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Abstract
Remote sensing of the earth with satellites yields datasets that can be massive in size, nonstationary in space,
and non-Gaussian in distribution. To overcome computational challenges, we use the reduced-rank spatial
random effects (SRE) model in a statistical analysis of cloud-mask data from NASA's Moderate Resolution
Imaging Spectroradiometer (MODIS) instrument on board NASA's Terra satellite. Parameterisations of cloud
processes are the biggest source of uncertainty and sensitivity in different climate models' future projections of
Earth's climate. An accurate quantification of the spatial distribution of clouds, as well as a rigorously
estimated pixel-scale clear-sky-probability process, is needed to establish reliable estimates of cloud-
distributional changes and trends caused by climate change. Here we give a hierarchical spatial-statistical
modelling approach for a very large spatial dataset of 2.75 million pixels, corresponding to a granule of
MODIS cloud-mask data, and we use spatial change-of-support relationships to estimate cloud fraction at
coarser resolutions. Our model is non-Gaussian; it postulates a hidden process for the clear-sky probability
that makes use of the SRE model, EM-estimation, and optimal (empirical Bayes) spatial prediction of the
clear-sky-probability process. Measures of prediction uncertainty are also given.
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Predictive Inference for Big, Spatial, Non-Gaussian

Data: MODIS Cloud Data and its Change-of-Support

Aritra Sengupta∗, Noel Cressie∗†, Brian H. Kahn†‡, and Richard Frey‡§

Abstract

Remote sensing of the earth with satellites yields datasetsthat can be massive in size,

nonstationary in space, and non-Gaussian in distribution.To overcome computational chal-

lenges, we make use of the reduced-rank Spatial Random Effects (SRE) model in our statisti-

cal analysis of cloud mask data from NASA’s Moderate Resolution Imaging Spectroradiometer

(MODIS) instrument on board NASA’s Terra satellite, launched in December 1999. Clouds are

the biggest source of uncertainty in future projections of Earth’s climate and explain the wide

spread of climate sensitivity calculated by climate modelsdue to their inherent differences

in parameterized cloud processes. An accurate quantification of the spatial distributions of

clouds, as well as a rigorously estimated pixel-scale clear-sky-probability process, is needed

to establish reliable estimates of cloud-distributional changes and trends caused by climate

change. In this article, we give a hierarchical spatial statistical modeling approach for a very

large spatial dataset of size 2.75 million pixels, corresponding to a granule of the MODIS

cloud mask, and then we use spatial change-of-support relationships to estimate cloud fraction

at coarser resolutions. Our model is non-Gaussian; it postulates a hidden process for the prob-

ability of a clear sky that makes use of the SRE model, EM estimation, and optimal (empirical

Bayes) spatial prediction of the clear-sky-probability process. Measures of uncertainty of the

resulting optimal map are also given.

∗Department of Statistics, The Ohio State University
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‡Jet Propulsion Laboratory, California Institute of Technology
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1 Introduction

Clouds are generally characterized by higher reflectances and lower temperatures than the Earth’s

surface (Ackerman et al., 2010). They are composed of liquiddroplets or ice crystals, and they

modulate the planet’s radiation budget and directly affectclimate. They must be accurately de-

scribed in order to properly assess climatic processes and climate change. The accuracy of remote

sensing retrievals can be affected by cloud-contaminationof the atmospheric column. Retrievals

of certain atmospheric quantities require clear skies (e.g., land-surface properties or atmospheric

aerosols, etc.), while retrieval of cloud properties are relevant for cloudy scenes. So it is important

to know if an atmospheric column is cloudy or if it is clear. The Moderate Resolution Imag-

ing Spectroradiometer (MODIS) instrument offers the opportunity for multispectral approaches to

cloud detection.

Our interest is in the MODIS instrument that is on board the Terra satellite, which was launched

by NASA in December 1999. The Level-2 MODIS cloud mask product (Platnick et al., 2003) is

produced for pixel arrays at a spatial resolution of 1 km×1 km. Each MODIS cloud-mask-product

file covers data collected over a five-minute time interval, and it is called a granule. Hence, each

granule represents a big dataset of approximately 2.75 million pixels of 1 km2 resolution. In this

article, a particular granule of Terra MODIS data (corresponding to June 29, 2006, 12:45 UTC)

will be used to illustrate our statistical-modeling approach; an RGB image of the granule is shown

in Figure 1.

—— Figure 1 approximately here ——

The MODIS instrument collects data on spectral radiances that are then processed using the

MODIS cloud-detection algorithm (e.g., Platnick et al., 2003; Ackerman et al., 1998, 2010) to

produce a Level-2 cloud-mask classification (MOD06 product). The MODIS cloud-detection algo-

rithm is based on a number of spectral tests; different testscan have different results for a particular
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pixel. The results from all tests are then combined to determine an overall “confidence” value for a

pixel, located ats, to be clear (i.e., cloud-free), which we call the “initial Q-values,” and we denote

it by QI (s). Now 0≤ QI (·) ≤ 1: if QI (s) is near 1, there is high confidence that the pixel located

at s is clear; and ifQI (s) is near 0, there is high confidence that the pixel is cloudy. Subsequently,

“clear-sky restoral” tests are performed that check for unambiguous clear-sky signals.

