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ABSTRACT 

For reactive gas-phase environments, including combustion, extraterrestrials atmospheres and our Earth’s 

atmosphere, the availability of quality chemical data is essential for predictive chemical models. These 

data include reaction rate coefficients and product branching fractions. This perspective overviews recent 

isomer-resolved production detection experiments for reactions of two of the most reactive gas phase 

radicals, the CN and CH radicals, with a suite of small hydrocarbons. A particular focus is given to flow-

tube experiments using synchrotron photoionization mass spectrometry. Coupled with computational 

studies and other experiment techniques, flow tube isomer-resolved product detection have provided 

significant mechanistic details of these radical + neutral reactions with some general patterns emerging.  
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1. Introduction  

For reactive gas-phase environments, the availability of quality chemical data is essential to ensure the 

construction of useful chemical models. Models of combustion, atmospheric chemistry, extraterrestrial 

atmospheres and the interstellar medium – covering an extensive range of temperature and pressure 

conditions – require reaction rate coefficients and product branching fractions to ensure they can track and 

predict evolving chemical populations. These sorts of models target, for example, the evolution of NOx 

species in combustion,1-3 the formation of aromatics on Titan4-7 or the growth of secondary aerosols in our 

atmosphere.8,9 The ongoing testing and refinement of these models has, in turn, driven major 

advancements in the understanding of fundamental gas-phase radical chemistry and compelled the 

development of new experimental techniques.  

The focus of this Perspective article is the gas-phase reactions of CH and CN radicals with a range of 

hydrocarbon reactants with emphasis on recent, isomer-specific, product-detection studies and 

mechanistic insights. Both radicals are known as key species in the gas-phase chemistry in extraterrestrial 

environments in particular the atmosphere of Titan – where their formation is attributed to many 

photolysis, electron-attachment and ion-molecule reactions.6 The reaction of these radicals are thus 

incorporated into models to predict the molecular composition of the Titanian atmosphere,10 aerosol/haze7 

and lakes11. Both radicals are key players in combustion chemistry with the CH radical widely used as a 

diagnostic of flame chemistry and dynamics.12 Both CN and CH radicals are well suited for detection by 

laser-induced fluorescence (LIF). Fitting their rotationally-resolved LIF spectra provides flame 

temperature.13  

Gas-phase kinetics measurements for reactions of small radicals like CN and CH have been 

conducted over a broad range of temperatures including extremely low temperatures ~13 K and high 

temperatures up to 1200 K.14-18 Shock tube experiments can extend to further extremes (<8000 K, <1000 

bar).19,20 The crossed molecular-beams (CMB) technique, in tandem with computational thermodynamics 
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and RRKM calculations, has delivered major insights into the reaction dynamics of such radical species 

with hydrocarbons.21-23 Recently, the coupling of flow reactors commonly used in kinetics experiments to 

VUV photoionization mass spectrometry has provided product branching fractions of radical reactions 

with isomer specific detail.21,24-26 Together with kinetics, reaction dynamics and isomer specific product 

branching ratios, our understanding of radical-neutral chemistry continues to advance at a rapid pace.   

2. Isomer-resolved product detection  

The experimental requirements for isomer-resolved product detection are both qualitative and quantitative. 

It is desirable to identify the presence of all product isomers and determine the branching ratio of the 

corresponding product pathway(s). Of course, multiple pathways can lead to the same product isomer. A 

detection method that distinguishes between isomers should, ideally, be applicable to a large range of 

product species. At the same time, the method should provide quantitative detail – at least relatively – for 

establishing product branching fractions and thus providing insight into the reaction mechanism. As we 

will show below, synchrotron photoionization mass spectrometry does, for many reactive chemical 

systems, satisfy these requirements.  

Mass spectrometry coupled to electron impact or photoionization is a common technique employed to 

detect reaction products in CMB experiments as well as in slow and fast flow reactor experiments.21 The 

energy of the ionizing electrons or photons can be either fixed or tuned over an energy range to cover the 

product ionization thresholds. Kaiser and coworkers27-31 have used 80 eV electron impact to detect reaction 

products under single collision conditions. In this case the isomeric information about the mass-selected 

products are inferred from the translational energy and angular distribution of the products coupled to 

isotopic labeling of the initial reactants. Under similar conditions, Casavecchia and coworkers32 have used 

tunable electron impact ionization (7-100 eV, with 700 meV energy resolution) in order to characterize the 

products both by their angle distribution and electron ionization energy. One significant advantage is to be 

able to ionize weakly bound species such as the acetyl radical without fragmentation of the cations.32 
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Soft photo-ionization presents the same advantages as soft electron-impact ionization but with 

enhanced energy resolution. In this context, “soft” means that the photoionization is not concomitant with 

significant amounts of cation dissociation. By tuning UV photons just over the molecular ionization 

thresholds, cation dissociation is minimized and thus the mass spectrometry is not additionally 

complicated by dissociation product ions. Single-photon laser ionization has been used in CMB to detect 

H-atom products.33 In fast flow reactors, Loison et al.34 have identified the OH + propene reaction products 

and stabilized adducts by examining ion fragmentation patterns subsequent to laser ionization at 10.54 eV.  

Tuning the energy of the ionizing radiation close to the ionization threshold allows for product 

identification on the basis of mass-to-charge ratio (m/z) and ionization energy. With sufficient resolution, 

isomers and enantiomers – should they have different ionization energy – may be distinguished when 

formed by the same chemical reaction. Although tunable VUV laser radiation is obtainable through 

resonance-enhanced wave mixing35 it has not been extensively employed for studying radical chemistry 

due to the tunability range limitations. Synchrotron VUV sources, however, are generally tunable over 

extensive photon energy ranges with very high photon densities, which increases sensitivity. Within the 

last two decades, synchrotron radiation sources have been coupled to CMB,36-38 various pyrolysis sources, 

reactors and flames.25,39-43 

The Advanced Light Source (LBNL, USA) 1.9 GeV synchrotron is equipped with an undulator-based 

VUV beamline that provides photons ranging from ∼ 7.0 eV up to 14 eV with an energy resolution of ~ 5 

- 25 meV.26,40 This energy range covers ionization thresholds for a vast number of organic molecules and 

radical species. For detecting isomer products from a gaseous source, photoion mass spectra are recorded 

while stepping the energy of the incident photons. For each mass channel a photoionization spectrum is 

recorded by tracking the ion signal as a function of photon energy. When the mass spectrometer is a time-

of-flight arrangement a large portion of m/z values are detected with good duty factors. The advantage of 

this multiplex mass spectrometric detection is to collect the photoionization spectra of most of the 
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chemical species in a single measurement. Species within the gas-mixture are then determined by noting 

ionization onsets and/or the shape of the photoionization spectra. Kinetic profiles for detected species also 

assist with their assignment. When the ions are time-tagged on detection, secondary chemistry can be 

identified.44 Comparing measured spectra to reference absolute ionization cross-sections for each 

individual isomer can ultimately provide product branching ratios.  

An extension to the synchrotron photoionization mass spectrometry technique is imaging 

photoelectron-photoion coincidence (iPEPICO) spectroscopy.42,45 It is fair to say that the technique 

generally offers cleaner differentiation between isomers as the threshold photoelectron spectra of organic 

cations usually display sharp vibronic peaks signifying the presence of particular isomers. A good 

example of this was the recent study of xylyl radical pyrolysis.46 The article by Bodi et al. discusses the 

virtues of the iPEPICO method for isomer-specific detection of gas-phase mixtures.45  

Laboratory-based tabletop techniques continue to develop for the isomer-specific product detection of 

gas-phase species. Near-infrared femtosecond laser pulse can be used to selectively ionize isomers 

through strong field ionization.47,48 The laser dependence of the ion signal as well as the fragmentation 

patterns can be used to identify isomers from complex mixtures. Recent experiments have also 

demonstrated the ability of chirped-pulse millimeter-wave spectroscopy to identify radicals and closed 

shell molecules in pyrolysis environments.49-51 After expansion cooling to temperatures down the 4 K, this 

technique allows selective detection of isomers as well as enantiomers using pure rotational spectroscopy.  

