilinear equations of MCF to fully

17



non linear evolution equations, we expect some of the same properties as well as

some differences because of the additional nonlinearity. As with mean curvature

flow, we expect the surface may develop singularities before shrinking to a point.

We will denote by
(
Ḟ kl
)

in (3.1) the matrix of first partial derivatives of F with

respect to the components of its argument:

∂

∂s
F (A+ sB)

∣∣∣∣
s=0

= Ḟ kl (A)Bkl.

Similarly for the second partial derivatives of F we write

∂2

∂s2
F (A+ sB)

∣∣∣∣
s=0

= F̈ kl,rs (A)BklBrs.

We will also use the notation

ḟ i (κ) =
∂f

∂κi
(κ) and f̈ ij (κ) =

∂2f

∂κiκj
(κ) ,

because F (W) = f(λ(W)) which mean F is a symmetric function of the eigenvalue

of W . Unless otherwise indicated, throughout this work we will always evaluate

partial derivatives of F at W and partial derivatives of f at κ (W).

In a local orthonormal frame of eigenvectors of W , we may write F̈ in terms of

f̈ and ḟ as follows, for any symmetric matrix B. The next Theorem is important

because it is giving a relation between derivatives of eigenvalues and eigenvectors

of symmetric matrices, and of functions of symmetric matrices defined in terms of

their eigenvalues:

Theorem 3.1. [8] Let f be a C2 symmetric function defined on a symmetric re-

gion Ω in Rn, Let Ω = {A ∈ Sym(n) : λ(A) ∈ Ω}, and define F : Ω → R by

F (A) = f(λ(A)). Then at any diagonal A ∈ Ω with distinct eigenvalues, the second

derivative of F in direction B ∈ Sym(n) is given by

F̈ pq,rs (W)BpqBrs = f̈prBppBrr + 2
∑
p<r

ḟp (κ)− ḟ r (κ)

κp − κr
(Bpr)

2 . (3.2)

This formula makes sense as a limit in the case of any repeated values of κi. For
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details of the proof, we refer the reader to [8].

We will denote by ∇ the covariant derivative on Mt and by ∇ the derivative on

[0, a]×Sn−1. Since M = [0, a]×Sn−1 we will write ∇1 = ∂
∂x

, while ∇j, j ≥ 2 denote

the Sn−1 derivatives.

The speed functions F that we consider have the following properties:

Conditions 1

i) F (W) = f(κ(W)) where κ (W) gives the eigenvalues of W and f is a smooth,

symmetric function of the eigenvalues κ of W .

ii) f is defined on an open convex cone Γ containing the positive cone Γ+ = {κ =

(κ1, . . . , κn) : κi > 0 for all i}.

iii) f is strictly increasing ∂f
∂κ1

> 0 for each i = 1, . . . , n at every point in Γ.

iv) f is positive and normalised, f (1, . . . , 1) = 1.

v) f is homogeneous of degree 1: f(Kκ) = Kf(κ) for any K > 0 and all κ ∈ Γ.

For more details of homogeneity see Appendix Section 1.

vi) f is convex (sometimes we can remove this condition using Codazzi equations

as in Andrews [5, 9], see Chapter 5).

Speeds which satisfy the above conditions are discussed in [53] and in [14]; in par-

ticular, having ∂f
∂k1

> 0 ensure equation (3.1) is parabolic modulo tangential diffeo-

morphism. Moreover, if we don’t require (vi) then we can take linear combinations

of examples requiring individual convexity or concavity. All these conditions, some-

times with some adjustments, have been used before in curvature contraction flows

of convex hypersurfaces [3, 8, 9, 15, 16, 23, 36] and recently in flows of closed hyper-

surfaces not necessarily convex [12, 14, 13, 53]. Some example functions F are given

in those papers; in particular many examples satisfying the above properties includ-

ing positivity on a cone larger than the positive cone can be built from appropriate

operations of the elementary symmetric functions of the principal curvatures.
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Remarks:

i) p is positive and k can be either positive or negative such that F is positive.

ii) Conditions 1, iii) ensures existence at least for a short time of a solution to

(3.1); with initial condition u (·, 0) = u0 and pure Neumann boundary condi-

tions. We will name later in each case the exact conditions that is required

and we refer the reader to a precise short time existence to the flow in this

setting in Theorem 4.1.

For Theorem 4.2 concerning the behaviour of solutions at the maximal existence

time, we require the following additional structure condition on F :

Condition 2

Suppose f satisfies limz→−∞ f (z, 1, . . . , 1) < 0, where we allow the case that the

limit is equal to −∞.

Remark: For the above condition to be satisfied the cone Γ of definition of f must

allow the above limit to be taken.

Some examples of f satisfying Condition 2 are

i) The mean curvature, F = H, so f (z, 1, . . . , 1) = z + (n− 1).

ii) A fully nonlinear example, F = 1
n+η
√
n

(H + η |A|) for any η ∈ [0, 1). In this

case

f =
1

n+ η
√
n

{
[κ1 + (n− 1)κ2] + η

√
κ21 + (n− 1)κ22

}
,

so f (z, 1, . . . , 1) = 1
n+η
√
n

{
z + (n− 1) + η

√
z2 + (n− 1)

}
.

iii) More generally, for a constant η ∈ [0, 1) and p ≥ 1 we have

f =
(
n+ η n

1
p

)−1  n∑
i=1

κi + η

(
n∑
j=1

κpj

) 1
p

 .
Condition 2 is required only for our characterisation of the singular time, The-

orem 4.2. Briefly, the purpose of this condition is as follows: in Lemma 4.2 we

20



show that F > 0 is preserved under the evolution (3.1). The rotational curvatures

κj, j = 2, ..., n remain positive under the evolution. Using homogeneity, Condition

2 implies that z = κ1
κ2

does not become too negative, giving rise to a lower bound on

κ1 in terms of κ2.

2 Evolution equations

We will compute all evolution equations that we will need later. The computa-

tion techniques are similar to [39] which depend on local coordinates not adapted

frames. Evolution equations on the evolving surface will be used to analyse our flow

behaviour, for general n. The following evolution equations are natural generaliza-

tions of Huisken work [39] for the mean curvature flow.

For consistency with previous work in this section we will denote coordinate

derivatives by ∂
∂xi

.

Lemma 3.1. The evolution equation of the metric for the evolving hypersurface Mt

satisfies

∂

∂t
gij = −2Fhij.

Proof:

∂

∂t
gij =

∂

∂t

〈
∂X

∂xi
,
∂X

∂xj

〉
= 2

〈
∂

∂t

∂X

∂xi
,
∂X

∂xj

〉
= 2

〈
∂

∂xi
(−Fν) ,

∂X

∂xj

〉
= 2F

〈
− ∂ν
∂xi

,
∂X

∂xj

〉
= −2Fhij. (3.3)

�

Remark: Because the tangent vector ∂X
∂xi

satisfies
〈
ν, ∂X

∂xj

〉
= 0, therefore

∂

∂xi

〈
ν,
∂X

∂xj

〉
=

〈
∂ν

∂xi
,
∂X

∂xj

〉
+

〈
ν,

∂2X

∂xi∂xj

〉
= 0,
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and so

hij =

〈
∂ν

∂xi
,
∂x

∂xj

〉
= −

〈
ν,

∂2x

∂xi∂xj

〉
.

Corollary 3.1. ∂
∂t
gij = 2Fhij.

Proof: Using Lemma 3.1

∂

∂t
gij = −gim

(
∂

∂t
gmn

)
gnj

= −gim (−2Fhmn) gnj

= 2Fhij.

�

Lemma 3.2. The evolution equation for the outer unit normal is given as follows

∂ν

∂t
= ∇F.

Proof: For any vector Y = Yjτj we have

Y = 〈Y, τi〉τi,

then

〈Y, τk〉 = 〈Y, τi〉〈τi, τk〉

= 〈Y, τi〉gik,

which will be used to compute the evolution equation of ν.

∂ν

∂t
=

〈
∂ν

∂t
,
∂X

∂xi

〉
∂X

∂xj
gij

= −
〈
ν,
∂

∂t

∂X

∂xi

〉
∂X

∂xj
gij
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∂ν

∂t
= −

〈
ν,

∂

∂xi
(−Fν)

〉
∂X

∂xj
gij

=
∂

∂xi
F
∂X

∂xj
gij

= ∇F.

�

Corollary 3.2.

∂

∂t
〈ν, i1〉 = L 〈ν, i1〉+ Ḟ ijhkjhik 〈ν, i1〉 ,

where the elliptic operator L is given by Lx = Ḟ kl∇k∇lx.

Proof: From Lemma 3.2 we have

∂

∂t
〈ν, i1〉 = 〈∇F, i1〉. (3.4)

Because ∇jν = hkj τk we have

∇i∇jν = ∇ih
k
j τk + hkj∇iτk = ∇khijτk − hkjhikν,

Ḟ ij∇i∇jν = ∇F − Ḟ ijhkjhikν. (3.5)

By substituting (3.5) into (3.4)

∂

∂t
〈ν, i1〉 =

〈(
Ḟ ij∇i∇jν + Ḟ ijhkjhikν

)
, i1

〉
= Ḟ ij∇i∇j 〈ν, i1〉+ Ḟ ijhkjhik 〈ν, i1〉 . (3.6)

�

Lemma 3.3. The second fundamental form of Mt evolves according to

∂

∂t
hij = Lhij + Ḟ kl,rs∇ihrs∇jhkl + Ḟ klhml hkmhij − 2Fhmi hjm.
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Proof: We compute that

∂

∂t
hij = − ∂

∂t

〈
∂2X

∂xi∂xj
, ν

〉
= −

〈
∂

∂t

∂2X

∂xi∂xj
, ν

〉
−
〈

∂2X

∂xi∂xj
,
∂

∂t
ν

〉
= −

〈
∂2

∂xi∂xj

∂X

∂t
, ν

〉
−
〈

∂2X

∂xi∂xj
,
∂

∂t
ν

〉
= −

〈
∂2

∂xi∂xj
(−Fν) , ν

〉
−
〈

∂2X

∂xi∂xj
,
∂

∂t
ν

〉
=

〈(
∂2F

∂xi∂xj
ν + F

∂2ν

∂xi∂xj

)
, ν

〉
−
〈

∂2X

∂xi∂xj
,
∂

∂t
ν

〉
=

∂2F

∂xi∂xj
+ F

〈
∂2ν

∂xi∂xj
, ν

〉
−
〈

∂2X

∂xi∂xj
,
∂

∂t
ν

〉
. (3.7)

Using the Gauss-Weingarten relation (as for example in [37]) ∂ν
∂xj

= hjlg
lk ∂X
∂xk

=

hmj
∂X
∂xm

, ∂2X
∂xi∂xj

= Γmij
∂X
∂xm
− hijν and Lemma 3.2 equation (3.7) becomes

∂

∂t
hij =

∂2F

∂xi∂xj
+ F

〈
∂

∂xi

∂ν

∂xj
, ν

〉
−
〈

Γkij
∂X

∂xk
− hijν,

∂F

∂xl

∂X

∂xm
glm
〉

=
∂2F

∂xi∂xj
+ F

〈
∂

∂xi
hjlg

lk ∂X

∂xk
, ν

〉
− Γkij

∂F

∂xl

〈
∂X

∂xk
,
∂X

∂xm
glm
〉

+ hij
∂F

∂xl

〈
ν,
∂X

∂xm

〉
glm. (3.8)

Because
〈
ν, ∂X

∂xm

〉
= 0 we will have

∂

∂t
hij =

∂2F

∂xi∂xj
+ Fhjlg

lk

〈
∂

∂xi

∂X

∂xk
, ν

〉
− Γkij

∂F

∂xk

=
∂2F

∂xi∂xj
+ Fhjlg

lk

〈
∂2X

∂xi∂xk
, ν

〉
− Γkij

∂F

∂xk

=
∂2F

∂xi∂xj
+ Fhjlg

lk

〈
Γmik

∂X

∂xm
− hikν, ν

〉
− Γkij

∂F

∂xk

=
∂2F

∂xi∂xj
+ Fhjlg

lkΓmik
��

�
��
�*0〈

∂X

∂xm
, ν

〉
− Fhjlglkhik 〈ν, ν〉 − Γkij

∂F

∂xk

because ∇i∇jF =
∂2F

∂xi∂xj
− Γkij

∂F

∂xk

= ∇i∇jF − Fhkjhik. (3.9)
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Now, we need ∇jF (W) = Ḟ kl∇jhkl which leads to

∇i∇jF (W) = F̈ kl,rs∇ihrs∇jhkl + Ḟ kl∇i∇jhkl. (3.10)

From interchanging covariant derivatives, see Appendix Section 3, we obtain

Lhkl = Ḟ kl∇i∇jhkl

= Ḟ kl∇k∇lhij + Ḟ klhilh
m
k hjm − Ḟ klhmi hklhjm

+ Ḟ klhijh
m
l hkm − Ḟ klhmi hkjhlm

= Ḟ kl∇k∇lhij − Fhmi hjm + Ḟ klhml hkmhij. (3.11)

Using (3.10) equation (3.9) becomes

∂

∂t
hij = F̈ kl,rs∇ihrs∇jhkl + Ḟ kl∇i∇jhkl − Fhki hjk, (3.12)

and from (3.11) the evolution equation of hij is obtained as follows

∂

∂t
hij = F̈ kl,rs∇ihrs∇jhkl + Ḟ kl∇k∇lhij − Fhmi hjm + Ḟ klhml hkmhij − Fhki hkj

= F̈ kl,rs∇ihrs∇jhkl + Ḟ kl∇k∇lhij − 2Fhmi hjm + Ḟ klhml hkmhij

= Lhij + F̈ kl,rs∇ihrs∇jhkl − 2Fhmi hjm + Ḟ klhml hkmhij. (3.13)

�

Corollary 3.3. The Weingarten map evolves according to

∂

∂t
hij = Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhml hkmh

i
j.

Proof:

∂

∂t
hij =

∂

∂t

[
gikhkj

]
=

[
∂

∂t
gik
]
hkj + gik

[
∂

∂t
hkj

]
from Corollary 3.1 and Lemma 3.3,
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∂

∂t
hij = 2Fhikhkj + gik

[
Lhkj + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhml hkmhkj − 2Fhlkhlj

]
= Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhml hkmh

i
j. (3.14)

�

Lemma 3.4. Under the flow (3.1),

(i.) ∂
∂t
H = LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhml hkmH.

(ii.) ∂
∂t
F = LF + FḞ klhml hkm.

Proof: Equations (i) and (ii) will be derived as in [3].

To prove (i)

∂

∂t
H = gji

∂

∂t
hij

= gji

[
Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh

m
l h

i
j

]
= LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l H, (3.15)

and to prove (ii)

∂

∂t
F = Ḟ j

i

∂

∂t
hij

= Ḟ j
i

[
Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh

m
l h

i
j

]
= Ḟ j

i

[
Ḟ kl∇i∇jh

k
l + Fhmi hjm − Ḟ klhml hkmh

i
j +∇i∇jF

−Ḟ kl∇i∇jh
k
l + Ḟ klhkmh

m
l h

i
j

]
from (3.10) and (3.11)

= Ḟ j
i

[
Fhmi hjm +∇i∇jF

]
= Ḟ j

i

[
∇i∇jF + Fhmi hjm

]
= LF + FḞ ijhmi hjm. (3.16)

�
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Lemma 3.5. As long as y > 0 we have

(i.) ∂
∂t
〈X, i1〉 = Ḟ kl∇k∇l〈X, i1〉.

(ii.) ∂y
∂t

= Ḟ kl∇k∇ly − (n−1)Ḟ 22

y
.

(iii.) ∂q
∂t

= Ḟ kl∇k∇lq + Ḟ klhml hkmq −
{[

2Ḟ 11k − (n− 1)Ḟ 22p
]
p

+
[
2Ḟ 11 − (n− 1)Ḟ 22

]
q2
}
q.

(iv.) ∂p
∂t

= Ḟ kl∇k∇lp+ Ḟ klhml hkmp+ 2Ḟ 11q2(k − p).

(v.) ∂k
∂t

= Ḟ kl∇k∇lk + Ḟ klhml hkmk + F̈ kl,rs∇ihkl∇ihrs − 2(n− 1)Ḟ 11q2(k − p).

Proof: The first identity can be directly shown from (3.1). To prove (ii) we will

need the following:

Using (2.5)

∂

∂t
y2 =

∂

∂t
〈X,X〉 − ∂

∂t
〈X, i1〉2

= 2

〈
∂X

∂t
,X

〉
− 2 〈X, i1〉

〈
∂X

∂t
, i1

〉
= 2

〈
Ḟ kl∇k∇lX,X

〉
− 2 〈X, i1〉

〈
Ḟ kl∇k∇lX, i1

〉
(3.17)

= 2 〈LX,X〉 − 2 〈X, i1〉 〈LX, i1〉 .

From (3.17) we can write

∂y

∂t
=

1

2y

∂y2

∂t

=
1

2y
[2 〈LX,X〉 − 2 〈X, i1〉 〈LX, i1〉]

=
1

y
[〈LX,X〉 − 〈X, i1〉 〈LX, i1〉] , (3.18)

and we calculate

Ly2 = Ḟ kl∇k∇ly
2

= Ḟ kl∇k∇l

[
〈X,X〉 − 〈X, i1〉2

]
= Ḟ kl∇k [2 〈∇lX,X〉 − 2 〈X, i1〉 〈∇lX, i1〉] ,
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Ly2 = 2Ḟ kl [〈∇k∇lX,X〉+ 〈∇lX,∇kX〉 − 〈∇kX, i1〉 〈∇lX, i1〉

− 〈X, i1〉 〈∇k∇lX, i1〉]

= 2 〈LX,X〉+ 2Ḟ kl 〈∇lX,∇kX〉 − 2Ḟ kl 〈∇kX, i1〉 〈∇lX, i1〉

− 2Ḟ kl 〈X, i1〉 〈∇k∇lX, i1〉

= 2 〈LX,X〉+ 2Ḟ klgkl − 2
[
Ḟ 11 〈∇1X, i1〉2 + (n− 1)Ḟ 22 〈∇2X, i1〉2

]
− 2 〈X, i1〉 〈LX, i1〉

= 2 〈LX,X〉+ 2 trgḞ − 2
[
Ḟ 11 〈τ1, i1〉2

]
− 2 〈X, i1〉 〈LX, i1〉

where trgḞ = Ḟ klgkl

= 2 〈LX,X〉+
[
2Ḟ 11 + 2(n− 1)Ḟ 22

]
− 2Ḟ 11p2y2 − 2 〈X, i1〉 〈LX, i1〉

= 2 〈LX,X〉+
[
2Ḟ 11 + 2(n− 1)Ḟ 22

]
− 2Ḟ 11

(
1− |∇y|2

)
− 2 〈X, i1〉 〈LX, i1〉 . (3.19)

Because

∇1y = −qy,

and

∇iy = 0 for all i = 2, . . . , n

we have

|∇y|2 = |∇1y|2 = q2y2. (3.20)

We know

〈∇iX, i1〉2 = 〈τi, i1〉2

= y2p2

= 1− y2q2

= 1− |∇y|2,
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and

|∇X|2 = 〈∇iX,∇iX〉

=
∑
i

〈τi, τi〉

= u.

Additionally, we need

∇iy
2 = ∇i(〈X,X〉 − 〈X, i1〉2)

= 2〈∇iX,X〉 − 2〈X, i1〉〈∇iX, i1〉. (3.21)

But ∇ly
2 = 2y∇ly and

∇k∇ly
2 = ∇k(2y∇ly)

= 2∇ky∇ly + 2y∇k∇ly,

so

Ly2 = Ḟ kl∇k∇ly
2

= 2Ḟ kl∇ky∇ly + 2yḞ kl∇k∇ly. (3.22)

Therefore from (3.19) and (3.22)

Ly = Ḟ kl∇k∇ly

=
1

2y

[
Ḟ kl∇k∇ly

2 − 2Ḟ kl∇ky∇ly
]

=
1

2y

[
2〈LX,X〉 − 2〈X, i1〉〈LX, i1〉+ 2Ḟ 11 + 2(n− 1)Ḟ 22

−2Ḟ 11(1− |∇1y|2)− 2Ḟ 11|∇1y|2
]
,
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Ly =
1

y

[
〈LX,X〉 − 〈X, i1〉〈LX, i1〉+ Ḟ 11 + (n− 1)Ḟ 22 − Ḟ 11(1− |∇1y|2)

−Ḟ 11|∇1y|2
]

=
1

y

[
〈LX,X〉 − 〈X, i1〉〈LX, i1〉+ (n− 1)Ḟ 22

]
, (3.23)

then from (3.18) and (3.23) we have

∂y

∂t
= Ḟ kl∇k∇ly −

(n− 1)Ḟ 22

y
. (3.24)

We will use (ii) to prove (iii); and because ∂
∂t
qy = q ∂y

∂t
+ y ∂q

∂t
we can write

∂q

∂t
=

1

y

[
∂

∂t
(qy)− q∂y

∂t

]
. (3.25)

Because q = 〈ν,i1〉
y

with using (3.6) and (3.24) we compute the following

∂q

∂t
=

1

y2

[
y
∂

∂t
〈ν, i1〉 − 〈ν, i1〉

∂

∂t
y

]
=

1

y2

[
yḞ kl∇k∇l 〈ν, i1〉+ yḞ klhmk hlm 〈ν, i1〉 − 〈ν, i1〉 Ḟ kl∇k∇ly

+
(n− 1)

y
〈ν, i1〉 Ḟ 22

]
. (3.26)

We will use

∇iq = ∇i

[
〈ν, i1〉
y

]
=

1

y2
[y∇ii〈ν, i1〉 − 〈ν, i1〉∇iy]

=
1

y2
[
hi1y

2p− yqδi1(−qy)
]

= hi1p+ δi1q
2, (3.27)

so

∇1q = h11p+ δ11q
2 = kp+ q2,

∇iq = 0, for all i = 2, . . . , n
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and

|∇q|2 = |∇1q|2

= (hi1p+ δi1q
2)(hi1p+ δi1q

2)

= (hi1hi1p
2 + 2hi1δi1pq

2 + δi1δ
i
1q

4)

= k2p2 + 2kpq2 + q4

= (kp+ q2)2. (3.28)

We compute

∇k∇lq =
1

y2
[y∇k∇l〈ν, i1〉 − 〈ν, i1〉∇k∇ly]

− 2

y3
[y∇k〈ν, i1〉 − 〈ν, i1〉∇ky]∇ly,

so,

Lq = Ḟ kl∇k∇lq

=
1

y2

[
yḞ kl∇k∇l〈ν, i1〉 − 〈ν, i1〉Ḟ kl∇k∇ly

]
− 2

y
Ḟ kl∇k

(
〈ν, i1〉
y

)
∇ly. (3.29)

From (3.26) and (3.29)

∂q

∂t
=

1

y2

[
yḞ klhmk hlm〈ν, i1〉+

(n− 1)

y
〈ν, i1〉Ḟ 22

]
+

2

y
Ḟ kl∇k

〈ν, i1〉
y
∇ly + Ḟ kl∇k∇l

〈ν, i1〉
y

= Ḟ kl∇k∇lq + Ḟ klhmk hlm
〈ν, i1〉
y

+
(n− 1)

y2
Ḟ 22q +

2

y
Ḟ 11∇1q∇1y from 3.6

= Ḟ kl∇k∇lq + Ḟ klhmk hlmq +
(n− 1)

y2
Ḟ 22q +

2

y
Ḟ 11(kp+ q2)(−qy)

= Ḟ kl∇k∇lq + Ḟ klhmk hlmq +
(n− 1)

y2
Ḟ 22q +

2

y
Ḟ 11 (kp) (−qy) +

2

y
Ḟ 11(q2)(−qy)

= Ḟ kl∇k∇lq + Ḟ klhmk hlmq +
(n− 1)

y2
Ḟ 22q − 2Ḟ 11kpq − 2Ḟ 11q3. (3.30)
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Then

∂q

∂t
= Lq + Ḟ klhmk hlmq + q

(n− 1)

y2
Ḟ 22 − 2Ḟ 11kpq − 2Ḟ 11q3

= Lq + Ḟ klhmk hlmq + q
(n− 1)

y2
Ḟ 22 − 2Ḟ 11kpq − Ḟ 11q

(
y−2 − p2

)
− Ḟ 11q3

= Lq + Ḟ klhmk hlmq − 2Ḟ 11kpq + q
(n− 1)

y2
Ḟ 22 − q Ḟ

11

y2
+ qḞ 11p2 − Ḟ 11q3

= Lq + Ḟ klhmk hlmq − 2Ḟ 11kpq − Ḟ 11q3 + qḞ 11p2 +

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q,

(3.31)

or we can rewrite it as

∂q

∂t
= Lq + Ḟ klhmk hlmq − 2Ḟ 11kpq − Ḟ 11q3 + qḞ 11p2 +

[
(n− 1)Ḟ 22 − Ḟ 11

] (
p2 + q2

)
q

because y−2 = p2 + q2

= Lq + Ḟ klhmk hlmq − 2Ḟ 11kpq − Ḟ 11q3 + qḞ 11p2 + (n− 1) Ḟ 22p2q − Ḟ 11p2q

+ (n− 1) Ḟ 22q3 − Ḟ 11q3

= Lq + Ḟ klhmk hlmq +
[
−2Ḟ 11kp− Ḟ 11q2 + Ḟ 11p2 + (n− 1)Ḟ 22p2 − Ḟ 11p2

+(n− 1)Ḟ 22q2 − Ḟ 11q2
]
q

= Lq + Ḟ klhmk hlmq +
[
−2Ḟ 11kp− Ḟ 11q2 + (n− 1)Ḟ 22p2 + (n− 1)Ḟ 22q2 − Ḟ 11q2

]
q

= Lq + Ḟ klhmk hlmq +
[
−2Ḟ 11kp− 2Ḟ 11q2 + (n− 1)Ḟ 22p2 + (n− 1)Ḟ 22q2

]
q

= Lq + Ḟ klhmk hlmq +
{[
−2Ḟ 11k + (n− 1)Ḟ 22p

]
p+

[
−2Ḟ 11 + (n− 1)Ḟ 22

]
q2
}
q

= Lq + Ḟ klhmk hlmq −
{[

2Ḟ 11k − (n− 1)Ḟ 22p
]
p+

[
2Ḟ 11 − (n− 1)Ḟ 22

]
q2
}
q.