The clear-sky restoral tests alter the initial Q-values andresult in what we call the “final Q-

values,” which we denote byQ(·). Again, 0≤ Q(·) ≤ 1. See Figure 2 for a visual impression of

the difference between initial and final Q-values for the granule shown in Figure 1. Noticeable in

Figure 1 is a strip of sun-glint reflecting off the ocean, which appears in the left panel of Figure 2

(initial Q-values) but not in the right panel (final Q-values). Thus, restoral tests are important, since

there are situations where the cloud-mask algorithm tends to over-predict clouds (e.g., in regions

with sun-glint). In what follows, we refer to the final Q-values (which recall are denoted byQ(·)),

as theMODIS cloud data. Again, Q(s) near 1 signifies high confidence for the pixel located at

s to be clear, andQ(s) near 0 signifies high confidence for that pixel to be cloudy. For a basic

description of the MODIS cloud-mask algorithm, see Sengupta et al. (2012).

—— Figure 2 approximately here ——

Sengupta et al. (2012) also sketched out a hierarchical spatial statistical model for analyzing

MODIS cloud data; here we give full details, including uncertainty quantification, of the nonsta-

tionary, non-Gaussian hierarchical spatial statistical model that we fit to the 2.75 million MODIS

cloud data shown in the right panel of Figure 2. We also discuss spatial change-of-support, which

is important for answering geophysical questions about clouds at resolutions other than that of the

data.

The data are defined on 1-km×1-km pixels; henceforth, each of these pixels will be called

a “basic areal unit” (BAU). The precise number of BAUs in the granule shown in Figure 1 is

N = 2,748,620. In general, we assume that data are available forn BAUs, wheren ≤ N. For

the particular granule that we consider in this article,n = N (i.e., there are no BAUs without

data). A full-rank spatial-statistical modeling approachfor the granule would require specifying an
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N×N covariance matrix for the underlying spatial (transformed) clear-sky-probability process. To

produce optimal spatial-statistical predictions, we would need to invertN×N covariance matrices,

something that is not computationally feasible forN larger than several thousand.

The computational bottleneck that arises due to the computational cost of inverting theN×N

covariance matrix referred to above, is often referred to asa “big N” problem. When the data

appear to be Gaussian, reduced-rank-modeling approaches have been developed to deal with this

computational challenge (e.g., Wikle and Cressie, 1999; Wikle et al., 2001; Cressie and Johannes-

son, 2006, 2008; Banerjee et al., 2008; Stein, 2008; Lopes etal., 2008). For data appearing to come

from the exponential family of distributions, Lopes et al. (2011) took the hierarchical generalized

linear mixed modeling framework proposed by Diggle et al. (1998) and introduced a new class

of models using a latent factor-analysis structure; their fully Bayesian model allows for dimen-

sion reduction and hence fast computations. A number of spatial and spatio-temporal applications

for very-large-to-massive datasets center around these reduced-rank representations of a hidden

continuous Gaussian process (e.g., see the review in Wikle,2010).

In contrast to the geostatistical-model-based approachesdiscussed above, a Gaussian Markov

random field (GMRF) captures the spatial dependence in the underlying latent process through the

(typically sparse) precision matrix, which is the inverse of the covariance matrix. A detailed dis-

cussion of this can be found in Rue and Held (2005, Chapter 5) and Cressie and Wikle (2011, Pages

185-186). Rue and Held (2005, Chapter 5) discuss a way to approximate a geostatistical model

with a sparse conditional autoregressive spatial model, and this relationship has been used by Lind-

gren et al. (2011) and Simpson et al. (2012) to build hierarchical spatial models with GMRF process

models that allow fast computations. However, the desire for computational efficiency means that

they use only a small number of parameters, which could be problematic when modeling spatial

dependence over large, continental-scale, heterogeneousregions. Hughes and Haran (2012) con-

sider a Bayesian hierarchical model with a hidden GMRF and use a dimension-reduction approach

to deal with spatial confounding and computational complexity that arise when analyzing a large

spatial dataset. They parameterize the precision matrix using an underlying graph, where edges of

the graph represent spatial dependence, and they assume only a small number of parameters.
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To solve the “bigN” problem that arises in our application, we shall use the reduced-rank-

modeling approach developed by Cressie and Johannesson (2006, 2008), although the MODIS

cloud data are bimodal and constrained to[0,1]. Our methodology is a combination of the GLMM

framework of Diggle et al. (1998) and the Spatial Random Effects (SRE) model of Cressie and

Johannesson (2006, 2008), there developed for Gaussian data with a continuous spatial index. We

take an empirical hierarchical modeling (EHM) approach andhence, unlike in a Bayesian hier-

archical modeling (BHM) approach where specification of priors is needed, we treat the model’s

parameters as fixed but unknown. We estimate these parameters using an EM algorithm (e.g.,

Dempster et al., 1977). Computations for optimal spatial prediction, which includes parameter

estimation, areO(N) and feasible. For a more complete discussion of the EHM and BHM ap-

proaches, see Cressie and Wikle (2011, Chapter 2).