Isomer-resolved branching ratios are available both from CMB and flow tube experiments. One must 

be very careful when directly comparing data from these two techniques as they are typically performed 

over very different energy ranges and under different collisional conditions. In the case of flow tubes, the 

significant buffer-gas collision rate (>106 s-1) requires consideration as the increased gas number density 

may lead to further chemistry/isomerisation. Under single collision conditions of the CMB experiment, the 

detected products are unequivocally formed by collision of the studied reactants. Because of these large 
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differences in experimental conditions, both techniques are complementary. Flow tube techniques provide 

information about temperature and pressure effects (for combustion and atmospheric environments) while 

CMB methods provide more fundamental information about the fate of reaction intermediates under 

collision-free conditions.  

But, as yet, there is no “panacea” experiment for the universal, quantitative isomer-specific detection 

of complex gas-phase products. Furthermore, it is typical that experimental and computational results are 

deployed in synergistic combination. The reactions of CN and CH radicals, the reactive species of concern 

here, have been studied using a range of experimental techniques in addition to computational chemistry 

methods. Because of the complementarity of these studies we now have a good understanding of their 

reaction mechanisms, an important step toward predicting their reactivity with larger molecules.   

3. Results and discussion   

3.1. Reactions of the CH radical with unsaturated molecules   

The CH radical in its X2Π ground state has been detected in the interstellar medium,52 combustion 

environments,53,54 and under plasma conditions,55 where it is believe to play a significant role during the 

chemical growth of carbon molecules. The CH radical is also suggested to be present in planetary 

atmospheres.6,7 Its fast kinetics with saturated56,57 and unsaturated hydrocarbons14,58,59 indicates a barrier-

less entrance channel forming intermediates that may isomerize and dissociate to give the final products. 

A remarkable property of the CH radical is its ability to react with molecular nitrogen, which is believed 

to be one of the initial reaction steps leading to the incorporation of nitrogen into hydrocarbon chains.60-64 

The reactions of the CH radicals with small alkene and alkynes molecules play a significant role in 

combustion and interstellar chemistry where they contribute to the molecular growth chemical scheme 

through a CH-addition–H-elimination mechanism. The general mechanism for such reaction can be 

written as CH + CnHm → Cn+1Hm + H although non H-loss channels are shown to be non-negligible in the 
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case of the CH + C3H6 reaction.65 In order to better understand the role of these reactions during the 

molecular growth process it is necessary to identify the hydrogen co-products as well as the contribution 

from CH3-loss and other channels.  

The reactivity of the CH radial can be attributed to the presence of a singly occupied and one vacant 

p-orbital and the presence of a doubly-occupied partially anti-bonding σ-orbital collinear to the CH-bond. 

The presence of an unpaired electron in one of the two pure p-orbitals of the carbon may lead to doublet-

like radical reactivity (i.e. abstraction and addition), while the vacant p-orbital and the highest doubly 

occupied σ-orbital give to the CH doublet ground state (X2Π) the structure of a sp-hybridized singlet 

carbene (i.e. addition, cycloaddition, and insertion). The propensity of the CH radical to accept electron 

pairs in the vacant p-orbital may also lead to the formation of a stable dative intermediate.66 

A better understanding of the chemical role of the CH radical in carbon-rich environments requires 

differentiating between the different reaction entrance channels for a wide range of molecules and 

experimental conditions. In the laboratory, ground state CH radicals are produced via debromination of 

bromoform using 193 nm,28 266 nm14,59,67 or 248 nm44,68,69 laser photolysis, reaction with potassium 

atoms,57,69 or discharge-induced dissociation.68 Photolytic and discharge dissociations, generate CH 

radicals with large excess vibrational energy.68 Quenching to the ground vibrational level can be achieved 

by collision with a large excess of molecular nitrogen.67,70 In the case of the reaction with potassium 

atoms, the CH radicals have been shown to exclusively form in the ground vibrational level.69 For product 

detection studies under flow conditions, reactions of the singlet CHBr with the hydrocarbon reactant may 

lead to the formation of products at the same mass-over-charge ratio than that of the CH reaction 

products.71 For photolysis at 248-nm the yield of CHBr formation is found to be negligible compared to 

that of CH while it is a main photolysis products at 193 and 266 nm.68,71 
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 Kinetic and theoretical investigations for the reaction of CH with saturated hydrocarbons have 

suggested a reaction entrance channel through a single step insertion into C–H bonds to form a substituted 

alkyl reaction intermediate.56,57,72 Depending on the size of the carbon chain, this intermediate will 

decompose either through H-loss to form an alkene or through scission of a C–C bond to from a stabilized 

alkyl radical + alkene. In the case of reactions with alkenes and alkynes, both the C–H insertion and direct 

addition at C=C or C≡C bond positions – both carbene-like mechanisms – are calculated to be 

energetically favorable.73,74 Insertion into a C–C σ-bond is energetically accessible, although it is likely to 

be a minor channel compared to the C–H insertion and C=C/C≡C addition due to steric factors. The C–H 

insertion is predicted to be energetically favorable relative to the π-addition, due to the formation of a 

resonantly stabilized allyl or propargyl-like intermediate.44,73 This effect is likely to be countered by the 

more attractive potential between the radical and the π-electron system.75 Combined with a larger solid 

angle for the π-orbital attack compared to that of the σ-orbitals, addition will compete with insertion as a 

probable entrance channel regardless of the relative stability of the product intermediates. Hydrogen 

abstraction channels are typically disfavored due to the relatively small exothermicity of the CH2 + radical 

product set.  

The attack of the CH radical on an unsaturated molecule may result in either addition to a single 

carbon or cycloaddition to form a 3-carbon atom intermediate, which may either dissociate or isomerize 

by ring opening. Theoretical investigations based on the quantum mechanical calculation of the minimum 

energy pathway suggest that the formation of non-cyclic final products generally dominates for energetic 

and/or entropic reasons, aided by rapid isomerization of any cyclic reaction intermediate to the more 

stable acyclic isomer.73 However, these theoretical predictions are in disagreement with experimental 

studies on the CH + C2H2 reaction by Boullart et al.76 and the unimolecular dissociation of the propargyl 

radical (C3H3) by McCunn et al.77 both reporting cyclopropenylidene (c-C3H2) as the main product. In 

order to address these discrepancies and to systematically determine the reaction mechanism(s) of CH 
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radicals with small unsaturated linear hydrocarbons, the CH + C2H4, C3H6, C3H4, and C2H2 systems have 

been studied using isomer-resolved photoionization mass spectroscopy,44,65 CMB,27-29 and computational 

calculations.44,73,78  

The following paragraphs discuss the most likely reaction mechanisms for reaction of CH with 

unsaturated hydrocarbons, as well as with nitrogen and oxygen containing molecules, based on 

experimental isomer identifications. Generally, it is found that the most likely reaction entrance channel 

depends mostly on the nature of the unsaturated site, while the subsequent isomerizations of the 

principally formed intermediate depends mostly on the reactant substituents. For this reason a stronger 

focus is given to discriminating between possible CH reaction entrance channels. Experimental evidence 

discussed below suggests that cycloaddition and abstraction mechanisms are generally preferred. 

Although insertion into a σ-bond cannot be totally ruled out, it appears to be minor reaction mechanism 

for all the investigated reactions.  