Therefore,

∂q

∂t
= Lq + Ḟ klhmk hlmq −

{[
2Ḟ 11k − (n− 1)Ḟ 22p

]
p+

[
2Ḟ 11 − (n− 1)Ḟ 22

]
q2
}
q,

(3.32)

which gives the evolution equation for q.
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We will compute now (iv) using (3.31)

∂q2

∂t
= 2q

∂q

∂t

= 2qLq + 2qḞ klhmk hlmq + 2Ḟ 11
(
p2 − q2 − 2kp

)
q2 + 2

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2.

(3.33)

We need

Lq2 = Ḟ kl∇k∇l(q.q)

= 2Ḟ kl∇k(∇lq.q)

= 2Ḟ kl(∇k∇lq.q +∇lq.∇kq)

= 2qLq + 2Ḟ kl∇kq∇lq. (3.34)

From (3.34) and (3.33) we obtain

∂q2

∂t
= Lq2 − 2Ḟ kl∇kq∇lq + 2qḞ klhmk hlmq + 2Ḟ 11(p2 − q2 − 2kp)q2

+ 2

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2. (3.35)

We compute also

∂

∂t
y−2 =

−2

y3
∂

∂t
y = − 2

y3

[
Ly − (n− 1)Ḟ 22

y

]
, (3.36)

and because ∇iy
−2 = − 2

y3
∇iy we can have

Ly−2 = Ḟ kl∇k∇ly
−2

= Ḟ kl∇k

(
∇ly

−2)
= Ḟ kl∇k

(
− 2

y3
∇ly

)
= −2Ḟ kl

[
∇ky

−3∇ly + y−3∇k∇ly
]
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Ly−2 = −2Ḟ kl
[
−3y−4∇ky∇ly + y−3∇k∇ly

]
=

6

y4
Ḟ kl∇ky∇ly −

2

y3
Ḟ kl∇k∇ly

=
6

y4
Ḟ kl∇ky∇ly −

2

y3
Ly. (3.37)

From (3.36) and (3.37) we have

∂

∂t
y−2 = Ly−2 − 6

y4
Ḟ kl∇ky∇ly + 2

(n− 1)Ḟ 22

y4
. (3.38)

Using (3.35) and (3.38)

∂

∂t
p2 =

∂

∂t

(
y−2 − q2

)
= Ly−2 − 6

y4
Ḟ kl∇ky∇ly +

2(n− 1)Ḟ 22

y4
− Lq2 + 2Ḟ kl∇kq∇lq − 2qḞ klhmk hlmq

− 2Ḟ 11
(
p2 − q2 − 2kp

)
q2 − 2

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2

= Ly−2 − Lq2 − 6

y4
Ḟ kl∇ky∇ly + 2Ḟ kl∇kq∇lq +

2(n− 1)Ḟ 22

y4
− 2qḞ klhmk hlmq

− 2Ḟ 11
(
p2 − q2 − 2kp

)
q2 − 2

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2

= Lp2 − 6

y4
Ḟ kl∇ky∇ly + 2Ḟ kl∇kq∇lq +

2(n− 1)Ḟ 22

y4
− 2qḞ klhmk hlmq

− 2Ḟ 11
(
p2 − q2 − 2kp

)
q2 − 2

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2. (3.39)

From (3.39) we obtain

∂p

∂t
=

1

2p

∂p2

∂t

=
1

2p
Lp2 − 3

py4
Ḟ kl∇ky∇ly +

1

p
Ḟ kl∇kq∇lq +

1

p

(n− 1)Ḟ 22

y4
− q

p
Ḟ klhmk hmlq

− Ḟ 11

p

(
p2 − q2 − 2kp

)
q2 − 1

p

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2, (3.40)
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but

Lp2 = Ḟ kl∇k∇l

(
p2
)

= Ḟ kl∇k (2p∇lp)

= 2Ḟ kl∇kp∇lp+ 2Ḟ klp∇k∇lp

= 2pLp+ 2Ḟ kl∇kp∇lp, (3.41)

so

Lp =
1

2p
Lp2 − 1

p
Ḟ kl∇kp∇lp. (3.42)

Furthermore, we need to compute the following

∇ip
2 = ∇i

(
y−2 − q2

)
= − 2

y3
∇iy − 2q∇iq

=
2

y3
δi1qy − 2q

[
hi1p+ qδ1iq

]
from 3.27

=
2

y2
δi1q − 2q

[
hi1p+ qδ1iq

]
= 2

(
p2 + q2

)
δi1q − 2pqhi1 − 2q3δ1i

= 2p2qδi1 + 2q3δi1 − 2pqhi1 − 2q3δ1i

= 2p2qδi1 − 2pqhi1. (3.43)

From (3.43)

∇ip =
1

2p
∇ip

2

= pqδi1 − qhi1, (3.44)

so

∇1p = pq − qh11 = pq − qk = q (p− k) ,

∇ip = 0, for all i = 2, . . . , n (3.45)
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and as a result,

|∇p|2 = |∇1p|2

= (pqδi1 − qhi1)
(
pqδi1 − qhi1

)
= p2q2 − 2pq2k + q2k2

= q2
(
p2 − 2pk + k2

)
= q2 (p− k)2 . (3.46)

Therefore, the evolution equation of p can be computed as

∂

∂t
p = Lp+

1

p
Ḟ kl∇kp∇lp−

3

py4
Ḟ kl∇ky∇ly −

1

p
Ḟ kl∇kq∇lq +

1

p

(n− 1)Ḟ 22

y4

− q

p
Ḟ klhmk hlmq −

Ḟ 11

p

(
p2 − q2 − 2kp

)
q2 − 1

p

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2

= Lp+
1

p

[
Ḟ 11|∇1p|2 + (n− 1)Ḟ 22

��
��*

0
|∇2p|2

]
− 3

py4

[
Ḟ 11|∇1y|2 + (n− 1)Ḟ 22

��
��*

0
|∇2y|2

]

+
1

p

[
Ḟ 11|∇1q|2 + (n− 1)Ḟ 22

�
��
�*0

|∇2q|2
]

+
1

p

(n− 1)Ḟ 22

y4
− Ḟ 11

p
(p2 − q2 − 2kp)q2

− 1

p

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2 − q

p
Ḟ klhmk hmlq. (3.47)

We need the following equations in order to simplify previous equation:

We know

Ḟ kl∇kq∇lq = Ḟ 11 (∇1q)
2 = Ḟ 11

(
pk + q2

)2
,

and

Ḟ klhmk hlm = Ḟ 11hm1 h1m + (n− 1)Ḟ 22hm2 h2m

= Ḟ 11(h11)
2 + (n− 1)Ḟ 22(h22)

2

= Ḟ 11k2 + (n− 1)Ḟ 22p2. (3.48)
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Now we simplify (3.47) to have the evolution equation of p

∂p

∂t
= Lp+

1

p
Ḟ 11q2 (p− k)2 − 3

py2
(
p2 + q2

)
Ḟ 11q2y2 +

1

p
Ḟ 11

(
kp+ q2

)2
+

(n− 1)

p
Ḟ 22

(
p2 + q2

)2 − Ḟ 11

p

(
p2 − q2 − 2kp

)
q2 − 1

p

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2

− 1

p
Ḟ klhmk hlmq

2

= Lp+
1

p
Ḟ 11q2 (p− k)2 − 3

p

(
p2 + q2

)
Ḟ 11q2 +

1

p
Ḟ 11

(
kp+ q2

)2
+

(n− 1)

p
Ḟ 22

(
p2 + q2

)2 − Ḟ 11

p

(
p2 − q2 − 2kp

)
q2 − 1

p

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2

− 1

p
Ḟ klhmk hlm

(
y−2 − p2

)
= Lp+

1

p
Ḟ 11q2 (p− k)2 − 3

p

(
p2 + q2

)
Ḟ 11q2 +

1

p
Ḟ 11

(
kp+ q2

)2
+

(n− 1)

p
Ḟ 22

(
p2 + q2

)2 − Ḟ 11

p

(
p2 − q2 − 2kp

)
q2 − 1

p

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2

− 1

p
Ḟ klhmk hlmy

−2 +
1

p
Ḟ klhmk hlmp

2

= Lp+
1

p
Ḟ klhmk hlmp

2 +
1

p
Ḟ 11q2 (p− k)2 − 3

p
(p2 + q2)Ḟ 11q2 +

1

p
Ḟ 11

(
kp+ q2

)2
+

(n− 1)

p
Ḟ 22

(
p2 + q2

)2 − Ḟ 11

p

(
p2 − q2 − 2kp

)
q2 − 1

p

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2

− 1

p
Ḟ klhmk hlmy

−2

= Lp+
1

p
Ḟ klhmk hlmp

2 +
1

p
Ḟ 11q2 (p− k)2 − 3

py2
(
p2 + q2

)
Ḟ 11q2y2 +

1

p
Ḟ 11

(
kp+ q2

)2
+

(n− 1)

p
Ḟ 22

(
p2 + q2

)2 − Ḟ 11

p

(
p2 − q2 − 2kp

)
q2 − 1

p

[
(n− 1)Ḟ 22 − Ḟ 11

y2

]
q2

− 1

p

[
Ḟ 11k2 + (n− 1)Ḟ 22p2

] (
p2 + q2

)
= Lp+ Ḟ klhmk hlmp+ Ḟ 11

[
q2

p
(p− k)2 − 3

q2

p

(
p2 + q2

)
+
q2

p

(
q2 + p2

)
+

1

p

(
kp+ q2

)2
−q

2

p

(
p2 − q2 − 2kp

)
− k2

p

(
p2 + q2

)]
+ (n− 1)Ḟ 22

[
1

p

(
p2 + q2

)2 − q2

p

(
p2 + q2

)
−p

2

p

(
p2 + q2

)]
,
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∂p

∂t
= Lp+ Ḟ klhmk hlmp+ Ḟ 111

p

[
q2p2 − 2pkq2 + k2q2 − 3q2p2 − 3q4 + k2p2 + 2kpq2 + q4

−q2p2 + q4 + 2kpq2 + q4 + q2p2 − k2p2 − k2q2
]

+ (n− 1)Ḟ 22

[
p4 + q4 + 2q2p2 − q2p2 − q4 − p4 − q2p2

p

]
= Lp+ Ḟ klhmk hlmp+ Ḟ 111

p

[
−2q2p2 + 2kpq2

]
= Lp+ Ḟ klhmk hlmp+ Ḟ 11

[
2kq2 − 2q2p

]
,

which implies that

∂p

∂t
= Lp+ Ḟ klhmk hlmp+ 2Ḟ 11q2 [k − p] . (3.49)

Considering ∂p
∂t

and ∂H
∂t

we will compute the evolution equation of k

∂k

∂t
=

∂

∂t
(H − (n− 1)p)

=
∂

∂t
H − (n− 1)

∂

∂t
p

= LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh
m
l H

− (n− 1)
[
Lp+ Ḟ klhkmh

m
l p+ 2Ḟ 11q2 (k − p)

]
= L[H − (n− 1)p] + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l [H − (n− 1)p]

− 2(n− 1)Ḟ 11q2(k − p),

so

∂k

∂t
= Lk + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l k − 2(n− 1)Ḟ 11q2(k − p). (3.50)

�

Lemma 3.6. Under the flow (3.1),

∂

∂t
v = Lv − Ḟ ijhkjhik v +

(n− 1)

y2
vḞ 22 − 2v−1Ḟ ij∇iv∇jv.

Proof: Similar notation as in [43] will be used for this proof. Notation D will be

used for the gradient in Rn+1 and Dω is used to define the (n+ 1)× (n+ 1) matrix
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of first derivatives of ω.

Firstly, we need some useful identities as following:

We define

ω = (0, ω2, ..., ωn + 1) =

(
0,

x2

|X̂|
, ...,

xn+1

|X̂|

)
, for |X̂| 6= 0, (3.51)

where X̂ is defined as in equation (2.3), and

y = 〈X,ω〉 =
1

|X̂|
〈(x1, ...xn+1) , (0, x2, ..., xn+1)〉 =

|X̂|2

|X̂|
= |X̂| =

√
x22 + ...+ x2n+1,

(3.52)

then for y 6= 0

∂y

∂xi
=


0, for i = 1

xi
y
, for i ≥ 2.

(3.53)

As a result,

Dy = ω and ∇y = ω − 〈ω, ν〉. (3.54)

Observe that, for i, j > 2

∂

∂xi

(
xj
y

)
=
δij
y
− xj
y2
xi
y

=
1

y
(δij − ωiωj).

Since

Dω =



0 0 . . . 0

∂ω2

∂x1

∂ω2

∂x2
. . . ∂ω2

∂xn+1

...
...

. . .
...

∂ωn+1

∂x1

∂ωn+1

∂x2
. . . ∂ωn+1

∂xn+1


=



0 0 . . . 0

0 ∂ω2

∂x2
. . . ∂ω2

∂xn+1

...
. . .

...

0 ∂ωn+1

∂x2
. . . ∂ωn+1

∂xn+1


,

we will have

Dω.ν =



0 0 . . . 0

0 ∂ω2

∂x2
. . . ∂ω2

∂xn+1

...
. . .

...

0 ∂ωn+1

∂x2
. . . ∂ωn+1

∂xn+1





ν1

ν2
...

νn+1


=



1
y

(δk2 − ωkω2) νk

1
y

(δk3 − ωkω3) νk
...

1
y

(δkn+1 − ωkωn+1) νk


,
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Figure 3.1: ω, ν, ii and τ1

with sum over repeated indices. Then, we show that

〈ν,Dω.ν〉 =
n+1∑
i,k=2

1

y
(δki − ωkωi) νkνi =

1

y

(
n+1∑
i=2

νiνi − 〈ω, ν〉2
)
.

Because

ν = 〈ν, i1〉i1 + 〈ν, ω〉ω = 〈ν, i1〉i1 + · · ·+ 〈ν, in+1〉in+1,

we have

〈ν, ω〉ω =
n+1∑
k=2

νkik,

which leads to

〈ν, ω〉2 = 〈〈ν, ω〉ω, 〈ν, ω〉ω〉 =
n+1∑
k=2

νkνk.

Therefore,

〈ν,Dω.ν〉 =
1

y

n+1∑
k=2

νkνk − 〈ν, ω〉2 = 0. (3.55)

Since X = (x1, x2, . . . , xn+1) we find

〈X,Dω.ν〉 =
n+1∑
i,k=2

1

y
(δik − ωiωk) νkxi =

1

y

(
n+1∑
i=2

νixi − 〈ω,X〉 〈ω, ν〉

)
(3.56)

=
1

y

(
n+1∑
i=2

νixi −

〈
X̂ + 0i1

|X̂|
, X̂ + x1i1

〉〈
X̂

|X̂|
, ν

〉)
(3.57)
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so

〈X,Dω.ν〉 =
1

y

(
n+1∑
i=2

νixi −
X̂2

|X̂|
1

|X̂|

n+1∑
i=2

νixi

)
= 0. (3.58)

We know y =
√
x22 + · · ·+ x2n+1, so

∂y

∂t
=

1

2y

n+1∑
k=2

2xk
∂xk
∂t

= −F
y

n+1∑
k=2

xkνk.

From (3.52), (3.54) and (3.58) we have

∂y

∂t
= −F

y
〈ω,X〉〈ω, ν〉 = −F 〈ω, ν〉.

Because the hypersurface is axially symmetric, 〈ω, ν〉 = 〈i1, τ1〉 = py, see (2.6) and

Figure 3.1, we find

∂y

∂t
= −F 〈ω, ν〉 = −Fpy. (3.59)

Furthermore, as ω =
(

0, x2
y
, . . . , xn+1

y

)
we have

∂ω

∂t
=

n+1∑
k=2

(
−F
y
νk +

xk
y2
F 〈ω, ν〉

)
ik from (3.59)

= −F
y

n+1∑
k=2

(νk − ωk〈ω, ν〉)ik. (3.60)

Consequently,

〈
∂ω

∂t
, ν

〉
= −F

y

〈
n+1∑
k=2

(νk − ωk〈ω, ν〉) ik ,
n+1∑
j=1

νjij

〉

= −F
y

(
n+1∑
k=2

νkνk − 〈ω, ν〉2
)

= 0 from (3.55). (3.61)
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From (2.4)

∂

∂t
v =

∂

∂t
〈ν, ω〉−1

= −〈ν, ω〉−2
[〈

∂

∂t
ν, ω

〉
+

〈
ν,
∂

∂t
ω

〉]
= −v2〈∇F, ω〉, from Lemma 3.2. (3.62)

In order to have Lv we need the following:

For any function φ

Lφ−1 = Ḟ ij∇i∇jφ
−1

= −Ḟ ij∇i

[
1

φ2
∇jφ

]
= −Ḟ ij

[
− 2

φ3
∇iφ∇jφ+

1

φ2
∇i∇jφ

]
= −φ−2Ḟ ij∇i∇jφ+ 2

1

φ3
Ḟ ij∇iφ∇jφ

= −φ−2Lφ+ 2φḞ ij

(
−∇iφ

φ2

)(
−∇jφ

φ2

)
= −φ−2Lφ+ 2φḞ ij∇i

(
1

φ

)
∇j

(
1

φ

)
. (3.63)

Replacing φ−1 by v we have

Lv = −v2Lv−1 + 2v−1Ḟ ij∇iv∇jv

= −v2L〈ν, w〉+ 2v−1Ḟ ij∇iv∇jv. (3.64)

Now we need the Weingarten relations

∇iν = ∇τiν = hki τk , ∇iτj = ∇τiτj = −hijν + (∇iτj)
>, (3.65)

and the fact that

∇ωτi = ∇τiω = [ω, τi] = 0, (3.66)

where > indicates to the tangential component of a vector field and [ , ] is the Lie

bracket. The calculation will be in normal coordinates where is gij = δij and (∇iτj)
>
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disappear at X(x, t).

We start with

∇i∇jν = ∇i(h
k
j τk) (3.67)

= (∇ih
k
j )τk + hkj∇iτk

= ∇k
hijτk − hkjhikν from Codazzi equation and (3.65)

= ∇hij − hkjhikν, (3.68)

and we recall equation (3.5)

Lν = Ḟ ij∇i∇jν = ∇F − Ḟ ijhkjhikν. (3.69)

If we consider any unit normal vector η = ηkik that satisfies

∇ηX̂ = ηk∇ikX̂ =
n+1∑
k=1

ηk

n+1∑
j=2

(
∂xj
∂xk

+ Γ
j

lkxl

)
ij

=
n+1∑
k=1

ηk

n+1∑
j=2

δkjik =
n+1∑
j=2

ηkik = η − 〈η, i1〉i1. (3.70)

Note that Γ
j

lk, the induced connection on Rn+1, vanishes with orthonormal coordi-

nates. Furthermore,

η
(
|X̂|
)

= ηkik

(
|X̂|
)

= ηk
∂|X̂|
∂xk

= ηkω = 〈η, ω〉,

then we have

∇ηω = ∇η

(
X̂

|X̂|

)

=
1

|X̂|
∇ηX̂ −

1

|X̂|2
η
(
|X̂|
)
X̂

=
1

y
(η − 〈η, i1〉i1 − 〈η, ω〉ω) .
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Suppose η = τ1 then we have

∇τ1ω =
1

y
(τ1 − 〈τ1, i1〉i1 − 〈τ1, ω〉ω) = 0, (3.71)

but if η = τ1 and l 6= 1 we have

∇τlω =
1

y
(τl − 〈τl, i1〉i1 − 〈τl, ω〉ω) =

1

y
τl. (3.72)

In normal coordinates, L〈ν, ω〉 can be calculated as

L 〈ν, ω〉 = Ḟ ij∇i∇j〈ν, ω〉

= Ḟ ij∇i

[
〈∇jν, ω〉+ 〈ν,∇jω〉

]
= Ḟ ij

[〈
∇i∇jν, ω

〉
+ 2

〈
∇iν,∇jω

〉
+
〈
ν,∇i∇jω

〉]
,

= 〈Lν, ω〉+ 2Ḟ ij〈hki τk,∇jω〉+ Ḟ ij〈ν,∇i∇ωτj〉

from (3.65) and .(3.66)

= 〈∇F − Ḟ ijhkjhikν, ω〉+ Ḟ ijhki 〈τk,∇jω〉+ Ḟ ijhjk〈τj,∇kω〉

+ Ḟ ij〈ν,∇ω∇iτj〉

from (3.69) and as Ri
jkl = 0

= 〈∇F, ω〉 − Ḟ ijhkjhik〈ν, ω〉+ F ijhki ω(gjk) + Ḟ ij〈ν,∇ω(−hijν + (∇iτj)
>)〉

from (3.65)

= 〈∇F, ω〉 − Ḟ ijhkjhikv
−1 + Ḟ ijhki ω(gjk)− Ḟ ijhij

〈
ν,∇ων

〉
− Ḟ ij

〈
ν,∇ω(hij).ν

〉
+ Ḟ ij

〈
ν,∇ω((∇iτj)

>)
〉

= 〈∇F, ω〉 − Ḟ ijhkjhikv
−1 + Ḟ ijhki ω(gjk)

− ω(hij)Ḟ
ij 〈ν, ν〉+ Ḟ ij

〈
ν,∇ω((∇iτj)

>)
〉

= 〈∇F, ω〉 − Ḟ ijhkjhikv
−1 + Ḟ ijhki ω(gjk)

− ω(hij)Ḟ
ij + Ḟ ij

〈
ν,∇ω((∇iτj)

>)
〉
. (3.73)

Considering λkτk := (∇iτi)
>, then we have

〈
ν,∇ω(∇iτi)

>〉 = 〈ν, ω(λk)τk〉+ 〈ν, λk∇ωτk〉 = 0.
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Therefore using equations (3.71), (3.72) and (3.66), equation (3.73)becomes

L〈ν, ω〉 = 〈∇F, ω〉 − Ḟ ijhkjhikv
−1 + Ḟ ijhki ω(gjk)− Ḟ ijω(hij). (3.74)

In order to have the last two terms in (3.74) we calculate in normal coordinates

ω(hij) = −ω〈ν,∇iτj〉

= ∇ω〈ν,∇iτj〉

= −〈ν,∇ω∇iτj〉 − 〈∇ων,∇iτj〉

= −〈ν,∇i∇ωτj〉 − 〈∇ων,−hijν + (∇iτj)
>〉 from (3.65)

= −〈ν,∇i∇ωτj〉+ hij〈∇ων, ν〉

= −〈ν,∇i∇jω〉 from (3.66).

As a result

Ḟ ijω(hij) = −Ḟ ij〈ν,∇i∇jω〉 where i, j = 1, 2, . . . , n

= −
n∑
i=2

Ḟ ii〈ν,∇i∇iω〉 i 6= 1 from (3.71) and (3.72)

= −
n∑
i=2

Ḟ ii

〈
ν,∇i

(
1

y
τi

)〉
= −

n∑
i=2

1

y
Ḟ ii〈ν,∇iτi〉

= −
n∑
i=2

1

y
Ḟ ii
〈
ν,−hiiν + (∇iτi)

>〉
= −1

y
(n− 1)Ḟ 22〈ν,−h22ν〉

=
(n− 1)

y
h22Ḟ

22

=
(n− 1)

y
pḞ 22

=
(n− 1)

y

1

yv
Ḟ 22 from (2.6)

=
(n− 1)

y2v
Ḟ 22, (3.75)
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and

Ḟ ijω(gjk) = Ḟ ijω〈τj, τk〉

= Ḟ ij〈∇ωτj, τk〉 − Ḟ ij〈τj,∇ωτk〉,

and then

Ḟ ijhki ω(gjk) = Ḟ ijhki 〈∇ωτj, τk〉+ Ḟ ijhki 〈τj,∇ωτk〉

= Ḟ ijhki

〈
1

y
τj, τk

〉
+ Ḟ ijhki

〈
τj,

1

y
τk

〉
,

from (3.71) and (3.72) where j, k 6= 1

= 2
n∑
i=2

Ḟ ijhki

〈
1

y
τj, τk

〉
= 2

n∑
i=2

Ḟ ij

y
hki gjk

= 2
n∑
i=2

Ḟ ij

y
hki δjk

= 2
(n− 1)

y
pḞ 22

= 2
(n− 1)

y

1

yv
Ḟ 22 from (2.6)

= 2
(n− 1)

y2v
Ḟ 22. (3.76)

From (3.76) and (3.75) the last two terms in (3.74) become

Ḟ ijhki ω(gjk)− Ḟ ijω(hij) =
(n− 1)

y2v
Ḟ 22. (3.77)

Then we can write (3.74) as follows

L〈ν, ω〉 = Lv−1 = 〈∇F, ω〉 − Ḟ ijhkjhikv
−1 +

(n− 1)

y2v
Ḟ 22. (3.78)
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Substituting this equation in (3.64) we obtain

Lv = −v2
[
〈∇F, ω〉 − Ḟ ijhkjhikv

−1 +
(n− 1)

y2v
Ḟ 22

]
+ 2v−1Ḟ ij∇iv∇jv

= −v2〈∇F, ω〉+ Ḟ ijhkjhikv −
(n− 1)

y2
vḞ 22 + 2v−1Ḟ ij∇iv∇jv. (3.79)

Comparing −v2〈∇F, ω〉 from (3.79) and (3.62) we show the evolution equation of v

∂

∂t
v = Lv − Ḟ ijhkjhikv +

(n− 1)

y2
vḞ 22 − 2v−1Ḟ ij∇iv∇jv. (3.80)

�

Lemma 3.7. We have the following evolution equation under the flow (3.1)

∂

∂t

( q
F

)
= L

( q
F

)
+

2

F
Ḟ kl∇kF∇l

( q
F

)
−
{[

2Ḟ 11k − (n− 1)Ḟ 22p
]
p

+
[
2Ḟ 11 − (n− 1)Ḟ 22

]
q2
} q

F
.

Proof: Starting with

∇l

( q
F

)
=

1

F 2
[F∇lq − q∇lF ] ,

and

∇k∇l

( q
F

)
=

1

F 2
[F∇k∇lq +∇kF∇lq −∇kq∇lF − q∇k∇lF ]− 2

F 3
[F∇lq − q∇lF ]∇kF.

We have

Ḟ kl∇k∇l

( q
F

)
=

1

F 2

[
FḞ kl∇k∇lq − qḞ kl∇k∇lF

]
− 2

F
Ḟ kl 1

F 2
[F∇lq − q∇lF ]∇kF,

which can be written as

L
( q
F

)
=

1

F 2
[FLq − qLF ]− 2

F
Ḟ kl∇k

( q
F

)
∇lF. (3.81)
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Then

∂

∂t

( q
F

)
=
F ∂
∂t
q − q ∂F

∂t

F 2

=
F
{
Lq + Ḟ klhmk hmlq −

([
2Ḟ 11k − (n− 1)Ḟ 22p

]
p+

[
2Ḟ 11 − (n− 1)Ḟ 22

]
q2
)
q
}

F 2

−
q
[
LF + FḞ klhkmh

m
l

]
F 2

=
FLq − qLF

F 2
−
([

2Ḟ 11k − (n− 1)Ḟ 22p
]
p+

[
2Ḟ 11 − (n− 1)Ḟ 22

]
q2
) q

F
.