Cressie and Johannesson (2006, 2008) developed the SpatialRandom Effects (SRE) model for

optimal spatial predictions from continuous, symmetric data with a continuous spatial index, a

methodology that is known as Fixed Rank Kriging (FRK). Cressie and Johannesson (2008) took

an EHM approach and gave a method-of-moments estimator of the parameters of the SRE model;

Katzfuss and Cressie (2009) took the same EHM approach but developed an EM algorithm to

obtain a maximum likelihood (ML) estimates of the parameters; and a Bayesian version is given

in Kang and Cressie (2011). The applications in these articles focus on the analysis of very-

large-to-massive remote sensing datasets (or some transformation of the data) that appear to come

from the Gaussian distribution. In Sengupta and Cressie (2013a,b), a hierarchical spatial statistical

model was developed for big, spatial, discrete or continuous data, that includes the SRE model

as a component of the process model. Sengupta and Cressie (2013b) used the SRE model in a

hierarchical framework to analyze highly skewed, non-negative, remotely sensed Aerosol Optical

Depth data, where the models were non-Gaussian and non-additive.

The plan for the rest of the article is as follows: Details of the hierarchical spatial statistical

model will be reviewed in Section 2. In Section 3, we outline the statistical inference, which

is based on generating MCMC samples from the predictive distribution. The EM algorithm for

obtaining the ML estimates of the model parameters is discussed in Section 4. Then, in Section
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5, we analyze the granule of MODIS cloud data shown in Figure 2, using the methodologies

detailed in this article. In Section 6, we discuss the change-of-support relationship and use it to

obtain estimates for cloud fraction at resolutions coarserthan the BAU. Discussion and conclusions

follow in Section 7.

2 Hierarchical Model for the MODIS Cloud Data

In this section, we give details on the empirical hierarchical model for final Q-values obtained

from the MODIS cloud mask product that was proposed in an unrefereed conference proceedings

(Sengupta et al., 2012). We index the set of BAUs that have data associated with them asDO ≡

{s1, . . . ,sn}, and the complimentary set of BAUs without data isDU ≡ {sn+1, . . . ,sN}. Hence, our

data are{Q(si) : si ∈ DO}. For the granule shown in Figure 1, we haven= N = 2,748,620 (i.e.,

no missing data), and{Q(si) : si ∈ DO} are shown in the right panel of Figure 2.

We introduce a hidden variableW(si) that denotes the true state of the pixel located atsi (i =

1, . . . ,N), namely 0 (i.e., cloudy) or 1 (i.e., clear). Then we assume ahidden spatial Gaussian

processY(·) that controls the probability ofW(·) being 1, where bothW(·) andY(·) are defined

over the entire spatial domain,D ≡ DO ∪DU . That is,W(·) is a binary spatial process whose

probability distribution is controlled by a nonlinear transformation of a Gaussian processY(·); our

goal is to make inference on the clear-sky-probability process,{P(W(s) = 1) : s ∈ D} from the

data{Q(si) : si ∈ DO}.

Our hierarchical spatial statistical model consists of adata modeland atwo-stage process

model, for which we now give details. In what follows,[A] denotes the probability distribution of

A and[A|B] denotes the conditional probability distribution ofA givenB.

2.1 Data Model

We assume conditional independence and model the pixel-level conditional probabilities,

{[Q(si)|W(si), parameters] : i = 1, . . . ,n} ,
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using a “0-1 inflated” Beta distribution. Now, conditional on W(si) = 0, Q(si) is modeled using a

zero-inflated Beta distribution; and conditional onW(si) = 1,Q(si) is modeled using a one-inflated

Beta distribution. The 0-1 inflation deals with those{Q(si)} that are exactly 0 or 1.

Then ourdata modelis as follows: Forsi ∈ DO, independently,

[Q(si)|W(si) = 0,P0,α0] =

{

P0I(Q(si) = 0)+(1−P0) f1,α0(Q(si))

}

; (1)

and

[Q(si)|W(si) = 1,P1,α1] =

{

P1I(Q(si) = 1)+(1−P1) f1,α1(Q(si))

}

. (2)

In (1) and (2),

fa,b(Q(si)) =
Γ(a+b)
Γ(a)Γ(b)

Q(si)
a−1(1−Q(si))

b−1I(0< Q(si)< 1), (3)

which is the density of a Beta(a,b) random variable, wherea> 0 andb> 0. That is, the parameters

in the data model areP0, α0, P1, andα1; in this article, we consider them to be fixed, unknown, and

to be estimated. It is possible that other granules may require use of a differenta, b in the fa,b(·)

used in (1) and (2).

2.2 Process Model

Next we specify thetwo-stage process model. Recall that the processesW(·) andY(·) are defined

over the entire spatial domainD, not just overDO. In what follows, we shall use Gau(µµµ,ΣΣΣ) to

denote a Gaussian distribution with meanµµµ and covariance matrixΣΣΣ.