3.1.1. Reactions with alkenes 

The experimental44,65 and predicted58 isomer-resolved product branching ratios for the CH + C2H4 and CH 

+ C3H6 reactions are in qualitative agreement with allene and 1,3-butadiene being the main reaction 

products, respectively formed after H-loss from CH addition. In the case of the reaction with ethene, 

discrepancies about the methylacetylene branching ratios are found when comparing flow-tube 

experiments to CMB data.28 The difference between the flow tube and the single collision experiments are 

unlikely to come from the difference in total available energy (3.7 kJ mol-1 average thermal energy 

compared to 17.0 kJ mol-1 single collision energy) as all the intermediates and transition states are 

predicted to be well below the energy of the reactants.73 In flow tube experiments, collisions with the 

buffer gas could affect the final branching ratios through stabilization of long-lived reaction intermediates, 

although this is likely to favor the stabilization of the allyl radical rather than the formation of 

methylacetylene. In the case of allene and methylacetylene formation, effects of H-assisted isomerization 
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is likely to be negligible as the activation barrier for the H-atom addition is too high to lead to any 

significant isomerization at room temperature.73 RRKM-ME calculations performed on the C3H5 potential 

energy surface would assist in addressing these discrepancies between flow tube and CMB data. In the 

case of CH + C3H6 the detection of 1,3-butadiene as the main reaction product65 agrees with the 

predictions from Loison et al.58 (although they speculatively neglect 1,2-butadiene formation, mostly for 

energetic reasons). The main discrepancy arises from the non-detection of the CH3-loss channel in the 

synchrotron photoionization experiments whereas using H-atom detection, Loison et al.58 find a 

0.78(±0.08) H-atom branching ratio. One possible explanation is that the remaining product fraction(s) – 

not giving rise to a H atom – may be distributed across several minor channels making their detection 

challenging.65 This suggests that the CH3-loss may not be a major exit channel. All the detected reaction 

exit pathways in the flow tube experiments are energetically accessible according to the PES calculated by 

Li et al.79  

 
Figure 1 Photoionization spectra for the CD + C3H6 reaction at (a) m/z 55 and (b) m/z 54. The red lines 

are fits to the experimental data from measured isomer reference spectra with (a) 0.89 fraction 1,3-
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butadiene and 0.11 fraction 1-butyne and (b) 0.97 fraction 1,2-butadiene and 0.03 fraction 1-butyne. 

Reprinted with permission from Reference65. Copyright (2013) American Chemical Society. 

Figure 1 shows the photoionization spectra of (a) m/z 55 and (b) m/z 54 for the CD + C3H6 reaction 

obtained flow tube experiments.65 In panel (a) the H-loss channel spectrum is fitted with 0.89 fraction 1,3-

butadiene and 0.11 fraction 1-butyne. The D-loss channel spectrum in panel (b) is fitted with 0.97 fraction 

1,2-butadiene and 0.03 fraction 1-butyne. Similarly, for the CD + C2H4 reaction, isotopomeric 

distributions also identified the D-loss channel as mainly a 1,2-diene molecule, allene.44 For CH + ethene, 

cyclopropene may contribute to the total product distribution by no more than 10%. Methylacetylene is 

the main H-loss product from the CD + C2H4 reaction with a non-negligible amount of allene or 

cyclopropenyl. These isotopomer distributions suggest that 1,2-diene products are mostly formed through 

elimination of the hydrogen atom initially from the radical while conjugated diene or alkyne through the 

elimination of a hydrogen atom initially bound to the unsaturated reactant. Scheme 1 displays the most 

likely reaction mechanism for the formation of 1,2-diene through D-loss.  

 
Scheme 1 

The radical adds to the double bond to form a cyclic intermediate that immediately isomerizes 

through ring-opening to form the more stable allyl-like radical. The much higher dissociation barrier for 

decomposition compared to that for ring opening suggests that formation of cyclopropene should be a 

minor reaction channel.28 Several isomerization schemes are possible from the allyl-like intermediate 

involving 1,2- and 1,3-H/D shifts. The direct elimination of the D-atom initially from the radical is the 

only exit channel leading to the formation of non-deuterated 1,2-diene and provides strong evidence for 

the initial cycloaddition mechanism. 
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Direct insertion of the CH radical into a C–H bond of an unsaturated carbon atom is likely to compete 

with the cycloaddtion. In the case of the CH + C3H6 reaction, the less than unity H-atom branching ratio 

was used by Loison et al. as evidence for the formation of an isobutenyl radical from direct insertion of 

the radical into an ethylenic C–H bond which can only decompose through CH3 loss.58 As mentioned 

previously however, the non-detection of the CH3-loss channel products is at odds with this result.28,65 The 

detection of methylacetylene and 1,3-butadiene products, for the CH + ethene and CH + propene, 

respectively, in both cases retaining the hydrogen atom that originated from the CH radical, can be 

explained by the formation of an allylic radical intermediate either from direct addition or insertion.44,65 

Overall, direct addition to a carbon atom cannot explain the observed isotopomer distributions unless the 

initially formed carbene-radical isomerizes through ring-closure to give the cyclic intermediate. Entrance 

channels other than cycloaddition do not need to be invoked to explain experimental reaction product 

identifications, although they cannot be unequivocally ruled out.  

For the CH + allene reaction,44 the detection of both 1,2,3-butatriene and vinylacetylene is consistent 

with an initial CH cyclo-addition on the π-electron system of allene to form a cyclic intermediate which 

can isomerize through ring-opening to the more stable 1,2-butadiene-4-yl radical. In the absence of 

isotopic labeling experiments it is not possible to discriminate between cycloaddition and direct insertion. 

Loss of the hydrogen initially from the CH radical would form 1,2,3-butatriene while elimination of a 

terminal H-atom initially residing on allene forms vinylacetylene. Insertion into one of the C–H bonds 

could also lead to the observed products.  

Additional evidence for the cycloaddition of the CH radical onto C=C double bonds was inferred 

from the isotopomer distribution of the CH + pyrrole reaction.80 Scheme 2 displays the most direct 

reaction mechanism leading to ring expansion.  
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Scheme 2 

The detection of only pyridine as a reaction product suggests that the initially formed reaction 

intermediate isomerizes through ring expansion to give a six-membered aromatic ring. The substitution of 

the hydrogen from the radical by a deuterium atom leads to a shift of the product mass by one unit. The 

formation of the pyridine therefore proceeds solely through the loss of the hydrogen atom initially from 

the pyrrole ring. The CH radical is likely to add to the π-system of the aromatic to form a bicyclic 

intermediate. The bicyclic intermediate isomerizes by ring opening to form a six-membered ring. As the H 

is lost from the N-site exclusively, the pyridine product contains the hydrogen atom initially from the 

radical. This H elimination must be rapid as there is no evidence of H-atom scrambling in the deuterium 

labeling experiment.80 

The isotopomer product identifications for the CH reactions with ethene, propene and pyrrole provide 

strong evidence that the radical cycloaddition onto the C=C bond is a major entrance channel. This 

mechanism is also consistent with the CH + allene reaction products. The C—H σ insertion mechanism is 

likely to play a less significant role for these reactions. The relative importance of the addition versus 

insertion entrance channels for the reaction of CH with ethene and its derivatives can be conceptualized 

using orbital correlation between the radical and the reactant. By analogy with the sp2-hybridized singlet 

CH2 carbene,75 the CH radical is likely to react through electrophilic addition onto occupied σ- and π-

orbitals of the reactants. Figure 2 shows the most likely geometry for the transition state of the initial CH 

encounter with the π-orbitals of ethene leading to (a) addition and (b) insertion.  
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Figure 2 Attack of the CH radical for (a) cycloaddition and (b) insertion into ethene. The singly occupied 

orbital of the radical is not represented.  

