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Predictive inference for big, spatial, non-Gaussian data: MODIS cloud data
and its change-of-support

Abstract

Remote sensing of the earth with satellites yields datasets that can be massive in size, nonstationary in space,
and non-Gaussian in distribution. To overcome computational challenges, we use the reduced-rank spatial
random effects (SRE) model in a statistical analysis of cloud-mask data from NASA's Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument on board NASA's Terra satellite. Parameterisations of cloud
processes are the biggest source of uncertainty and sensitivity in different climate models' future projections of
Earth's climate. An accurate quantification of the spatial distribution of clouds, as well as a rigorously
estimated pixel-scale clear-sky-probability process, is needed to establish reliable estimates of cloud-
distributional changes and trends caused by climate change. Here we give a hierarchical spatial-statistical
modelling approach for a very large spatial dataset of 2.7 million pixels, corresponding to a granule of
MODIS cloud-mask data, and we use spatial change-of-support relationships to estimate cloud fraction at
coarser resolutions. Our model is non-Gaussian; it postulates a hidden process for the clear-sky probability
that makes use of the SRE model, EM-estimation, and optimal (empirical Bayes) spatial prediction of the
clear-sky-probability process. Measures of prediction uncertainty are also given.
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Predictive Inference for Big, Spatial, Non-Gaussian

Data: MODIS Cloud Data and its Change-of-Support

Aritra Senguptd Noel Cressig! Brian H. Kahn*and Richard Fre§

Abstract

Remote sensing of the earth with satellites yields databetscan be massive in size,
nonstationary in space, and non-Gaussian in distributitmovercome computational chal-
lenges, we make use of the reduced-rank Spatial Randomt&E{f@RE) model in our statisti-
cal analysis of cloud mask data from NASA's Moderate Resmiuimaging Spectroradiometer
(MODIS) instrument on board NASA's Terra satellite, lauedhin December 1999. Clouds are
the biggest source of uncertainty in future projections aftEs climate and explain the wide
spread of climate sensitivity calculated by climate modgle to their inherent differences
in parameterized cloud processes. An accurate quaniiiicati the spatial distributions of
clouds, as well as a rigorously estimated pixel-scale ekgiprobability process, is needed
to establish reliable estimates of cloud-distributionbhmges and trends caused by climate
change. In this article, we give a hierarchical spatialistiaal modeling approach for a very
large spatial dataset of size78 million pixels, corresponding to a granule of the MODIS
cloud mask, and then we use spatial change-of-supportoreddips to estimate cloud fraction
at coarser resolutions. Our model is non-Gaussian; it fagegia hidden process for the prob-
ability of a clear sky that makes use of the SRE model, EM edton, and optimal (empirical
Bayes) spatial prediction of the clear-sky-probabilitpgass. Measures of uncertainty of the

resulting optimal map are also given.
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1 Introduction

Clouds are generally characterized by higher reflectanueosver temperatures than the Earth’s
surface (Ackerman et al., 2010). They are composed of liquighlets or ice crystals, and they
modulate the planet’s radiation budget and directly aftdichate. They must be accurately de-
scribed in order to properly assess climatic processeslandte change. The accuracy of remote
sensing retrievals can be affected by cloud-contaminatidhe atmospheric column. Retrievals
of certain atmospheric quantities require clear skies,(&agd-surface properties or atmospheric
aerosols, etc.), while retrieval of cloud properties atevant for cloudy scenes. So it is important
to know if an atmospheric column is cloudy or if it is clear. eTModerate Resolution Imag-
ing Spectroradiometer (MODIS) instrument offers the opyoaity for multispectral approaches to
cloud detection.

Our interest is in the MODIS instrument that is on board thedr'satellite, which was launched
by NASA in December 1999. The Level-2 MODIS cloud mask praqtatnick et al., 2003) is
produced for pixel arrays at a spatial resolution of ktrkm. Each MODIS cloud-mask-product
file covers data collected over a five-minute time interva{ & is called a granule. Hence, each
granule represents a big dataset of approximatél§ thillion pixels of 1 knf resolution. In this
article, a particular granule of Terra MODIS data (corresping to June 29, 2006, 12:45 UTC)
will be used to illustrate our statistical-modeling apmioaan RGB image of the granule is shown

in Figure 1.
—— Figure 1 approximately here ——

The MODIS instrument collects data on spectral radiancasdte then processed using the
MODIS cloud-detection algorithm (e.g., Platnick et al. 030 Ackerman et al., 1998, 2010) to
produce a Level-2 cloud-mask classification (MODO06 profduidie MODIS cloud-detection algo-

rithm is based on a number of spectral tests; different testhave different results for a particular
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pixel. The results from all tests are then combined to datean overall “confidence” value for a
pixel, located as, to be clear (i.e., cloud-free), which we call the “initiah@lues,” and we denote

it by Qi(s). Now 0< Qi(-) < 1: if Qi(s) is near 1, there is high confidence that the pixel located
atsis clear; and ifQ, (s) is near 0O, there is high confidence that the pixel is cloudyas8qguently,
“clear-sky restoral” tests are performed that check fomuipiguous clear-sky signals.

The clear-sky restoral tests alter the initial Q-values agsililt in what we call the “final Q-
values,” which we denote b@(-). Again, 0< Q(:) < 1. See Figure 2 for a visual impression of
the difference between initial and final Q-values for thengta shown in Figure 1. Noticeable in
Figure 1 is a strip of sun-glint reflecting off the ocean, whappears in the left panel of Figure 2
(initial Q-values) but not in the right panel (final Q-valjieshus, restoral tests are important, since
there are situations where the cloud-mask algorithm temadsér-predict clouds (e.g., in regions
with sun-glint). In what follows, we refer to the final Q-valsi(which recall are denoted K-)),
as theMODIS cloud data Again, Q(s) near 1 signifies high confidence for the pixel located at
sto be clear, and)(s) near O signifies high confidence for that pixel to be cloudyr &basic

description of the MODIS cloud-mask algorithm, see Sengepal. (2012).

—— Figure 2 approximately here ——

Sengupta et al. (2012) also sketched out a hierarchicabsgédtistical model for analyzing
MODIS cloud data; here we give full details, including urteerty quantification, of the nonsta-
tionary, non-Gaussian hierarchical spatial statisticatiet that we fit to the Z5 million MODIS
cloud data shown in the right panel of Figure 2. We also dsspatial change-of-support, which
is important for answering geophysical questions aboutdsat resolutions other than that of the
data.