“Process model 1” represents the distribution of{W(si) : i = 1, . . . ,N}, conditional on the hid-

den spatial processY(·). We assume a set of independent Bernoulli random variables for process

model 1: That is, fori = 1, . . . ,N, independently,

W(si)|Y(·)∼ Bernoulli(p(si)), (4)
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where recall thatW(si) = 1 (respectively, 0) means that the pixel located atsi is clear (respectively,

cloudy). Thenp(·) = Pr(W(·) = 1) is the clear-sky-probability process, and

Y(·)≡ log

(

p(·)
1− p(·)

)

,

is the logit transform ofp(·); and conversely,

p(·) =
(

exp(Y(·))
1+exp(Y(·))

)

. (5)

At the second stage of the process model (“process model 2”),we use the reduced-rank Spatial

Random Effects (SRE) model (e.g., Cressie and Johannesson,2006, 2008) to define the spatial

dependence inY(·). Process model 2is:

Y(si) = X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si); i = 1, . . .N, (6)

whereX(si) is a p-dimensional vector of known covariates at each locationsi ; βββ denotes the set

of p unknown regression coefficients;S(·) ≡ (S1(·), . . . ,Sr(·))⊤ is a vector ofr (not necessarily

orthogonal) spatial basis functions, wherer is fixed and much smaller thann; ηηη is anr-dimensional

vector of spatial random effects assumed to have a Gau(0,K) distribution; andξ(·) is a fine-scale-

variation process modeled as independent Gau(0,σ2
ξ) random variables. In process model 2, the

parametersβββ, K, andσ2
ξ are fixed, unknown, and to be estimated.

3 Empirical Bayesian Inference

Our main focus in this paper is on prediction of the clear-sky-probability process,p(·), given by

(5). Consequently, the probability of cloudiness,q(·), can be obtained as:

q(·) = 1− p(·). (7)
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From data{Q(si) : i = 1, . . . ,n} at n≤ N spatial locations{s1, . . . ,sn}, we wish to make infer-

ence on the hidden processY(·) (or equivalentlyp(·)) at all spatial locations{si : i = 1, . . . ,N}. The

parametersθθθ ≡
{

P0,P1,α0,α1,βββ,K,σ2
ξ

}

are unknown and considered to be nuisance parameters

for the purpose of prediction. Our hierarchical model becomes anempirical hierarchical model

when the parameters are estimated from the data instead of a prior distribution being put on them

(Section 4). They are then substituted into the predictive distribution ofY(·).

Define QO ≡ (Q(s1), . . . ,Q(sn))
⊤, W ≡ (W(s1), . . .W(sN))

⊤, Y ≡ (Y(s1), . . . ,Y(sN))
⊤, and

ξξξ ≡ (ξ(s1), . . .ξ(sN))
⊤. Then our immediate goal is to predict the process variables, (W,Y), given

the data and the parameters. The predictive distribution is:

[W,Y|QO,θθθ] ∝ [QO|W,Y,θθθ][W|Y,θθθ][Y|θθθ]. (8)

However, the predictive distribution is not available in closed form, nor isθθθ known. To solve

these problems, we shall use EM estimation ofθθθ to yield θ̂θθEM, and we shall use a Markov Chain

Monte Carlo (MCMC) algorithm (see, e.g., Robert and Casella, 2004) to yield samples from the

predictive distribution,[W,Y|QO,θθθ], whereθ̂θθEM is substituted in forθθθ. From (6), we can see that

this is achieved by obtaining samples from the predictive distribution,[W,ηηη,ξξξ|QO,θθθ]. The MCMC

algorithm to obtain this predictive distribution for the MODIS cloud data analyzed in Section 5, is

described in the Appendix.

4 EM Estimation of Parameters

The EM algorithm (Dempster et al., 1977) has been employed for estimation of parameters in the

presence of missing data; for details on the generic EM algorithm, see McLachlan and Krishnan

(2008). The EM algorithm involves iterating between an E (expectation) step and an M (maximiza-

tion) step, and in our case the E-step is the most problematic. When the integrals in the E-step are

not available in closed form, one common approach is to implement a stochastic EM (SEM) algo-

rithm (see McLachlan and Krishnan, 2008; Robert and Casella, 2004), where the expectations are
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evaluated using Monte Carlo integration. When datasets aremassive, as in our case, this computa-

tion will be extremely slow, and hence the EM algorithm will be computationally very expensive.

Following the ideas in Sengupta and Cressie (2013b), we instead derive Laplace approximations

(LA) to approximate the expectations involved in the E-stepof the EM algorithm.

At locations inDO, the processW(·), the random effectsηηη and the fine-scale-variation termξ(·)

are not observed and can be treated as missing data. The “complete data” log likelihood,Lc, for the

unknown parameters is made up of the observationsQO and the “missing data”WO, ηηη, andξξξO,

whereWO ≡ (W(s1), . . . ,W(sn))
⊤, andξξξO ≡ (ξ(s1), . . . ,ξ(sn))

⊤. ThenLc is simply the logarithm

of the joint distribution ofQO, WO, ηηη, andξξξO, given the parametersθθθ =
{

P0,α0,P1,α1,βββ,K,σ2
ξ

}

.