These transition states are based on molecular orbital correlation and ab initio calculation for the 

singlet CH2 attack on ethene and are adapted here for the CH radical.81-85 For clarity the singly occupied p-

orbital is not depicted. In Figure 2 (a) the addition of the radical onto the double bound occurs through a 

concerted off-center overlap of the vacant p-orbital with the π-orbital together with an overlap of the 

doubly occupied σ-orbital with the π∗-orbital of the reactant.81,83,85 The initial encounter complex will 

rearrange through rotation of the added C–H to create two new σ-bonds and form the cyclopropenyl 

radical. As shown in Figure 2 (b) the approach of the reactants for insertion into a C–H bond is likely to 

occur via interaction of either the vacant or the singly occupied p-orbital with the hydrogen atom.82,86 The 

transition state is adapted from ab initio calculation for the singlet CH2 insertion into methane.82 The 

formation of a three-centered transition state in which the carbene interacts with both the carbon and the 

hydrogen atoms was not found in the potential energy surface of the CH2 + C2H2 reaction.82 In the case of 

CH + H2, a similar approach as that depicted in Figure 2 (b) is predicted, although the CH and H2 bond are 

parallel.86 Following the initial approach, the hydrogen atom will transfer to the electron deficient carbon 

before the system collapses to the insertion intermediate. Although direct abstraction may occur through a 

similar interaction of the reactants, it is often endothermic, while the insertion is exothermic and 

barrierless. The fact that the insertion mechanism requires a side interaction with the hydrogen compared 

to the planar p-π interaction for addition is likely to favor the CH addition over C–H insertion. The 

interaction of the singly occupied p-orbital with both the π and π*-orbitals of the reactant may also lead to 
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addition onto one of the unsaturated carbon atoms87 although there is no strong experimental evidence of 

such a mechanism in the case of the reaction with alkenes presented here. 

3.1.2. Reactions with alkynes 

Figure 3 displays the photoionization spectrum of m/z 38 from the CH + C2H2 reaction obtained by 

integrating the ion signal from 20 ms to 80 ms after the laser pulse. The blue thick curve is the Franck-

Condon simulation of the cyclopropenylidene photoionization spectrum fitted to the experimental data. 

For comparison, the Franck-Condon simulation of the triplet propargylene is normalized to the 

experimental spectrum.  

 
Figure 3 Photoionization spectra for the CH + C2H2 reaction at m/z 38 integrated from 20 ms to 80 ms 

after the laser pulse. The red line is the Franck-Condon simulation of triplet propargylene and the blue line 

the Franck-Condon simulation of cyclopropenylidene. Reprinted with permission from Reference44. 

Copyright (2009) American Chemical Society. 

The experimental detection of c-C3H2 under thermal conditions agrees with RRKM-ME calculations 

performed on the CBS-APNO potential energy surface displayed in Figure 4 at 300 K and 4 Torr.44 The 

cycloaddition, addition to a single carbon, and the C–H insertion mechanisms are all predicted to be 

barrierless. Any of the initially formed intermediates may further isomerize to the more stable propargyl 
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radical through transition states all below the energy of the reactants. The propargyl radical can then either 

be stabilized by collisions with the buffer gas or decompose to triplet-propargylene (C3H2). 

 
Figure 4 C3H3 potential energy surface calculated using the CBS-APNO method. Reprinted with 

permission from Reference44. Copyright (2009) American Chemical Society. 

Spectra comprising reaction times up to 20 ms after the laser pulse show a small contribution (<10%) from 

the triplet propargylene. Time- and isomer- resolved product detection demonstrated that a large amount 

of the cyclic product was formed through H-assisted isomerization of the triplet-propargylene. H-atom 

produced by photodissociation and reactions can add to the triplet product without any activation energy 

to reform the propargyl radical with a lower internal energy. Ultimately this process shifts the product 

distribution toward the formation of the most thermodynamically favorable isomer. The isotope labeling 

of hydrogen atoms was unable to provide further mechanistic information due to strong isotope effect of 

the isomerization scheme of the C3H2D system.  

CMB experiments at 16.8 kJ mol-1 collision energy report the formation of 31.5(±5.0)% of cyclic 

C3H2, 59.8(±5.0)% of acyclic isomer and 9.0(±2.0)% of C3H through H2 elimination. Maksyutenko et al.29 

predict that the reaction proceeds through the indirect formation of the propargyl radical and unimolecular 
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dissociation to form the linear propargylene or the linear C3H isomer. The c-C3H2 product is formed 

through H-loss from the cyclopropenyl radical. The cyclic intermediate may be formed either by direct 

cycloaddition or addition to a single carbon and insertion followed by closing of the ring. Evidence for the 

addition mechanism was inferred from the isotopomer identification from the CH + C2D2 reaction.27 The 

insertion of the CH radical onto a C–D bond of acetylene forms the HDCCCD radical. Direct molecular 

hydrogen-loss forms HD + CCCD while the formation of D2 + CCCH requires the formation of a 

DDCCCH intermediate. The detection of HD and D2 with a 1:1 ratio suggests that these intermediates are 

formed in equal amount likely through an indirect reaction channel rather than through direct insertion. As 

reported by Kaiser et al.27 this finding agrees well with the absence of primary kinetic isotope effect for 

the CH + C2D3 reaction.88 Overall the H/D-loss channels are consistent with cycloaddition while the 

H2/HD/D2 distribution suggests addition into a single carbon. The 9 to 13% branching ratio for the 

formation of molecular hydrogen27,29 suggests that the addition onto a single carbon is less probable that 

the cycloaddition.  

Product detection studies of the CH + methylacetylene reaction provides further evidence for the 

formation and direct decomposition of a cyclic intermediate. Contrary to the reaction with its isomer 

allene, reaction with methylacetylene leads to facile formation of cyclic products with low ionization 

energies.44 Cyclic isomers represent up to 30% of the total detected reaction products. The photoionization 

spectra of the H-loss products methylenecyclopropene and cyclobutadiene are very similar and thus do not 

allow the determination of the exact structure of the cyclic isomer. The formation of 

methylenecyclopropene could be explained by direct addition onto the triple bond followed by the loss of 

a hydrogen-atom initially from the methyl group. The reaction is also found to form the linear H-loss co-

product vinylacetylene. Part of the C4H4-ion signal was attributed to the formation of 1,2,3-butatriene.44 It 

is however possible that this signal comes from shape resonances in the spectrum of the cyclic isomer not 

accounted for by the Franck-Condon calculations. The branching ratio for the formation of the triene is 
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therefore likely to be much lower than that reported by Goulay et al.44 Vinylacetylene is likely to be 

formed by C-H insertion of the CH radical into the methyl group.  

The product detection results for CH + C2H2 and the corresponding isotopologue (C2D2), together 

with the detection of cyclic isomers for the reaction of CH + methylacetylene, strongly suggest that the 

addition of the radical onto the acetylenic bond through the simultaneous attack on both orthogonal π-

orbitals is the major reaction entrance channel. Addition to a single carbon may account for up to 13% of 

the entrance channel in the case of acetylene.27,29 The insertion into an acetylenic C–H does not appear to 

compete with insertion into an alkyl substituate C–H bond when it is present.  