The data are defined on 1-km-km pixels; henceforth, each of these pixels will be called
a “basic areal unit” (BAU). The precise number of BAUs in thamule shown in Figure 1 is
N = 2,748 620. In general, we assume that data are available ®AUs, wheren < N. For
the particular granule that we consider in this artiale= N (i.e., there are no BAUs without

data). A full-rank spatial-statistical modeling appro&ahthe granule would require specifying an



N x N covariance matrix for the underlying spatial (transforinadar-sky-probability process. To
produce optimal spatial-statistical predictions, we wiouted to inverN x N covariance matrices,
something that is not computationally feasible fbtarger than several thousand.

The computational bottleneck that arises due to the cortipatd cost of inverting thé\ x N
covariance matrix referred to above, is often referred ta &sig N” problem. When the data
appear to be Gaussian, reduced-rank-modeling approaekesdken developed to deal with this
computational challenge (e.g., Wikle and Cressie, 1998janét al., 2001; Cressie and Johannes-
son, 2006, 2008; Banerjee et al., 2008; Stein, 2008; Lopas @008). For data appearing to come
from the exponential family of distributions, Lopes et &011) took the hierarchical generalized
linear mixed modeling framework proposed by Diggle et a@98) and introduced a new class
of models using a latent factor-analysis structure; thdiy fBayesian model allows for dimen-
sion reduction and hence fast computations. A number ofad@eitd spatio-temporal applications
for very-large-to-massive datasets center around thekecee-rank representations of a hidden
continuous Gaussian process (e.g., see the review in VZ@l)).

In contrast to the geostatistical-model-based approatisesssed above, a Gaussian Markov
random field (GMRF) captures the spatial dependence in teriying latent process through the
(typically sparse) precision matrix, which is the inver$eh® covariance matrix. A detailed dis-
cussion of this can be found in Rue and Held (2005, Chaptardiaessie and Wikle (2011, Pages
185-186). Rue and Held (2005, Chapter 5) discuss a way toaippate a geostatistical model
with a sparse conditional autoregressive spatial moddl{tsia relationship has been used by Lind-
grenetal. (2011) and Simpson et al. (2012) to build hieiaatlspatial models with GMRF process
models that allow fast computations. However, the desiredmputational efficiency means that
they use only a small number of parameters, which could bel@mmatic when modeling spatial
dependence over large, continental-scale, heterogemegiosis. Hughes and Haran (2012) con-
sider a Bayesian hierarchical model with a hidden GMRF aedadimension-reduction approach
to deal with spatial confounding and computational comipfetat arise when analyzing a large
spatial dataset. They parameterize the precision matirig @ underlying graph, where edges of

the graph represent spatial dependence, and they assuyreesmhbll number of parameters.



To solve the “bigN” problem that arises in our application, we shall use theiced-rank-
modeling approach developed by Cressie and Johannesso, (2008), although the MODIS
cloud data are bimodal and constrained®d|. Our methodology is a combination of the GLMM
framework of Diggle et al. (1998) and the Spatial Random &§€SRE) model of Cressie and
Johannesson (2006, 2008), there developed for Gaussamwidhta continuous spatial index. We
take an empirical hierarchical modeling (EHM) approach bhadce, unlike in a Bayesian hier-
archical modeling (BHM) approach where specification obgwiis needed, we treat the model’s
parameters as fixed but unknown. We estimate these parameielg an EM algorithm (e.g.,
Dempster et al., 1977). Computations for optimal spatiabpmtion, which includes parameter
estimation, aréO(N) and feasible. For a more complete discussion of the EHM aniil Bid-
proaches, see Cressie and Wikle (2011, Chapter 2).

Cressie and Johannesson (2006, 2008) developed the Spatiddm Effects (SRE) model for
optimal spatial predictions from continuous, symmetritadaith a continuous spatial index, a
methodology that is known as Fixed Rank Kriging (FRK). Cressxd Johannesson (2008) took
an EHM approach and gave a method-of-moments estimatoeqfarameters of the SRE model;
Katzfuss and Cressie (2009) took the same EHM approach helaped an EM algorithm to
obtain a maximum likelihood (ML) estimates of the parametand a Bayesian version is given
in Kang and Cressie (2011). The applications in these astitbcus on the analysis of very-
large-to-massive remote sensing datasets (or some traredfon of the data) that appear to come
from the Gaussian distribution. In Sengupta and Cressi&32b), a hierarchical spatial statistical
model was developed for big, spatial, discrete or contisutata, that includes the SRE model
as a component of the process model. Sengupta and Cres&gbjased the SRE model in a
hierarchical framework to analyze highly skewed, non-tiggaremotely sensed Aerosol Optical
Depth data, where the models were non-Gaussian and notivaddi

The plan for the rest of the article is as follows: Details lod hierarchical spatial statistical
model will be reviewed in Section 2. In Section 3, we outlihe statistical inference, which
is based on generating MCMC samples from the predictiveiligion. The EM algorithm for

obtaining the ML estimates of the model parameters is dsgnign Section 4. Then, in Section



5, we analyze the granule of MODIS cloud data shown in Figyresihg the methodologies
detailed in this article. In Section 6, we discuss the chaofggupport relationship and use it to
obtain estimates for cloud fraction at resolutions codisan the BAU. Discussion and conclusions

follow in Section 7.

2 Hierarchical Mode for the MODIS Cloud Data

In this section, we give details on the empirical hierarahimodel for final Q-values obtained
from the MODIS cloud mask product that was proposed in anfareged conference proceedings
(Sengupta et al., 2012). We index the set of BAUs that have astociated with them &y =
{s1,...,S}, and the complimentary set of BAUs without datdig = {sS+1,...,Sn}. Hence, our
data are{Q(s) : 5 € Do}. For the granule shown in Figure 1, we have- N = 2,748 620 (i.e.,
no missing data), anflQ(s) : s € Do} are shown in the right panel of Figure 2.

We introduce a hidden variabW¥(s) that denotes the true state of the pixel locateg ét=
1,...,N), namely O (i.e., cloudy) or 1 (i.e., clear). Then we assuniédden spatial Gaussian
processY (-) that controls the probability diV(-) being 1, where bothV(-) andY(-) are defined
over the entire spatial domail) = DoUDy. That is,W(-) is a binary spatial process whose
probability distribution is controlled by a nonlinear tefiarmation of a Gaussian procéss); our
goal is to make inference on the clear-sky-probability pes¢{P(W(s) =1) :s€ D} from the
data{Q(s) : s € Do}

Our hierarchical spatial statistical model consists afata modeland atwo-stage process
mode] for which we now give details. In what follow§d| denotes the probability distribution of

A and|A|B] denotes the conditional probability distributionAfivenB.