That is,

Lc(θθθ|QO,ηηη,ξξξO)

= log[QO|WO,βββ,ηηη,ξξξO]+ log[WO|βββ,ηηη,ξξξO]+ log[ηηη|K]+ log[ξξξO|σ2
ξ]

=const.+ ∑
i:Q(si)=1

W(si) logP1+ ∑
i:Q(si)=0

(1−W(si)) logP0

+ ∑
i:0<Q(si)<1

W(si) log

{

(1−P1) f1,α1(Q(si))

}

+ ∑
i:0<Q(si)<1

(1−W(si)) log

{

(1−P0) f1,α0(Q(si))

}

+
n

∑
i=1

W(si)(X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si))

−
n

∑
i=1

log
(

1+exp(X(si)
⊤βββ+S(si)

⊤ηηη+ξ(si))
)

− 1
2

log|K|− 1
2

trace
(

ηηηηηη⊤K−1
)

− n
2

logσ2
ξ −

1

2σ2
ξ
trace

(

ξξξOξξξ⊤O
)

, (9)

where fa,b(Q(·)) is given by (3), and “const.” denotes a generic constant thatdoes not depend on

the parameters.

Assume that we have completed thel -th iteration of the EM algorithm. We now discuss

the E-step and the M-step for the(l + 1)-th iteration of the EM algorithm. At the(l + 1)-th
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iteration of the EM algorithm, the E-step involves taking the expectation of the complete data

loglikelihood with respect to (w.r.t.) the missing data(WO,ηηη,ξξξO), conditional on the observed

dataQO and the parameter values,θθθ[l ], at the l -th iteration. We obtain the expectation itera-

tively, first w.r.t. [WO|ηηη,ξξξO,QO,θθθ[l ]] and then w.r.t. [ηηη,ξξξO|QO,θθθ[l ]]. The conditional distribu-

tion [W(si)|ηηη,ξξξO,QO,θθθ[l ]] is available in closed form. However, the second expectation, w.r.t. the

distribution[ηηη,ξξξO|QO,θθθ[l ]], is not, and we approximate it with a Laplace approximation (e.g., Sen-

gupta and Cressie, 2013a,b) based on a second-order Taylor-series expansion of the logarithm of

the integrands around their respective modes.

Following the E-step, we perform the M-step, where we maximize the expectation evaluated at

the E-step with respect to each of the parameters inθθθ: The maximization w.r.t.P0, P1, K, andσ2
ξ

is obtained by differentiating the expectation of the complete data loglikelihood given by (9), w.r.t.

P0, P1, K, andσ2
ξ, and then equating the result to zero. Solving these equations yields:

σ2[l+1]
ξ =

1
n

trace
(

E(ξξξO|QO,θθθ[l ])E(ξξξO|QO,θθθ[l ])⊤+var
(

ξξξO|QO,θθθ[l ]
))

K[l+1] = E(ηηη|QO,θθθ[l ])E(ηηη|QO,θθθ[l ])⊤+var
(

ηηη|QO,θθθ[l ]
)

P[l+1]
0 =

∑i:Q(si)=0

(

1−E(W(si)|QO,θθθ[l ])
)

∑i:Q(si)<1

(

1−E(W(si)|QO,θθθ[l ])
)

P[l+1]
1 =

∑i:Q(si)=1E(W(si)|QO,θθθ[l ])

∑i:Q(si)>0E(W(si)|QO,θθθ[l ])
. (10)

The maximizations with respect toα0, α1, andβββ are not available in closed form. We use a

one-step Newton-Raphson update for these parameters, within each iteration of the EM algorithm.

For complete technical details of the EM algorithm, including the Laplace approximation and the

choice of starting values, see Sengupta (2012, Section 4.5).

5 Spatial Statistical Analysis of MODIS Cloud Data

In this section, we carry out a spatial statistical analysisof then= 2,748,620 MODIS cloud data

shown in the right panel of Figure 2, using the hierarchical spatial statistical model discussed in

11



Section 2. We use it to predict clear-sky probabilities for the entire study region,D = DO∪DU ,

along with estimates of prediction uncertainties. A map showing the geographical location of

the granule is given in Figure 3; the study region lies in a part of the globe from longitudes -45

degrees to -10 degrees, and from latitudes 20 degrees to 45 degrees. Recall that the granule was

collected by the MODIS instrument on the Terra satellite andcorresponds to June 29, 2006, 12:45

UTC. The resolution of the data is 1 km×1 km and, since we have data for all the locations,

n= N = 2,748,620.

—— Figure 3 approximately here ——

5.1 Spatial Basis Functions

In this section, we discuss the choice of spatial basis function. The selection of the basis functions,

its type and number, is a current area of research (e.g., Bradley et al., 2011). For the purpose of

this analysis, we selected as basis functions the bisquare functions (e.g., Cressie and Johannesson,

2006, 2008). The generic form of a bisquare function is,

b(s) =

{

1−
( ||s− c||

w

)2
}2

I(||s− c||< w), (11)

wherec is the center of the basis function, andI(A) is an indicator function equal to 1 ifA is true,

and equal to 0 otherwise. Basis-function centers
{

c j
}

in D are usually chosen according to a multi-

resolution scheme (e.g., a quad-tree). Finally, the “aperture” w given by Cressie and Johannesson

(2008) is,

w= 1.5×shortest great-arc distance between like-resolution center points.