3.1.3. Reactions with carbonyl molecules 

Carbonyl containing molecules are present in combustion environments as fuel (e.g. biodiesel), fuel 

additives (e.g. acetone), or as combustion intermediates and products. Their reaction with carbon-

containing radicals such as CH is likely to affect the early stage of the thermal transformation process, 

when the CH radicals are abundant. A better understanding of reactions between carbonyl-containing 

species and combustion radicals in important for optimizing alternative-fuel combustion with the ultimate 

goals of reducing unwanted emissions while increasing energy-efficiency. The reaction mechanisms of the 

CH radical with molecules containing a carbonyl group (C=O) have been investigated at room 

temperature by isomer-resolved product detection, including deuteration studies, of CH + CH3CHO and 

CH + CH3CH3CO.71,89 Both reactions are found to lead to the formation of substituted ketenes (containing 

the C=C=O group) and conjugated enals (C=C–C=O) by H-loss. The detection of ketene and the ethyl 

(C2H5) and acetyl (CH3CO) radicals in the case of CH + acetaldehyde also suggest minor CH3, HCO and 

CH2-loss pathways. Figure 5 shows the photoion spectra of (a) m/z 70 (D-loss) and (b) m/z 71 (H-loss) for 

the CD + acetone reaction.71 In panel (a) the H-loss channel spectrum is fitted with the spectrum of 

dimethylketene. The ethylketene spectrum (an isomer of dimethylketene, green thin line in Figure 5) is 

poorly matched with the experimental data close to the ion onset. The D-loss channel spectrum in panel 
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(b) is well-fit by the spectrum of methacrolein. Similarly, in the case of CD + acetaldehyde the D-loss 

channel entirely partitions to the substituted ketene isomer while the H-loss channel exclusively forms the 

conjugated enal.89  

 
Figure 5 Photoionization spectra of (a) m/z = 70 and (b) m/z = 71 from the CD + acetone reaction. The 

thick red line in panel (a) is a fit to the experimental data including only contribution from the 

photoionization spectrum of dimethylketene. The green line is the spectrum for ethylketene superposed on 

the experimental data. The blue line in panel (b) is a fit to the experimental data including only 

contribution from the photoionization spectrum of methacrolein. Reproduced from Ref. 71 with 

permission from the PCCP Owner Societies. 

 

As shown in Scheme 5, following the initial cycloaddition attack of the CH radical, the results comply 

with (i) the reaction intermediate decomposing to form a substituted ketene by loss of the hydrogen atom 

initially from the CH radical and (ii) a conjugated enal by loss of a hydrogen atom initially from the 

carbonyl reactant. In addition, the formation of acrolein through D-loss in the case of CH + CD3CHO 
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suggests that conjugated enals are formed by the loss of a H atom originating from the –CH3 group of the 

carbonyl molecule. 

 
Scheme 5 

The detection of the acetyl radical (CH3CO) by reaction of the CH radical with acetaldehyde suggests 

that direct abstraction from the H-atom on the carbonyl group is a favorable channel. The absence of the 

abstraction product in the case of acetone may be explained by the higher bond energy of the methyl C−H 

bond (388.3 ± 9.2 kJ·mol-1) relatively to that of the acetyl C−H bond in acetaldehyde (358.6 ± 9.6 kJ mol-

1).90 Insertion of the CH radical into a methyl group C−H bond of acetaldehyde is consistent with 

formation of ethyl + CO, ketene + methyl, and acrolein + H. However, this mechanism does not explain 

the formation of either the formyl + ethene channel or the methylketene + H channel. Ultimately, no 

evidence for an insertion mechanism is found for the CH + acetone reaction. This general mechanism is in 

agreement with recent quantum chemical calculations for the CH + H2CO reaction78 where it is predicted 

that the main room temperature pathway is addition of the radical to the carbonyl group, either by 

cycloaddition or carbon addition, followed by isomerization to give ketene + H.   

The bonding orbitals of the carbonyl group in acetone and acetaldehyde are similar to those of an 

ethylenic bond although the carbon atom is more electropositive than the oxygen atom. The CH radical is 

likely to attack the C=O through transition states similar to that depicted in Figure 2 for ethene. The 

position of the radical relative to the two atoms of the CO group may be more off-centered due to the 

asymmetric density of charge on carbonyl group. A nucleophilic attack of the doubly occupied orbital of 

the CH onto the electropositive carbon atom would lead to an addition intermediate that is likely to 

isomerize through ring closure, as calculated for the CH + H2CO reaction.78 Attack of the C–H bond by 
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the CH radical through a transition state similar to that depicted in Figure 2 (b) for ethene will lead to 

insertion as well as abstraction of the acetyl hydrogen due to the lower bonding energy. In the CH + H2CO 

case, insertion is calculated to be more than one order of magnitude slower than the addition channels over 

the 300 to 1000 K temperature range.78 This prediction qualitatively agrees with the small branching ratios 

measured for the insertion channels in the case of CH + acetaldehyde.  

Studies of CH/CD + acrolein, a reactant with both a C=C site and a C=O site, also suggest that the 

entrance mechanism proceeds predominantly via cycloaddition of the CH radical onto either unsaturated 

site.91,92 The most compelling evidence for this mechanism is the detection of furan only via H-loss, which 

is consistent with both cycloaddition onto the vinyl or carbonyl unsaturation. For both reaction 

intermediates, ring-opening leads to a stable conjugated radical. Although H-loss from this intermediate to 

form 1,3-butadienal is entropically favorable compared to the ring closure, the energy barrier for the 

formation of the furan-H adduct is lower by about 115 kJ mol-1. Addition to the terminal carbon atom of 

acrolein and insertion mechanisms probably also play a part in the reactivity and may explain the apparent 

C2H2O and C3H4 formation or minor products of the H-loss channel.  

3.1.4. Predicting reaction mechanisms with larger molecules  

Following from systematic studies of the reactions between the CH radical and several small prototypical 

unsaturated molecules mechanistic trends emerge which can be used to predict the CH reactivity with 

other unsaturated species. The reaction of the CH radical with large unsaturated molecules is likely to be 

governed by the electrophilic interaction of the vacant p-orbital on CH with the occupied σ- and π-orbitals 

of the reactants as well as the interaction of the doubly occupied σ-orbital on CH with reactant π∗-orbitals. 

Experimental evidence presented in this perspective strongly suggests that the cyclo-addition onto C=C 

and C=O bonds will play a major role with minor effect of the substituents. By analogy with the reactions 

of the singlet CH2 carbene, the C–H insertion mechanism is likely to be less favored when compared to 

cycloaddition although it will become more significant as the length of the carbon chain increases for 
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statistical reasons. This trend is likely to be applicable to the reaction with larger hydrocarbons that have 

not been investigated experimentally or theoretically. The reaction with alkene and alkyne will mostly 

lead to conjugated-diene products with a non-negligible fraction of three-atom cycles product in the case 

of alkynes. Reaction with long saturated carbon chains will also lead to alkene formation through C−H 

insertion. The reaction with carbonyl containing molecules will mostly form substituted ketenes and 

conjugated enal products. In the case of ester functional groups, such as those found in biodiesel 

molecules, the reaction products are likely to be similar to those produced by the reaction with ketones. 

Because of the long carbon chain, insertion products will also be present. In the case of the reaction with 

nitrogen-containing molecules, the most likely reaction entrance channel of the CH + NH3 reaction is 

found to be the formation of a dative bond by direct interaction of the empty p-orbital on CH with the lone 

electron pair in the σ-nonbonding orbital of the nitrogen atom.66  If this mechanism is the main entrance 

channel, the reaction of the CH radical with larger methyl-substituted amines is likely to lead to the 

formation of methylimine functional groups.  Linking to Titan’s gas-phase chemistry, ammonia and 

cyanogen-containing molecules are included into models,93 and primary amines as well as nitrogenated 

polycyclic aromatic hydrocarbons have been identified in laboratory tholins.94,95 The facile addition-

elimination of the CH radicals onto a nitrogen containing group suggests that such reactions may play an 

important role as a pathway to incorporate atomic nitrogen in the carbon chemical growth mechanism.  