2.1 DataMode

We assume conditional independence and model the pixel-dewnditional probabilities,

{IQ(s)|W(s), parameters:i=1,...,n},



using a “0-1 inflated” Beta distribution. Now, conditional @/(s)) = 0, Q(s) is modeled using a
zero-inflated Beta distribution; and conditionalWiis ) = 1, Q(s) is modeled using a one-inflated
Beta distribution. The 0-1 inflation deals with thog@(s) } that are exactly 0 or 1.

Then ourdata models as follows: Fors € Dg, independently,

[Q(S)|W(S)=0,Po,0(o]={Pol(Q(Si)=0)+(1—Po)f1,ao(Q(s))}; )
and
Q(s)W(s) = L Pr. o] = {Pll (Q(s)=1)+ (1P fl,m(Q(s))}. @)
In (1) and (2),
L T@atb) . b |
fa,b(Q(S))—WQ(Sl) 11-Q(s))" M (0<Q(s) < 1), (3)

which is the density of a Beta, b) random variable, wher@> 0 andb > 0. That is, the parameters
in the data model argy, ag, P;, anday; in this article, we consider them to be fixed, unknown, and
to be estimated. It is possible that other granules may reasie of a differend, b in the fa(-)

used in (1) and (2).

2.2 Process M oddl

Next we specify théwo-stage process moddRecall that the process®s(-) andY(-) are defined
over the entire spatial doma, not just overDo. In what follows, we shall use Gép, 2) to
denote a Gaussian distribution with mgaand covariance matriX.

“Process model 1" represents the distributioq0f(s) : i = 1,...,N}, conditional on the hid-
den spatial process(-). We assume a set of independent Bernoulli random variabtgedcess

model 1 That is, fori = 1,...,N, independently,

W(s)[Y () ~ Bernoulli(p(s)), (4)



where recall thatV(s) = 1 (respectively, Dmeans that the pixel locatedsais clear (respectively,

cloudy). Thenp(-) = Pr(W(:) = 1) is the clear-sky-probability process, and

Y()= Iog( PO) ) |

1-p()

is the logit transform of(-); and conversely,

( expY()
Pe) = <1+expw<->>) ' ©)

At the second stage of the process model (“process model2")ise the reduced-rank Spatial
Random Effects (SRE) model (e.g., Cressie and Johanne2806, 2008) to define the spatial

dependence iX(-). Process model B&:

Y(s)=X(s)'B+S(s) 'n+&(s);i=1,...N, (6)

whereX(s) is a p-dimensional vector of known covariates at each locasipf8 denotes the set
of p unknown regression coefficients(:) = (Si(-),...,S(-)) " is a vector ofr (not necessarily
orthogonal) spatial basis functions, wheiis fixed and much smaller thamn is anr-dimensional
vector of spatial random effects assumed to have g GHY distribution; anc(-) is a fine-scale-
variation process modeled as independent(&zn%) random variables. In process model 2, the

parameter§, K, and0§ are fixed, unknown, and to be estimated.

3 Empirical Bayesian Inference

Our main focus in this paper is on prediction of the clear-gkybability processp(-), given by

(5). Consequently, the probability of cloudineg§,), can be obtained as:

a-) =1—p(-). (7)



From data{Q(s) :i =1,...,n} atn < N spatial locationgsi, ..., S}, we wish to make infer-
ence on the hidden procesé) (or equivalentlyp(-)) at all spatial location$s :i=1,...,N}. The
parameter = {Po, Pl,ao,al,B,K,of} are unknown and considered to be nuisance parameters
for the purpose of prediction. Our hierarchical model beesranempirical hierarchical model
when the parameters are estimated from the data insteadrmfraistribution being put on them
(Section 4). They are then substituted into the predictis&itution of Y (-).

Define Qo = (Q(s1),...,Q(s1) ', W = (W(s1),...W(sn)) ', Y = (Y(s1),...,Y(sn)) ', and
&= (&(s1),.. .E(SN))T. Then our immediate goal is to predict the process variabWgsy ), given

the data and the parameters. The predictive distribution is
W, Y|Qo.8] 0 [Qo|W, Y, 8][W|Y,6][Y]8]. )

However, the predictive distribution is not available imstd form, nor i known. To solve
these problems, we shall use EM estimatio®ab yield éEM, and we shall use a Markov Chain
Monte Carlo (MCMC) algorithm (see, e.g., Robert and Casé@li®4) to yield samples from the
predictive distribution]W, Y |Qo, 8], whereBg is substituted in foB. From (6), we can see that
this is achieved by obtaining samples from the predictigéritiution,[W, n,&|Qo, 8]. The MCMC
algorithm to obtain this predictive distribution for the NDT5 cloud data analyzed in Section 5, is

described in the Appendix.

4 EM Estimation of Parameters

The EM algorithm (Dempster et al., 1977) has been employeddtimation of parameters in the
presence of missing data; for details on the generic EM dlgor see McLachlan and Krishnan
(2008). The EM algorithm involves iterating between an Epgotation) step and an M (maximiza-
tion) step, and in our case the E-step is the most problemaftien the integrals in the E-step are
not available in closed form, one common approach is to impl# a stochastic EM (SEM) algo-

rithm (see McLachlan and Krishnan, 2008; Robert and Cas#id4), where the expectations are



evaluated using Monte Carlo integration. When datasetsiassive, as in our case, this computa-
tion will be extremely slow, and hence the EM algorithm wil bomputationally very expensive.
Following the ideas in Sengupta and Cressie (2013b), weadstlerive Laplace approximations
(LA) to approximate the expectations involved in the E-siefhe EM algorithm.

At locations inDo, the proces®V(-), the random effectg and the fine-scale-variation te@t)
are not observed and can be treated as missing data. Thel&terdpta” log likelihoodl, for the
unknown parameters is made up of the observat@psnd the “missing dataWWo, n, and§,
whereWo = (W(sy),...,W(sy)) ", andég = (§(s1),...,&(sh)) . ThenL. is simply the logarithm
of the joint distribution 0Qo, Wo, n, and§, given the parametefs= {Po, 0o, P1,01,B, K,o%}.
That s,

LC(6|QO7 n, EO)
=log[Qo|Wo,B.N,&c] +10g[Wo|B,N,&o] +log[n|K] +log[Eo|of]

=const+ % W(s)logPi+ % (1-W(s))logRy
iQ(s)=1 :Q(s)=0

+ Y W(s)log{(l—Pl)fl,al(Q(S))}

i:0<Q(s)<1

+ Y (1—W(s>)log{(1—Po)f1,ao(Q(s>)}
i'0<Q()

+21W (s)'B+S(s) n+&(s))
—Zilog<1+exp(x( s)TB+S(s) N +(s)))