An illustration of a generic bisquare basis function is given in Figure 4. Other choices for basis

functions are also possible (e.g., EOFs in Wikle and Cressie, 1999; eigenfunctions in Wikle et al.,

2001; W-wavelets in Shi and Cressie, 2007).

—— Figure 4 approximately here ——
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We employ several resolutions of basis functions to capturethe different scales of spatial vari-

ability; here we use three resolutions to obtain
{

b j(s) : j = 1, . . . ,(r1+ r2+ r3)
}

, wherer1 = 12,

r2 = 34, andr3 = 102, are the number of basis functions at the three resolutions. The centers of the

bisquare basis functions were selected using a quad-tree structure (e.g., Cressie and Kang, 2010),

ensuring that the centers for the different resolutions do not match. The number of basis functions

were determined to allow full coverage of the spatial domain. We also included centers of the

bisquare function outside the study region to account for boundary effects (e.g., Cressie and Kang,

2010). We further standardized the bisquare functionb j(·) to obtain thej-th basis function,

Sj(s)≡
b j(s)−aves∈D

(

b j(s)
)

{

vars∈D
(

b j(s)
)}1/2

; j = 1, . . . ,(r1+ r2+ r3), (12)

where aves∈D(·) and vars∈D(·) are spatial moments taken over the domain of interest, ands ∈ D.

The locations of the basis-function centers for all three resolutions are shown in Figure 5.

—— Figure 5 approximately here ——

5.2 Optimal Spatial Mapping of the Clear-Sky-Probability Process

We now discuss the results obtained by fitting the hierarchical statistical model presented in Sec-

tion 2, to the MODIS cloud data. Subsequently, we produce optimal spatial maps showing the

predictions for the underlying clear-sky-probability process, along with maps showing the predic-

tion uncertainties.

First, let us consider the covariatesX(·) in (6). We include the vector 111 and a vector of latitudes

as covariates. Further, instead of using ther1 = 12 coarsest-resolution bisquare functions as spatial

basis functions, we use them as a further 12 covariates inX(·) (e.g., Shi and Cressie, 2007).

The second term of (6) involves anr-dimensional vector,S(·), of spatial basis functions, which

includes ther2+ r3 = 136 bisquare functions at the second and the third resolutions (see Figure 5).

Now, there are regions in the study region that are affected by sun-glint (see Figure 1), which the

MODIS cloud algorithm attempts to account for by implementing clear-sky-restoral tests. Never-

theless, the presence or absence of sun-glint remains a source of spatial variability for the granule
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we consider. Hence, we include the sun-glint indicator flag (which takes a value 1 if a pixel is

affected by sun-glint, and is 0 otherwise, and is available as part of the MODIS cloud product) as a

basis function in the vector of basis functionsS(·). That is,r = 1+ r2+ r3 = 1+34+102= 137.

With the model specified as above, we implemented the EM algorithm to obtain estimates of

the parametersθθθ defined in Section 2. The EM algorithm converged after 14 iterations, and the

computational time for the EM algorithm was 27.76 minutes.

After having obtained the EM estimates,θ̂θθEM ≡
{

P̂0;EM, P̂1;EM, α̂0;EM, α̂1;EM, β̂ββEM,K̂EM, σ̂2
ξ;EM

}

,

we substituted them into the MCMC algorithm (see Appendix) to obtain samples from the (em-

pirical) predictive distribution,[W,ηηη,ξξξ|QO, θ̂θθEM]. We generated 10,000 MCMC samples, after

discarding 1,000 samples as burn-in. The computational time for the MCMC was 12.73 hours.

(All computations were performed on a dual quad core 2.8 GHz 2x Xeon X5560 processor, with

96 Gbytes of memory.)

The hierarchical nature of the model allows us to look at the separate sources of variability, on

the logit scale (i.e., we can separate out the components ofY(·)). The predictive mean of these

different sources of variability, along with that of their sumY(·), are shown in Figure 6.

—— Figure 6 approximately here ——

Now, using the MCMC samples referred to above, we computed the predictive mean and the

predictive standard deviation of the clear-sky probability p(si) given by (5), fori = 1, . . . ,N. We

also obtained the pixelwise 2.5 and 97.5 percentiles of eachof theN elements ofp≡ (p(s1), . . . , p(sN))
⊤

from the predictive distribution,[p|QO, θ̂θθEM], computed from[W,ηηη,ξξξ|QO, θ̂θθEM]. Figure 7 shows

maps of the pixelwise predictive mean, the pixelwise predictive standard deviation, and the pix-

elwise 2.5 and 97.5 percentiles, respectively; the latter two quantities are the lower and upper

end-points of a pixelwise 95% prediction interval.

—— Figure 7 approximately here ——
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6 Change-of-Support

In this section, we discuss spatial change-of-support and outline the role it plays in predicting cloud

fraction at resolutions coarser than the base resolution of1 km×1 km. Our goal is to demonstrate

that, by incorporating spatial statistical models into theproblem, optimal estimates with much

higher accuracy and precision, can be obtained.