  



 25 

3.2. Reactions of the CN radical with alkenes and aromatic molecules 

The formation and reactions of the CN radical are important for the chemistry of many different reacting 

environments. While the kinetics of CN + hydrocarbon reactions are generally well-studied there are 

fewer product detection studies and certainly very few product studies at different temperatures. The 

kinetics of the CN radical have been well investigated - a recent summary of kinetic data for CN reactions 

with C2H2, C2H4, C3H6 and trans-butene and iso-butene are found in Gannon et al.96  Very low temperature 

rate coefficients of CN reactions with a range of small linear hydrocarbons are reported down to 23 K 

using Laval nozzle expansion techniques.16 The rate of reaction is governed by long-range interactions and 

these reactions occur essentially at the collision rate limit. Since in many cases there is no barrier on the 

entrance channel, such CN reactions are relevant to understand the formation pathways of nitriles and 

other N-containing species in cold environments – this includes planetary atmospheres (e.g. Titan and 

potentially: Triton and Pluto16) and, the interstellar medium.97 In the astrochemical context, the production 

of CN radical is generally attributed to the photolysis of HCN.98 For higher temperatures, experimental 

techniques have measured kinetics of CN reactions with small linear hydrocarbons up 1200 K.17,18 In 

combustion chemistry, the CN radical is a key species in the incorporation of nitrogen into large carbon 

structures and is also implicated in the fate of NO and many other reactions.64 Nitrile species are also 

important in the combustion of biofuels.99 All these aforementioned chemical systems require accurate 

knowledge of product branching ratio for elementary CN + hydrocarbon reactions.  

Mechanistically, it is generally accepted that CN radical will react with unstaturated hydrocarbons by 

direct addition to unsaturated carbons forming radical intermediates that, at low pressures, will dissociate 

by loss of a small neutral fragments – usually H atoms or, if suitable pathways exist, CH3 radicals. The 

mechanism of H atom loss can vary depending on the structure of the reactant molecules. As will be 

shown herein, the general CN  +  CxHy  → Cx+1Hy-1N  +  H reaction scheme for CN reactions with small 

unsaturated hydrocarbons does not always account for the total product set. Furthermore, the nitrogen-
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containing co-product(s) of H-loss may include a considerable number of thermodynamically plausible 

isomers. Recently, a number of experimental studies are reported, using several experimental strategies, to 

detect and measure products from CN + hydrocarbon reactions. Coupled with computational studies, with 

kinetic modeling and product branching predictions, these investigations have enabled a deeper 

understanding of reaction mechanisms. In what follows, several CN reactions are details with emphasis on 

isomer specific product detection.  

3.2.1. CN + ethene. 

The CN + C2H4 rate coefficients have been reported for a large range of temperatures including down to 

25 K 96,100 and up to ~1200 K.18 The 298 K rate coefficient is reported to be 2.5 × 10-10 cm3 molecule-1 s-1 101 

indicating essentially unity reaction efficiency. With detection of H atom product quantum yields of one, 

as determined by quantitative H atom laser-induced fluorescence,101 this study points to C3H3N + H as the 

dominant product set. Seakins and coworkers utilized the same H atom LIF technique to monitor the time-

dependent H-atom product yield in tandem with CN disappearance LIF and found the rate coefficients 

determined by both techniques to be in good accord; the 298 K H atom LIF rate coefficient is reported as 

3.21 ± 0.62 × 10-10
 cm3 molecule-1 s-1 and the 298 K CN LIF rate coefficient 2.91 ± 0.18 × 10-10

 cm3 

molecule-1 s-1. This study also includes a computational RRKM analysis to predict the products and 

rationalize the experimental measurements. The key finding concerning reaction products is the prediction 

that the C2H3CN species (cyanoethene) is the dominant H atom co-product, from an addition then H atom 

loss process.  

CMB experiments by Balucani et al. probed (electronic ground state) CN reacting with ethene at 

collision energies of 15.3 and 21 kJ mol-1.31 The study reports that CN + ethene exclusively produced 

cyanoethene by CN addition followed by H (2S, ground state) atom elimination via a relatively long-lived 

intermediate (longer that its rotational period). No evidence for a direct H abstraction pathway, forming 

HCN + C2H3, was reported in these studies. At low pressures, computational results with RRKM analysis 
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from Vereecken et al.102 predict that HCN production from addition/elimination channels should remain 

<1% at temperatures <1000 K and that any significant direct H-abstraction may only contribute at 

temperatures > 1200 K. They caution that these predictions depend on a tentatively assigned 10 kJ mol-1 

direct H atom abstraction barrier. The Vereecken et al. study also predicts that at low temperatures (~300 

K) and pressures below 104 Pa, the CN addition followed by H-elimination pathway should dominate, 

>90%. Recently, a CMB study investigated this reaction at very high collision energy (42.7 kJ mol-1) and 

reported evidence of isocyanoethene (H2C=CHN=C) product formation.103 This study points out that 

previous CMB studies were conducted at significantly low collision energies such that the iso-cyano 

product channel is not accessible.  

Synchrotron photoionization mass spectrometry experiments have been performed for CN + C2H4 

reaction generating CN from 248 nm laser photolysis of ICN under conditions of 4 Torr and 298 K.104 The 

product mass spectrum acquired at 11.05 eV photoionization energy shows one clear peak at m/z 53, 

consistent with production of a C3H3N species – the time dependence of this signal, relative to the CN 

photolysis laser pulse, shows a fast rise followed by a constant signal up to the measured 80 ms time 

duration.  

The photoionization spectrum of the m/z 53 signal has an onset at about 10.9 eV in good agreement 

with the calculated adiabatic ionization energy (AIE) (CBS-QB3, 10.90 eV) and measured AIE (10.91 eV, 

NIST)105 of cyanoethene. There is no signal that would suggest any significant C2H3 radical (m/z 27) 

formation from a H-abstraction pathway and this channel is ascribed a <2% branching limit. Using this 

experimental arrangement to detect HCN directly from this reaction is difficult as HCN has a relatively 

high AIE (13.6 eV) such that the detector would be overwhelmed by signal from all other ions. 

Regardless, computational predictions and our experimental attempts to detect C2H3 are in agreement with 

other studies that affirm that the HCN + C2H3 channel is very minor at these conditions. Scheme 4 

displays the dominant reaction channel for the CN + C2H4 reaction.  
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 Scheme 4 

Computational studies on the reaction mechanism have indicated that there are two plausible channels 

from the direct CN + C2H4 addition intermediate, the CH2CH2CN radical:106,107 (i) direct H-loss to form 

cyanoethene (CH2=CHCN) (acrylonitrile) or (ii) a 1,2 H atom shift to form CH3CHCN that can then 

undergo H-loss from the methyl group to form the same cyanoethene product. The end product of the two 

possible pathways is the same (Scheme 4). The synchrotron photoionization experiment provides no 

information on the intermediate pathway to the detected products. Kaiser and Balucani report,106 from 

RRKM calculations, that 40% of cyanoethene is formed from the (i) direct fragmentation of the 

CH2CH2CN intermediated and 60% from the (ii) decomposition of the second CH3CHCN intermediate. 

The photoionization spectrum of the m/z 53 product shows no evidence for the production of the iso-

cyanoethene (CH2CH-N=C) species as the AIE of this isomer is calculated (CBS-QB3) to be 10.56 eV and 

no ion signal is detected until 10.9 eV. Calculations are in agreement with this finding, revealing that the 

H-elimination transition state from a CH2CH2NC is placed +12 kJ mol-1 above the entrance channel energy 

of the reactants. As mentioned above, the only evidence for this channel is recorded in CMB for which the 

collision energy (42.7 kJ mol-1) is much higher than the CH2CH2NC exit barrier.103  

3.2.2. CN + propene and larger linear unsaturated hydrocarbons 

Extending the CN reaction partner from ethene (C2H4) to propene (C3H6) significantly increases the 

number of plausible reaction pathways and products. Numerous research groups have studied the CN + 

C3H6 reaction with various experimental and computational techniques. The CN + propene rate coefficient 

is measured at 3.18 ± 0.21 × 10-10 cm3 molecule-1 s-1 96 which again points to unity reaction efficiency. 