— éIog|K| — hrace(nn K™ )

! trace(EOE,O> 9)

n 2
— élogoE 52

wheref,p(Q(+)) is given by (3), and “const.” denotes a generic constantdbas not depend on
the parameters.
Assume that we have completed thé&h iteration of the EM algorithm. We now discuss

the E-step and the M-step for tl{e+ 1)-th iteration of the EM algorithm. At thél + 1)-th
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iteration of the EM algorithm, the E-step involves taking tbexpectation of the complete data
loglikelihood with respect to (w.r.t.) the missing dd¥&/o,n,&p), conditional on the observed
dataQop and the parameter valueﬁ[,”, at thel-th iteration. We obtain the expectation itera-
tively, first w.r.t. [Wom,Eo,Qo,Gm] and then w.r.t. [n,Eo\Qo,e[”]. The conditional distribu-
tion [W(s)\n,EO,Qo,B[”] is available in closed form. However, the second expectatior.t. the
distribution[n, | Qo, 9[”], Is not, and we approximate it with a Laplace approximateg.( Sen-
gupta and Cressie, 2013a,b) based on a second-order Bayles expansion of the logarithm of
the integrands around their respective modes.
Following the E-step, we perform the M-step, where we maz@éie expectation evaluated at
the E-step with respect to each of the parametes ifthe maximization w.r.tPy, Py, K, ando%
is obtained by differentiating the expectation of the casbtgpdata loglikelihood given by (9), w.r.t.
Po, P1, K, ando%, and then equating the result to zero. Solving these eqsyiields:
ozl = %trace(E(Eo\Qo,6[”)E(EO|QO,6“])T +var(€/Q0.6") )
K+¥ — E(n|Qo,8")E(N|Q0,8") " +var(n|Qo,6'")
Pl _ Y i:Q(s)=0 (1— E(W(s)|Qo, 9[H>)
i:Q(s)<1 <1— E(W(s)|Qo, 9[”))

pll+1] _ 2iQ(s)=1 E(W($)|Qo,9“]).
Y Sigis)-0EW(s)|Qo,0")

(10)

The maximizations with respect @y, a1, and are not available in closed form. We use a
one-step Newton-Raphson update for these parameters) wétbh iteration of the EM algorithm.
For complete technical details of the EM algorithm, inchglthe Laplace approximation and the

choice of starting values, see Sengupta (2012, Section 4.5)

5 Spatial Statistical Analysisof MODIS Cloud Data

In this section, we carry out a spatial statistical analg$ithen = 2,748 620 MODIS cloud data

shown in the right panel of Figure 2, using the hierarchigatisl statistical model discussed in
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Section 2. We use it to predict clear-sky probabilities fug entire study regior) = Do U Dy,
along with estimates of prediction uncertainties. A mapwshg the geographical location of
the granule is given in Figure 3; the study region lies in & pathe globe from longitudes -45
degrees to -10 degrees, and from latitudes 20 degrees tog#&ede Recall that the granule was
collected by the MODIS instrument on the Terra satellite emdesponds to June 29, 2006, 12:45
UTC. The resolution of the data is 1 kid km and, since we have data for all the locations,

n=N = 2,748 620.

—— Figure 3 approximately here ——

5.1 Spatial Basis Functions

In this section, we discuss the choice of spatial basis foncT he selection of the basis functions,
its type and number, is a current area of research (e.g.J&8rad al., 2011). For the purpose of
this analysis, we selected as basis functions the bisquacgéidns (e.g., Cressie and Johannesson,

2006, 2008). The generic form of a bisquare function is,

23 2
b(s):{1—<¥) } 1(lls—cl| <w), (12)

wherec is the center of the basis function, ain@) is an indicator function equal to 1 KXis true,
and equal to 0 otherwise. Basis-function cenl{erjs} in D are usually chosen according to a multi-
resolution scheme (e.g., a quad-tree). Finally, the “apettv given by Cressie and Johannesson

(2008) is,
w = 1.5 x shortest great-arc distance between like-resolutiorecgratints.

An illustration of a generic bisquare basis function is give Figure 4. Other choices for basis
functions are also possible (e.g., EOFs in Wikle and Cre&8i@9; eigenfunctions in Wikle et al.,

2001; W-wavelets in Shi and Cressie, 2007).

—— Figure 4 approximately here ——
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We employ several resolutions of basis functions to capgheelifferent scales of spatial vari-
ability; here we use three resolutions to obt@b](s) j=1,. ..,(r1+r2+r3)}, wherer; = 12,
ro =34, andr3 = 102, are the number of basis functions at the three resokitibhe centers of the
bisquare basis functions were selected using a quad-tiegise (e.g., Cressie and Kang, 2010),
ensuring that the centers for the different resolutionsatamatch. The number of basis functions
were determined to allow full coverage of the spatial domaive also included centers of the
bisquare function outside the study region to account fandary effects (e.g., Cressie and Kang,

2010). We further standardized the bisquare fundhign) to obtain thej-th basis function,

Si(s) = bj(s) —avecp (bj(s)) . .

- =1 (FtTat13), 12
{VarseD<bj(S))}1/2 et 42

where ave-p(-) and vagcp(-) are spatial moments taken over the domain of interestsanD.

The locations of the basis-function centers for all threhations are shown in Figure 5.

—— Figure 5 approximately here ——

5.2 Optimal Spatial Mapping of the Clear-Sky-Probability Process

We now discuss the results obtained by fitting the hieraadhstatistical model presented in Sec-
tion 2, to the MODIS cloud data. Subsequently, we producer@tspatial maps showing the
predictions for the underlying clear-sky-probability pess, along with maps showing the predic-
tion uncertainties.

First, let us consider the covariatés ) in (6). We include the vectdk &nd a vector of latitudes
as covariates. Further, instead of usingrthe: 12 coarsest-resolution bisquare functions as spatial
basis functions, we use them as a further 12 covariat¥$-in(e.g., Shi and Cressie, 2007).

The second term of (6) involves ardimensional vectoi$(-), of spatial basis functions, which
includes the, +r3 = 136 bisquare functions at the second and the third resoli{gee Figure 5).
Now, there are regions in the study region that are affecyesuib-glint (see Figure 1), which the
MODIS cloud algorithm attempts to account for by implemegtclear-sky-restoral tests. Never-

theless, the presence or absence of sun-glint remains eesoiuspatial variability for the granule
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we consider. Hence, we include the sun-glint indicator flagi¢h takes a value 1 if a pixel is
affected by sun-glint, and is 0 otherwise, and is availablpat of the MODIS cloud product) as a
basis function in the vector of basis functid®s). Thatis,r =1+rpo+r3=1+34+102= 137.