(3.82)

From (3.81) we can write (3.82)

∂

∂t

( q
F

)
= L

( q
F

)
+

2

F
Ḟ kl∇kF∇l

q

F
−
{[

2Ḟ 11k − (n− 1)Ḟ 22p
]
p

+
[
2Ḟ 11 − (n− 1)Ḟ 22

]
q2
} q

F
. (3.83)

�

Lemma 3.8. Under the flow (3.1)

∂

∂t

(
H

F

)
= L

(
H

F

)
+

2

F
Ḟ kl∇kF∇l

H

F
+

1

F
F̈ kl,rs∇ihkl∇ihrs.

Proof: We compute

L
(
H

F

)
= Ḟ kl∇k∇l

(
H

F

)
= Ḟ kl∇k

F∇lH −H∇lF

F 2

= Ḟ klF
2 [∇kF∇lH + F∇k∇lH −∇kH∇lF −H∇k∇lF ]

F 4

− Ḟ kl [F∇lH −H∇lF ] 2F∇kF

F 4

= Ḟ kl

[
F∇k∇lH −H∇k∇lF

F 2
+
−2F 2∇kH∇lF + 2FH∇lF∇kF

F 4

]
,
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L
(
H

F

)
=
FLH −HLF

F 2
− 2Ḟ klF

2∇kH∇lF − FH∇lF∇kF

F 4

=
FLH −HLF

F 2
− 2Ḟ kl∇kF

[
F∇kH −H∇lF

F 3

]
=
FLH −HLF

F 2
− 2

F
Ḟ kl∇kF

[
F∇lH −H∇lF

F 2

]
=
FLH −HLF

F 2
− 2

F
Ḟ kl∇kF∇l

(
H

F

)
, (3.84)

and

∂

∂t

(
H

F

)
=
FLH −HLF

F 2

=
F
[
∂
∂t
H
]
−H ∂

∂t
F

F 2
,

then

∂

∂t

(
H

F

)
=
F
[
LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

l
mH
]
−H

[
LF + FḞ klhkmh

m
l

]
F 2

=
FLH −HLF

F 2
+

1

F
F̈ kl,rs∇ihkl∇ihrs. (3.85)

Using (3.84), equation (3.85) becomes

∂

∂t

(
H

F

)
= L

(
H

F

)
+

2

F
Ḟ kl∇kF∇l

(
H

F

)
+

1

F
F̈ kl,rs∇ihkl∇ihrs. (3.86)

�

Lemma 3.9. We have the following evolution equation under the flow (3.1)

∂

∂t

(
k

p

)
= L

(
k

p

)
+

2

p
Ḟ kl∇kp∇l

(
k

p

)
+

1

p
F̈ kl,rs∇ihkl∇ihrs

− 2Ḟ 11 q
2

p2
[(n− 1)p+ k](k − p).

Proof:

∇l

(
k

p

)
=

1

p2
(p∇lk − k∇lp) ,
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∇k∇l

(
k

p

)
=

1

p2
(p∇k∇lk − k∇k∇lp)−

2

p3
(p∇lk − k∇lp)∇kp,

L
(
k

p

)
= Ḟ kl∇kp∇l

(
k

p

)
=

1

p2
(pLk − kLp)− 2

p
Ḟ kl∇kp∇l

(
k

p

)
. (3.87)

Now we compute

∂

∂t

(
k

p

)
=
p ∂
∂t
k − k ∂

∂t
p

p2

=
p
[
Lk + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l k − 2(n− 1)Ḟ 11q2(k − p)

]
p2

−
k
[
Lp+ Ḟ klhkmh

m
l p+ 2Ḟ 11q2(k − p)

]
p2

∂

∂t

(
k

p

)
=
pLk − kLp

p2
+

1

p
F̈ kl,rs∇ihkl∇ihrs −

2(n− 1)

p
Ḟ 11q2(k − p)

− 2
k

p2
Ḟ 11q2(k − p). (3.88)

From (3.87) into (3.88)

∂

∂t

(
k

p

)
= L

(
k

p

)
+

2

p
Ḟ kl∇kp∇l

(
k

p

)
+

1

p
F̈ kl,rs∇ihkl∇ihrs

− 2Ḟ 11q2
[

(n− 1)(k − p)
p

+
k(k − p)

p2

]
= L

(
k

p

)
+

2

p
Ḟ kl∇kp∇l

k

p
+

1

p
F̈ kl,rs∇ihkl∇ihrs

− 2Ḟ 11q2
[

(n− 1)(k − p)p
p2

+
k(k − p)

p2

]
= L

(
k

p

)
+

2

p
Ḟ kl∇kp∇l

(
k

p

)
+

1

p
F̈ kl,rs∇ihkl∇ihrs

− 2Ḟ 11 q
2

p2
[(n− 1)p+ k](k − p). (3.89)

�

50



Chapter 4

The Singularity

1 Introduction

Given an axially symmetric hypersurface of positive mean curvature, it is known that

under mean curvature flow the surface evolves for a finite time until a singularity

develops. In this Chapter we will consider an evolution by a fully nonlinear curvature

flow of an axially symmetric hypersurface to see for which speeds we can show similar

behaviour. This generalises work of Dziuk and Kawohl [26] for the mean curvature

flow. In the case of shrinking convex hypersurface many examples of concave speed

are given in [3], more in [8, 16]. Unfortunately our arguments of this chapter depend

crucially on convexity of f . Convexity of the speed is essential for Lemma 4.3 and

Theorem 4.2 in order to use this inequality F > H
n

.

2 The evolving graph function

In a similar process as for the mean curvature flow, we add a tangential term to

the normal evolution such that the flow problem with free boundary is well-posed”.

Short time existence of a solution then follows by standard theory (see, for example,

[49]).

Our n-dimensional hypersurface M is axially symmetric about the x1 axis, so

there is a corresponding strictly positive and suitably smooth function u : [0, a]→ R

such that M is parametrised by X : [0, a] × Sn−1 × [0, T ) → Rn+1, which satisfies
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flow equation and maintain parametrisation

X (x1, ω) = (x1, u(x1)ω) ,

where x1 and ω independent of t.

For the evolution equations of u we need equation (3.51), (3.52) and (3.53) using

the chain rule. Let ω : [0, a] × [0, T ) → Rn+1 be the unit outward normal of an

n dimensional cylinder, intersecting the hypersurface at the point u(x1, t). The

difference between ω and ω that ω is parametrized over the x1 axis, while ω is

parametrized over Mn.

X = x1(t)i1 + u(x1(t), t)ω, ω ∈ Sn−1,

∂X

∂t
=
∂x1
∂t

i1 +

(
∂u

∂t
+

∂u

∂x1

∂x1
∂t

)
ω,

−Fν =
∂x1
∂t

i1 +

(
∂u

∂t
+ ux

∂x1
∂t

)
ω.

Because ν = 1√
1+u2x

(−uxi1 + ω)

−F 〈ν, ν〉 = −∂x1
∂t

ux√
1 + u2x

+

(
∂u

∂t
+ ux

∂x1
∂t

)
1√

1 + u2x
,

−F =
∂u

∂t

1√
1 + u2x

,

∂u

∂t
= −

√
1 + u2xF, (4.1)

which is the corresponding evolution equation for the graph height.

Equation (4.1) is a scalar evolution equation as opposed to (3.1) which is a

system. In other words, if X is rotational symmetric with respect to x1 axis, the

equation can be written in the form of (4.1). Based on this situation, the evolution

equation for u or y can be used because sometimes it is suitable to use one of

them more than the other. Precisely, the changes of the radius when the surface

is parametrized over the x1 coordinate as an axially symmetric surface is described

by the evolution equation for u while the changes of the height when the surface is
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parametrized over Mn is described by the evolution equation for y [43]. These two

evolution equations are different because the evolution equation for u includes the

term
√

1 + u2x. At the same time, the evolution equation for y includes the term py

which is related to 1√
1+u2x

Using the degree one homogeneity of F and equation (2.11), equation (4.1) can

be rewritten as

∂u

∂t
= Ḟ 11 uxx

1 + u2x
−

n∑
j=2

Ḟ jj 1

u
= Ḟ 11 (arctan (ux))x −

n∑
j=2

Ḟ jj 1

u
. (4.2)

Since the matrix of the Weingarten map is everywhere diagonal, the matrix of Ḟ is

everywhere diagonal and Ḟ kk = ḟk for each k (see, for example, [8]), and the above

evolution equation for u becomes

∂u

∂t
= ḟ 1 (arctan (ux))x −

n∑
j=2

ḟ j
1

u
. (4.3)

Our analysis will be performed as in [3] and [6]. We will need the following flow

independent estimates.

Moreover, in view of symmetry, ḟ 2 (κ1, κ2, . . . , κn) = . . . = ḟn (κ1, κ2, . . . , κn);

throughout we will write ḟ 2.

Lemma 4.1. Any function convex (concave) F satisfying Conditions 1 also satisfies

(i.) f ≥ (≤)
1

n
H.

(ii.)
n∑
k=1

ḟk = trace
(
Ḟ kl
)
≤ (≥)1.

Proof: Parts (i) and (ii) are proved in exactly the same way as in [68], Lemma

3.2 and Lemma 3.3. Here the proof works similarly, even when Γ is a larger convex

cone than the positive cone.

To prove (i), we know f homogeneous of degree 1 and 1 = f(1, . . . , 1) =∑
i
∂f
∂ki

(1, . . . , 1). Because of the symmetry of f we found ∂f
∂ki

(1, . . . , 1) = 1
n

for

each i. Homogeneity of degree one means

f (Kκ) = Kf (κ) ,
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then

∂f

∂κi
(Kκ)K = K

∂f

∂κi
(κ) ,

which means

∂f

∂κi
(Kκ) =

∂f

∂κi
(κ) .

Particularly ∂f
∂ki

(k, . . . , k) = 1
n
. Therefore,

f (κ1, . . . , κn) = f (1 + κ1 − 1, . . . , 1 + κn − 1)

= f (1, . . . , 1) +
∑
i

∂f

∂κi
(1, . . . , 1) (κi − 1) +D2f |ỹ(κ− 1, κ− 1)

> (6)1 +
1

n

∑
i

(κi − 1)

=
1

n

∑
i

κi

=
1

n
H.

To prove (ii.), let κ = (κ1, . . . , κn), κ1 ≤ · · · ≤ κn, for allµ > 0 and (κ1 + µ, . . . , κn + µ) ∈

Γ, for f convex

µ+ κmax = (µ+ κmax) f(1)

= f(µ+ κmax, . . . , µ+ κmax)

≥ f(µ+ κ1, . . . , µ+ κmax) since
∂f

∂κi
> 0 for all i

= f(κ1, . . . , κn) + µ
∑
i

∂f

∂κi
(κ) + µ2

∑
i,j

∂2f

∂κi∂κj
(κ̃)

≥ f + µ
∑
i

∂f

∂κi
(κ) , because of the convexity

then µ+ κmax ≥ f + µ
∑

i
∂f
∂κi

(κ) and it can be written as

1 +
κmax

µ
≥ f

µ
+
∑
i

∂f

∂κi
(κ),

holds for all µ > 0 and letting µ→∞ gives the result.
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Similarly for the concave case

µ+ κmin = (µ+ κmin)f(1)

= f(µ+ κmin, . . . , µ+ κmin)

≤ f(µ+ κ1, . . . , µ+ κmin) since
∂f

∂κi
> 0 for all i

= f(κ1, . . . , κn) + µ
∑
i

∂f

∂κi
(κ) + µ2

∑
i,j

∂2f

∂κi∂κj
(κ̃)

≤ f + µ
∑
i

∂f

∂κi
(κ), because of the concavity

then µ+ κmin ≤ f + µ
∑

i
∂f
∂κi

(κ) and it can be written as

1 +
κmin

µ
≤ f

µ
+
∑
i

∂f

∂κi
(κ),

holds for all µ > 0 and letting µ→∞ gives the result. �

3 Behaviour of the flow

In this section we are interested in solutions of (4.1) with the boundary conditions

ux (0, t) = 0, ux (a, t) = g (t) , (4.4)

where g is a suitably smooth function. Although not necessary for the short time

existence theorem, Theorem 4.1, we will, for the subsequent results, assume g is

smooth, non-negative and non-increasing.

3.1 Short time existence

Our short time existence result for (4.1) is a special case of Theorem 8.5.4 from [49]

whose proof uses semigroup theory. Similar results are presented for the case of

mean curvature flow in [28] and [32].

Theorem 4.1. Given an initial function u0 ∈ C2 ([0, a]) (C2,α [0, a]), compatible

with the boundary conditions (4.4), there exists a δ > 0 such that there is a unique
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solution u ∈ C2 ([0, a]× [0, δ)) (C2,α ([0, a]× [0, δ)) to (4.1), with initial condition

u (·, 0) = u0 and satisfying the boundary conditions (4.4).

Remarks:

i) Uniform parabolicity of f is not required for the above result; Condition 1, ii)

suffices.

ii) Above we are using the standard notation for parabolic Hölder spaces, see

section 4 Chapter 2.

iii) A similar short time existence result holds for Dirichlet or more general Robin

boundary conditions, provided the initial data u0 is compatible. Such a result

is relevant for our later remarks, equation (4.20) concerning a mixed boundary

value problem.

iv) We will not pursue the optimal smoothing affect of the nonlinear operator F

here, except to note that the case of u0 ∈ C2 ([0, a]) above gives that the cur-

vatures of the hypersurface Mt are continuous, so (4.3) is uniformly parabolic

on a possibly shorter time interval
[
0, δ̃
)

. The short time existence result in

Chapter 14 of [47] then implies that u ∈ C2,1
(

[0, a]×
(

0, δ̃
))

, moreover, clas-

sical Schauder estimates then provide higher short-time regularity provided

F is sufficiently smooth. We will assume f is at least smooth enough for

our maximum principle arguments to be valid. Importantly, we will use the

C2 version of Theorem 4.1 in characterising the maximal time T of existence

(Theorem 4.2).

Note that, in the case of (4.1) under pure Neumann boundary conditions

ux(t, 0) = ux(t, a) = 0, (4.5)

or equivalently for a periodically deformed infinite cylinder, we know that u develops

a singularity in finite time T > 0. Comparison with cylinders gives lower and upper

bounds on the maximal existence time T .
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We now turn our attention to initial hypersurfaces for which the generating

function u0 is non-decreasing. The next Lemma does not require f to be convex

and it is generalised from Dziuk and Kawohl [26].

Lemma 4.2. Consider (4.1) under the boundary conditions (4.4), with F satisfying

Conditions 1, i) to iv). Let u0 be at least C2 ([0, a]).

(i.) If

(u0)x ≥ 0, (4.6)

then ux(x, t) ≥ 0 for all x ∈ [0, a], t ∈ [0, T ), that is, as long as a solution to

(4.3) exists.

(ii.) Suppose that f ≥ 0 everywhere on the initial hypersurface M0, that is, u0

satisfies

f

 − (u0)xx(
1 + (u0)

2
x

) 3
2

,
1

u0

√
1 + (u0)

2
x

, . . . ,
1

u0

√
1 + (u0)

2
x

 ≥ 0. (4.7)

Then ut ≤ 0 for all x ∈ [0, a], t ∈ [0, T ).

Proof: To prove (i) we differentiate (4.1) with respect to x

∂

∂t

∂u

∂x
=

∂

∂x

∂u

∂t

=
∂

∂x

[
−
√

1 + u2xF
]

= −
(
∂

∂x

√
1 + u2x

)
F −

√
1 + u2x

∂

∂x
F

= −
(
1 + u2x

)−1
2 uxuxxF −

√
1 + u2Ḟ j

i

∂

∂x
hij

= −
(
1 + u2x

)−1
2 uxuxxF −

√
1 + u2x

[
Ḟ 11 ∂

∂x
(k) + (n− 1)Ḟ 22 ∂

∂x
(p)

]
because

∂

∂x
f(k, p) =

∂f

∂κ1

∂k

∂x
+ (n− 1)

∂f

∂κ2

∂p

∂x

= −
(
1 + u2x

)−1
2 uxuxxF −

√
1 + u2x

{
Ḟ 11 ∂

∂x

[
−uxx

(1 + u2)
3
2

]

+(n− 1)Ḟ 22 ∂

∂x

[
1

u
√

1 + u2x

]}
. (4.8)
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Computing ∂k
∂x

and ∂p
∂x

respectively we will have

∂k

∂x
= − ∂

∂x

uxx

(1 + u2x)
3
2

= −uxxx (1 + u2x)
3
2 − 3uxx (1 + u2x)

1
2 uxuxx

(1 + u2x)
3

=
−uxxx (1 + u2x)

3
2 + 3uxx (1 + u2x)

1
2 uxuxx

(1 + u2x)
3 . (4.9)

Also

∂p

∂x
=

∂

∂x

1

u
√

1 + u2x

=
−ux (1 + u2x)

1
2 − u (1 + ux)

−1
2 uxuxx

u2 (1 + u2x)
, (4.10)

from (4.9) and (4.10) into (4.8) with v = ux we find

vt =
∂

∂t
v

= − v√
1 + v2

vxF

−
√

1 + v2Ḟ 11

[
−vxx (1 + v2)

3
2 + 3(1 + v2)

1
2vv2x

(1 + v2)3

]

− (n− 1)
√

1 + v2Ḟ 22

[
−v(1 + v2)

1
2 − u(1 + v2)

−1
2 vvx

u2(1 + v2)

]

= − v√
1 + v2

vx

[
−Ḟ 11 vx

(1 + v2)
3
2

+ (n− 1)Ḟ 22 1

u
√

1 + v2

]

+
Ḟ 11

1 + v2
vxx − 3

Ḟ 11

(1 + v2)2
vv2x

+
(n− 1)Ḟ 22

u2
v + (n− 1)

Ḟ 22

u(1 + v2)
vvx

= − 2Ḟ 11

(1 + v2)2
vv2x +

Ḟ 11

(1 + v2)
vxx + (n− 1)

Ḟ 22

u2
v.

Therefore,

vt +
2Ḟ 11

(1 + v2)2
vv2x −

Ḟ 11

(1 + v2)
vxx − (n− 1)

Ḟ 22

u2
v = 0, (4.11)
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or it can be written as

∂

∂t
v =

ḟ 1

1 + v2
vxx −

2ḟ 1

(1 + v2)2
vv2x +

n∑
j=2

ḟ j

u2
v. (4.12)

From (4.4) we see that v ≥ 0 for x = 0 and x = a and (4.6) implies v ≥ 0 for t = 0.

If v (x, 0) = 0 at any x ∈ (0, a) then this is a local minimum and by (4.12), v does

not decrease. Moreover, from (4.12), if v attains an interior zero minimum then v

does not decrease. Hence v ≥ 0 remains true under (4.1).

Similarly we prove (ii); we instead differentiate (4.1) with respect to t

∂

∂t

∂u

∂t
=

∂

∂t

[
−
√

1 + u2xF
]

= −
(
∂

∂t

√
1 + u2x

)
F −

√
1 + u2x(

∂

∂t
F )

= − (1 + ux)
−1
2 uxuxtF −

√
1 + u2x

[
Ḟ j
i

(
∂

∂t
hij

)]
= −

(
1 + u2x

)−1
2 uxuxtF −

√
1 + u2x

[
Ḟ 11 ∂

∂t
(k) + (n− 1)Ḟ 22 ∂

∂t
p

]
= −(1 + u2x)

−1
2 uxuxtF −

√
1 + u2x

{
Ḟ 11 ∂

∂t

[
−uxx

(1 + u2x)
3
2

]

+(n− 1)Ḟ 22 ∂

∂t

[
1

u(1 + u2x)
1
2

]}
. (4.13)

Computing ∂k
∂t

and ∂p
∂t

respectively we will have

∂k

∂t
=

∂

∂t

[
− uxx

(1 + u2x)
3
2

]

= −uxxt(1 + u2x)
3
2 − 3uxx(1 + u2x)

1
2uxuxt

(1 + u2x)
3

=
−uxxt(1 + u2x)

3
2 + 3uxx(1 + u2x)

1
2uxuxt

(1 + u2x)
3

, (4.14)

and

∂p

∂t
=

∂

∂t

[
1

u (1 + u2x)
1
2

]

=
−ut (1 + u2x)

1
2 − u(1 + u2x)

−1
2 uxuxt

u2(1 + u2x)
. (4.15)
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From (4.14) and (4.15) into (4.13) with v = ut we fined

vt =
∂

∂t
v

= − 1√
1 + u2x

uxuxt

[
Ḟ 11 −uxx

(1 + u2x)
3
2

+ (n− 1)Ḟ 22 1

u
√

1 + u2x

]

−
√

1 + u2xḞ
11

[
−uxxt(1 + u2x)

3
2 + 3uxx(1 + u2x)

1
2uxuxt

(1 + u2x)
3

]

− (n− 1)
√

1 + u2xḞ
22

[
−ut(1 + u2x)

1
2 − u(1 + u2x)

−1
2 uxuxt

u2(1 + u2x)

]

=
Ḟ 11

(1 + u2x)
2uxuxtuxx −

(n− 1)Ḟ 22

u (1 + ux)
2uxuxt

+
Ḟ 11

1 + u2x
uxxt −

3Ḟ 11

(1 + ux)2
uxxuxuxt

+
(n− 1)Ḟ 22

u2
ut +

(n− 1)Ḟ 22

u(1 + u2x)
uxuxt

=
−2Ḟ 11

(1 + u2x)
2
uxuxxuxt +

Ḟ 11

1 + u2x
uxxt +

(n− 1)Ḟ 22

u2
ut

=
−2Ḟ 11

(1 + u2x)
2
uxuxxvx +

Ḟ 11

1 + u2x
vxx + (n− 1)

Ḟ 22

u2
v,

satisfies the equation

∂

∂t
v =

ḟ 1

1 + u2x
vxx −

2ḟ 1

(1 + u2x)
2
uxuxxvx +

n∑
j=2

ḟ j
v

u2
. (4.16)

If v = 0 somewhere off the boundary at initial time t = 0 then this is a spatial

maximum and v cannot go positive because ḟ1

1+u2x
vxx 6 0 which stops v from increas-

ing. Suppose there is a first time when v(x0, t0) = 0 where t0 > 0, the second and

third term in (4.16) will disappear because of the local maximum. Applying the

maximum principle to (4.16), this cannot occur at an interior point. At a boundary

point, in view of (4.4), we have vx (0, t) = 0 and vx (a, t) = g′ (t) ≤ 0. By the Hopf

Lemma (see, for example, [59]) a boundary maximum would have vx (0, t) < 0 or

vx (a, t) > 0, so there can be no boundary maximum. We conclude that v ≤ 0 is

preserved. �
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Remarks:

i) Since the cone of definition of f is larger than the positive cone, f > 0 does

not immediately follow from Conditions 1 ii) and iii) via the Euler identity as

in the case of convex hypersurfaces. Consequently, the above result Lemma

4.2, (ii) is useful because it implies that f does not become negative under

the flow.

ii) In the case of pure Neumann conditions (g ≡ 0) we can construct an entire

C2 solution of (4.1) by reflecting u : [0, a] × [0, T ) in the x1 axis to create a

spatially even function on [−a, a]× [0, T ) and then extending this periodically

in space to R × [0, T ). Such a construction is done in [18, 39]. We can then

apply the maximum principle considering only interior extrema. In particular,

the speed F evolves according to

∂

∂t
F = LF + Ḟ klhmk hmlF , (4.17)

Applying the maximum principle to (4.17) we observe that F remains bounded

below by its initial minimum, for more details of the proof see Corollary 5.1.

Further, under (3.1), as in [3] for example, the mean curvature evolves accord-

ing to

∂

∂t
H = LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhmk hmlH.

In the case that F is convex, that H ≥ 0 remains true under (4.1) now follows

directly by the maximum principle.

We may specify in a similar way as in [50] a condition on g which ensures that

the solution u exists for a finite maximal time T > 0. Here we need F convex, so we

can use Lemma 4.1, (i). Of course, as commented earlier, in the special case that

g ≡ 0 we know as in [26] that the maximal existence time is finite by comparing the

solution of (4.1), with initial data u0, with an enclosing cylinder; such a comparison

does not require F convex nor F homogeneous.
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Lemma 4.3. Suppose in addition to (4.6) and (4.7) that

arctan g(0) <
(n− 1) a2∫ a
0
u0(x) dx

. (4.18)

Then the maximal existence time T of solution u to (4.1) is finite.

Proof: Otherwise a solution u exists and is positive for every finite time. We define

the function E : [0,∞) → R+ by E(t) =
∫ a
0
u(x, t) dx. By differentiating E(t) we

obtain

E ′(t) =

∫ a

0

∂u

∂t
(x, t)dx

=

∫ a

0

(
−
√

1 + u2xF (ω)
)
dx. (4.19)

Using Lemma 4.1,( i) in (4.19), we obtain

E ′(t) ≤ −
∫ a

0

√
1 + u2x

H

n
dx

= − 1

n

∫ a

0

√
1 + u2xH dx

=
1

n

∫ a

0

(arctanux)x dx−
n− 1

n

∫ a

0

1

u
dx

=
1

n
arctanux |a0 −

n− 1

n

∫ a

0

1

u
dx

=
1

n
arctanux(a, t)−

1

n
arctanux(0, t)−

n− 1

n

∫ a

0

1

u
dx

=
1

n
arctanux(a, t)−

n− 1

n

∫ a

0

1

u
dx

=
1

n
arctan g(t)− n− 1

n

∫ a

0

1

u
dx.

By Hölder’s inequality,
∫
uvdx ≤

(∫
u2dx

) 1
2
(∫

v2dx
) 1

2

−
∫ a

0

1

u
dx

∫ a

0

u dx ≤ −a2,

−
∫ a

0

1

u
dx ≤ − a2∫ a

0
u dx

.
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Then

E ′(t) ≤ 1

n
arctan g(t)− n− 1

n

a2∫ a
0
u dx

≤ 1

n
arctan g(0)− n− 1

n

a2∫ a
0
u0 dx

< 0.