Using H atom LIF product detection, Seakins and coworkers96 reported that at 298 K the H atom product 

yields were pressure dependent spanning yields of 0.478 at 2 Torr down to almost zero at 200 Torr (in He 

buffer gas). These results are rationalized, using RRKM modeling, as the result of some stabilisation of 

+ HC N + H2C CH2 H2C C
CN

H



 29 

the CN-C3H6 addition intermediate. For this reaction, there are three plausible H atom co-product isomers 

with the C4H5N formula: 1-cyanopropene, 2-cyanopropene and 3-cyanopropene (shown in Scheme 5). 

Other experiments, described below, have provided details on the product ratios. The remaining question 

is what accounts for the non-H atom product yield.  From calculations, a CH3 + C3H3N exit pathway is 

energetically plausible and a zero-pressure CH3 elimination yield of 0.51 is predicted at 298 K.96 The high-

precision measurements of the H atom appearance kinetics are vital to understand the underlying 

mechanism of the reaction but further experimental investigation is required to elucidate the structure(s) of 

the H-atom co-product and characterize the C2H3CN + CH3 product channel. 

CMB studies of CN + propene have been performed utilising deuterated propene analogues to 

distinctly probe the product channels.30 At collision energy of 25.5 kJ mol-1, CN reactions with the (i) 

CH2=CHCD3 and (ii) CD2=CDCH3 isotopologues both gave rise to a signal at m/z 70 that is due to CN 

addition followed by H atom (1 Da) loss. As the H atom loss channel was observed for both isotopomers, 

cases (i) and (ii), it shows that there is more than one distinct H atom loss product mechanism. The CMB 

study ultimately reports a 75% (± 8) cis/trans-2-butenenitrile (1-cyanopropene) product yield for the CN + 

CH2=CHCD3 reaction and 25% (± 5) for 3-butenenitrile (3-cyanopropene) in the CN + CD2=CDCH3 

reaction. 

A CN + propene computational study by Huang et al. pointed out that the product distribution for this 

reaction depends to a significant extent on the entrance channel of CN forming different CN–propene 

adducts.108 Regardless of the intermediate however, their ultimate finding is that the CH2=CHCN + CH3 

pathway will be dominant (always greater than 50%) at low collision energies (0 – 21 kJ/mol) and the H 

atom co-product species are predicted to comprise 1-cyanopropene and 3-cyanopropene, in accord with 

the aforementioned CMB study. 
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Two synchrotron product detection studies have focused on the CN + propene reaction. The first, reported 

the cyanoethene (CH2=CHCN) + CH3 channel as the dominant pathway and the H loss pathways was 

apportioned to 1-cyanopropene and 2-cyanopropene.104 For these cyanopropene isomers, the fitting relied 

on simulated photoionization spectra. Subsequently, the acquisition of further experimental data led to 

revision of this finding. With the benefit of a higher experimental mass resolution and experimentally 

determined photoionization reference spectra for the three cyanopropene isomers, the updated result still 

assigns cyanoethene + CH3 channel as the dominant product channel (0.59 ± 0.15) and the H loss channel 

accounts for the remaining product yield (0.41) but the H-loss co-product species are assigned as 1-

cyanopropene (0.50 ± 0.12) and 3-cyanopropene (0.50 ± 0.24). The study points out that although these 

reported fractions represent the best fit to the experimental data, the close similarities between the 

photoionization spectra of the three cyanopropene (C4H5N) species leaves some uncertainty around the 

equivocalness of this assignment. Further experiments in the same study for deuterated analogues provides 

additional evidence for the formation of 3-cyanopropene. The CN + CH2=CHCD3 reaction was studied 

and it revealed that both a D atom loss (-2 Da) and H atom loss (-1 Da) product channels were present. 

The detection of the D loss channel is sound support for the formation of 3-cyanopropene (as illustrated in 

Figure 6 from data reported in Ref 109) along with the earlier fitting results to the product photoionization 

spectrum. These studies, including CMB30 and more recent calculations108 are in accord with the finding 

that 1-cyanopropene and 3-cyanopropene are the major products of the H-loss.  
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Figure 6. Product mass spectrum of the CN + propene-d3 reaction that shows evidence for both D and H 

elimination. Reprinted with permission from Reference109. Copyright (2011) American Chemical Society. 

Scheme 5 

In a final comment on this reaction, there is a recent study of the CN + 1-pentene reaction by Suits 

and coworkers using crossed-beam imaging at collision energies from 21 to 38 kJ mol-1 in which they 

clearly detect an HCN abstraction channel, forming the C5H9 radical co-product.110 The authors conclude 

that the HCN channel is not insignificant and cautiously report a branching contribution of 50%. So 

perhaps there is an unresolved question on the possible presence of this HCN abstraction channel for the 

case with propene. In the CN + propene studies using synchrotron photoionization mass spectrometry 

mentioned above, deliberate experiments were performed in an effort to detect the analogous radical for 

the CN + propene reaction C3H5 – the resonance-stabilized allyl radical – with no definitive detection at 

the corresponding m/z 41. So there might be some unidentified dynamics and nuisances in the H atom 

abstraction pathway that opens this channel in the case of 1-pentene but renders it uncompetitive for the 

case of propene. 

As explored computationally by Mebel and coworkers, extending CN radical reactions to larger chain 

olefin species may lead primarily to “CN-for-H exchange” reactions (CxHy + CN -> CxHy-1CN + H) as in 

the case of CN + C2H4, but competition with other elimination pathways, including those with available 
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CH3-loss and C2H5-loss channels, need to be carefully considered.111  This is clear from the CN + propene 

example explained above. Experiments, CMB and low temperature kinetics (298 – 23 K) are reported for 

the CN + 1,3-butadiene reaction. In this case the “CN-for-H exchange” holds true, with 1-cyano-1,3-

butadiene established as the dominant product.15 Only traces of pyridine are detected.  

For other C4H6 reaction partners, computational investigations for CN + 1-butyne predict that CH3 

elimination and H elimination product pathways are both important and the fractionation is sensitive to the 

initial CN adduct site.111 The CN + 1,2-butadiene reaction is also predicted to follow CH3-loss and H-loss 

product channels following CN addition, although H loss is predicted to be preferred.111 The CN + 2-

butyne reaction is predicted to give >98% 1-cyano-prop-1-yne + CH3 products across 0-5 kcal mol-1 (0-21 

kJ mol-1) collision energies. For these C4H6 species, various product detection schemes, including 

synchrotron photoionization mass spectrometry, would provide important experimental insight into any 

preference for the various entrance channels. Take the CN + 1,2-butadiene reaction as a particular 

example, as the Jamal and Mebel study details, there are three plausible CN addition sites to CH2=C=CH-

CH3 that form distinct initial intermediates. An addition to the =C= carbon at collision energies 0-5 kcal 

mol-1 (0-21 kJ mol-1) is predicted to ultimately yield almost exclusively 2-cyano-1,3-butadiene + H 

products.111 Other adduct sites, at the CH2 group or the CH group of 1,2-butadiene should generate 1-

cyano-prop-3-yne + CH3 and cyanoallene + CH3, respectively with yields that are dependent on the 

collision energy. Isomer specific detection of cyanoallene (up to ~45%) appears predicated on the 

formation of CN adduct to the CH carbon while 1-cyano-prop-3-yne (up to ~74%) signifies a CN adduct 

complex at the CH2 carbon. 2-Cyano-1,3-butadiene makes up the remaining product fraction. It is possible 

that measurements of product branching ratios will provide insight into the addition process. Judicious 

deuterium labeling experiments would also provide complementary details to this system, and similar 

cases, too. As is the case for CN + 1,2-butadiene, the products of CN + 1-butyne and 2-butyne reactions 

have not been comprehensively studied experimentally with isomer-specific detail. It is not yet clear if 
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there are any preferential entrance channel dynamics affecting these reactions. Experiments with isomer-

specific detection capabilities are required to assist in answering these questions. 