We start by defining cloud fraction and the current, straightforward way it is estimated. Then

we propose an alternative estimator, specifically an optimal Bayes (OB) estimator based on the

spatial hierarchical model defined in Section 2, and we show that it minimizes the mean squared

error incurred when estimating the cloud fraction. This assumes that all the parameters are known;

by substituting parameter estimates into the OB estimator,we obtain anempirical Bayes (EB)

estimatorthat we show, via a simulation study, is much more efficient than the straightforward

estimator. Hence, we recommend this new, EB estimator of cloud fraction. Finally, we look at a

geophysical question involving cloud fraction at 5 km×5 km resolutions and compare the results

obtained using the straightforward estimator and the EB estimator.

6.1 Estimation of Cloud Fraction Using a Straightforward Estimator

In applications such as weather forecasting and climate projections, researchers are interested in

geophysical questions that involve cloud fraction (e.g., Di Girolamo and Davies, 1997). Cloud

fraction is defined as follows: LetC(s) = 1 if there is cloud present (and 0 otherwise), where

s ∈ D, and forD a continuous-spatial-index set. Consider an areaB⊂ D. Then the cloud fraction

for B is defined as
∫

BC(s)ds/|B|, where|B| denotes the area ofB. Henceforth, we callB thespatial

supportof the cloud fraction. Now recall thatD (and henceB) has been discretized into 1 km×1

km BAUs; then the cloud fraction forB is numerically approximated as,

CF(B)≡ ∑si∈B I {W(si) = 0}
∑si∈B1

, (13)
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where recall from Section 2.2 thatW(si) = 0 corresponds to thei-th 1 km×1 km pixel located at

si being cloudy; see Zhao and Di Girolamo (2006).

Currently,CF(B) is estimated in the following straightforward way: Classify each 1 km×1 km

pixel as cloudy or clear by thresholding the final Q-values. If Q(si) > 0.95, then the pixelsi is

classified as clear (i.e.,W(si) = 1), and ifQ(si)≤ 0.95, then the pixelsi is classified as cloudy (i.e.,

W(si) = 0). Then the straightforward (method-of-moments, plug-in) estimate of the cloud fraction

overB, henceforth referred to as theplug-in (PI) estimate, is given by,

CFPI(B)≡ ∑si∈B I {Q(si)≤ 0.95}
∑si∈B1

. (14)

Notice that the estimate given by (14) depends on the threshold value 0.95 used for cloud-mask

classification, making it a biased estimator due to classification error. More formally,

E(CFPI(B)|θθθ) = ∑
si∈B

P(Q(si)≤ 0.95|θθθ)/n(B) 6= E(CF(B)|θθθ), (15)

wheren(B) ≡ ∑si∈B1, andθθθ here is a vector of fixed but unknown parameters that govern the

probability distribution ofW(·) in (13). In what follows, we shall show that the PI estimator,as

well as being biased, also lacks efficiency when compared to the OB or EB estimators (optimal or

near-optimal in terms of minimizing mean squared error).

6.2 Optimal Bayes (OB) Estimator for Cloud Fraction

With the hierarchical model proposed in Section 2, and assuming θθθ is known, the OB estimator

minimizes the mean squared error and is given by,

CFOB(B)≡ E(CF(B)|QO,θθθ) = ∑
si∈B

P(W(si) = 0|QO,θθθ)/n(B), (16)
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where recall thatQO are the final Q-values used to classify their respective pixels. Taking the

expectation ofCFOB(B) with respect to the distribution[QO|θθθ], we obtain

E(CFOB(B)|θθθ) = E{E(CF(B)|QO,θθθ)}= E(CF(B)|θθθ). (17)

Consequently, the estimation error of the OB estimator,CFOB(B)−CF(B), has mean zero; that is,

CFOB(B) is unbiased.

Next we prove thatCFOB(·)minimizes the mean squared error among the class of all estimators

for CF(·). Consider an arbitrary estimator,̃CF(·), whose squared error of estimation is:

L(CF(B),C̃F(B)) = (CF(B)−C̃F(B))2, (18)

whereL(·, ·) is generic notation for a loss function (e.g., Berger, 1985). Equation (18) emphasizes

that we are considering squared-error loss. Conditional onθθθ, the mean squared error (MSE) is,

E
{

(CF(B)−C̃F(B))2|θθθ
}

=E
{

(CF(B)−CFOB(B)+CFOB(B)−C̃F(B))2|θθθ
}

=E
{

(CF(B)−CFOB(B))2|θθθ
}

+E
{

(CFOB(B)−C̃F(B))2|θθθ
}

+2E
{

(CF(B)−CFOB(B))(CFOB(B)−C̃F(B))|θθθ
}

. (19)

Note that the last term in (19) is equal to zero becauseCFOB(B)≡E(CF(B)|QO,θθθ). Consequently,

the MSEs satisfy,

E
{

(

CF(B)−C̃F(B)
)2 |θθθ

}

≥ E

{

(

CF(B)−CFOB(B)
)2

|θθθ
}

; (20)

that is, for squared error loss given by (18),CFOB(B) is the optimal Bayes predictor ofCF(B), for

any spatial supportB⊂ D.