Integrating E ′

∫ t

δ

E ′(τ)dτ ≤
∫ t

δ

{
1

n
arctan g(0)− n− 1

n

a2∫ a
0
u0

}
dτ∫ t

δ

E ′(τ)dτ ≤
{

1

n
arctan g(0)− n− 1

n

a2∫ a
0
u0

}
(t− δ)

lim
δ→0+

∫ t

δ

E ′(τ)dτ ≤ lim
δ→0+

{
1

n
arctan g(0)− n− 1

n

a2∫ a
0
u0

}
(t− δ)

lim
δ→0+

[E(t)− E(δ)] ≤
{

1

n
arctan g(0)− n− 1

n

a2∫ a
0
u0

}
(t)

E(t)− E(0+) ≤
{

1

n
arctan g(0)− n− 1

n

a2∫ a
0
u0

}
(t)

where E(0+) = lim
δ↘0

E(δ)

E(t) ≤ E(0+) +

{
1

n
arctan g(0+)− n− 1

n

a2∫ a
0
u0

}
(t), for all t > 0.

We obtain

E(t) ≤ E(0) +
1

n

[
arctan g(0)− (n− 1) a2∫ a

0
u0 dx

]
t,

which implies that E becomes negative in finite time, a contradiction. �

Remarks:

i) If the boundary condition (4.4) is replaced by the mixed condition

ux (0, t) = 0, u (a, t) = h (t) , (4.20)

for a positive function h which is bounded by 2(n−1)a
π

, then similar arguments

show that again the flow speed remains non-positive and, using the energy

E (t) =
∫ a
0
u2dx, the maximal existence time is finite.
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ii) The second spatial derivative uxx also satisfies a parabolic equation. The

standard linear version of the Sturmian theorem gives that the number of

zeros of uxx does not increase during the evolution, see Lemma 6.1. Although

we have a fully nonlinear case we can use the standard linear version of the

Sturmian theorem because the coefficients are bounded. This tells us that

the number of sign-changes of the axial curvature does not increase under the

evolution, a property that could be of interest in applications. We refer the

reader to [20, 31] for details of Sturmian theorem and its applications. We

apply Sturmian theorem in Chapters 6 and 7 of this thesis.

4 Singularity

Now we characterise the maximal existence time T as the time of a curvature sin-

gularity, that is, when the norm |A| of the second fundamental form becomes un-

bounded. More specifically, we show that if the axial curvature κ1 does not blow up

at x = a as t → T , then the rotational curvatures blow up at x = 0 and in view of

the formula for κj, j = 2, . . . , n, we must have u (0, t) → 0 as t → T . This result

is also analogous to the corresponding result for the mean curvature flow in [50].

Critical to the argument in [50] was that the mean curvature remains positive under

the evolution. We do not have this in general, but the structure condition on f ,

Condition 2, permits a similar deduction. In the case of pure Neumann conditions,

we may instead see that the minimum of the mean curvature does not decrease

under the evolution, as discussed in Remark ii) following Lemma 4.2.

Theorem 4.2. Suppose that F satisfies Conditions 1 and 2. Suppose in addition

to (4.6), (4.7) and (4.18) that limt→T κ
2
1(a, t) < ∞. Then limt→T κ

2
j(0, t) = ∞ for

j = 2, . . . , n.

Proof: Suppose for the sake of establishing a contradiction that limt→T u(0, t) =

δ > 0. Then for j = 2, . . . , n we have that for all (x, t) ∈ [0, a]× [0, T ),

κ2j(x, t) =
1

u2(x, t)(1 + u2x(x, t))
≤ 1

u2 (x, t)
≤ 1

u2 (0, t)
≤ 1

δ2
. (4.21)
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It follows from Lemma 4.2, (ii) that under the evolution

f (κ1, κ2, . . . , κ2) = κ2 f

(
κ1
κ2
, 1, . . . , 1

)
≥ 0.

Since the rotational curvatures κ2 > 0, this means that for z = κ1
κ2

,

f (z, 1, . . . , 1) ≥ 0,

as long as the solution exists. Condition 2 on F implies therefore that

z =
κ1
κ2
≥ −c0,

for some c0 > 0, which, in terms of derivatives of u means

−uuxx
1 + u2x

≥ −c0,

that is, in view of our assumption, we have on [0, a]× [0, T ) that

uxx
1 + u2x

≤ c0
u
≤ c0

δ
. (4.22)

Multiplying equation (4.16) by −e−λt

ḟ 1

1 + u2x
vxx
(
−e−λt

)
− 2ḟ 1uxuxx

(1 + u2x)
2 vx

(
−e−λt

)
+

n∑
j=2

ḟ j

u2
v
(
−e−λt

)
− vt

(
−e−λt

)
= 0.

(4.23)

Set w = −v e−λt we have, where v = ut, then

wt = −vte−λt + vλe−λt ⇒ wt = −vte−λt − λw ⇒ vte
−λt = −wt − λw,

wx = −vxe−λt,

wxx = −vxxe−λt,
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so equation (4.23) can be written

ḟ 1

1 + u2x
wxx −

2ḟ 1uxuxx
(1 + u2x)

2
wx +

n∑
j=2

ḟ j

u2
w − λw − wt = 0.

The function w satisfies the equation

∂

∂t
w =

ḟ 1

1 + u2x
wxx −

2ḟ 1

(1 + u2x)
2
uxuxxwx +

(
n∑
j=2

ḟ j
1

u2
− λ

)
w.

In view of Lemma 4.1, (ii) and our assumption, taking λ > 1
δ2

ensures the coefficient

of w is negative and so w cannot obtain an interior maximum. Further,

w (x, 0) =
√

1 + u2x (x, 0)F ≤ C (M0) . (4.24)

Let us now show that w is bounded on the sides x = 0 and x = a. We have

w(0, t) =

(
− ḟ

1uxx
1 + u2x

+
n∑
j=2

ḟ j
1

u

)∣∣∣∣∣
(0,t)

e−λt ≤ 1

u

∣∣∣∣
(0,t)

e−λt,

and at x = 0, uxx ≥ 0 in view of our assumption and Lemma 4.2, (i), so using also

Lemma 4.1, (ii) we have

w(0, t) ≤ 1

δ
.

Similarly, using our assumption and that g (t) is nonincreasing, there is a non-

positive constant α ≤ uxx (a, t) for all t ∈ [0, T ) and

w(a, t) ≤

(
−ḟ 1α +

n∑
j=2

ḟ j
1

u

)∣∣∣∣∣
(a,t)

e−λt,

from which it follows using Lemma 4.1, (ii) that on [0, T )

w(a, t) ≤
(

1

δ
− α

)
e−λt <

1

δ
− α.

Therefore, together with (4.24) we have an upper bound for w, that is

w = −ute−λt ≤ C (M0, δ, T ) ,
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and so on [0, a]× [0, T ),

−ut =
√

1 + u2xF ≤ CeλT .

Using now Lemma 4.1, (i), we obtain

κ1 =
−uxx
1 + u2x

≤ nCeλT .

Together with (4.22) we have on [0, a]× [0, T ) that

κ21 ≤ max

(
c20
δ2
, 4C

2
e2λT

)
. (4.25)

Now the assumption together with Lemma 4.2, implies uT (x) = limt→T u (x, t) ≥ 0

exists, and (4.21) and (4.25) imply uT generates a C2 axially symmetric hypersurface

which could be used as an initial hypersurface in the short time existence result,

Theorem 4.1, contradicting the maximality of T . Thus our assumption is false and

the theorem is proved. �

Remark: Since both Conditions 1 and 2 are required in Theorem 4.2 this imply

that f is defined in the whole space.

5 Extension

In this section we are interested in generalising our earlier results to the case where

the flow speed is homogeneous of degree k > 0, that is,

∂X

∂t
(x, t) = −F k (W (x, t)) ν (x, t) ,

where F continues to satisfy Conditions 1. Similar flows of hypersurfaces have been

considered before, particularly flows by powers of Gauss curvature and powers of

the mean curvature and often for surfaces, usually in the context of convex initial

data or translating solutions [1, 5, 6, 9, 15, 16, 23, 36, 41, 42, 61, 62, 63, 64].
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The corresponding evolution equation of the graph function u is now

∂u

∂t
= −

√
1 + u2x F

k. (4.26)

Under the flow (4.26), we have the following evolution equations.

Lemma 4.4.

(i.) ∂
∂t
ux = kFk−1

1+u2x
ḟ 1 (ux)xx+(1− 3k) Fk−1ḟ1ux

(1+u2x)
2 ((ux)x)

2+(n−1) (k − 1) Fk−1ḟ2ux
u(1+u2x)

(ux)x

+ (n− 1)kF
k−1ḟ2

u2
ux.

(ii.) ∂
∂t
ut = kFk−1

1+u2x
ḟ 1 (ut)xx + (1− 3k) Fk−1ḟ1uxuxx

(1+u2x)
2 (ut)x + (n− 1) (k − 1)

Fk−1ḟ2ux(ut)x
u(1+u2x)

+ (n− 1)kF
k−1ḟ2

u2
ut.

(iii.) ∂
∂t
F k = LF k + kḞ ijh m

i hmjF
k.

where we have used the notation L = kF k−1Ḟ ij∇i∇j.

Proof: To prove (i)

∂

∂t

∂u

∂x
=

∂

∂x

∂u

∂t

=
∂

∂x

[
−
√

1 + u2xF
k
]

= −
(
∂

∂x

√
1 + u2x

)
F k −

√
1 + u2x

∂

∂x
F k

= −
(
1 + u2x

)−1
2 ux(ux)xF

K −
√

1 + u2kF k−1Ḟ j
i

∂

∂x
hij

= −(1 + u2x)
−1
2 ux(ux)xF

k − kF k−1
√

1 + u2x

[
ḟ 1 ∂

∂x
(k) + (n− 1)ḟ 2 ∂

∂x
(p)

]
= −(1 + u2x)

−1
2 ux(ux)xF

k − kF k−1
√

1 + u2x

{
ḟ 1 ∂

∂x

[
−(ux)x

(1 + u2)
3
2

]

+(n− 1)ḟ 2 ∂

∂x

[
1

u
√

1 + u2x

]}
, (4.27)
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∂

∂t
ux = − ux√

1 + u2xx
(ux)xF

k−1F

− kF k−1
√

1 + u2xḟ
1

[
−(ux)xx(1 + u2x)

3
2 + 3(1 + u2x)

1
2ux((ux)x)

2

(1+2
x)

3

]

− (n− 1)kF k−1
√

1 + u2xḟ
2

[
−ux(1 + u2x)

1
2 − u(1 + u2x)

−1
2 ux(ux)x

u2(1 + u2x)

]

= − ux√
1+2

x

(ux)xF
k−1

[
−ḟ 1 (ux)x

(1 + u2x)
3
2

+ ḟ 2 (n− 1)

u
√

1 + u2x

]

+ kF k−1 ḟ 1

1 + u2x
(ux)xx − 3kF k−1 ḟ 1

(1 + u2x)
2
ux((ux)x)

2

+ (n− 1)kF k−1 ḟ
2

u2
ux + (n− 1)kF k−1 ḟ 2

u(1 + u2x)
ux(ux)x

=
kF k−1

1 + u2x
ḟ 1 (ux)xx + (1− 3k)

F k−1ḟ 1ux

(1 + u2x)
2 ((ux)x)

2

+ (n− 1) (k − 1)
F k−1ḟ 2ux
u (1 + u2x)

+ (n− 1)
kF k−1ḟ 2

u2
ux. (4.28)

It is similar to prove (ii)

∂

∂t

∂u

∂t
=

∂

∂t

[
−
√

1 + u2xF
k
]

= −
(
∂

∂t

√
1 + u2x

)
F k −

√
1 + u2x

(
∂

∂t
F k

)
= −(1 + ux)

−1
2 ux(ux)tF

k −
√

1 + u2xkF
k−1
[
Ḟ j
i

(
∂

∂t
hij

)]
= −(1 + u2x)

−1
2 ux(ux)tF

k − kF k−1
√

1 + u2x

[
ḟ 1 ∂

∂t
(k) + (n− 1)ḟ 2 ∂

∂t
p

]
= −(1 + u2x)

−1
2 ux(ux)tF

k−1F − kF k−1
√

1 + u2x

{
ḟ 1 ∂

∂t

[
−(ux)x

(1 + u2x)
3
2

]

+(n− 1)ḟ 2 ∂

∂t

[
1

u(1 + u2x)
1
2

]}
, (4.29)
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∂

∂t
ut = − 1√

1 + u2x
ux(ux)tF

k−1

[
ḟ 1 −uxx

(1 + u2x)
3
2

+ (n− 1)ḟ 2 1

u
√

1 + u2x

]

− kF k−1
√

1 + u2xḟ
1

[
−(ux)xt(1 + u2x)

3
2 + 3uxx(1 + u2x)

1
2ux(ux)t

(1 + u2x)
3

]

− (n− 1)kF k−1
√

1 + u2xḟ
2

[
−ut(1 + u2x)

1
2 − u(1 + u2x)

−1
2 ux(ux)t

u2(1 + u2x)

]

=
ḟ 1

(1 + u2x)
2
F k−1ux(ux)tuxx −

(n− 1)ḟ 2

u(1 + ux)2
F k−1ux(ux)t

+ kF k−1 ḟ 1

1 + u2x
(ux)xt − kF k−1 3ḟ 1

(1 + ux)2
uxxux(ux)t

+ kF k−1 (n− 1)ḟ 2

u2
ut + kF k−1 (n− 1)ḟ 2

u(1 + u2x)
ux(ux)t

=
kF k−1

1 + u2x
ḟ 1 (ut)xx + (1− 3k)

F k−1ḟ 1uxuxx

(1 + u2x)
2 (ut)x

+ (n− 1) (k − 1)
F k−1ḟ 2ux (ut)x
u (1 + u2x)

+ (n− 1)
kF k−1ḟ 2

u2
ut. (4.30)

To prove (iii)

∂

∂t
F k = kF k−1 ∂

∂t
F

= kF k−1Ḟ j
i

∂

∂t
hij

= kF k−1Ḟ j
i

[
∇i∇jF

k + F khimhmj
]

= kF k−1Ḟ j
i ∇i∇jF

k + kF k−1Ḟ j
i F

khimhmj

= LF k + kḞ ijhmjh
m
i F

k. (4.31)

�

Using these equations and similar arguments as in the previous section we have

the following consequences.

Corollary 4.1. Suppose the initial hypersurface M0 has f > 0 everywhere and

consider the flow (4.26).

i) With the boundary conditions (4.4), ux ≥ 0 and ut ≤ 0 continue to hold under

the flow.
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ii) With the boundary conditions (4.20), ut < 0 continues to hold under the flow.

iii) In the case of pure Neumann boundary conditions (4.4) with g ≡ 0, the mini-

mum of F does not decrease under the flow.

We have specified M0 to have f > 0 strictly now, so our result Corollary 4.1,

ii) is also a strict inequality. This is to ensure equation (4.26) is strictly parabolic

for any k > 0, at least for a short time. Therefore a similar argument as before

gives an equivalent local existence result to Theorem 4.1 in the case that the initial

hypersurface satisfies minM0 F > 0.

In the case of pure Neumann boundary conditions we can compare the surface

Mt evolving via (4.26) with an enclosing cylinder. The cylinder shrinks to a line

segment in finite time, providing a sharp bound on the time T by which the solution

hypersurface Mt must have ceased to exist.

Finally in the case that k ≤ 1, pure Neumann boundary conditions and F satisfies

Conditions 1 and 2 we classify the singularity at time T , using a similar argument

as in the proof of Theorem 4.2.

Theorem 4.3. Let M0 be such that (u0)x ≥ 0 and minM0 f > 0. Consider the flow

(4.26) with k ≤ 1 and pure Neumann boundary conditions. Suppose limt→T κ
2
1 (a, t) <

∞. Then limt→T κ
2
j (0, t) =∞ for j = 2, . . . , n.

Proof: Suppose limt→T u (0, t) = δ > 0. Then, as in the proof of Theorem 4.2,

κ2j (x, t) ≤ 1

δ2
,

for all (x, t) ∈ [0, a]× [0, T ). It follows using Condition 2 in the same way as in the

proof of Theorem 4.2 that on [0, a]× [0, T ),

uxx
1 + u2x

≤ c0
δ
,

for some finite c0 > 0.
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Multiplying equation (ii) Lemma 4.4 by −e−λt, For a constant λ to be chosen,

kF k−1

1 + u2x
ḟ 1 (ut)xx (−e−λt) + (1− 3k)

F k−1ḟ 1uxuxx

(1 + u2x)
2 (ut)x (−e−λt)

+ (n− 1) (k − 1)
F k−1ḟ 2ux (ut)x
u (1 + u2x)

(−e−λt) + (n− 1)
kF k−1ḟ 2

u2
ut(−e−λt)

− utt(−e−λt) = 0,

then

kF k−1

1 + u2x
ḟ 1wxx + (1− 3k)

F k−1ḟ 1uxuxx

(1 + u2x)
2 wx

+ (n− 1) (k − 1)
F k−1ḟ 2ux
u (1 + u2x)

wx + (n− 1)
kF k−1ḟ 2

u2
w − λw − wt = 0.

Now the evolution equation for w = −ute−λt can be written as before

∂

∂t
w =

kF k−1

n (1 + u2x)
ḟ 1wxx + (1− 3k)

F k−1

n(1 + u2x)
2
uxuxxḟ

1wx

+ (k − 1)
n− 1

n

F k−1

u (1 + u2x)
uxḟ

2wx +

(
(n− 1)

n

kF k−1ḟ 2

u2
− λ

)
w. (4.32)

If we apply the maximum principle to (4.32), we need the right sign coefficient of

the zero order term. Because of the convexity of F , we have traceḞ 6 1 and since

ḟ 1 > 0 we further have ḟ 2 6 1, see Lemma 4.1. In addition, we need n−1
n

kFk−1

u2
to

be bounded. Since k ≤ 1, F will have a negative power, then F k−1 ≤ (minM0 F )k−1

holds under the flow, by Corollary 4.1, iii). With the bound of u, see Theorem 4.1,

we can again choose large λ such that the coefficient of w is negative, so w cannot

obtain an interior maximum. The remainder of the proof is the same as for Theorem

4.2, where we now use our generalisation to the short time existence result of this

section. �
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Chapter 5

Curvature Pinching Estimate

1 Introduction

Using a maximum principle argument we can obtain “pinching ratio” bound. That

is a bound on the supremum of the ratio of largest to smallest principal curvatures

at each point over the surface.

In this Chapter we remove the convexity condition of the speed, but the speed is

homogeneous of degree one in the principal curvatures and the boundary conditions

are pure Neumann. Moreover, we classify the singularities of the flow of a larger class

of axially symmetric hypersurfaces as Type I. Our approach to remove the convexity

requirement on the speed is based upon earlier work of Andrews for evolving convex

surfaces [5, 8]; in order to obtain a “curvature pinching estimate” the arguments

may be adapted due to axial symmetry case. Constructions were also used in [52,

53] and very recently in [14] to control a pinching function under fully nonlinear

curvature flow of nonconvex surfaces. The monotonicity of these curvature pinching

functions is obtained via application of the maximum principle on the evolving

surfaces; constructions use heavily the Codazzi equations and homogeneity of the

speed and the pinching function which provide sufficient information in the case of

surfaces. However, in this Chapter, we are able to establish curvature pinching for

axially symmetric hypersurfaces, that is, for n-dimensional hypersurfaces with Sn−1

symmetry, since enough of the gradient terms disappear from the evolution equation

for the pinching function to permit a similar analysis to earlier work. Preservation
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of a pinching ratio under the flow implies uniform parabolicity of the flow equation

and bounds above and below on all symmetric functions of the principal curvatures

that are homogeneous of degree zero.

Let us briefly mention some related studies on classification of the singularity in

curvature flow of hypersurfaces. In [39] singularity of the mean curvature flow of

axially symmetric surfaces with Neumann boundary conditions were shown to be

Type I. Later Huisken and Sinestrari obtained asymptotic convexity estimate [40]

that states mean convex initial hypersurfaces without pinching estimate under mean

curvature flow become weakly convex at a singularity. Additional descriptions of sin-

gularities in the positive mean curvature case were provided with the monotonicity

formula of Huisken [39] and the Harnack inequality of Hamilton [35]. Unfortunately,

monotonicity formulas are not available for other kinds of flows. Likewise, a Harnack

inequality to classify Type II singularities is not generally available except for the

sub-class of flows as in [4]. We refer the reader to [14, 13] for more information.

2 Elementary flow behaviour

As earlier the evolving graph function u(x, t), describes an axially symmetric hyper-

surface flowing with speed in the normal direction as in (3.1). Because we have pure

Neumann boundary conditions, we can reflect that the x = 0 plane to create an even

graph function which we then extend to a periodic solution of (4.1) on R × [0, T ).

Then in applying the maximum principle we need to only consider interior extrema.

This idea was also used in [18, 39]. Here we use evolution equations mainly on

the evolving hypersurface while in Chapter 4 we worked mainly on [0, a] × [0, T ).

Specifically, we have the following evolution equations.

Lemma 5.1. Under the flow (4.1),

(i.) ∂
∂t
F = LF + Ḟ klhmk hmlF .

(ii.) ∂
∂t
H = LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhmk hmlH.

(iii.) ∂
∂t
κ2 = Lκ2 + Ḟ klhmlh

m
k κ2 + 2Ḟ 11q2 (κ1 − κ2) .
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Proof: Equations (i) and (ii) are exactly as in Lemma 3.4. We note that we

can actually compute the evolution of the individual principal curvatures because

the Weingarten map is everywhere diagonal in our setting. Equations (iii) can be

obtained as (iv) Lemma 3.5 as we have (n− 1) rotational curvature. �

Applications of the maximum principle to Lemma 5.1 lead to the following.

Corollary 5.1. Under the flow (4.1),

i) If F ≥ 0 everywhere on M0, then minMt F ≥ minM0 F .

ii) If F is convex then if H ≥ 0 everywhere on M0, then minMt H ≥ minM0 H.

Proof: These are direct applications of the maximum principle in view of Conditions

1 ii) and iii). Because κ = (κ1, ...., κn) : κi > 0 for all i and ∂f
∂κ1

> 0 implies that

Ḟ klhkmh
m
l = ḟ 1κ21 + (n− 1) ḟ 2κ22 ≥ 0. (5.1)

For part ii), convexity of F ensures that the gradient term has the correct sign so

this term F̈ kl,rs∇ihkl∇jhrs is positive. The minimum of F is a Lipschitz continuous

function, so is differentiable for almost every t. Therefore,

d

dt
min
Mt

H ≥ Ḟ klhml hkm min
M0

H,

so if it is initially positive it remains positive. For details of this kind of ODE

comparison we refer to [34]. �

Remarks:

(i) As a consequence of our pinching estimate in Section 3 of this Chapter we will

see that in fact H > 0 remains true under (4.1) even if F is not convex.

(ii) The Euler identity gives

f = ḟ 1κ1 + ḟ 2κ2 + . . .+ ḟnκn = ḟ 1κ1 + (n− 1) ḟ 2κ2,

so in view of Conditions 1, iii), F remains positive and everywhere we must

have at least one of the principal curvatures as positive and therefore |A| > 0
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holds under the flow.

The evolution equation for κ2 provides directly a uniform lower bound.

Proposition 5.1. Under the flow (4.1), the minimum of the rotational curvatures

κ2 does not decrease in time, that is

min
Mt

κ2 ≥ min
M0

κ2 := c0 > 0.

Proof: Since q = −ux κ2, we may rewrite Lemma 5.1, (iii) as

∂

∂t
κ2 = Lκ2 + Ḟ klhkmh

m
l κ2 + 2Ḟ 11u2xκ

2
2 (κ1 − κ2) .

Using Lemma 2.2, this can be rewritten as

∂

∂t
κ2 = Lκ2 + Ḟ klhkmh

mκ2 + 2Ḟ 11 1

u

(
ux

1 + u2x

)
∇1κ2.

As in (5.1), the zero order term is non-negative. Also, the coefficient of ∇1κ2, while

u > 0, is bounded because the function p(t) = t
1+t2

is bounded as −1
2
(t2 + 1) 6

t 6 1
2
(t2 + 1), under the flow (4.1) the minimum of κ2 does not, by the maximum

principle. �

Remark: In view of (2.11), precisely κ2 = 1

u
√

1+u2x
so proposition 5.1 implies

min
M0

κ2 = min
M0

1

u
√

1 + u2x
= c0 > 0,

then √
1 + u2x ≤

1

c0u
,

that is, while u > 0 the gradient ux remains bounded. We will provide an analogous

bound on uxx in Section 3.
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3 The pinching estimate

We first characterise the gradient terms at extrema of degree zero homogeneous

functions of the curvatures evolving under (4.1). A similar result was established

in [14] for surfaces that were not necessarily axially symmetric. Define G : Γ → R,

G(W) = g(κ1, . . . , κn) as a curvature function that is smooth. We can compute the

evolution equation as follows

∂

∂t
G = Ġj

i

∂

∂t
hij

= Ġj
i

[
Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh

m
l h

i
j

]
= Ġij

[
Ḟ kl∇k∇lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh

m
l hij

]
, (5.2)

but

LG = Ḟ kl∇k∇lG = Ḟ kl∇k(Ġ
i
j∇lh

i
j)

= Ḟ klG̈ij,rs∇lhrs∇khij + Ḟ klĠij∇k∇lhij,

so we can have Ḟ klĠij∇k∇lhij = LG− Ḟ klG̈ij,rs∇lhrs∇khij and then equation (5.2)

becomes

∂

∂t
G = LG− Ḟ klG̈ij,rs∇lhrs∇khij + ĠijF̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh

m
l Ġ

ijhij. (5.3)

If G is homogeneous of degree zero the last term in (5.3) disappears because of the

Euler relation that gives Ġijhij = 0, see Appendix Section 2, and then the evolution

equation of G becomes

∂

∂t
G = LG− Ḟ klG̈ij,rs∇lhrs∇khij + ĠijF̈ kl,rs∇ihkl∇jhrs. (5.4)

For any smooth symmetric function G (W) = g (κ (W)) homogeneous of degree

α 6= 0 equation (5.3) becomes

∂

∂t
G = LG− Ḟ klG̈ij,rs∇lhrs∇khij + Ġj

i F̈
kl,rs∇ihkl∇jhrs + αGḞ klhkmh

m
l . (5.5)
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Lemma 5.2. Let G (W) = g (κ (W)) be a smooth, symmetric, homogeneous of

degree zero function in the principal curvatures of the axially symmetric hypersurface

given by (2.1). At any stationary point of G for which Ġ is nondegenerate,

(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs =

2 f ġ1

κ2 (κ2 − κ1)
(∇1h22)

2 .