With the model specified as above, we implemented the EM ifiigorto obtain estimates of
the parameter® defined in Section 2. The EM algorithm converged after 14ttens, and the
computational time for the EM algorithm was 27.76 minutes.

After having obtained the EM estimat@gy = {If’o;EM, Prem, Goem, d1em, Ben, KEm, 6§;EM},
we substituted them into the MCMC algorithm (see Appendixplbtain samples from the (em-
pirical) predictive distribution{W,n,E\Qo,éEM]- We generated 10,000 MCMC samples, after
discarding 1,000 samples as burn-in. The computationa fonthe MCMC was 12.73 hours.
(All computations were performed on a dual quad core 2.8 GHX&bn X5560 processor, with
96 Ghytes of memory.)

The hierarchical nature of the model allows us to look at #pasate sources of variability, on
the logit scale (i.e., we can separate out the component$-gf The predictive mean of these

different sources of variability, along with that of theima Y (-), are shown in Figure 6.
—— Figure 6 approximately here ——

Now, using the MCMC samples referred to above, we computegitbdictive mean and the
predictive standard deviation of the clear-sky probapitits) given by (5), fori =1,...,N. We
also obtained the pixelwise 2.5 and 97.5 percentiles of etitteN elements op = (p(sy),..., p(sn))
from the predictive distributior{p|Qo,éEM], computed fron{W,n,E|Qo,éEM]. Figure 7 shows
maps of the pixelwise predictive mean, the pixelwise piadicstandard deviation, and the pix-
elwise 2.5 and 97.5 percentiles, respectively; the latter quantities are the lower and upper

end-points of a pixelwise 95% prediction interval.

—— Figure 7 approximately here ——
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6 Change-of-Support

In this section, we discuss spatial change-of-support atlohe the role it plays in predicting cloud
fraction at resolutions coarser than the base resolutidnkofix 1 km. Our goal is to demonstrate
that, by incorporating spatial statistical models into gieblem, optimal estimates with much
higher accuracy and precision, can be obtained.

We start by defining cloud fraction and the current, strdayiatard way it is estimated. Then
we propose an alternative estimator, specifically an optBages (OB) estimator based on the
spatial hierarchical model defined in Section 2, and we slmatit minimizes the mean squared
error incurred when estimating the cloud fraction. Thisiasss that all the parameters are known;
by substituting parameter estimates into the OB estimaterpbtain anempirical Bayes (EB)
estimatorthat we show, via a simulation study, is much more efficieantthe straightforward
estimator. Hence, we recommend this new, EB estimator afdcfraction. Finally, we look at a
geophysical question involving cloud fraction at 5 k& km resolutions and compare the results

obtained using the straightforward estimator and the Einesor.

6.1 Estimation of Cloud Fraction Using a Straightforward Estimator

In applications such as weather forecasting and climatggtions, researchers are interested in
geophysical questions that involve cloud fraction (e.g.@»olamo and Davies, 1997). Cloud
fraction is defined as follows: Le&Z(s) = 1 if there is cloud present (and O otherwise), where
se D, and forD a continuous-spatial-index set. Consider an &eaD. Then the cloud fraction
for B is defined agg C(s)ds/|B|, where|B| denotes the area 8f Henceforth, we calB thespatial
supportof the cloud fraction. Now recall th&@ (and hencd3) has been discretized into 1 km

km BAUSs; then the cloud fraction fdB is numerically approximated as,

_ >sesl {W(s) =0}

CF(B) Soonl ,

(13)
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where recall from Section 2.2 theét(s) = 0 corresponds to thieth 1 kmx1 km pixel located at
s being cloudy; see Zhao and Di Girolamo (2006).

Currently,CF(B) is estimated in the following straightforward way: Clagsfich 1 knx 1 km
pixel as cloudy or clear by thresholding the final Q-valudsQ(s) > 0.95, then the pixe is
classified as clear (i.alV(s) = 1), and ifQ(s) < 0.95, then the pixes; is classified as cloudy (i.e.,
W(s) = 0). Then the straightforward (method-of-moments, plugestimate of the cloud fraction

overB, henceforth referred to as tipug-in (PI) estimateis given by,

Ysesl {Q(s) < 0.95}
Ysepl '

CF™(B) = (14)

Notice that the estimate given by (14) depends on the thieésfadue 0.95 used for cloud-mask

classification, making it a biased estimator due to clasgita error. More formally,
E(CFP'(B ZBP ) < 0.95/0)/n(B) # E(CF(B)|0), (15)

wheren(B) = Sscg1, and0 here is a vector of fixed but unknown parameters that govesn th
probability distribution ofW(-) in (13). In what follows, we shall show that the Pl estimats,
well as being biased, also lacks efficiency when compareae@B or EB estimators (optimal or

near-optimal in terms of minimizing mean squared error).

6.2 Optimal Bayes (OB) Estimator for Cloud Fraction

With the hierarchical model proposed in Section 2, and assyfis known, the OB estimator

minimizes the mean squared error and is given by,

CF9%(B) = E(CF(B)|Qo0,0) EBP =0/Qo,0)/n(B), (16)
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where recall thaQo are the final Q-values used to classify their respectivelpix@aking the

expectation oCFCB(B) with respect to the distributiol@o|6], we obtain
E(CF°%(B)|8) = E{E(CF(B)|Qo,8)} = E(CF(B)|6). (17)

Consequently, the estimation error of the OB estim&@®&18(B) — CF(B), has mean zero; that is,
CFO©B(B) is unbiased.
Next we prove thaE F©8(-) minimizes the mean squared error among the class of all attim

for CF(-). Consider an arbitrary estimat@F(-), whose squared error of estimation is:
L(CF(B),CF(B)) = (CF(B) —CF(B))*, (18)

whereL(-,) is generic notation for a loss function (e.g., Berger, 19&sjuation (18) emphasizes

that we are considering squared-error loss. Condition#, ®he mean squared error (MSE) is,

E {(CF(B)—CF(B))?|8} =E {(CF(B) —CF9%(B)+CF®(B) —C~F(B))2|9}
:E{(CF(B) —CFOB(B))2|9}
+E{(CF®(B)-CF(B)8}

+2E {(CF(B) —CF9%(B))(CF°®(B) —CNF(B))|6} . (19

Note that the last term in (19) is equal to zero bec&R8®(B) = E(CF(B)|Qo, 8). Consequently,
the MSEs satisfy,

E { (CF(B) —CF(B))? |e} >E { (CF(B) —CFOB(B))2 |e} : (20)

that is, for squared error loss given by (185°8(B) is the optimal Bayes predictor fF (B), for
any spatial suppoB C D.