Finally, the reactions between small radicals and linear hydrocarbon molecules may lead to ring 

formation. These processes are of particular interest as ring proliferation is required for the formation of 

larger PAH/PANH scaffolds that can ultimately condense to form aggregates and particles. One example 

of a ring formation reaction is the C2H + 1,3-butadiene reaction that has been shown, under single 

collision conditions to form benzene + H at 40% product yield.4 For the analogous CN + 1,3-butadiene 

reaction, however, no ring-closure pathways to pyridine are significantly competitive – only traces of 

pyridine are reported – due to high reaction barriers compared to linear isobaric species.15 As shown in the 

next section, CN does rapidly react with aromatic species and is implicated in high order ring-formation 

mechanisms. 

3.2.3. CN + benzene, toluene and other aromatics 

The reactions of the CN radical leading to larger CN containing aromatics, starting with CN + benzene, 

are well studied. Kinetics for this reaction have been measured at 105 K, 165 K and 295 K and the rate 

coefficients are essentially unchanging over this temperature range with values between 3.9 and 4.9 × 10-10 

molecule-1 cm3 s-1.112 These results are in good agreement with computational kinetics study of Woon 

predicting rate coefficients of 3.35 – 3.50 × 10-10 cm3 molecule-1 s-1 over the 100 – 300K temperature 

range.113 This implies that reaction efficiencies are close to unity and that the reaction pathways have no 

significant energetic barrier. For CN + toluene the measured rate coefficient is 1.3 × 10-10 cm3 molecule-1 s-

1 at 105 K with biexponential profiles reported at higher temperatures although no satisfying explanation 

is given for the latter observation.112  

Synchrotron product detection studies of the CN radical with benzene and toluene have also been 

reported.112 In these room temperature studies the detected products are consistent with addition then H 

loss processes (Scheme 6). The CN + benzene reaction gives rise to a clear cyanobenzene (m/z 103) 



 34 

product with no reported detection of isocyano benzene, which is predicted to have a lower vertical 

ionization energy (VIE of 9.5 eV112) than its –CN counterpart. There is no evidence of phenyl radical 

(C5H6) formation that would arise from direct H-abstraction and HCN formation. A CN + benzene CMB 

study has been performed at collision energies of 19.5 kcal mol-1 (81.6 kJ mol-1) and 34.4 kcal mol-1 (143.9 

kJ mol-1) and reports one product channel, C6H5CN + H, with a reaction exothermicity of 80-95 kJ mol-1 in 

good agreement with computational predictions of 95 kJ mol-1.114 This study also reports that the reaction 

products are formed from an intermediate that decomposes with a lifetime longer than a rotation period. 

These findings are in agreement with the aforementioned synchrotron photoionization study on this 

reaction. The CMB study also reports calculations for the C6H5-NC + H product channel – the isocyano 

analogue – residing -4.9 kJ mol-1 below the energy of the reactants but with a +29.5 kJ mol-1 transition 

state barrier along the pathway to this product channel. Hence, this channel is not likely to compete at 

moderate to low temperatures and collision energies.   

Scheme 6 

For CN + toluene, the one detected product is also a CN addition and H elimination product at m/z 117 but 

in this case there is the possibility of different cyanotoluene isomers. The ortho, meta and para isomers 

have ionization energies that are too similar to distinguish them by the technique. There were no 

detectable traces of a benzyl + HCN channel nor a cyanobenzene + CH3 channel. There are currently no 

other reported kinetic studies for the room temperature CN + toluene reaction and there is scope for 

further systematic kinetic and product studies on this reaction. 

+

CN

+

CH3

HC N

C N

+

+ H
CN

CH3



 35 

Extending on these CN radical reactions with benzene and toluene, Landera and Mebel have reported 

computational studies of CN (and C2H) reactions with styrene (C6H5CH=CH2) and N-

methylenebenzenamine (C6H5-N=CH2) with an eye on the formation pathways leading to azanaphthalenes 

via consecutive CN (and/or C2H) additions.115 Due to entrance channels that are free from significant 

thermodynamic barriers, and that H loss is a common pathways of activated intermediates, building up 

large molecular-weight species including bicyclics is feasible under low temperature conditions and low 

pressures. Notably, formation of the second ring is initiated by radical addition at the ortho position. As an 

example, CN addition to styrene at the ortho carbon leads to formation of 2-vinybenzonitrile, then C2H 

addition to the ortho carbon of 2-vinylbenzonitrile leads to 1-ethynyl-2-azanaphthalene.115 More complex 

combinations of CN and C2H addition reactions are also reported.116 

The understanding of molecular weight growth chemistry and feasible ring-formation pathways is 

vital for the establishment of models and mechanisms that reproduce the formation of particles at both low 

temperatures, for example organic particles on Titan where temperatures are around 100 K, and soot 

formation in high-temperature combustion environments. These proposed CN mechanisms are yet to be 

verified experimentally and, as pointed out by Landera and Mebel in the aforementioned studies, VUV 

photoionization mass spectrometry experiments should, in principle, be well suited to these reactions since 

photoionization onsets and photoionization spectra can be used to signify the detection of particular 

isomers. Photolysis methods for generating CN, (e.g. ICN + 266 nm) can be complicated by significant 

photodissociation of the co-reactant especially in larger aromatic species.  

4. Conclusion and perspective  

In this Perspective we have outlined advancements in understanding the mechanisms for reactions of 

hydrocarbons with CH and CN radicals focusing on isomer-resolved product detection techniques, 

kinetics measurement over a wide range of temperature, and theoretical calculations. We hope that it 

hasn’t escaped the reader’s attention that for seemingly simple reaction pairs, the details that affect 
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product branching ratios can be complex and sometimes difficult to predict. Furthermore, accurate and 

comprehensive detection of reaction products, with isomer differentiation, is often non-trivial. It is 

apparent that a more complete understanding of reaction dynamics is afforded when a suite of 

experimental and theoretical techniques are used in combination.  

The success of photoionization mass spectrometry based methods has revitalized activities around 

disentangling product isomer in gas-phase reaction environments. Currently, it remains that these methods 

still require reference absolute photoionization cross sections for accurate quantitative information. This 

can be a limitation especially for reaction products that are not easy to isolate for the attainment of pure 

reference spectra. One can imagine in the future that VUV tabletop light sources that rival today’s 

synchrotron VUV sources will become available, thus expanding the libraries of reference spectra and 

allowing for the characterization of more complex and transient molecules. Expanding the conditions 

(pressure and temperature) of experimental data sets is also still needed. It is possible that more 

sophisticated mass spectrometry strategies, such as those developed for proteomics where molecular 

fragmentation patterns are mined to identify molecular structure, might also be implemented as larger 

molecular weight species are experimentally tackled.  

Computational techniques that allow for accurate prediction of absolute photoionization cross-

sections for common hydrocarbon gas-phase products are not generally available and such predictions 

would be very valuable, particularly for exotic and transient species. Also, the understanding of entrance 

channel pathways for radical + neutral reactions is rather incomplete and this becomes especially pertinent 

to reactions where numerous radical addition sites are possible. If different adduct sites lead to distinct 

product isomers, then product detections coupled with computational insights will provide important 

insight into this area. Finally, the exciting developments of synchrotron and laboratory-based experiments 

for probing product isomers continues to reveal mechanisms and fundamental processes of radical + 

neutral reactions while enlightening our understanding of reactive gas-phase environments.  
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