Proof: It follows by a short contradiction argument, as in [14], that wherever Ġ is

nondegenerate we have that κ1, κ2 6= 0 and κ2 6= κ1. Using orthonormal coordinates

at a stationary point of G, from (3.2) we have the non-zero components of F̈ and

similarly for G̈ as follows

F̈ 11,11 = f̈ 11; F̈ 11,22 = F̈ 22,11 = f̈ 12,

F̈ 22,22 = f̈ 22; F̈ 12,12 = F̈ 21,21 =
ḟ 2 − ḟ 1

κ2 − κ1
. (5.6)

Using this with Lemma 2.2 we compute the following

R1 = Ḟ klG̈pq,rs∇khpq∇lhrs

= ḟ 1g̈11(∇1h11)
2

+ ḟ 1g̈22(∇1h22)
2 + ....+ ḟ 1g̈nn(∇1hnn)2

+ (n− 2)ḟ 1g̈22∇1h22∇1h22 + ....+ (n− 2)ḟ 1g̈2n∇1h22∇1hnn

because g̈22 = g̈23 = · · · = g̈2n

+ 2ḟ 1g̈12∇1h11∇1h22 + ....+ 2ḟ 1g̈1n∇1h11∇1hnn

+ 2ḟ 2g̈12,12(∇2h12)
2 + .....+ 2ḟ 2g̈1n,1n(∇2h1n)2

= ḟ 1g̈11(∇1h11)
2

+ (n− 1)ḟ 1g̈22(∇1h22)
2 + (n− 1)(n− 2)ḟ 1g̈22(∇1h22)

2

because ∇1h22 = ∇1h33 = · · · = ∇1hnn

+ 2(n− 1)ḟ 1g̈12∇1h11∇1h22

+ 2(n− 1)ḟ 2g̈12,12(∇2h12)
2,
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so

R1 = ḟ 1g̈11(∇1h11)
2

+ (n− 1)2ḟ 1g̈22(∇1h22)
2

+ 2(n− 1)ḟ 1g̈12∇1h11∇1h22

+ 2(n− 1)ḟ 2g̈12,12(∇2h12)
2. (5.7)

Because ∇2h12 = ∇1h22 we rewrite R1 as follows

R1 = ḟ 1g̈11(∇1h11)
2 + (n− 1)2ḟ 1g̈22(∇1h22)

2

+ 2(n− 1)ḟ 1g̈12∇1h11∇1h22 + 2(n− 1)ḟ 2g̈12,12(∇1h22)
2, (5.8)

then

R1 = ḟ 1
[
g̈11(∇1h11)

2 + 2(n− 1)g̈12∇1h11∇1h22 + (n− 1)2g̈22(∇1h22)
2
]

+ 2(n− 1)ḟ 2g̈12,12(∇1h22)
2

= ḟ 1
[
g̈11(∇1h11)

2 + 2(n− 1)g̈12∇1h11∇1h22 + (n− 1)2g̈22(∇1h22)
2
]

+ 2(n− 1)ḟ 2

(
ġ1 − ġ2

κ1 − κ2

)
(∇1h22)

2. (5.9)

Similarly

R2 = ĠklF̈ pq,rs∇khpq∇lhrs

= ġ1f̈ 11(∇1h11)
2 + (n− 1)2ġ1f̈ 22(∇1h22)

2

+ 2(n− 1)ġ1f̈ 12∇1h11∇1h22 + 2(n− 1)ġ2f̈ 12,12(∇1h22)
2

= ġ1
[
f̈ 11(∇1h11)

2 + 2(n− 1)f̈ 12∇1h11∇1h22 + (n− 1)2f̈ 22(∇1h22)
2
]

+ 2(n− 1)ġ2f̈ 12,12(∇1h22)
2

= ġ1
[
f̈ 11(∇1h11)

2 + 2(n− 1)f̈ 12∇1h11∇1h22 + (n− 1)2f̈ 22(∇1h22)
2
]

+ 2(n− 1)ġ2

(
ḟ 1 − ḟ 2

κ1 − κ2

)
(∇1h22)

2, (5.10)

79



so

R2 −R1 =
(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs

= (ġ1f̈ 11 − ḟ 1g̈11)(∇1h11)
2 + 2(n− 1)(f̈ 12ġ1 − ḟ 1g̈12)∇1h11∇1h22

+ (n− 1)

[
(n− 1)(ġ1f̈ 22 − ḟ 1g̈22) + 2

��
�*

ġ2ḟ 2 − ġ2ḟ 1
��

��*−ḟ 2ġ2 + ḟ 2ġ1

κ2 − κ1

]
(∇1h22)

2.

(5.11)

We know

∇kG = Ġpq∇khpq = ġ1∇kh11 + (n− 1)ġ2∇kh22,

so

∇1G = ġ1∇1h11 + (n− 1)ġ2∇1h22,

∇2G = ġ1∇2h11 + (n− 1)ġ2∇2h22,

and since G is nondegenerate,

∇1h11 =
1

ġ1
[
∇1G− (n− 1)ġ2∇1h22

]
,

∇2h22 =
1

(n− 1)ġ2
[
∇2G− ġ1∇2h11

]
.

Then (5.11) becomes

R2 −R1 = (ġ1f̈ 11 − ḟ 1g̈11)

[
1

ġ1
[∇1G− (n− 1)ġ2∇1h22

]2
+ 2(n− 1)(f̈ 12ġ1 − ḟ 1g̈12)

[
1

ġ1
[
∇1G− (n− 1)ġ2∇1h22

]]
∇1h22

+ 2(n− 1)

[
−ġ2ḟ 1 + ḟ 2ġ1

κ2 − κ1

]
(∇1h22)

2

+ (n− 1)
[
(n− 1)(ġ1f̈ 22 − ḟ 1g̈22)

]
(∇1h22)

2,
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R2 −R1 =
1

(ġ1)2

[
ġ1f̈ 11 − ḟ 1g̈11

]
(∇1G)2 − 2(n− 1)

(ġ1)2
∇1Gġ

2∇1h22

[
ġ1f̈ 11 − ḟ 1g̈1

]
+

1

(ġ1)2
(n− 1)2(ġ2)2(∇1h22)

2
[
ġ1f̈ 11 − ḟ 1g̈11

]
+

2(n− 1)

ġ1

[
f̈ 12ġ1 − ḟ 1g̈12

]
∇1G∇1h22

− 2(n− 1)2

(ġ1)

[
f̈ 12ġ1 − ḟ 1g̈12

]
(∇1h22)

2(ġ2) + 2(n− 1)

[
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1

]
(∇1h22)

2

+ (n− 1)
[
(n− 1)(ġ1f̈ 22 − ḟ 1g̈22)

]
(∇1h22)

2

=
1

(ġ1)2

[
ġ1f̈ 11 − ḟ 1g̈11

]
(∇1G)2

+
2(n− 1)

ġ1

[
(f̈ 12ġ1 − ḟ 1g̈12)− ġ2

ġ1
(ġ1f̈ 11 − ḟ 1g̈11)

]
∇1G∇1h22

+ 2(n− 1)
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1
(∇1h22)

2

+ (n− 1)

[
(ġ2)2

(ġ1)2
(n− 1)(ġ1f̈ 11 − ḟ 1g̈11)− 2

ġ2

ġ1
(n− 1)(f̈ 12ġ1 − ḟ 1g̈12)

+(n− 1)(ġ1f̈ 22 − ḟ 1g̈22)
]

(∇1h22)
2

=
1

(ġ1)2

[
ġ1f̈ 11 − ḟ 1g̈11

]
(∇1G)2

+
2(n− 1)

ġ1

[
(f̈ 12ġ1 − ḟ 1g̈12)−

(
ġ2

ġ1

)
(ġ1f̈ 11 − ḟ 1g̈11)

]
∇1G∇1h22

+ 2(n− 1)
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1
(∇1h22)

2

+ (n− 1)2

[(
ġ2

ġ1

)2

(ġ1f̈ 11 − ḟ 1g̈11)− 2

(
ġ2

ġ1

)
(f̈ 12ġ1 − ḟ 1g̈12)

]
(∇1h22)

2

+ (n− 1)2
[
(ġ1f̈ 22 − ḟ 1g̈22)

]
(∇1h22)

2. (5.12)

At a spatial critical point of G the first two terms disappear.

For any smooth homogeneous symmetric function A of degree α the next iden-

tities are satisfied, see Section 2 Appendix for more details,

Ȧ1y1 + (n− 1)Ȧ2y2 = αA,

Ä11y1 + (n− 1)Ä12y2 = (α− 1)Ȧ1,

Ä12y1 + (n− 1)Ä22y2 = (α− 1)Ȧ2,

81



and then

Ä11(y1)
2 + 2(n− 1)y1y2Ä

12 + (n− 1)2Ä22(y2)
2 = (α− 1)(Ȧ1y1 + (n− 1)Ȧ2y2)

= α(α− 1)A.

Since g is homogeneous of degree zero, the Euler identity gives

ġ1κ1 + (n− 1) ġ2κ2 = 0,

therefore, because G is nondegenerate we may write

ġ2

ġ1
= − κ1

(n− 1)κ2
,

and the coefficient of (∇1h22)
2 in (5.12) becomes

R2 −R1 =

[(
κ1
κ2

)2

ġ1f̈ 11 − 2

(
−κ1
κ2

)
(n− 1)ġ1f̈ 12 + (n− 1)2ġ1f̈ 22

]
(∇1h22)

2

+

[(
κ1
κ2

)2 (
−ḟ 1g̈11

)
− 2
−κ1
κ2

(n− 1)(−ḟ 1g̈12) + (n− 1)2(−ḟ 1g̈22)

]
(∇1h22)

2

+ 2(n− 1)
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1
(∇1h22)

2

=
ġ1

(κ2)2

[
κ1

2f̈ 11 + 2κ1κ2(n− 1)f̈ 12 + (n− 1)2f̈ 22κ22

]
(∇1h22)

2

+
ḟ 1

κ22

[
−κ21g̈11 − 2(n− 1)κ1κ2g̈

12 − (n− 1)2g̈22κ22
]

(∇1h22)
2

+ 2(n− 1)
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1
(∇1h22)

2

=
ġ1

(κ2)2

[
κ1

2f̈ 11 + 2κ1κ2(n− 1)f̈ 12 + (n− 1)2f̈ 22κ22

]
(∇1h22)

2

− ḟ 1

κ22

[
κ21g̈

11 + 2(n− 1)κ1κ2g̈
12 + (n− 1)2g̈22κ22

]
(∇1h22)

2

+ 2(n− 1)
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1
(∇1h22)

2, (5.13)
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R2 −R1 =
ġ1

(κ2)2

[
κ1

2f̈ 11 + 2κ1κ2(n− 1)f̈ 12 + (n− 1)2f̈ 22κ22

]
(∇1h22)

2

− ḟ 1

κ22

[
κ21g̈

11 + 2(n− 1)κ1κ2g̈
12 + (n− 1)2g̈22κ22

]
(∇1h22)

2

+ 2(n− 1)
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1
(∇1h22)

2. (5.14)

Since f is homogeneous of degree 1, the first line above is identically equal to

zero, while since g is homogeneous of degree 0, the first square bracketed term on

the second line above is also identically equal to zero. The remaining term in (5.14)

is equal to

R2 −R1 = 2(n− 1)
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1
(∇1h22)

2

= 2(n− 1)
κ2ḟ

2ġ1 − ġ2ḟ 1κ2
κ2(κ2 − κ1)

(∇1h22)
2

= 2(n− 1)
κ2ḟ

2ġ1 − (−κ1ġ1

n−1 )ḟ 1

κ2(κ2 − κ1)
(∇1h22)

2

=
2(n− 1)ġ1

κ2 − κ1

[
ḟ 2 +

κ1
(n− 1)κ2

ḟ 1

]
(∇1h22)

2

=
2(n− 1)ġ1

κ2(κ2 − κ1)

[
κ2ḟ

2 +
κ1

(n− 1)
ḟ 1

]
(∇1h22)

2

=
2ġ1

κ2(κ2 − κ1)

[
(n− 1)κ2ḟ

2 + κ1ḟ
1
]

(∇1h22)
2

=
2ġ1F

κ2(κ2 − κ1)
(∇1h22)

2, (5.15)

and we conclude that at an extremum of G,

(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs =

2fġ1

κ2 (κ2 − κ1)
(∇1h22)

2 .

�

Theorem 5.1. Under the flow (3.1),

H (x, t) ≥ c1 |A (x, t)| ,

where c1 = min
(

min[0,a]
H
|A| (·, 0) , 1

)
. In particular, if M0 has positive mean curva-

ture, then H > 0 continues to hold under the flow.
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Proof: The function G = H
|A| is homogeneous of degree zero, so it evolves under

(3.1) according to

∂

∂t
G = LG+

(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs, (5.16)

see (5.4). We have g (κ1, . . . , κn) = κ1+...+κn√
κ21+...+κ

2
n

so

ġ1 (κ1, κ2, . . . , κ2) =
∂g

∂κ1

=

√
κ21 + . . .+ κ2n − (κ1 + . . .+ κn) 1

2
(κ21 + . . .+ κ2n)

−1
2 2κ1

κ21 + . . .+ κ2n

=

√
κ21 + (n− 1)κ22 − (κ1 + (n− 1)κ2)[κ

2
1 + (n− 1)κ22]

−1
2 κ1

κ21 + (n− 1)κ22

=
κ21 + (n− 1)κ22 − κ21 − (n− 1)κ1κ2

|A|3

=
(n− 1)κ2 (κ2 − κ1)

|A|3
, and

ġ2 (κ1, κ2, . . . , κ2) =
∂g

∂κ2

=
(n− 1)

√
κ21 + . . .+ κ2n

κ21 + . . .+ κ2n

−
(κ1 + . . .+ κn)1

2
(κ21 + . . .+ κ2n)

−1
2 2(n− 1)κ2

κ21 + . . .+ κ2n

=
(n− 1)

√
κ21 + (n− 1)κ22

κ21 + (n− 1)κ22

− (κ1 + (n− 1)κ2)[κ
2
1 + (n− 1)κ22]

−1
2 (n− 1)κ2

κ21 + (n− 1)κ22

=
(n− 1)κ21 + (n− 1)2κ22 − (n− 1)κ1κ2 − (n− 1)2κ22

|A|3

=
(n− 1)κ1 (κ1 − κ2)

|A|3
. (5.17)

Suppose now we are at a spatial minimum of G. At this point, Ġ could be nonde-

generate or degenerate. If Ġ is nondegenerate, then using Lemma 5.2 we have

(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs =

2 (n− 1) f

|A|3
(∇1h22)

2 > 0,

and the maximum principle applied to (5.16) gives that the minimum of G does

not decrease. As used earlier, note that the minimum of G at MT satisfies a cor-
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responding ODE of (5.16) for almost every t by, for example, a result of Hamilton

[34].

On the other hand, if Ġ is degenerate, then from (5.17) either κ1 = 0, or κ1 = κ2

(the case κ2 = 0 does not occur in view of Proposition 5.1). It follows from the

Euler identity and Corollary 5.1, (i) that wherever κ1 = κ2, the principal curvatures

are positive.

• If κ1 = 0 then

g (0, κ2) =
(n− 1)κ2√
(n− 1)κ22

=
√
n− 1,

a positive lower bound on G.

• If κ1 = κ2 then

g (κ2, κ2) =
nκ2√
nκ22

=
√
n,

so g achieves its absolute maximum, namely the equality case of the Cauchy-

Schwarz inequality, at the supposed minimum. Thus g must be identically

constant and Mt is umbilic, which is impossible.

It follows that G is bounded below by c1 := min (minM0 G, 1). In the case that

M0 has positive mean curvature, c1 > 0 and the second statement of the Lemma

follows. �

Remarks:

i) Theorem 5.1 and the Cauchy-Schwarz inequality imply

0 < c0 ≤
H

|A|
≤ 1√

n
,

under (3.1). If we restrict to {κ ∈ Γ : |A| = 1}, the curvatures remain within

a compact subset. Since ḟ is continuous and homogeneous of degree zero,

this in turn implies (3.1) is uniformly parabolic; there are absolute constants

0 < C < C < 0 such that for each i

C ≤ ḟ i ≤ C, (5.18)
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is maintained under the flow.

ii) By the same argument as in i) above, any homogeneous of degree zero function

of the principal curvatures is bounded above and below under the flow. In

particular, considering the function H
F

we have

F ≥ c0H.

Similarly trace Ḟ =
∑n

i=1 ḟ
i is another homogeneous of degree zero function,

so under the flow
n∑
i=1

ḟ i ≤ c0.

(In the case that F is convex, it follows algebraically that one may take c0 = 1
n

and c0 = 1 in the above two inequalities.) These inequalities were critical in

the analysis in Theorem 4.2; in the case of pure Neumann boundary conditions

they may be replaced by the above inequalities such that the results carry over

for F homogeneous of degree 1 and not necessarily convex. Specifically we have

the following partial singularity characterisation:

Theorem 5.2. Let M0 be an axially symmetric hypersurface given by (2.1) for

some positive, nondecreasing function u0 ∈ C2 ([0, a]). Suppose F satisfies Con-

ditions 1 and is everywhere nonnegative on M0. There exists a unique solution

u ∈ C2 ([0, a]× [0, T )), T < ∞ to (4.1) with pure Neumann boundary conditions.

If, additionally,

lim
z→−∞

f (z, 1, . . . , 1) < 0,

where we allow the case that the limit is equal to −∞, then if limt→T κ
2
1 (a, t) < ∞

we have

lim
t→T

κ2j (0, t) =∞,

for j = 2, . . . , n.

Together with some additional arguments, the pinching estimate of Theorem 5.1

may also be used to show the ratio κ1
κ2

remains bounded under (3.1).
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Corollary 5.2. Under the flow (4.1), the ratio
κ21
κ22

remains bounded.

Proof: We will prove this result by considering three cases separately. We know

from Theorem 5.1 that H > 0 continues to hold under the flow, so

κ1 > − (n− 1)κ2,

(in fact, a slightly stronger statement involving c1 is possible from Theorem 5.1) and

if κ1 < 0, then we have

κ21 ≤ (n− 1)2 κ22.

If, instead, 0 ≤ κ1 ≤ c0, then from Proposition 5.1 we have

0 < κ1 ≤ κ2,

and so

κ21 ≤ κ22 ≤ (n− 1)2 κ22.

Finally, in the case κ1 ≥ c0 we have

2 (n− 1)κ1κ2 ≥ 2κ1κ2 ≥ 2c20,

and

H2 − |A|2 = 2 (n− 1)κ1κ2 + (n− 1) (n− 2)κ22 ≥ 2 (n− 1)κ1κ2,

so

H2

|A|2
≥ 1 +

2 (n− 1)κ1κ2

|A|2
≥ 1 + ε,

for some ε > 0, since the homogeneous of degree zero function κ1κ2
|A|2 attains a positive

minimum on the set {κ = (κ1, κ2) : |A| = 2c0, κ1, κ2 ≥ c0}. Therefore

[κ1 + (n− 1)κ2]
2

κ21 + (n− 1)κ22
≥ 1 + ε,

so

κ21 + 2 (n− 1)κ1κ2 + (n− 1)2 κ22 ≥ (1 + ε)
[
κ21 + (n− 1)κ22

]
.
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In other words,

εκ21 ≤ κ21 + 2 (n− 1)κ1κ2 + (n− 1)2 κ22 − κ21 − (n− 1)κ22 − ε(n− 1)κ22,

εκ21 ≤ (n− 1) (n− 2− ε)κ22 + 2 (n− 1)κ1κ2.

Using ab 6 ηa2 + 1
4η
b2 for any η > 0 we can consider a = κ1 and b = 2(n− 1)κ2 in

the last term of the previous equation and rewrite 2(n − 1)κ1κ2 6 ηκ21 + (n−1)2
η

κ22.

Therefore,

εκ21 ≤ (n− 1) (n− 2− ε)κ22 + ηκ21 +
(n− 1)2

η
κ22,

for any η > 0. Choosing η = ε
2

gives

(ε− ε

2
)κ21 ≤ (n− 1) (n− 2− ε)κ22 +

2(n− 1)2

ε
κ22,

ε

2
κ21 ≤ (n− 1)

(
n− 2− ε+

2(n− 1)

ε

)
κ22,

κ21 ≤
2

ε
(n− 1)

(
n− 2− ε+

2(n− 1)

ε

)
κ22.

We have shown that in all cases κ21 is bounded by κ22, by a constant depending only

on n and M0. This completes the proof. �

Corollary 5.3. Under the flow (4.1), there exists a constant C, depending only on

n and M0 such that

(uxx)
2 ≤ C

u4
.

Proof: From (4.1) and Theorem 5.1 we have that under the flow, (from pinching

estimate )

κ21
κ22

=
u2xx

(1 + u2x)
3

u2(1 + u2x)

1
=

u2xxu
2

(1 + u2x)
2
,

so

u2xx =
κ21
κ22

(1 + u2x)
2

u2
,
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because
κ21
κ22
≥ C1. Then

u2xx 6 C1
(1 + u2x)

2

u2
,

is preserved. The result follows in view of the Remark after Proposition 5.1 Where

(1 + u2x)
2 6 1

C0u
and then

u2xx 6
C1

u2
1

C2
0u

2
6

C1

C2
0u

4
6
C

u4
.

�

4 The singularity

Given an initial hypersurface M0 as in (2.1), with pure Neumann boundary con-

ditions comparison with an enclosing cylinder also flowing under (3.1) shows that

the maximal existence time T of a solution to (3.1) with initial hypersurface M0 is

finite. Moreover, as t → T we must have u → 0, that is, the evolving hypersurface

approaches the axis of rotation, because if not, then u > 0 at time T and then

Proposition 5.1 and Corollary 5.3 imply ux and uxx are bounded, so MT is a C2

hypersurface which could be used in the short time existence result, contradicting

the maximality of T . Therefore, there is some x ∈ [0, a] such that |A|2 (x, t) → ∞

and u (x, t)→ 0 as t→ T .

Here we characterise the curvature singularity of an axially symmetric hyper-

surface with positive F evolving under (3.1) as Type I, analogous to the case of

evolution of axially symmetric surfaces of positive mean curvature by the mean

curvature flow [39].

Let F0 := minM0 F . In view of uniform parabolicity, a short argument (Lemma

2.5 in [14]) shows that, under the flow (3.1),

F (W (x, t)) ≥ F0√
1− 2CF 2

0 t
.

In analogy with the case of mean curvature flow [39], we say a curvature singu-
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larity is Type I if there is a constant C > 0 such that

lim
t→T

max
Mt

|A| ≤ C√
T − t

.

If the blow-up rate of |A| is faster than the above right hand side the curvature

singularity is said to be Type II.

Example: The blow-up rate of cylinders is Type I.

In the case of a cylinder, say κ1 = 0, κ2 = . . . = κn = 1
r
, ux ≡ 0 we know

X(x, t) = X(x, rω) where ω ∈ Sn−1 then ∂X
∂t

= (0, ∂r
∂t
ω). Normal vector is (0, ω)

and the speed is F (W(x, t)) = f(0, 1
r
, . . . , 1

r
), so (0, ∂r

∂t
ω) = −f(0, 1

r
, . . . , 1

r
)(0, ω) and

(4.1) becomes

∂r

∂t
= −f

(
0,

1

r
, . . . ,

1

r

)
= −f0

r
,

where f0 := f (0, 1, . . . , 1). If the cylinder shrinks to a line at time T then

r (t) =
√

2f0 (T − t),

and the curvature evolves according to

|A| = n− 1√
2f0 (T − t)

,

so the singularity is Type I.

Theorem 5.3. Let M0 be an axially symmetric hypersurface given by (2.1) for

some positive function u0 ∈ C2 ([0, a]). Suppose F satisfies Conditions 1 and is

everywhere strictly positive on M0. If T is the maximal existence time then the

norm of the second fundamental form satisfies

max
Mt

|A|2 ≤ C

T − t
,

for all t < T .

Proof: We will use a modification of the argument as in Theorem 5.7 of [2] taking
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into account our more general flow speed F . In view of preserved curvature pinching,

Theorem 5.1, there is a positive constant C such that

Ḟ kpḞ l
ph

m
k hml

F 2
≤ C2,

and this is because it is a positive homogeneous function of degree zero in a compact

set, that obtains a positive minimum and maximum as in Remark ii) following

Theorem 5.1 . This inequality states precisely that

(
ḟ 1
)2
u2xx

(1 + u2x)
3 +

(n− 1)
(
ḟ 2
)2

u2 (1 + u2x)
≤ C2

[
(n− 1) ḟ 2

u
√

1 + u2x
− ḟ 1uxx

(1 + u2x)
3
2

]2
,

where the quantity inside the brackets on the right hand side, namely F , is strictly

positive by Lemma 3.4, (i). Neglecting the second term on the left hand side, it

follows that

ḟ 1uxx
1 + u2x

≤ C

[
(n− 1) ḟ 2

u
− ḟ 1uxx

1 + u2x

]
,

and therefore

ḟ 1uxx
1 + u2x

≤ C

C + 1

(n− 1) ḟ 2

u
.

Using (4.2) we estimate

∂u

∂t
=

ḟ 1

1 + u2x
uxx −

(n− 1) ḟ 2

u

≤
[

C

C + 1
− 1

]
(n− 1) ḟ 2

u
=
−1

C + 1

(n− 1) ḟ 2

u

≤ − (n− 1)C

C + 1

1

u
from (5.18)

=: − δ
u
.

Now fix x and integrate:

∫ T

t

u
∂

∂τ
u (x, τ) dτ ≤ −

∫ T

t

δ dτ

∫ T

t

∂

∂τ

1

2
u2 (x, τ) dτ ≤ −δ (T − t) ;
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this implies

u2 (x, t) ≥ u2 (x, T ) + 2δ (T − t) .

It follows that

κ22 (x, t) =
1

u2(1 + u2x)
≤ 1

u2 (x, t)
≤ 1

u2 (x, T ) + 2δ (T − t)
≤ 1

2δ (T − t)
,

and in view of Corollary 5.2

κ21 (x, t) ≤ C2κ22 (x, t) ≤ C2

2δ (T − t)
.

The result follows. �

5 Closed, axially symmetric hypersurfaces

In this section we turn our attention to closed, convex, axially symmetric hypersur-

faces without boundary evolving under (3.1). There has been much previous work

on closed convex hypersurfaces contracting under flows such as (3.1), without the

condition of axial symmetry.