In practice @ is unknown and hendeF(B) is not a function only of the data. The OB estimate
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becomes an empirical Bayes (EB) estimate by replaBimg(16) with Bem (see Section 4):
CF®®() = E(CF(B)|Qo, 8em) = ZBP =0/Qo, 8em)/n(B). (21)

The use ogy in place of@ in (21) could introduce bias and typically increases the mea
squared error. In the next subsection, we use simulatioenwodstrate that these effects are very

small and tha€CFEB(.) given by (21) is much more efficient th@F"'(-) given by (14).

6.3 Simulation Study Comparing Estimators Bias and Mean Squared Er-

ror

In this section, we present the results of a simulation sthdy first compares the predictions
obtained using the OB estimator given by (16) to those obthirsing the EB estimator given by
(21), and we demonstrate that usﬁlg\/. in place of@ scarcely impacts the bias and mean squared
error. Then we compare the Pl estimator given by (14) to the&Bnator given by (21).

In this simulation, we consider a smaller-dimensional gtdnule of the usual granule, where
N =n=625000 1 kmx1 km pixels. For context, the original data in the sub-granQp, are
shown in the left panel of Figure 8. In our simulation studg generaté. realizations ofQo,
each of which is subjected to a computationally intensiveregion procedure. Hence, reducing
N allowsL to be large.

Our simulation study considers several factors. The “rggmi factor” has three levels: From
the spatial model given in Section 2, the levels are: (a) dlugisns (b) the 3 coarsest resolutions
selected from the 4 resolutions, and (c) the 3 finest reswlstselected from the 4 resolutions. The
centers of the basis function considered at the differesdlugéions, along with the study domain,
are shown in the right panel of Figure 8. (Some centers uit a column of zeros in the
spatial basis matriss; for computational efficiency, these were removed from weration.) The
“support factor” is considered at 20 levels, namBlgt 2x 2, 4 x 4,...,40x 40 km support. The
“treatment factor” has three levels given by the type ofreator used to estima@¥(-). They are:

(a) Pl estimator given by (14), (b) OB estimator given by (H8id (c) EB estimator given by (21).
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Our goal is to compare the estimators and to see how resoelatioice and support affects
estimation. The three simulation models correspondingeéaesolution choices are calibrated to
the dataQo shown in the left panel of Figure 8. Our approach here is guals to a parametric
bootstrap (e.g., Efron and Tibshirani, 1993, Section 6b)ere we simulate realizations from a
model estimated from the observed data. Our “response’gigithulation study isnean squared
error (MSE)andbias computed for the three estimators at each of the threesleféhe resolution

factor and the 20 levels of the support factor.
—— Figure 8 here. ——

Fix a resolution level. The bias for the spatial supf&nvhen using estimatd, is defined as:
bias(B) = E (CFA(B) - CF(B)\G) . (22)
The MSE for the spatial suppdB; when using estimatay, is defined as:
2
MSEA(B) = E (CFA(B) —CF(B)|6> . (23)

If the estimatoA is unbiased, theMSEA(B) is the same ag”(B) = var(CF”(B) —CF(B)|6).

The quantities (22) and (23) are obtained empirically frammdimulation, avoiding the need for
any analytic derivations. Analogous to the simulation expent in Cressie (2006), we empirically
obtainMSEA(B), andbias®(B) for an estimatoA € {PI, OB, EB} and for supporB € {2x 2,4 x
4,...40x 40}, centered on the center of the study domain shown in Figuaa@nested. These
computations are carried out for each of the three levelsefésolution factor.

To compute the first two moments empirically for each levahefresolution factor, we simu-

late data{Q[g;I =1,...,L} using the hierarchical-model sequence:
YUe) — w vl — Qg wh.

Then, fromQY, we computeCF™'l(B), CFOBII(B), andCFEEI(B). Note that computing the
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latter two estimatesGFOB!(B) andCFEBI(B), requires MCMC-based simulations from the dis-
tributions, [W,Y|Q£|3],6] and [W,Y|QQ,§EM], respectively. We sdt = 500, which guarantees

accuracy up to the first decimal place (e.g., Aldworth ands€les 1999).

6.3.1 Resultsfrom the simulation study

We compute the “bias” responségas’' (B), bias?B(B), andbias=B(B), forBc {2x 2,4 x 4,...40x
40}, centered on the center of the study domain. They are olot@mpirically as follows. When

using estimatoA, the empirical bias is:

bias(B) = (1/L) T (CFA F”“thH(B)>, (24)

=1

whereCF"tlll(B) is given by:

Ysesl {WM(S) = O}
dsepl .

crmhll(B) = (25)

Figure 9 shows the bias for the PI estimator (left panel) &eddB estimator (right panel), as
a function ofB. A plot showing the bias for the OB estimator looks almoshidel to the one for
the EB estimator, and hence it is not shown. Based on Figwe @pnclude that the EB estimator
is approximately unbiased, but that the Pl estimator hasiderable positive bias.

The Pl estimator is based on thresholdip@) independently for each 1 kril km pixel, where
recall thatQ(-) < 0.95is classified as cloudy afd(-) > 0.95 is classified as clear. The thresholding
value of 0.95 biases the classification towards cloudy s;emeich results in overpredictions for
CF(-) and leads to the positive bias seen in Figure 9.

From Figure 9, we see that the bias of the PI estimator is ddayehe model with four res-
olutions, when compared to the two models with three regmiat Now, thresholdin@(-) in-
dependently for all the 1 kml km pixels ignores the spatial structure. Further, when axeeh
four resolutions in the spatial model, the spatial depeodés stronger and the consequences of

ignoring it are greater. The result is more bias in the spatadel with four resolutions.
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—— Figure 9 here. ——

Next, we look at the “MSE” responsedlSE”! (B), MSE®B(B), andMSEFB(B), for B € {2 x
2,4x4,...40x 40}, centered on the center of the study domain. They are olotaimpirically as

follows. When using estimatd¥, the empirical MSE is:

=

M

MSEA(B) = L (cFe) —CF"”th['](B))Z. (26)
1

Based on (26), we now consider the relative MSE (REM) of thegStmator to the EB esti-
mator:

REMoges(B) = MSE®B(B) /MSEFE(B); (27)

a plot showingREMog.eg(B) as the spatial suppoRB increases is given in Figure 10. From the
plot, we see thaREMog.eg(B) is generally close to 1 for the models with three spatialltggms,
for any spatial suppo#; in fact, up to the first decimal placRE Mog.eg(B) = 1 for these models.
For the model with four spatial resolutions we see thatRE&Vog.ep(B) is close to 1 for small
spatial support8 and, asB increasesREMog.ep(B) takes values around 0.9, indicating that EB
is slightly less efficient at larger supports. Recall thapiactice OB cannot be computed, but its
empirical version EB can be.