In the case of speeds homogeneous of degree one in the principle curvatures,

the famous result of Huisken for the mean curvature flow [37], proved the contrac-

tion of the convex hypersurfaces to a round point in finite time. A similar result

for n−dimensional hypersurface was proved by Chow [24] but for a different speed

function. For hypersurfaces in Euclidean space under fully nonlinear speeds [3], a

general result is proved by Andrews, that any strictly convex compact initial hyper-

surface contracts to a spherical point in finite time under convex speed function of

principal curvatures, also for a concave speed satisfying some other natural condi-

tion too. Later for the same author, in [8] the pinching estimate proved, for a wide

class of flows of interest facilitating , convergence of convex hypersurfaces to spheres

under various speed that are symmetric functions of curvature. In the special case

of contracting surfaces, that is, n = 2, without any second order conditions on the

speed, nor any initial curvature, similar results were proven [9].
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For other degrees of homogeneity, Schulze showed in [62] that for a closed con-

vex hypersurface in Rn+1 moved under mean curvature flow to a positive power k,

it contracts to a point. Furthermore, he proved in [63] that if the initial ratio of the

biggest and smallest principal curvatures is close enough to 1 everywhere then this

is preserved under the flow. Moreover, by rescaling, it is found that the evolving

surface contracts to a unit sphere. Additionally, a study was done by Schnurer [61]

about the strictly convex surfaces that shrink to a spherical point, after rescaling,

with normal velocity equal to |A|2. Andrews and McCoy were able to show contrac-

tion to round points without a second order condition on the speed for hypersurfaces

sufficiently close to spheres in [15], that is, for hypersurfaces already very strongly

curvature pinched. In [16], a very general case was discussed where they proved

that, in Euclidean space, weakly convex hypersurfaces shrinks to a spherical point

or collapse to a line segment, containing cylindrical regions, under sufficient and

different conditions of the speed function. Without any pinching estimate condition

for n = 2, Andrews proved the convergence of a convex surface to a spherical point

under Gauss curvature [5]. In [10], Andrews and Chen prove the contracting strictly

convex surface to a spherical point under Gauss curvature speed function to the

power α
2
. Another result by Andrews et. al. [11] was about Gauss curvature flow

to any power α > 1
n+2

to prove the contraction of the convex hypersurface to fixed

volume after the rescaling.

For compact convex hypersurfaces without boundary, short time existence of a solu-

tion of the flow equations follows that by standard modification writing a hypersur-

face as a graph function over Sn, see [3] and [45]. When we fix a diffomorphism we

remove degeneracy which means the evolution equations and the image hypersurface

remains the same.

In this section, we extend Andrews’ result [10] for surfaces to the case of axially

symmetric hypersurfaces, concentrating on key steps in order to obtain a curvature

pinching estimate, again without any second order condition on the speed.

We need the next Lemma for the relation between pinching ratio r = κ2
κ1

and

function G (W) =
n|A0|2
H2 where |A0|2 = |A|2 − 1

n
H2 is the trace-free norm of the
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second fundamental form, a natural pointwise measure for convex hypersurfaces of

their closeness to a sphere.

Lemma 5.3. If G (W) =
n|A0|2
H2 where |A0|2 = |A|2− 1

n
H2 = 1

n

∑
i6j (κi − κj)2 then

we can write

r =
κ1
κ2

=
1

n− 1

[
n

1±
√

(n− 1)G
− 1

]
.

Proof:

G =
n |A0|2

H2

=

∑
i6j (κi − κj)2

[κ1 + (n− 1)κ2]
2 i = 1 j = 2, . . . , n

=
(n− 1) (κ1 − κ2)2

[κ1 + (n− 1)κ2]
2

=
(n− 1) (r − 1)2

[r + (n− 1)]2
,

so

(n− 1)G =
(n− 1)2 (r − 1)2

(r + (n− 1))2
,

±
√

(n− 1)G =
(n− 1) (r − 1)

r + (n− 1)
,

±
√

(n− 1)G =
nr − n− r + 1

r + (n− 1)
,

±
√

(n− 1)G =
nr

r + (n− 1)
− r + (n− 1)

r + (n− 1)
,

±
√

(n− 1)G =
n

1 + (n− 1)r
− 1,

1±
√

(n− 1)G =
n

1 + (n− 1)r
,

n
1+(n−1)r cannot be equal to 0, therefore

1 + (n− 1)r =
n

1±
√

(n− 1)G
, 1±

√
(n− 1)G 6= 0

(n− 1)r =
n

1±
√

(n− 1)G
− 1,

94



r =
1

n− 1

[
n

1±
√

(n− 1)G
− 1

]
.

�

Theorem 5.4. Let M0 be a closed, smooth, strictly convex, axially symmetric n-

dimensional hypersurface without boundary, n ≥ 2 smoothly embedded in Rn+1 by

X0 : Sn → Rn+1. Let F satisfy Conditions 1. Then there exists a unique family of

smooth, strictly convex, axially symmetric hypersurfaces {Mt = Xt (Sn)}0≤t<T sat-

isfying (3.1), with initial condition X (x, 0) = X0 (x) for all x ∈ Sn. The solution

exists on a finite maximal time interval [0, T ) and the image converges uniformly

to a point p ∈ Rn+1 as t → T . The rescaled maps Xt−p√
2(T−t)

converge smoothly and

exponentially to an embedding X̃T whose image is equal to the unit sphere in Rn+1

centred at the origin.

Proof: The argument to obtain curvature pinching, in this setting positive bounds

above and below on the ratio κ2
κ1

of the two potentially different principal curvatures,

is very similar to that presented in [9], so we just point out the necessary adjustments.

A suitable pinching function here is the natural generalisation of that in [9], namely

G (W) =
n |A0|2

H2
. (5.19)

This function G corresponds to

g (κ (W)) =
n (κ21 + . . .+ κ2n)− (κ1 + . . .+ κn)2

(κ1 + . . .+ κn)2
.

It can be written in terms of principle curvatures as

g (κ (W)) =
(n− 1) (κ21 − κ22)

2

(κ1 + (n− 1)κ2)
2 .
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If we consider g (κ) =
n(κ21+...+κ2n)
(κ1+...+κn)

2 − 1 so

∂g

∂κi
=
H2n2κi − n|A|22H

H4

=
2n(Hκi − |A|2)

H3

=
2n{(κ1 + (n− 1)κ2)κi − κ21 − (n− 1)κ22}

H3
. (5.20)

Denoting as earlier the curvature in the axially direction as κ1, we have κ2 = . . . = κn

and, by slight abuse of notation, may rewrite

g (κ1, κ2) =
nκ21 + n (n− 1)κ22 − (κ1 + (n− 1)κ2)

2

(κ1 + (n− 1)κ2)
2 .

(5.20) is used in order to compute the following

ġ1 =
2n{(κ1 + (n− 1)κ2)κ1 − κ21 − (n− 1)κ22}

H3

=
2n{κ21 + (n− 1)κ2κ1 − κ21 − (n− 1)κ22}

H3

=
2n (n− 1)κ2 (κ1 − κ2)

H3
and

ġ2 =
2n{(κ1 + (n− 1)κ2)κ2 − κ21 − (n− 1)κ22}

H3

=
2n{κ1κ2 + (n− 1)κ22 − κ21 − (n− 1)κ22}

H3

=
2nκ1 (κ2 − κ1)

H3
,

so

ġ1 =
2n (n− 1)κ2 (κ1 − κ2)

H3
and ġ2 =

2nκ1 (κ2 − κ1)
H3

. (5.21)

We can show that the maximum of G is not increasing in time: restricting ourselves

initially to a short time interval on which Mt remains convex, at a maximum point

(x0, t0) of G, t0 > 0, we must have G
∣∣
(x0,t0) > 0 and therefore κ1 6= κ2 at that point

since otherwise, G
∣∣
(x,t0) ≡ 0 so κ1 ≡ κ2 everywhere and because of the convexity

Mt0 is a sphere. Therefore, Ġ is nondegenerate at this maximum point and, in view

of Lemma 5.2, we have that the gradient term in the evolution equation (5.16) for

G, is equal to
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2fġ1

κ2 (κ2 − κ1)
(∇1h22)

2 =
2f2n (n− 1)κ2 (κ1 − κ2)

κ2 (κ2 − κ1)H3
(∇1h22)

2

= −4n (n− 1) f

H3
(∇1h22)

2 < 0. (5.22)

It follows by the maximum principle that the maximum of G does not increase. At

such a maximum point of G, there are two possibilities: κ1 > κ2 or κ1 > κ2. In the

former case,

1 < r =
κ1
κ2

=
1

n− 1

[
n

1−
√

(n− 1)G
− 1

]
,

so that G does not increase implies r does not increase. In the latter case

1 > r =
κ2
κ1

=
1

n− 1

[
n

1 +
√

(n− 1)G
− 1

]
,

so that G does not increase implies r does not decrease.

In other words, we have shown that the pinching ratio does not deviate further

from 1 and so the ratio κ1
κ2

is bounded above and below by its initial extreme values.

Pinching, together with the absolute lower bound on F (analogous to Corollary 5.1,

(i)) gives that the evolving hypersurface remains convex, so the above argument

applies up to time T .

Strong parabolic maximum principle will be used to show the strict improvement

of the pinching ratio unless Mt is a sphere. Suppose G attained a new extremum at

some (x0, t0), t0 > 0. From strong maximum principle we have that G is identically

constant. If this constant is 0 then the hypersurface is a sphere and it is done.

On another hand if G is identically equal to a positive constant that G = C then

substituting in equation (5.4) we have 0 = 0 +
(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs

must be zero then

(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs ≡ 0,
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and from equation (5.22)

4n (n− 1) f

H3
(∇1h22)

2 ≡ 0.

Since 4n(n−1)f
H3 is not zero we have

∇1h22 ≡ 0.

We know ∇iG = 0 so Ġkl∇ihkl = 0 and therefore

0 ≡ ġ1∇1h11 + (n− 1) ġ2∇1h22.

Since ġ1 6= 0 and ġ2 6= 0, see equation (5.21), we conclude

∇1h11 ≡ 0.

In view of Lemma 2.2 and from a theorem of Lawson [46], it follows that M is a

sphere.

In view of curvature pinching, the proof of Theorem 5.4 may be completed fol-

lowing the corresponding arguments in [15], since there no convexity condition on

the speed was required. Convergence to a point follows by a contradiction argument

as in [67]. Rescaling the hypersurfaces to fix the enclosed volume, for example, the

rescaled hypesurfaces satisfy the same curvature pinching improvement since the

quantity
κj
κi

is homogeneous of degree zero. Therefore, rescaled evolution equation

is uniformly parabolic. Then, there is an upper bound on rescaled F via a standard

argument of Tso [67]. Alongside with pinching estimate, this gives a uniform upper

bound on principle curvatures. The lower positive bound is obtained for rescaled F

via Krylov-Safonov Harnack estimate [44] which can be considered also as a positive

lower bound for all principle curvatures. Second spatial derivatives of local graph

have uniform Hölder bounds following from Theorem 5 of [7]. We can then differ-

entiate through the equation and get higher regularity by standard bootstrapping

argument using Schauder estimate for uniformly parabolic PDE [Theorem 4.9 [47]].
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In view of the monotone improvement of the pinching ratio, exponential convergence

of the rescaled hypersurfaces to the sphere now follows using a linearisation about

the sphere as in [52] for example. The metrics for all rescaled times τ are uniformly

equivalent by a result of Hamilton [33] (see also [37]), as is the limiting metric g̃∞.

�

Remark: As in [9], there is a corresponding result if F is instead homogeneous

of degree α > 1, provided the initial hypersurface is sufficiently curvature pinched.

Specifically, the proof proceeds as above, except that, in view of the homogeneity of

F , we will recall (5.14) for the calculation in this case

Q =
(
ĠijF̈ kl,rs − Ḟ ijG̈kl,rs

)
∇ihkl∇jhrs

=
ġ1

(k2)2

[
κ1

2f̈ 11 + 2κ1κ2(n− 1)f̈ 12 + (n− 1)2f̈ 22κ22

]
(∇1h22)

2

− ḟ 1

κ22

[
κ21g̈

11 + 2(n− 1)κ1κ2g̈
12 + (n− 1)2g̈22κ22

]
(∇1h22)

2

+ 2(n− 1)
ḟ 2ġ1 − ġ2ḟ 1

κ2 − κ1
(∇1h22)

2. (5.23)

Since f is homogeneous of degree α, the square brackets at the first line above is

identically equal to α(α− 1)F , see Appendix Section 2. Because g is homogeneous

of degree 0, the square bracket on the second line above is identically equal to

zero. Also using (5.15) for the last term in the previous equation considering F

homogeneous of degree α (5.23) becomes

Q =
ġ1

(κ2)2
[
α(α− 1)F (∇1h22)

2
]

+
2ġ1αF

κ2(κ2 − κ1)
(∇1h22)

2

=
αġ1F

κ2

[
(α− 1)

κ2
− 2

(κ1 − κ2)

]
(∇1h22)

2

=
αġ1F

κ2

[
(α− 1)(κ1 − κ2)− 2κ2

κ2(κ1 − κ2)

]
(∇1h22)

2, (5.24)
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from (5.21) to replace ġ1

Q =
2n(n− 1)κ2(κ1 − κ2)

H3

αF

κ2

[
(α− 1)(κ1 − κ2)− 2κ2

κ2(κ1 − κ2)

]
(∇1h22)

2

=
2nα(n− 1)

H3
F

[
(α− 1)(κ1 − κ2)− 2κ2

κ2

]
(∇1h22)

2

=
2nα(n− 1)

H3
F

[
(α− 1)κ1 − (α− 1)κ2 − 2κ2

κ2

]
(∇1h22)

2

=
2nα(n− 1)

H3
F

[
(α− 1)κ1 − (α− 1 + 2)κ2

κ2

]
(∇1h22)

2

=
2nα(n− 1)

H3
F

[
(α− 1)

κ1
κ2
− (α + 1)

]
(∇1h22)

2.

The gradient term in the evolution equation for G now becomes

2nα (n− 1) f

H3

[
(α− 1)

κ1
κ2
− (1 + α)

]
(∇1h22)

2 .

For this to be nonpositive requires the pinching ratio of the principal curvatures to

be not greater than

α + 1

α− 1
= 1 +

2

α− 1
. (5.25)

�

6 Self-similar hypersurfaces

Some self-similar hypersurfaces flows are well known as a special solution for Mean

curvature flow which means preserving the shape of the evolved hypersurface. Un-

der flow self-similar hypersurface looks similar to the initial hypersurface at any

time t. The pinching estimate can be used to show that convex, axially symmet-

ric hypersurfaces contracting self-similarly under (3.1) are necessarily spheres. This

complements other results on compact self-similar hypersurfaces contracting under

curvature flows, such as those in [39, 53]. Specifically, in higher dimension under

non-negative mean curvature flow if the compact hypersurface satisfied H = 〈X, ν〉

then it is a sphere. Corresponding results were obtained for flows by powers of the

Gauss curvature [6] and under fully nonlinear curvature flow [53]. Such hypersur-
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faces satisfy the corresponding elliptic equation

〈X, ν〉 = F (W) , (5.26)

and the characterisation as spheres may be deduced by considering the corresponding

elliptic equation satisfied by the curvature pinching function. If F homogeneous of

degree one we need the following equations in order to have the evolution equation

of G for the next Lemma. The covariant derivative (5.26) gives

∇jF = Ḟ kl∇jhkl

= 〈X,∇jν〉

=
〈
X, hkj ek

〉
,

and so

∇i∇jF = F̈ kl,pq∇ihpq∇jhkl + Ḟ kl∇i∇jhkl =
〈
∇iX, h

k
j ek
〉

+
〈
X, hkj∇iek

〉
+
〈
X,∇ih

k
j ek
〉

= hkj 〈∇iX, ek〉+ hkj 〈X,∇iek〉+ 〈X, ek〉∇khij

= hkj 〈ei, ek〉+
〈
X, hkjν

〉
+ 〈X, ek〉∇khij

= hkj δik − Fhki hjk + 〈X, ek〉∇khij

= hij − Fhki hjk + 〈X, ek〉∇khij, (5.27)

then

∇i∇jF = F̈ kl,pq∇ihpq∇jhkl + Ḟ kl∇i∇jhkl = hij − Fhki hjk + 〈X, ek〉∇khij. (5.28)

Contracting (5.28) with Ḟ ij

LF = Ḟ ij∇i∇jF = Ḟ ij[hij − Fhki hjk + 〈X, ek〉∇khij]

= F − Ḟ ijFhki hjk + 〈X, ek〉∇kF

= (1− Ḟ ijhki hjk)F + 〈X, ek〉∇kF.
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For general function G homogeneous of degree zero it is known that

∇i∇jG = G̈kl,pq∇ihkl∇jhpq + Ġkl∇i∇jhpq, (5.29)

contracting (5.29) with Ḟ ij

LG = Ḟ ij∇i∇jG = Ḟ ijG̈kl,pq∇ihkl∇jhpq + Ḟ ijĠkl∇i∇jhpq, (5.30)

and contracting (5.27) with Ġij

ĠijF̈ kl,pq∇ihkl∇jhpq + ĠijḞ kl∇i∇jhkl = Ġijhij − FĠijhki hjk + 〈X, ek〉 Ġij∇khij

= −FĠijhki hjk + 〈X, ek〉∇kG. (5.31)

Using interchanging covariant derivative, see Section 3 Appendix, and consider the

homogeneity of F and G when we contract with Ḟ ijĠkl we have

Ḟ ijĠkl∇i∇jhkl = Ḟ ijĠkl∇k∇lhij + FĠklhkmh
m
l . (5.32)

From (5.32) into (5.30)

LG = Ḟ ijG̈kl,pq∇ihkl∇jhpq + Ḟ ijĠkl∇k∇lhpq + FĠklhkmh
m
l , (5.33)

and from (5.31) and (5.33) we find that

LG = Ḟ ijG̈kl,pq∇ihkl∇jhpq − ĠijF̈ kl,pq∇ihkl∇jhpq − FĠijhki hjk + 〈X, ek〉∇kG

+ FĠklhkmh
l
m

= (Ḟ ijG̈kl,pq − ĠijF̈ kl,pq)∇ihkl∇jhpq + 〈X, ek〉∇kG. (5.34)

Theorem 5.5. If M is a closed, strictly convex, axially symmetric hypersurface

satisfying (5.26), where F (W) = f (κ) is positive, symmetric and homogeneous of

degree 1, then M is a unit sphere.

Proof: In view of (5.26), the function G, as defined in (5.19), satisfies
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LG =
(
Ḟ ijG̈kl,pq − ĠijF̈ kl,pq

)
∇ihkl∇jhpq + 〈X,∇G〉 . (5.35)

Suppose that G obtains a local maximum on M . At such a local maximum point of

G, it must be that G > 0 because otherwise G ≡ 0 and M is a sphere. Therefore,

Ġ is nondegenerate at this maximum point and in view of Lemma 5.2, we have

(
Ḟ ijG̈kl,pq − ĠijF̈ kl,pq

)
∇ihkl∇jhpq =

2fġ1

κ2 (κ2 − κ1)
(∇1h22)

2

=
4n (n− 1) f

H3
(∇1h22)

2 > 0,

which is a contradiction to G having a local maximum. Therefore G must be iden-

tically constant, and if M is not a sphere G > 0 and everywhere on M we have

κ1 6= κ2. In this case, that the first term in (5.35) is identically equal to zero implies

that ∇1h22 ≡ 0, and since ∇G ≡ 0 we have

0 ≡ ġ1∇1h11 + (n− 1) ġ2∇1h22,

so ∇1h11 ≡ 0 also because ġ1 6= 0. In view of Lemma 2.2, it follows that M is a

sphere. �

Remark: Again there is a corresponding result for speeds F homogeneous of degree

α > 1: if the closed, convex, axially symmetric hypersurface M satisfies (5.26) and

has curvature pinching ratio not greater than (5.25), then it must be a sphere.

Note that in this case (5.32) become

Ḟ ijĠkl∇i∇jhkl = Ḟ ijĠkl∇k∇lhij + αFĠklhkmh
m
l . (5.36)

From (5.36) into (5.30)

LG = Ḟ ijG̈kl,pq∇ihkl∇jhpq + Ḟ ijĠkl∇k∇lhpq + αFĠklhkmh
m
l , (5.37)
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and from (5.31) and (5.37) we find that

LG = Ḟ ijG̈kl,pq∇ihkl∇jhpq − ĠijF kl,pq∇ihkl∇jhpq − FĠijhki hjk + 〈X, ek〉∇kG

+ αFĠklhkmh
l
m

= (Ḟ ijG̈kl,pq − ĠijF̈ kl,pq)∇ihkl∇jhpq + (α− 1)FĠklhml hkm + 〈X, ek〉∇kG.

�
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Chapter 6

Sturmian Theorem

1 Introduction

The set of solutions of parabolic partial differential equations can be studied by

different methods. One of them was developed in 1936 when Sturm studied the

evolution of zeros and zero sets {x : f(x, t) = 0} for solutions f(x, t) of partial dif-

ferential equations of parabolic type

ft = fxx + q(x), f for x ∈ [0, 2π], t > 0, (6.1)

with the Dirichlet boundary condition f = 0 at x = 0 and x = 2 and smooth initial

data at t = 0. A detailed description of the zero set of a solution of (6.1) was given

by Sturmian theorem. He showed that the number of zeros (considering multiplicity)

was nonincreasing with time. Later in 1980s, the Sturmian theorem attracted more

attention in both linear and nonlinear equations. The number of sign changes can

be considered rather than the number of zero sets for the function and they will be

the same if all zeros are simple. Sometimes it is better to use the number of sign

changes because it shows that is not increasing even if it is not guaranteed that the

number is finite.

We need a priori estimates to use the Sturmian theorem because they ensure the

coefficients of our equation have the right behaviour to allow us to apply the (linear)

Sturmian theorem. Sturmian theorem tells us the number of zeros of a solution to
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an equation does not increase, and they are distinct, but still doesn’t actually say

anything about existence. The point is, if there is a solution, and if it satisfies the

conditions for Sturmian, then the Sturmian theorem can be applied.

2 Linear case

Assume f : R2 → R to be a solution of

ft = a(x, t)fxx + b(x, t)fx + c(x, t)f, (6.2)

on Q = {(x, t) ∈ R2 : 0 6 x 6 1, 0 6 t 6 T̃} with Dirichlet boundary conditions

f(0, t) = 0 = f(1, t). The number of zeros of f(·, t) is defined as the supremum of

all k such that there exist 0 < x1 < x2 < · · ·· < xk < 1 with

f(xi, t)f(xi+1, t) < 0, i = 1, 2, · · ·, k − 1.

For t ∈ (0, T̃ ) let

Zt(f) = {x ∈ R : f(x, t) = 0},

be the zero set of f . The following Theorem was proved by Angenent in [17]

Theorem 6.1. (Angenent) Assume the coefficients of (6.2) to satisfy

a > 0, a, a-1, at, az, azz ∈ L∞,

b, bt, bz ∈ L∞,

c ∈ L∞and |f(x, t)| 6 A exp(Bx2).

Then for each t ∈ (0, T̃ ) the zero set Zt of f is a discrete subset of R. Moreover if

at (x0, t0) both fand fx vanish, then there is a neighbourhood N = [x0 − ε, x0 + ε]×

[t0 − δ, t0 + δ] of (x0, t0) such that

1. f 6= 0 on the side of N , i.e. f(x0 ± ε, t) 6= 0 for |t− t0| ≤ δ.

2. f(·, t+ δ) has at most one zero in the interval [x0 − ε, x0 + ε].
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3. f(·, t− δ) has at least two zeros in the interval [x0 − ε, x0 + ε].

The last two parts of the above Theorem are equivalent to saying that if (x0, t0) is

a multiple zero of f , then for all 0 < t1 < t0 < t2 < T̃ , the strict inequality Zt2 ⊂ Zt1

holds, so the size of Zt is strictly decreasing at t = t0. This version of the Sturmian

theorem was used in domains. The condition |f(x, t)| ≤ A exp(Bx2) was used to

restrict the analysis to a class of functions which have a fixed growth at infinity. For

bounded domains Angenent proved the following version of the Sturmian theorem.

Theorem 6.2. (Angenent) Let f : [0, 1]×[0, T̃ ]→ R be a bounded solution to (6.2)

which satisfies either Dirichlet, Neumann or periodic boundary conditions. Assume

the coefficients of (6.2) to satisfy

a > 0, a, a−1, at, az, azz ∈ L∞,

b, bt, bz ∈ L∞,

c ∈ L∞,

and in addition, in the case of Neumann boundary conditions, assume that a ≡ 1

and b ≡ 0, Let zt denote the number of zeros of f(·, t) in [0, 1]. Then

1. for t > 0, zt is finite.

2. if (x0, t0)is a multiple zero of f , then for all t1 < t0 < t2 we have Zt1 > Zt2 .

It is possible for an equation of type (6.2) to be reduced to an equation of type (6.1),

so that a ≡ 1 and b ≡ 0. This reduction proceeds in two steps. First we introduce a

new coordinate

y =

∫ x

0

(s, t)
1
2ds.

In the y, t coordinates f satisfies

ft = fyy + b̃(y, t)fz + c̃(y, t)f,

where b̃ and c̃ satisfy the same conditions as b and c in the previous Theorem. Next
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substitute

g(y, t) = exp[
1

2

∫ y

0

b̃(s, t)ds]f(y, t).

Then g satisfies gt = gyy + ã(y, t)g for suitable ã.

Angenent’s and others results showed that the number of points in zero set of

a solution for a parabolic equation is non increasing [2]. Applying such a result is

one of the goals of this thesis. In view of a priori estimates we are able to use the

linear Sturmian theorem for example as in Tai-Chia et all. [48]. For the sake of

completeness we include it here.

Theorem 6.3. Let u : [−Lπ, Lπ]× [0,∞) be a non-trivial classical solution of

ut = a(x, t)uxx + b(x, t)uz + c(x, t)u, (6.3)

with the periodic boundary condition. Assume that a, b, c satisfy the condition

a, a−1, at, az, axx, b, bt, bx, c ∈ L∞loc([−Lπ, Lπ]× [0,∞)). (6.4)

Let z(t) denote the number of zeros of u(., t) in (−Lπ, Lπ], i.e., z(t) is the number

of points x ∈ (−Lπ, Lπ] such that u(x, t) = 0.Then

1. For all t > 0, z(t) is finite.

2. z(t) is non-increasing in t ∈ [0,∞).

3. If (x0, t0), t0 > 0, is a multiple zero of u, then for all t1 < t0 < t2, we have

z(t1) > z(t2).

3 Applying Sturmian theorem for fully nonlinear

curvature flow

As an application of the Sturmian theorem we can apply Angenents theorem to

obtain the following statement about that the zeros of uxx that are discrete and

nonincreasing.
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We recall the evolution equation for u

∂u

∂t
=

ḟ 1

1 + u2x
uxx −

(n− 1) ḟ 2

u
. (6.5)

Lemma 6.1. Assume Mt to be a smooth surface solving (6.5). Assume in addition

that u(x1, t) ≥ ε, ε > 0, for 0 ≤ x1 ≤ a, t ∈ (0, T
′
), T

′
< T . Then the set Zt(uxx) =

{x1 ∈ R : uxx(x1, t) = ∂2u
∂x∂x

= 0} is a discrete set in [a, b], for all t ∈ (0, T
′
).

Moreover the number of zeros of uxx is a nonincreasing function of time.

Proof: Differentiating (6.5) with respect to x we find that ux satisfies

∂ux
∂t

=
∂

∂t

∂u

∂x

=
Ḟ 11

(1 + u2x)
uxxx +

(n− 1)Ḟ 22

u2
ux −

2Ḟ 11

(1 + u2x)
2
uxu

2
x. (6.6)

By differentiating with respect to x we find that η = uxx satisfies

∂η

∂t
=
∂uxx
∂t

=
∂

∂x

∂ux
∂t

=
Ḟ 11

(1 + u2x)
uxxxx − 2

Ḟ 11

(1 + u2x)
2
uxuxxuxxx +

(n− 1)Ḟ 22

u2
uxx − 2

(n− 1)Ḟ 22

u3
u2x

− 2
Ḟ 11

(1 + u2x)
2
u3xx − 4

Ḟ 11

(1 + u2x)
2
uxuxxuxxx + 8

Ḟ 11

(1 + u2x)
3
u2xu

3
xx

=
Ḟ 11

(1 + u2x)
ηxx − 6

Ḟ 11

(1 + u2x)
2
uxηηx +

(n− 1)Ḟ 22

u2
η − 2

(n− 1)Ḟ 22

u3
u2x

− 2
Ḟ 11

(1 + u2x)
2
η3 + 8

Ḟ 11

(1 + u2x)
3
u2xη

3

=
Ḟ 11

(1 + u2x)
ηxx −

(
6

Ḟ 11

(1 + u2x)
2
uxη

)
ηx +

[
(n− 1)

Ḟ 22

u2
− 2

Ḟ 11

(1 + u2x)
2
η2

+8
Ḟ 11

(1 + u2x)
3
u2xη

2

]
η − 2

(n− 1)Ḟ 22

u3
u2x. (6.7)

As this is a nonlinear equation, we resort to the intersection comparison method dis-

cussed in [2]. Suppose we have two axially symmetric surfaces evolving by fully non-

linear curvature, then we can define the difference w(x1, t) = u∗xx(x1, t)− u∗∗xx(x1, t),

where u∗, u∗∗ are the respective radius functions of the first and the second sur-

faces. The difference w(x1, t) satisfies (6.3) where the coefficients conditions as in
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(6.4). Now, we have strict parabolicity condition (5.18). While u ≥ ε > 0 we have

bounds for first and second derivatives of u from earlier estimates, so we have a

classical solution and curvatures are bounded. The ḟ are functions of curvatures

on compact set and therefore they are bounded. As a result, boundedness of the

coefficients functions required by Sturmian theorem is satisfied. Thus we can apply

Theorem 6.3 and conclude that the intersections are discrete and are nonincreasing

in time. In particular if the function w has a multiple zero at (x0, t0) then for all

0 < t1 < t0 < t2 < T , the strict inequality Zt1(w) > Zt2(w) holds, so Zt(w) is

strictly decreasing at t = t0. Finally as u∗∗ = c (i.e. η∗∗ = 0 = η∗∗x = η∗∗xx) is

a solution of (6.7) where c is a constant (in this case u∗x = 0 and the last term

of (6.7) vanishes), we can conclude that the zeros of uxx := u∗xx are discrete and

nonincreasing in time. �

Without loss of generality, assume that there is ι local minmima of ux for the

hypersurface and ι+1 local maxima and both of them depending on the zeros of the

uxx. We set {ıj(t)}1 ≤ j ≤ ι as a minmima of ux and {χj(t)}1 ≤ j ≤ ι as a maxima

of ux, by the implicit function theorem each ıj and χj is a continuous function of

time, so

0 < ı1(t) < ı2(t) < · · · < ıι(t) < a,

0 < χ1(t) < χ2(t) < · · · < χι+1(t) < a.

Lemma 6.2. (Convergence of zeros of uxx). The limits

lim
t→T

ıj(t) = ıj(T ) and lim
t→T

χj(t) = χj(T ),

exist.

Proof: This proof is similar to (Lemma 5.1 [2]) and it will be included here as

follows:

Assume that ıj(t) does not converge as t→ T . Then lim inft→T ıj(t) < lim supt→T ıj(t),

and we can choose an x0 ∈ (lim inft→T ıj(t), lim supt→T ıj(t)). Since ıj(t) is continu-

ous, there is an infinite sequence of times tk → T at which ıj(tk) = x0, and at which

therefore uxx(x0, tk) = 0 holds.
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Consider the family of curves ux on [0, a] and ũx obtained by reflecting ux in the

hyperplane x1 = x0, so reflected curve is another solution i.e. no corner. Here

ũx(x1, t) = ux(2x0 − x1, t), and ũx is defined on [2x0 − b, 2x0]. The curve ũx cor-

responds to ∂
∂x1
u(2x0 − x1, t) because it satisfies the same equation (6.6) which

allow us to look later at the difference between them. From Lemma 6.1 num-

ber of the zeros of ux where x1 ∈ [0, a] and ũx where x1 ∈ [2x0 − a, 2x0] is fi-

nite and non-increasing. Therefore the number of zeros of ω = ux − ũx where

x1 ∈ [max(0, 2x0 − a),min(a, 2x0)] is finite and non-increasing as well. Specifically,

choosing a suitable small neighbourhood gives one zero of ω = ux − ũx at the re-

flection point, and no other zeros in the neighbourhood. Moreover, the number of

zeros of ω drops from 1 to 0, from Theorem 6.1, because ux and ũx intersect non-

transversally. However, at time tk+1 we have ux(x0, tk+1) = 0 and the reflected one

also has ũx(x0, tk+1) = 0 i.e. a zero of ω which is a contradiction. Therefore, we

must have lim inft∗→T ıj(t) = lim supt∗→T ıj(t) As a result, limt∗→T ıj(t) exists. We

must therefore conclude that the ıj(t) converges after all. The same argument also

shows that χj(T )′s converge. �

111



Chapter 7

Volume Preserving Curvature

Flows

1 Introduction

This Chapter will be about volume preserving curvature flows of hypersurfaces with

Neumann boundary conditions on parallel planes. The main results of this Chapter

are boundedness of the global term h and of the first derivative of the graph function.

Discreteness of zeros of the second derivative of the graph function is obtained also.

Sometimes we will need the speed function F to be concave and we will indicate

where this is necessary. The n-dimensional axially symmetric hypersurface M can

be specified by a corresponding strict positive and suitably smooth function on the

bounded interval u : [0, a]→ R such that M is parametrised by X : [0, a]× Sn−1 →

Rn+1. We define Mt as an evolving family hypersurfaces in Rn+1 with boundary.

We consider the family of maps Xt = X(., t) evolving according to

∂X

∂t
(x, t) = {h(t)− F (W(x, t))}ν(x, t), x ∈Mt, t ∈ R, (7.1)

X(., 0) = X0,
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where F is fully nonlinear satisfying Conditions 1 i) to vi) and

h(t) =

∫
Mt
F (W)dµt∫
Mt
dµt

,

dµt is the surface area element on Mt. Equation (7.1) ensures that the flow preserves

the volume enclosed by M0.

Remarks:

i) It is clear from evolution equation (7.1) the symmetry of the speed function

F and the normal.

ii) Under the flow, the enclosed volume V , is preserved.

Let Et ⊂ G is (n−1)-dimensional set where G is the domain. As in ([18], Section 1),

extending (7.1) to a vector field using the first variation formula and the divergence

theorem

∂

∂t
Vt =

∫
Et

div
∂X

∂t
dx

=

∫
∂Et

∂X

∂t
.ν dµt

=

∫
Et

(h− F ) dµt

= 0.

From standard parabolic theory, the flow exists for a short time 0 < t < t1. In

addition, we write [0, T ) as the maximal time interval when the flow exists. A fixed

point argument can be used to handle the global term h(t) to obtain short time

existence, see for example [52].

2 Evolution equations

Lemma 7.1. The evolution equation of the metric under the flow (7.1)

∂

∂t
gij = 2 (h− F )hij.
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Proof:

∂

∂t
gij = 2

〈
∂

∂t

∂X

∂xi
,
∂X

∂xj

〉
= 2

〈
∂

∂xi
(hν − Fν) ,

∂X

∂xj

〉
= 2

[
h

〈
∂ν

∂xi
,
∂X

∂xj

〉
+ F

〈
− ∂

∂xi
ν,
∂X

∂xj

〉]
= 2hhij − 2Fhij

= 2(h− F )hij. (7.2)

�

Lemma 7.2. The evolution equation for the outer unit normal under the flow (7.1)

is given as follows

∂ν

∂t
= ∇F.

Proof:

∂ν

∂t
=

〈
∂ν

∂t
,
∂X

∂xi

〉
∂X

∂xj
gij

= −
〈
ν,
∂

∂t

∂X

∂xi

〉
∂X

∂xj
gij

= −
〈
ν,

∂

∂xi
(hν − Fν)

〉
∂X

∂xj
gij

=
∂

∂xi
F
∂X

∂xj
gij

= ∇F. (7.3)

�

Lemma 7.3. under the flow (7.1)

(i.) ∂
∂t
hij = Lhij + F̈ kl,rs∇ihrs∇jhkl + Ḟ klhmk hmlhij + (h− 2F )hki hkj.

(ii.) ∂
∂t
hij = Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh

m
l h

i
j − hhimhmj .

(iii.) ∂
∂t
H = LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l H − h|A|2.

(iv.) ∂
∂t
F = LF − (h− F ) Ḟ klhkmh

m
l .

114



Proof: Firstly, we need (3.10), (8.8) and (3.11). Since ∂
∂t
hij = ∇i∇jF+(h− F )hki hkj

we obtain the evolution equation of hij as following

∂

∂t
hij = F̈ kl,rs∇ihrs∇jhkl + Ḟ kl∇i∇jhkl + (h− F )hki hkj from (3.10)

= F̈ kl,rs∇ihrs∇jhkl + Ḟ kl∇k∇lhij − Fhmi hmj + Ḟ klhmk hmlhij

+ (h− F )hki hkj from (3.11)

= F̈ kl,rs∇ihrs∇jhkl + Lhij + Ḟ klhmk hmlhij + (h− 2F )hki hkj

= Lhij + F̈ kl,rs∇ihrs∇jhkl + Ḟ klhmk hmlhij + (h− 2F )hki hkj. (7.4)

To prove (ii)

∂hij
∂t

=
∂

∂t

[
gikhkj

]
= −2(h− F )hikhkj + gik

[
Lhkj + F̈ kl,rs∇ihrs∇jhkl + Ḟ klhmk hmlhij

+(h− 2F )hlkhlj
]

= Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh
m
l h

i
j − hhimhmj . (7.5)

Therefore

∂

∂t
H = gji

∂

∂t
hij

= gji

[
Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh

m
l h

i
j − hhimhmj

]
= LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l H − hg

j
ih

i
mh

m
j

= LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh
m
l H − h|A|2, (7.6)

which gives (iii).

To prove (iv)

∂

∂t
F = Ḟ j

i

∂

∂t
hij

= Ḟ j
i

[
Lhij + F̈ kl,rs∇ihkl∇jhrs + Ḟ klhkmh

m
l h

i
j − hhimhmj

]
,
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∂

∂t
F = Ḟ j

i

[
Ḟ kl∇k∇lh

i
j + Fhmi hmj − Ḟ klhmk hmlh

i
j from (3.11)

+∇i∇jF − Ḟ kl∇i∇jhkl + Ḟ klhkmh
m
l h

i
j − hhimhmj

]
from (3.10)

= Ḟ j
i

[
Fhmi hmj +∇i∇jF − hhimhmj

]
= Ḟ j

i

[
∇i∇jF − (h− F )hikhkj

]
= LF − (h− F )Ḟ klhkmh

m
l . (7.7)

�

Lemma 7.4. As long as y > 0 we have

(i.) ∂
∂t
〈X, i1〉 = L〈X, i1〉+ hqy.

(ii.) ∂y
∂t

= Ly − (n−1)
y
Ḟ 22 + hpy.

(iii.) ∂q
∂t

= Lq + Ḟ ijhki hkjq −
{[
−(n− 1)Ḟ 22 + 2Ḟ 11

]
q2

+
[
−(n− 1)Ḟ 22p+ h+ k2Ḟ 11

]
p
}
q.

(iv.) ∂p
∂t

= Lp+ Ḟ ijhki hkjp+ 2Ḟ 11q2(k − p)− hp2.

Proof: To prove (i)

∂

∂t
〈X, i〉 =

〈
∂

∂t
X, i1

〉
= 〈h(t)ν − Fν, i〉

= 〈h(t)ν, i〉+ 〈−Fν, i〉

= h(t)〈ν, i〉+ 〈Ḟ ij∇i∇jX, i1〉

= h(t)qy + Ḟ ij∇i∇j〈X, i1〉

= hqy + L〈X, i1〉, (7.8)

and to prove (ii)

∂

∂t
y2 =

∂

∂t
〈X,X〉 − ∂

∂t
〈X, i1〉2

= 2

〈
∂X

∂t
,X

〉
− 2 〈X, i1〉

〈
∂X

∂t
, i1

〉
.
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Because ∂y
∂t

= 1
2y

∂y2

∂t
we can compute the following

∂y

∂t
=

1

2y

[
2

〈
∂X

∂t
,X

〉
− 2 〈X, i1〉

〈
∂X

∂t
, i1

〉]
=

1

y

[
〈∂X
∂t

,X〉 − 〈X, i1〉〈
∂X

∂t
, i1〉
]

=
1

y
[〈hν − Fν,X〉 − 〈X, i1〉〈hν − Fν, i1〉]

=
1

y

{
〈hν,X〉+ 〈−FνX〉 − 〈X, i1〉

[
hqy + Ḟ ij∇i∇j〈X, i1〉

]}
=

1

y

[
〈hν,X〉+ 〈−Fν,X〉 − hqy〈X, i1〉 − 〈X, i1〉Ḟ ij∇i∇j〈X, i1〉

]
=

1

y
〈hν,X〉+

1

y
Ḟ ij〈∇i∇jX,X〉 − hq〈X, i1〉 −

1

y
〈X, i1〉Ḟ ij∇i∇j〈X, i1〉

=
1

y
〈hν,X〉+

1

y
〈LX,X〉 − hq〈X, i1〉 −

1

y
〈X, i1〉〈LX, i1〉. (7.9)

From (3.23) and

∂y

∂t
=

1

y
〈hν,X〉 − hq〈X, i1〉+ Ly − (n− 1)

y
Ḟ 22,

then

∂y

∂t
= Ly − (n− 1)

y
Ḟ 22 +

1

y
〈hν,X〉 − h〈ν, i1〉

y
〈X, i1〉

= Ly − (n− 1)

y
Ḟ 22 +

1

y
h [〈ν,X〉 − 〈ν, i1〉〈X, i1〉]

= Ly − (n− 1)

y
Ḟ 22 +

1

y
h [〈X, ν − 〈ν, i1〉i1〉] .

Using

ν = 〈ν, i1〉i1 + 〈ν, ω〉ω,

we have

∂y

∂t
= Ly − (n− 1)

y
Ḟ 22 +

1

y
h{〈X, 〈ν, ω〉ω〉}

= Ly − (n− 1)

y
Ḟ 22 +

1

y
h{〈X,ω〉︸ ︷︷ ︸

y

〈ν, ω〉︸ ︷︷ ︸
py

},
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which show the evolution equation of y

∂y

∂t
= Ly − (n− 1)

y
Ḟ 22 + hpy. (7.10)

To prove (iii), we recall (3.6)

∂

∂t
〈ν, i1〉 = Ḟ ij∇i∇j〈ν, i1〉+ Ḟ ijhki hkj〈ν, i1〉, (7.11)

and because q = 〈ν,i1〉
y

we compute the following

∂q

∂t
=

1

y2

[
y
∂

∂t
〈ν, i1〉 − 〈ν, i1〉

∂

∂t
y

]
=

1

y2

[
yḞ ij∇i∇j〈ν, i1〉+ yḞ ijhki hkj〈ν, i1〉 − 〈ν, i1〉Ḟ ij∇i∇jy +

(n− 1)

y
〈ν, i1〉Ḟ 22

−〈ν, i1〉hpy] . (7.12)

From (3.29) and (7.12)

∂q

∂t
=

1

y2

[
yḞ ijhki hkj〈ν, i1〉+

(n− 1)

y
〈ν, i1〉Ḟ 22 − 〈ν, i1〉hpy

]
+

2

y
Ḟ ij∇i

〈ν, i1〉
y
∇jy + Lq

= Lq + Ḟ ijhki hkjq +
(n− 1)

y2
Ḟ 22q − hpq +

2

y
Ḟ 11∇1q∇1y from 7.11

= Lq + Ḟ ijhki hkjq + (n− 1)Ḟ 22(q2 + p2)q − hpq +
2

y
Ḟ 11∇1q(−qy)

= Lq + Ḟ ijhki hkjq + (n− 1)Ḟ 22(q2 + p2)q − hpq − 2Ḟ 11(kp+ q2)q

= Lq + Ḟ ijhki hkjq −
[
−(n− 1)Ḟ 22(q2 + p2) + hp+ 2Ḟ 11(kp+ q2)

]
q

= Lq + Ḟ ijhki hkjq −
{[
−(n− 1)Ḟ 22 + 2Ḟ 11

]
q2

+
[
−(n− 1)Ḟ 22p+ h+ k2Ḟ 11

]
p
}
q. (7.13)

To prove (iv)

∂

∂t
y−2 = − 2

y3

[
Ḟ ij∇i∇jy −

(n− 1)

y
Ḟ 22 + hpy

]
= − 2

y3
Ly +

2(n− 1)

y4
Ḟ 22 − 2

y2
hp. (7.14)
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Using (3.37) we have

∂

∂t
y−2 = Ly−2 − 6

y4
Ḟ ij∇iy∇jy +

2(n− 1)Ḟ 22

y4
− 2

y2
hp.

Also from (7.13)

∂

∂t
q2 = 2q

[
Lq + Ḟ ijhki hkjq + (n− 1)Ḟ 22(q2 + p2)q − hpq − 2Ḟ 11(kp+ q2)q

]
,

using (3.34) we can write

∂

∂t
q2 = Lq2 − 2Ḟ ij∇iq∇jq + 2qḞ ijhki hkjq − 2(n− 1)Ḟ 22

(
q2 + p2

)
q2

− 2hpq2 − 4Ḟ 11
(
kp+ q2

)
q2, (7.15)

and then

∂

∂t
p2 =

∂

∂t
y−2 − ∂

∂t
q2

= Ly−2 − 6

y4
Ḟ ij∇iy∇jy +

2(n− 1)Ḟ 22

y4
− 2

y−2
hp− Lq2 + 2Ḟ ij∇iq∇jq

− 2Ḟ ijhki hkjq
2 − 2(n− 1)Ḟ 22

(
q2 + p2

)
q2 + 2hpq2 + 4Ḟ 11

(
kp+ q2

)
q2

= Lp2 − 6

y4
Ḟ 11∇1y∇1y + 2(n− 1)Ḟ 22

(
q2 + p2

)2 − 2hp
(
q2 + p2

)
+ 2Ḟ 11|∇1q|2

− 2Ḟ ijhki hkjq
2 − 2(n− 1)Ḟ 22q4 − 2(n− 1)Ḟ 22p2q2 + 2hpq2 + 4Ḟ 11kpq2

+ 4Ḟ 11q4

= Lp2 − 6Ḟ 11

y4
(−qy) (−qy) + 2(n− 1)Ḟ 22q4 + 4(n− 1)Ḟ 22p2q2 + 2(n− 1)Ḟ 22p4

− 2hpq2 − 2hp3 + 2Ḟ 11k2p2 + 4Ḟ 11q4 + 4Ḟ 11kpq4 − 2Ḟ ijhki hkjq
2

− 2(n− 1)Ḟ 22q4 − 2(n− 1)Ḟ 22p2q2 + 2hpq2 + 4Ḟ 11kpq2 + 4Ḟ 11q4

= Lp2 − 2Ḟ 11k2q2 − 2(n− 1)Ḟ 22p2q2 − 6Ḟ 11q4 − 6Ḟ 11q2p2 + 2(n− 1)Ḟ 22q4

+ 4(n− 1)Ḟ 22p2q2 + 2(n− 1)Ḟ 22p4 − 2hpq2 − 2hp3 + 2Ḟ 11k2p2 + 2Ḟ 11q4

+ 4Ḟ 11kpq2 − 2(n− 1)Ḟ 22q4 − 2(n− 1)Ḟ 22p2q2 + 2hpq2 + 4Ḟ 11kpq2 + 4Ḟ 11q4

= Lp2 − 2Ḟ 11k2q2 − 6Ḟ 11q2p2 + 2(n− 1)Ḟ 22p4 − 2hp3 + 2Ḟ 11k2p2 + 8Ḟ 11kpq2.
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But Ḟ ijhkjhkjp
2 = Ḟ 11k2p2 + (n− 1)Ḟ 22p4, so

∂p2

∂t
= Lp2 − 2Ḟ 11k2q2 − 6Ḟ 11q2p2 + 2Ḟ ijhkjhkjp

2 − 2Ḟ 11k2p2 − 2hp3 + 2Ḟ 11k2p2

+ 8Ḟ 11kpq2

= Lp2 + 2Ḟ ijhkjhkjp
2 − 2Ḟ 11k2q2 − 6Ḟ 11q2p2 − 2hp3 + 8Ḟ 11kpq2. (7.16)

From (3.42) and (3.45) we have

Lp2 = 2pLp+ 2Ḟ 11q2
(
p2 − 2pk + k2

)
, (7.17)

then equation (7.16) becomes

∂p2

∂t
= 2pLp+ 2Ḟ 11q2p2 − 4Ḟ 11q2pk + 2Ḟ 11q2k2

+ 2Ḟ ijhkjhkjp
2 − 2Ḟ 11k2q2 − 6Ḟ 11q2p2 − 2hp3 + 8F̈ 11k2q2

= 2pLp+ 2Ḟ ijhkjhkjp
2 + 4Ḟ 11kpq2 − 4Ḟ 11q2p2 − 2hp3

= 2pLp+ 2Ḟ ijhkjhkjp
2 + 4Ḟ 11 (k − p) pq2 − 2hp3.

Using ∂p2

∂t
= 2p∂p

∂t
, it is concluded that

∂p

∂t
= Lp+ Ḟ ijhkjhkjp+ 2Ḟ 11q2 (k − p)− hp2. (7.18)

�

Lemma 7.5. Under the flow (7.1) we have the following evolution equation

∂

∂t

( q
F

)
= L

( q
F

)
+

2

F
Ḟ ij∇i

( q
F

)
∇jF −

1

F

{[
−(n− 1)Ḟ 22 + 2Ḟ 11

]
q2

+
[
−(n− 1)Ḟ 22p+ h+ 2kḞ 11

]
p
}
q +

q

F 2
hḞ ijhkjhkj.
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Proof: Using (3.81) the evolution equation of ∂
∂t

(
q
F

)
can be calculated as follows

∂

∂t

( q
F

)
=

1

F 2

[
F
∂q

∂t
− q∂F

∂t

]
=

F

F 2

{
Lq + Ḟ ijhki hkjq −

([
−(n− 1)Ḟ 22 + 2Ḟ 11

]
q2 + [−(n− 1)

Ḟ 22p+ h+ k2Ḟ 11
]
p
)
q
}
− q

F 2

[
LF − (h− F )Ḟ ijhkjhkj

]
=

1

F 2
[FLq − qLF ] +

F

F 2

{
Ḟ ijhki hkjq −

([
−(n− 1)Ḟ 22 + 2Ḟ 11

]
q2

+
[
−(n− 1)Ḟ 22p+ h+ k2Ḟ 11

]
p
)
q
}
− q

F 2

[
−(h− F )Ḟ ijhkjhkj

]
= L(

q

F
) +

2

F
Ḟ ij∇i

( q
F

)
∇jF −

1

F

{[
−(n− 1)Ḟ 22 + 2Ḟ 11

]
q2 + [−(n− 1)

Ḟ 22p+ h+ 2kḞ 11
]
p
}
q +

q

F 2
hḞ ijhkjhkj. (7.19)

�

Lemma 7.6. Under the flow (7.1)

∂

∂t

(
H

F

)
= L

(
H

F

)
+

2

F
Ḟ kl∇kF∇l

(
H

F

)
+

1

F
F̈ kl,rs∇ihkl∇ihrs

− h

F 2

(
F |A|2 −HḞ klhkmh

m
l

)
.

Proof: Using (3.84) we compute

∂

∂t

(
H

F

)
= Ḟ kl∇k∇l

(
H

F

)
=
FLH −HLF

F 2
− 2

F
Ḟ kl∇kF∇l

(
H

F

)

=
F
[
LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l H − h|A|2

]
F 2

−
H
[
LF − (h− F )Ḟ klhkmh

m
l

]
F 2

= L
(
H

F

)
+

2

F
Ḟ kl∇kF∇l

(
H

F

)
+

1

F
F̈ kl,rs∇ihkl∇ihrs −

h

F 2
F |A|2

+
H

F 2
hḞ klhkmh

m
l

= L
(
H

F

)
+

2

F
Ḟ kl∇kF∇l

(
H

F

)
+

1

F
F̈ kl,rs∇ihkl∇ihrs

− h

F 2

(
F |A|2 −HḞ klhkmh

m
l

)
. (7.20)

�
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Lemma 7.7. Under the flow (7.1)

∂k

∂t
= Lk + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l k + h

[
(n− 1)p2 − |A|2

]
− 2(n− 1)Ḟ 11q2 (k − p) .