Since the OB and the EB estimators in the simulation are geHdiave can relateE Mog.eg(B)
to the length of prediction intervals. Wh&EMog.eg(B) = 0.9, it means that the length of the
EB prediction interval is 1,/0.9 = 1.05 times the length of the OB prediction intervals. We also
looked at histograms of prediction errors for the OB and tBedStimators, and we looked at
scatter plots of OB estimates on the x-axis and EB estimatéley-axis. All our analyses from

the simulation study indicated that the EB estimate is datalear-optimal estimate affF(-).
—— Figure 10 here. ——
We move on to the REM of the EB estimator with respect to thesRir&tor, which is:

REMegpi (B) = MSEEB(B) /MSE” (B); (28)
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a plot showindREMeg.pi(B) as the spatial suppoBtincreases is shown in Figure 11.
—— Figure 11 here.——

From Figure 11, we see that the EB estimator has much smalk ¥Man the PI estimator,
with REMeg:p|(B) decreasing aB increases. That is, prediction errors for the Pl estimater a
generally bigger than those for the corresponding EB estinaand, as the support size increases,
the performance of the PI estimator, relative to EB estimatorsens. Comparing the effect of
the three levels of the resolution factor, one can see fragyurEill that the performance of the EB
estimator relative to the PI estimator is best for the mod#i ¥our spatial resolutions, and that
when we switch to a model with three spatial resolutions ttrégpmance deteriorates. Between
the two spatial models at three resolutions, we seeREEVEgp|(B) is generally larger for the
spatial model based on the three finer resolutions.

To conclude the simulation study, we note that the new EBredtr ofCF(-) proposed in this
article, namelyCFE8(.) given by (21), has much better predictive properties tharsthaightfor-
ward Pl estimator that is currently in use within the operadl MODIS algorithm package. Since
the Pl estimator does not use the spatial dependence intidndtdgperformance relative to the EB

estimator deteriorates as the spatial dependence getgstro

6.4 Analysisof MODISCloud Dataat Coarser Resolutions: Cloud Fraction

at 5 kmx5 km Resolution

In this section, we estimate cloud fraction at a 5XkBnkm spatial resolution from the 1 kril km
MODIS cloud mask. The noisy daf@o are shown in the left panel of Figure 8, and we wish to
upscale them to a coarser resolution. The 5d&nkm spatial support is of interest to geophysicists
because the release of several Level-2 remote sensinggisamiu5 kx5 km pixels depends on
estimating cloud contamination of those pixels. For exangbud-top pressure is computed on a
5 kmx5 km pixel if the estimated cloud fraction for that pixel4s0.16 (e.g., Pincus et al., 2012).
From the hierarchical spatial statistical model descritme8ection 2, and the MCMC sam-

ples from the predictive distributiofproces¢data EM-estimated parametelrave can obtain the
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predictive distribution|CF(B)|Qo, éEM], whereB C D is a 5 kmx5 km pixel. Recall that
CFEB(B) = E(CF(B)|Qo,8em),

which is obtained from the MCMC samples from the predictiigribution. The MCMC samples
also enable us to quantify uncertainty associated with tadigted cloud fraction. In Figure 12,
we show the PI estimator, the EB estimator, and the pixeldierence between the Pl and the
EB estimator; we also show the standard deviation and thewpise 2.5 and 97.5 percentiles of
the predictive distribution[,CF(B)\Qo,éEM]. Further, the pixelwise 2.5 and 97.5 percentiles are

the lower and upper endpoints of a pixelwise 95% predictiberial forCF(B).
—— Figure 12 here. —

Consider the example given above, where the geophysicatiqnef interest is whether or not
the cloud fraction for a 5 km5 km pixel is> 0.16; if it is, cloud-top pressure is computed (Pincus
et al., 2012). We use the EB estimator to answer this basedeotdataQo. Figure 13 shows the
5 kmx5 km pixels whereCFEB(B) > 0.16 (marked light gray) and those whe&@&58(B) < 0.16

(marked as blue “+").

—— Figure 13 here. ——

7 Discussion and Conclusions

In this article, we give a hierarchical spatial statistivaldeling approach for analyzing a very-large
remote sensing dataset {8 million pixel values) on clouds from NASAs MODIS instrant.
However, use of the reduced-rank SRE model to capture thiebpariability of the latent clear-
sky-probability process allows for fast computations.

We have taken an empirical hierarchical modeling (EHM) apph, where the unknown model
parameters are estimated using an EM algorithm. Alterelgtione could take a Bayesian hierar-

chical modeling (BHM) approach, where a prior distributisrput on the parameters. Kang and

23



Cressie (2011) developed the “Givens angle prior’Kgrwhich could be adapted for analyzing
the MODIS cloud data using a BHM. While the prediction insdsvcomputed using the EHM
approach tend to be liberal when compared to those using a Bpiioach, EHM is an order of
magnitude faster (e.g., Sengupta and Cressie, 2013b).

Within the hierarchical-statistical-modeling framewprke used the SRE model to define an
underlying Gaussian field. Other than computational spgeslthese models do not rely on spec-
ifying a spatial-weights matrix, and no assumptions of hgereity, stationarity, or isotropy are
needed. The hierarchical-statistical-modeling framéwamsidered here enables us to make in-
ferences on cloud fractions at resolutions coarser than % kikm pixels. In some applications
where researchers want to study local weather phenomeageshlies in predicting the clear-sky
probabilities (or equivalently, the probabilities of cthness) at resolutions finer than the 1 ki
km pixels. Obtaining high-resolution information froma&Vely coarse-resolution data is called
downscaling.

When interest lies in downscaling, one can proceed by defithiaprocess modeltor W(-)
andY (-) at the finest resolution at which we are interested in doifeyémce. Then, théata model
will be specified at the (coarser) resolutions at which weelhdata, conditional oW/(-) (process

1) andY(-) (process 2) at the finest resolution. We can write:

[processl, proces?|data parameters
O[datd processl, process?, parametergx [processl|proces?, parameters

X [process|parameter§ (29)

where the data are at a coarser resolution than the procéssase, to carry out inference ov(-)

(i.e., process 1), we could simulate from the predictivériistion,

[processl, proces?|data parameter§
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and use the simulated values of process 1 to obtain the dpanendictor of the cloud process,
E(I(W(s) = 0)|data, parameter$= Pr(W(s) = O|data parameters,

wheresis a location at the finest resolution.