Proof: By the use of (7.6) and (7.18) we compute

∂k

∂t
=

∂

∂t
[H − (n− 1)p]

= LH + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh
m
l H − h|A|2 − (n− 1) [Lp

+Ḟ klhkmh
m
l p+ 2Ḟ 11q2(k − p)− hp2

]
= Lk + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l k − h|A|2 − 2(n− 1)Ḟ 11q2(k − p)

+ (n− 1)hp2

= Lk + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh
m
l k + h

[
(n− 1)p2 − |A|2

]
− 2(n− 1)Ḟ 11q2(k − p). (7.21)

�

Lemma 7.8. We have the following evolution equation under the flow (7.1)

∂

∂t

(
k

p

)
= L

(
k

p

)
+

2

p
Ḟ kl∇k

(
k

p

)
∇lp+

1

p
F̈ kl,rs∇ihkl∇ihrs + h

[
(n− 1)p− 1

p
|A|2 + k

]
− 2

q2

p2
Ḟ 11 [(k − p)(k + (n− 1)p)] .

Proof: Using (3.87) we have

∂

∂t

(
k

p

)
=

1

p2

[
p
∂

∂t
k − k ∂

∂t
p

]
=

1

p2

{
p
[
Lk + F̈ kl,rs∇ihkl∇ihrs + Ḟ klhkmh

m
l k + h

[
(n− 1)p2 − |A|2

]
−2(n− 1)Ḟ 11q2(k − p)

]}
− 1

p2

{
k
[
Lp+ Ḟ klhmk hmlp+ 2Ḟ 11q2(k − p)− hp2

]}
,
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∂

∂t

(
k

p

)
= L

(
k

p

)
+

2

p
Ḟ kl∇k

(
k

p

)
∇lp

+
1

p

{
h
[
(n− 1)p2 − |A|2

]
− 2(n− 1)Ḟ 11q2(k − p)

}
+

1

p
F̈ kl,rs∇ihkl∇ihrs − 2

k

p2
Ḟ 11q2(k − p) + hk

= L
(
k

p

)
+

2

p
Ḟ kl∇k

(
k

p

)
∇lp+

1

p
F̈ kl,rs∇ihkl∇ihrs + h

[
(n− 1)p− 1

p
|A|2 + k

]
− 2

k

p2
Ḟ 11q2(k − p)− 1

p
2(n− 1)Ḟ 11q2 (k − p)

= L
(
k

p

)
+

2

p
Ḟ kl∇k

(
k

p

)
∇lp+

1

p
F̈ kl,rs∇ihkl∇ihrs + h

[
(n− 1)p− 1

p
|A|2 + k

]
− 2

q2

p2
Ḟ 11 [(k − p) (k + (n− 1)p)] . (7.22)

�

3 Evolving graph function

We use the chain rule to obtain the evolution equation for u. Let ω : [0, a]× [0, T )→

Rn+1 be the unit outward normal of an n dimensional cylinder, which intersects the

hypersurface at the point u(x1, t). Here ω is parametrized over the x1 axis, whereas

ω is parametrized over Mn. As in Chapter 4, we obtain the corresponding evolution

equation for the graph height but here using speed function (h− F )

∂u

∂t
=

√
1 +

(
∂u

∂x1

)2

(h− F (W)) , (7.23)

which means

∂u

∂t
=

√
1 +

(
∂u

∂x1

)2

h+ Ḟ 11 uxx
1 + u2x

−
n∑
j=2

Ḟ jj 1

u
. (7.24)

4 The lower bound of the surface area

From (2.11) we can compute the following

det gij = u2(n−1)
(
1 + u2x

)
w2
n,
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and therefore

µ =
√

det gij = un−1
√

1 + u2x wn.

Then

|Mt| = wn

∫ a

0

un−1
√

1 + u2x dx,

where wn is area of n− 1 dimensional sphere. Assuming u is bounded away from 0,

u > c5 > 0

|µt| > wn

∫ a

0

un−1dz

> wnc
n−1
5 a

> 0. (7.25)

As a result, we obtain a lower bound of the surface area which will be used later for

the bound of h.

5 Estimate on h

Because h is a global term, it is very important to bound it. In the following, the

bound of h is obtained in similar way as in [18].

Proposition 7.1. Assume Mt to be a smooth, axially symmetric hypersurface solv-

ing (7.1), with concave speed function f and a radius function u(x1, t) > c5 > 0.

Then there is a constant c2 such that the mean value of the fully nonlinear curvature

satisfies

0 6 h(t) 6 c2,

with c2 constant depends on the initial hypersurface.

Proof: It is important here to have F concave which means F 6 1
n
H, see Lemma

4.1. Therefore ∫
Fdµt 6

∫
1

n
Hdµt.

Now, as in [18] using the parametrisation of Mt by its radius function u > c5 > 0
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we know

H = − uxx

(1 + u2x)
3
2

+
n− 1

u(1 + u2x)
1
2

.

Clearly

h(t) =

∫
Mt
F (W)dµt∫
Mt
dµt

6

∫
Mt
H(W)dµt∫
Mt
dµt

=
1

|Mt|

∫
Mt

(k + (n− 1)p) dµt

=
1

|Mt|

∫
Mt

(
− uxx

(1 + u2x)
3
2

+
(n− 1)

u(1 + u2x)
1
2

)
dµt

=

∫ a
0

(
− uxx

(1+u2x)
un−1 + (n− 1)un−2

)
dx∫ a

0
un−1(1 + u2x)

1
2dx

.

(7.26)

For the second term of (7.26) because p = 1

u(1+u2x)
1
2
6 1

u
6 1

c5
we have

0 6
1

|Mt|

∫
Mt

(n− 1)p dµt 6
1∫

Mt
dµt

∫
Mt

(n− 1)
1

u
dµt

6
n− 1

u

∫
Mt
dµt∫

Mt
dµt
6
n− 1

c5
6 c(n, c5). (7.27)

For the first term we know k = − uxx

(1+u2x)
3
2

= − d
dx

(arctanux) and then

1

|Mt|

∫
Mt

k dµt =
1

|Mt|

∫
Mt

− uxx

(1 + u2x)
3
2

dµt

=
nwn
|Mt|

∫ a

0

− uxx
(1 + u2x)

un−1 dx

=
nwn
|Mt|

∫ a

0

− d

dx
(arctanux)u

n−1 dx. (7.28)

Using
∫ a
0
udv = [uv]a0 −

∫ a
0
vdu equation (7.28) become

1

|Mt|

∫
Mt

k dµt =
n(n− 1)wn
|Mt|

∫ a

0

(arctanux)uxu
n−2 dx, (7.29)
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because (arctanux)|x=0 = 0 and also (arctanux)|x=a = 0 , Neumann boundary

conditions. In addition, 0 6 (arctanux)ux 6 π
2
|ux| 6 π

2

√
1 + u2x so

1

|Mt|

∫
Mt

k dµt 6
n(n− 1)wn
|Mt|

π

2

∫ a

0

√
1 + u2xu

n−2 dx

6
(n− 1)

|Mt|
π

2

∫
M

1

u
dµt 6 c′(n, c5). (7.30)

Now combining the two terms it is concluded that

0 6 h(t) =

∫
Mt
F (W)dµt∫
Mt
dµt

6

∫
Mt
H(W)dµt∫
Mt
dµt

6 c2.

�

6 A gradient estimate

As in [27] we consider now v = 〈ν, ω〉−1, see (3.51) where ω is the unit outward

normal to the cylinder over the n − 1 dimensional sphere, to be used in order to

have some bounds for some quantities such as yv and v as in [18] and [43] respectively.

Lemma 7.9. There exists a constant c3 depending only on the initial hypersurface,

where yv < c3.

Proof: We recall evolution equation of v from Lemma 3.6

∂

∂t
v = Lv − Ḟ ijhkjhki v +

(n− 1)

y2
vḞ 22 − 2v−1Ḟ ij∇iv∇jv. (7.31)
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Using c2 as in Section 5 we compute

∂

∂t
(yv − c2t) = y

∂v

∂t
+ v

∂y

∂t
− c2

= y

[
Lv − Ḟ ijhkjhki v +

(n− 1)

y2
vḞ 22 − 2v−1Ḟ ij∇iv∇jv

]
+ v

[
Ḟ ij∇i∇jy −

(n− 1)

y
Ḟ 22 + hpy

]
− c2 from Lemma 7.4

= yLv − yḞ ijhkjhki v + y
(n− 1)

y2
vḞ 22 − 2

y

v
Ḟ ij∇iv∇jv

+ vLy − v(n− 1)

y
Ḟ 22 + hpyv − c2

= yLv + vLy − yḞ ijhkjhki v − 2
y

v
Ḟ ij∇iv∇jv + hpyv − c2

= yLv + vLy − yḞ ijhkjhki v − 2
y

v
Ḟ ij∇iv∇jv + hpy〈ν, w〉−1 − c2.

(7.32)

We need

L(yv) = Ḟ ij∇i∇j(yv) = Ḟ ij∇i [v∇jy + y∇jv]

= Ḟ ij [∇iv∇jy + v∇i∇jy +∇iy∇jv + y∇i∇jv]

= Ḟ ij [2〈∇iv,∇jy〉+ v∇i∇jy + y∇i∇jv]

= 2Ḟ ij〈∇iv,∇jy〉+ vLy + yLv. (7.33)

Also as ∇(yv) = (∇(y)v + y∇(v)) then

〈∇v,∇(yv)〉 = 〈∇v,∇(y)v〉+ 〈∇v, y∇v〉

= v〈∇v,∇(y)〉+ y〈∇v,∇v〉

= v〈∇v,∇(y)〉+ y∇iv∇jv. (7.34)

As a result of (7.34), we can write

2〈∇v,∇(y)〉 =
2

v
〈∇v,∇(yv)〉 − 2y

v
∇iv∇jv. (7.35)
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By substituting (7.35) into (7.33)

L(yv) = Ḟ ij

[
2

v
〈∇v,∇(yv)〉 − 2y

v
∇iv∇jv

]
+ vLy + Lv

= vLy + Lv + Ḟ ij 2

v
〈∇v,∇(yv)〉 − Ḟ ij 2y

v
∇iv∇jv. (7.36)

Therefore from (7.36) and (7.32)

∂

∂t
(yv − c2t) =L(yv)− Ḟ ij 2

v
〈∇v,∇(yv)〉+ Ḟ ij 2y

v
∇iv∇jv − yḞ ijhkjhki v

− 2
y

v
Ḟ ij∇iv∇jv + hpy〈ν, w〉−1 − c2

= L(yv)− Ḟ ij 2

v
〈∇v,∇(yv)〉 − yḞ ijhkjhki v + hpy〈ν, w〉−1 − c2

because py = 〈ν, w〉

= L(yv)− Ḟ ij 2

v
〈∇v,∇(yv)〉 − yḞ ijhkjhki v + h− c2

= L(yv − c2t)− Ḟ ij 2

v
〈∇v,∇(yv − c2t)〉 − yḞ ijhkjhki v + h− c2.

At a maximum we have L(yv − c2t) 6 0 and ∇(yv − c2t) = 0. Since the zero order

term is non positive then

∂

∂t
(yv − c2t) 6 L(yv − c2t)− Ḟ ij 2

v
〈∇v,∇(yv − c2t)〉.

By the result of Hamilton [34] for almost every t, we have

d

dt
max
Mt

(yv − c2t) 6 0.

Therefore,

max
Mt

(yv − c2t) 6 max
M0

yv =: c4,

then

yv − c2t 6 c4,

and

yv 6 c2t+ c4 6 c2T + c4 6 c3.
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For the following Proposition we need to assume 0 < c5 6 y 6 R.

Proposition 7.2. If we assume v 6 v0 on the initial surface M0, then

max
t>0

v 6 c6(n, c5, R, v0).

Proof: Using the Neumann boundary conditions at x = 0 and x = a, we will

consider equivalently the evolution of periodic surfaces M̃t defined along the whole

x1 axis. We assume that the product u2v attains a maximum, denoted by K, on

M̃t1 for t1 > 0. We need to prove at this maximum point that ( ∂
∂t
− L)(y2v) 6 0 if

K is large enough.

From Lemma 3.6 and Lemma 7.4 we have

∂

∂t
v = Lv − Ḟ ijhkjhki v +

(n− 1)

y2
vḞ 22 − 2v−1Ḟ ij∇iv∇jv, (7.37)

and

∂y

∂t
= Ḟ ij∇i∇jy −

(n− 1)

y
Ḟ 22 + hpy.

We need that ∂y2

∂t
= 2y ∂y

∂t
to compute the next equation

∂

∂t

(
y2v
)

= y2
∂v

∂t
+ v

∂y2

∂t

= y2
∂v

∂t
+ v2y

∂y

∂t
,

= y2
[
Lv − Ḟ ijhkjhki v +

(n− 1)

y2
vḞ 22 − 2v−1Ḟ ij∇iv∇jv

]
+ v

[
2yḞ ij∇i∇jy − 2y

(n− 1)

y
Ḟ 22 + 2yhpy

]
= y2

[
Lv − Ḟ ijhkjhki v +

(n− 1)

y2
vḞ 22 − 2v−1Ḟ ij∇iv∇jv

]
+ v

[
2yḞ ij∇i∇jy − 2y

(n− 1)

y
Ḟ 22 + 2yhv−1

]
, because py = 〈v, w〉 = v−1
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∂

∂t

(
y2v
)

= y2Lv − y2Ḟ ijhkjhki v + (n− 1)vḞ 22 − 2
y2

v
Ḟ ij∇iv∇jv

+ v2yḞ ij∇i∇jy − 2v(n− 1)Ḟ 22 + 2hy

= y2Lv − y2Ḟ ijhkjhki v + (n− 1)vḞ 22 − 2
y2

v
Ḟ ij∇iv∇jv

+ v
[
Ḟ ij∇i∇jy

2 − 2Ḟ ij∇iy∇jy
]
− 2v(n− 1)Ḟ 22 + 2hy

because Ḟ ij∇i∇jy
2 = Ḟ ij∇i[2y∇jy] = 2Ḟ ij∇iy∇jy + 2yḞ ij∇i∇jy

= y2Lv + vLy2 − y2Ḟ ijhkjhki v − 2
y2

v
Ḟ ij∇iv∇jv

− 2vḞ ij∇iy∇jy − v(n− 1)Ḟ 22 + 2hy. (7.38)

We also need

L
(
y2v
)

= Ḟ ij∇i∇j

(
y2v
)

= Ḟ ij∇i[v2y∇jy + y2∇jv]

= Ḟ ij
[
2∇iy(∇jy)v + v2y∇i∇jy + 2y∇iv∇jy + 2y∇iy∇jv + y2∇i∇jv

]
= Ḟ ij [2∇iy(∇jy) + 2y∇i∇jy] v + Ḟ ij∇iv∇jy

2 + Ḟ ij∇iy
2∇jv

+ y2Ḟ ij∇i∇jv

= (Ḟ ij∇i∇jy
2)v + Ḟ ij∇iv∇jy

2 + Ḟ ij∇iy
2∇jv + y2Lv

= vLy2 + 2Ḟ ij〈∇iv,∇jy
2〉+ y2Lv. (7.39)

Also as ∇ (y2v) = (∇(y2)v + y2∇(v)) we have

〈∇v,∇
(
y2v
)
〉 = 〈∇v,∇(y2)v〉+ 〈∇v, y2∇v〉

= v〈∇v,∇(y2)〉+ y2〈∇v,∇v〉

= v〈∇v,∇(y2)〉+ y2∇iv∇jv. (7.40)

As a result of (7.40), we can write

2〈∇v,∇(y2)〉 =
2

v
〈∇v,∇(y2v)〉 − 2y2

v
∇iv∇jv. (7.41)
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By substituting (7.41) into (7.39)

L
(
y2v
)

= vLy2 + Ḟ ij

[
2

v
〈∇v,∇(y2v)〉 − 2y2

v
∇iv∇jv

]
+ y2Lv

= vLy2 + y2Lv + Ḟ ij 2

v
〈∇v,∇(y2v)〉 − Ḟ ij 2y2

v
∇iv∇jv. (7.42)

Therefore from (7.42) and we have (7.38)

∂

∂t
(y2v) = L

(
y2v
)
− Ḟ ij 2

v
〈∇v,∇(y2v)〉+ 2Ḟ ij y

2

v
∇iv∇jv − y2Ḟ ijhkjhkj v

− 2
y2

v
Ḟ ij∇iv∇jv − 2vḞ ij∇iy∇jy − v(n− 1)Ḟ 22 + 2hy

= L(y2v)− Ḟ ij 2

v
〈∇v,∇(y2v)〉 − y2Ḟ ijhkjhkj v

− 2vḞ ij∇iy∇jy − v(n− 1)Ḟ 22 + 2hy. (7.43)

Similarly as in [43], we throw away y2Ḟ ijhkjhkj v. We have now

∂

∂t

(
y2v
)
6 −v(n− 1)Ḟ 22 + 2hy. (7.44)

We need to show that ḟ 2 is bounded below at the maximum.

From first order term condition at maximum ∇i (y
2v) = 0, where is v =

√
1 + u2x

we have

2uuxv + u2
1

2

2uxuxx√
1 + u2x

= 0,

2
√

1 + u2x + u
uxx√
1 + u2x

= 0,

2

u
√

1 + u2x
+

uxx

(1 + u2x)
3
2

= 0,

which can be written in terms of curvatures as

2κ2 − κ1 = 0,

so 2κ2 = κ1. Since ḟ 2 is homogeneous of degree zero we have

ḟ 2 (κ1, κ2, . . . , κ2) = ḟ 2 (2κ2, κ2, . . . , κ2) = ḟ 2 (2, 1, . . . , 1) .
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Because ḟ 2 is a strictly positive function, see Conditions 1 iii), in particular ḟ 2 (2, 1, . . . , 1) =

C > 0 where C is an absolute constant.

Now, at a maximum K of the product y2v; in particular, v > K
R2 at this point,

since c5 6 y 6 R. We also have 0 6 h 6 c2(n, c5) (see Proposition 7.1).

We deduce that ∂
∂t

(y2v) 6 0 at the maximum point provided

K >
2R3c2(n, c5)

(n− 1)C
.

Therefore

max
t>0

(
y2v
)
6

2R3c2(n, c5)

(n− 1)C
,

and

max
t>0

v 6 max

(
2R3c2(n, c5)

(n− 1)Cc25
,
R2v0
c25

)
.

�

7 Application of the Sturmian theorem

Sturmian theorem will be used to show that the zeros of uxx are discrete and non-

increasing.

Lemma 7.10. Assume Mt to be a smooth surface solving (7.24). Assume in addition

that u(x1, t) ≥ ε, ε > 0, for a ≤ x1 ≤ b, t ∈ (0, T
′
), T

′
< T . Then the set Zt(uxx) =

{x1 ∈ R : uxx(x1, t) = ∂2u
∂x2

= 0} is a discrete set in [a, b], for all t ∈ (0, T
′
). Moreover

the number of zeros of uxx is a nonincreasing function of time.

Proof: Differentiating (6.5) with respect to x we find that ux satisfies

∂

∂t

∂u

∂x
=

∂

∂x

∂u

∂t

=
∂

∂x

√1 +

(
∂u

∂x1

)2

h+ Ḟ 11 uxx
1 + u2x

−
n∑
j=2

Ḟ jj 1

u


= −1

2
(1 + u2x)

−1
2 2uxuxxh+

Ḟ 11

(1 + u2x)
uxxx +

(n− 1)Ḟ 22

u2
ux −

2Ḟ 11

(1 + u2x)
2
uxu

2
x

= −(1 + u2x)
−1
2 uxuxxh+

Ḟ 11

(1 + u2x)
uxxx +

(n− 1)Ḟ 22

u2
ux −

2Ḟ 11

(1 + u2x)
2
uxu

2
x.
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By differentiating with respect to x we find that

∂uxx
∂t

=
∂

∂x

∂ux
∂t

=

[
−1

2
(1 + u2x)

−3
2 2uxuxxuxuxx + (1 + u2x)

−1
2 uxxuxx + (1 + u2x)

−1
2 uxuxxx

]
h

+
Ḟ 11

(1 + u2x)
uxxxx − 2

Ḟ 11

(1 + u2x)
2
uxuxxuxxx +

(n− 1)Ḟ 22

u2
uxx − 2

(n− 1)Ḟ 22

u3
u2x

− 2
Ḟ 11

(1 + u2x)
2
u3xx − 4

Ḟ 11

(1 + u2x)
2
uxuxxuxxx + 8

Ḟ 11

(1 + u2x)
3
u2xu

3
xx

=

[
− 1

(1 + u2x)
3
2

u2xu
2
xx +

1√
(1 + u2x)

u2xx +
1√

(1 + u2x)
uxuxxx

]
h

+
Ḟ 11

(1 + u2x)
uxxxx − 2

Ḟ 11

(1 + u2x)
2
uxuxxuxxx +

(n− 1)Ḟ 22

u2
uxx − 2

(n− 1)Ḟ 22

u3
u2x

− 2
Ḟ 11

(1 + u2x)
2
u3xx − 4

Ḟ 11

(1 + u2x)
2
uxuxxuxxx + 8

Ḟ 11

(1 + u2x)
3
u2xu

3
xx.

Let η = uxx then

∂η

∂t
=

[
− 1

(1 + u2x)
3
2

u2xη
2 +

1√
(1 + u2x)

η2 +
1√

(1 + u2x)
uxηx

]
h

+
Ḟ 11

(1 + u2x)
ηxx − 6

Ḟ 11

(1 + u2x)
2
uxηηx +

(n− 1)Ḟ 22

u2
η − 2

(n− 1)Ḟ 22

u3
u2x

− 2
Ḟ 11

(1 + u2x)
2
η3 + 8

Ḟ 11

(1 + u2x)
3
u2xη

3,

∂η

∂t
=

Ḟ 11

(1 + u2x)
ηxx −

[
6

Ḟ 11

(1 + u2x)
2
uxη +

h√
(1 + u2x)

ux

]
ηx

+

[
− h

(1 + u2x)
3
2

u2xη +
h√

(1 + u2x)
η +

(n− 1)Ḟ 22

u2
− 2

Ḟ 11

(1 + u2x)
2
η2

+8
Ḟ 11

(1 + u2x)
3
u2xη

2

]
η − 2

(n− 1)Ḟ 22

u3
u2x. (7.45)

Because h is bounded as in Section 5 we may apply Sturmian theorem similarly as

an unconstrained case, see Lemma 6.1. �
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Lemma 7.11. (Convergence of zeros of uxx). The limits

lim
t→T

ıj(t) = ıj(T ) and lim
t→T

χj(t) = χj(T ),

exist.

Proof: because we have bound on h the proof is a repetition of Lemma 6.2

134



Chapter 8

Appendix

1 Homogeneity

Function f is homogeneous of a positive degree α if

f(kκ) = kαf(κ),

for any k > 0. Euler’s theorem for a smooth homogeneous function of degree α is

very useful and states that

∑
i

∂f(κ)

∂κi
κi = αf(κi),

and this is because

αf(κ) =
d

ds
|s=1s

αf(κ) =
d

ds
|s=1f(sκ) =

n∑
i=1

∂f(κ)

∂κi
κi.

2 F homogeneous of degree α > 1

For speed function f(κ1, . . . , κn) homogeneous of degree α which means f(kκ) =

kαf(κ) differentiating f respecting to κi

∂f

∂κi
=
∑
i

∂f

∂yi
(kκ)κi = αkα−1f(κ). (8.1)
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Euler’s theorem for (8.1) at k = 1 imply

∂f

∂κi
=
∑
i

∂f

∂yi
(κ)κi = αf(κ). (8.2)

Differentiating (8.1) again

∂2f

∂κ2i
=
∑
i,j

∂2f

∂yi∂yj
(kκ)κiκj = α(α− 1)kα−2f(κ), (8.3)

evaluate (8.3) at k = 1

∂2f

∂κ2i
=
∑
i,j

∂2f

∂yi∂yj
(κ)κiκj = α(α− 1)f(κ). (8.4)

In our case where κ = (κ1, κ2 . . . , κn) = (κ1, (n − 1)κ2) (8.4) gives Euler’s theorem

for the second derivative of the homogeneous function f of degree α as follows

∂2f

∂κ2i
= ḟ 11κ21 + 2(n− 1)ḟ 12κ1κ2 +

∑
i,j=2

ḟ 22κ22

= ḟ 11κ21 + 2(n− 1)ḟ 12κ1κ2 + (n− 1)2ḟ 22κ22

= α(α− 1)f(κ). (8.5)

3 Interchange of two covariant derivatives

The Riemann curvature tensor can be written in terms of Gauss equation

Rijkl = hikhjl − hilhjk,

for standard interchange of second covariant derivatives of two tensor we obtain

∇k∇ihlj −∇i∇khlj = Rkilmg
mnhnj +Rkijmg

mnhnl, (8.6)

and the Codazzi equations are

∇ihkl = ∇khil = ∇lhik,
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using Codazzi equations we have

∇k∇lhij = ∇k∇ihlj, (8.7)

and then

∇k∇lhij = ∇k∇ihlj

= ∇i∇khlj +Rkilmg
mnhnj +Rkijmg

mnhnl from (8.6)

= ∇i∇khlj + hklhimg
mnhnj − hkmhilgmnhnj + hkjhimg

mnhnl

− hkmhijgmnhnl . from Gauss equation (8.8)
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Modern Birkhäuser classics. Springer Basel, 2012.

[50] Matioc, B.V. Boundary value problems for rotationally symmetric mean cur-

vature flows. Archiv der Mathematik, 89(4):365–372, 2007.

[51] McCoy, J.A. The surface area preserving mean curvature flow. Asian J. Math.,

7(1):7–30, 2003.

[52] McCoy, J.A. Mixed volume preserving curvature flows. Calculus of Variations

and Partial Differential Equations, 24(2):131–154, 2005.

[53] McCoy, J.A. Self-similar solutions of fully nonlinear curvature flows. Scuola

Normale Superiore di Pisa, Annali, Classe di Scienze, 10(5):317–333, 2011.

[54] McCoy, J.A., Mofarreh, F.Y., and Williams, G.H. Fully nonlinear curvature

flow of axially symmetric hypersurfaces with boundary conditions. Annali di

Matematica Pura ed Applicata, 193(5):1443–1455, 2014.

142



[55] McCoy, J.A., Mofarreh, F.Y., and Wheeler, V.M. Fully nonlinear curvature

flow of axially symmetric hypersurfaces. Nonlinear Differential Equations and

Applications NoDEA, 22(2):325–343, 2015.

[56] Morgan, J. and Tian, G. Ricci flow and the Poincaré conjecture. Clay mathe-
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