To our knowledge, this article represents the first atteimpietvelop a hierarchical spatial sta-
tistical model for clouds at such a fine resolution. The mal@ekloped here could be extended to
a spatio-temporal setting that might be used to improveraatk model’s subgrid-scale physical
parameterization. Another extension would be to develogta-tlsion methodology, such as was
done by Nguyen et al. (2012). For example, one might fuserwatgor data from NASAs AIRS

instrument with cloud data from MODIS; both are on the TeateHlite.
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Appendix

A MCMC Algorithm used in Section 5

The joint distribution[Qo, W, n, &|B, K,o%], can be written as:

[Qo,W.n,&|B,K,0¢] = [Qo|W,n, &, B] x [W|n,&,B] x [n|K] x [E|og]. (30)

Let “[A|B,-]” denote the full conditional distribution of the unknowk given B and all other
unknowns (and the data). The Gibbs sampler uses the fokkpsteps to generate samples from

the predictive distribution\W, n, &|Qo, B, K, 0%].
1. Att =0, select starting value&/'%, n%, and&©.

2. t=t+1; simulate successively from the full conditionalgw!=1|nt &Y .

[+ w1 E[IL ], and[& [t+1] (Wt glt+1 ],
3. Repeat step 2 to generate as many samples as needed.
4. Discard an initial number of samples as “burn-in.”

The full conditional(Wt+3|nlt) €Y ) is available in closed form, and itis straightforward tmsi
ulate from this distribution. The full conditionalg)t+2|wt+1 gY ] and[g | wit+1 i+ ),
are not available in closed form, so we use a Metropolis sidgmthe Gibbs sampler. A generic
version of this Metropolis algorithm is now presented.

Supposea is the random variable (or a block of random variables) that&ing updated, and

ap is the most recently sampled value. We follow the steps b&boobtain a new sample af
1. Draw a trial valuea; from a proposal densitg(a).
2. Generaté&J; uniformly on(0,1).

3. Compute the joint density @fand all other unknowns, and obtdif&o, rest) andl (as, rest),

where ‘fest’ denotes all the other unknowns fixed at their most recerthgded value.
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4, If Up < min{%}, accept the neva; and keep it for the most current iteration;

otherwise, the valuay is retained.

When sampling fronint+2 €. .], we updated) as a block. For the proposal, we used a mix-
ture distribution (see Tierney, 1994). Specifically, wecduaemixture of a random-walk proposal
(see Robert and Casella, 2004, Section 7.5) and a tailoréd/amiate normal proposal (see Chib
and Greenberg, 1995, 1996). Lt 4 denote the posterior mode pf|&, -] andZ, denote the
inverse of the negative Hessian matrix, evaluated at theemblde mode can be computed using a
Newton-Raphson method (see Robert and Casella, 2004p6éc#). The tailored proposal for
was then taken as G046 C1,n2n), Wherecy y is a tuning parameter that is adjusted to control
the acceptance rate. The random walk proposal was takerGathqm ,C2nZn), Where agair,
is a tuning parameter. The mixing probability could alsodreet] to achieve the desired acceptance
rate. We worked with a mixing probability of®and selected; , = 1 andcy , = 2.3. With these
values for the tuning parameters, we achieved an acceptatecef 221% forn, which is close to
optimal (see Roberts et al., 1997).

When sampling fronj{““”r][‘“],], we updated, elementwise. Here we worked with the
tailored proposal. We computed the modd&, -], which we denote a&,,4, and the inverse
of the negative Hessian matrix evaluated at the mode, whizkienote a&;. For updating the
i-th element of;,, we used the proposal: Gé(ﬁmodgi ,Ce (ZE)iJ), where(§,q¢; denotes théth
element 0,046 and(ZE)Li denotes thei,i)-th element of the matriZ;. We fixedc; = 8 and

achieved an acceptance rate betweeb3% and 46L3% for the different elements &f
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Figures

MOD021KM.A2006180.1245.004.2006184060808.hdf
Terra MODIS Truecolor Scene

Figure 1: Image of a granule obtained by the MODIS instrunoenboard NASA's Terra satellite
(June 29, 2006, 12:45 UTC). The inset shows the locationefthnule on a world map. (Source:
modi s- at nos. gsf c. nasa. gov)
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Figure 2: Initial Q-values (left panel) and final Q-valuaglit panel) corresponding to the granule
shown in Figure 1.
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Figure 3: Geographical location of the data granule on JOn2@06, 12:45 UTC
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Figure 4: A bisquare function defined at?, illustrated as a 3-D plot (left panel) and as an image
plot (right panel).
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Figure 5: Centers of the basis function; '0’, '+’, and 'x’ amse to distinguish the three scales of
resolution.
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Trend Term Random Effects Component
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Figure 6: Maps showing predictions of the components ofatian: the trendX (-) " Bg\, (top-left
panel), the mean of the predictive distribution of the ranesffects componenE[S(-) 'n|Q, O]
(top-right panel), and the mean of the predictive distitubf the component due to fine-scale
variation,E[&(-)|Q, 8gm] (bottom-left panel). The mean of the predictive distribatof the hidden
processE[Y(-)|Qo, 0em] (bottom-right panel), is equal to the sum of the previousehtompo-
nents.
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Figure 7: Maps showing the predictive mean (top-left parté® pixelwise predictive standard-
deviation (top-right panel), the pixelwise 2.5 percentilettom-left panel) and the pixelwise 97.5
percentile (bottom-right panel) for the predictive distiion of the clear-sky-probability process.
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Figure 8: Data for the sub-granule that we use to illustrange-of-support (left panel). Spatial
region of interestD, and centers of basis function at the four scales of resolatbnsidered in the
simulation study (right panel).
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Figure 9: Plots showing the estimation bias. The left panehs bias for the plug-in (P1) estimator,
and the right panel shows bias for the empirical Bayes (EBnesor. The different plot symbols
(and colors) correspond to the three levels of the resald#otor.
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Figure 10: Plot showing the relative MSE of the OB estima#dative to the EB estimator. The
different plot symbols (and colors) correspond to the thegels of the resolution factor.
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Figure 11: Plot showing the relative MSE of the EB estima#dative to the Pl estimator. The
different plot symbols (and colors) correspond to the thegels of the resolution factor.
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Figure 12: Maps showing the PI estimator (top-left paneékg, EB estimator (top-right panel), the
pixelwise difference (PI1-EB) between the two estimatorgl(tte-left panel), the standard deviation
from the (empirical) predictive distribution (middle-hgpanel), the pixelwise 2.5 percentile from
the (empirical) predictive distribution (bottom-left paljy and the pixelwise 97.5 percentile from
the (empirical) predictive distribution (bottom-rightnpal).
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