In practice,θθθ is unknown and henceCF(B) is not a function only of the data. The OB estimate
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becomes an empirical Bayes (EB) estimate by replacingθθθ in (16) with θ̂θθEM (see Section 4):

CFEB(·)≡ E(CF(B)|QO, θ̂θθEM) = ∑
si∈B

P(W(si) = 0|QO, θ̂θθEM)/n(B). (21)

The use ofθ̂θθEM in place ofθθθ in (21) could introduce bias and typically increases the mean

squared error. In the next subsection, we use simulation to demonstrate that these effects are very

small and thatCFEB(·) given by (21) is much more efficient thanCFPI(·) given by (14).

6.3 Simulation Study Comparing Estimators’ Bias and Mean Squared Er-

ror

In this section, we present the results of a simulation studythat first compares the predictions

obtained using the OB estimator given by (16) to those obtained using the EB estimator given by

(21), and we demonstrate that usingθ̂θθEM in place ofθθθ scarcely impacts the bias and mean squared

error. Then we compare the PI estimator given by (14) to the EBestimator given by (21).

In this simulation, we consider a smaller-dimensional sub-granule of the usual granule, where

N = n = 625,000 1 km×1 km pixels. For context, the original data in the sub-granule, QO, are

shown in the left panel of Figure 8. In our simulation study, we generateL realizations ofQO,

each of which is subjected to a computationally intensive estimation procedure. Hence, reducing

N allowsL to be large.

Our simulation study considers several factors. The “resolution factor” has three levels: From

the spatial model given in Section 2, the levels are: (a) 4 resolutions (b) the 3 coarsest resolutions

selected from the 4 resolutions, and (c) the 3 finest resolutions selected from the 4 resolutions. The

centers of the basis function considered at the different resolutions, along with the study domain,

are shown in the right panel of Figure 8. (Some centers resulted in a column of zeros in the

spatial basis matrixS; for computational efficiency, these were removed from consideration.) The

“support factor” is considered at 20 levels, namelyB at 2×2, 4×4, . . . ,40×40 km support. The

“treatment factor” has three levels given by the type of estimator used to estimateCF(·). They are:

(a) PI estimator given by (14), (b) OB estimator given by (16), and (c) EB estimator given by (21).
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Our goal is to compare the estimators and to see how resolution-choice and support affects

estimation. The three simulation models corresponding to the resolution choices are calibrated to

the dataQO shown in the left panel of Figure 8. Our approach here is analogous to a parametric

bootstrap (e.g., Efron and Tibshirani, 1993, Section 6.5),where we simulate realizations from a

model estimated from the observed data. Our “response” in the simulation study ismean squared

error (MSE)andbias, computed for the three estimators at each of the three levels of the resolution

factor and the 20 levels of the support factor.

—— Figure 8 here. ——

Fix a resolution level. The bias for the spatial supportB, when using estimatorA, is defined as:

biasA(B)≡ E
(

CFA(B)−CF(B)|θθθ
)

. (22)

The MSE for the spatial supportB, when using estimatorA, is defined as:

MSEA(B)≡ E
(

CFA(B)−CF(B)|θθθ
)2

. (23)

If the estimatorA is unbiased, thenMSEA(B) is the same asVA(B)≡ var
(

CFA(B)−CF(B)|θθθ
)

.

The quantities (22) and (23) are obtained empirically from the simulation, avoiding the need for

any analytic derivations. Analogous to the simulation experiment in Cressie (2006), we empirically

obtainMSEA(B), andbiasA(B) for an estimatorA∈ {PI, OB, EB} and for supportB∈ {2×2,4×

4, . . .40×40}, centered on the center of the study domain shown in Figure 8,and nested. These

computations are carried out for each of the three levels of the resolution factor.

To compute the first two moments empirically for each level ofthe resolution factor, we simu-

late data{Q[l ]
O ; l = 1, . . . ,L} using the hierarchical-model sequence:

[Y[l ]|θθθ]→ [W[l ]|Y[l ]]→ [Q[l ]
O |W[l ]].

Then, fromQ[l ]
O , we computeCFPI[l ](B), CFOB[l ](B), andCFEB[l ](B). Note that computing the
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latter two estimates,CFOB[l ](B) andCFEB[l ](B), requires MCMC-based simulations from the dis-

tributions, [W,Y|Q[l ]
O ,θθθ] and [W,Y|Q[l ]

O , θ̂θθEM], respectively. We setL = 500, which guarantees

accuracy up to the first decimal place (e.g., Aldworth and Cressie, 1999).

6.3.1 Results from the simulation study

We compute the “bias” responses,biasPI(B), biasOB(B), andbiasEB(B), for B∈{2×2,4×4, . . .40×

40}, centered on the center of the study domain. They are obtained empirically as follows. When

using estimatorA, the empirical bias is:

b̂iasA(B)≡ (1/L)
L

∑
l=1

(

CFA[l ](B)−CFtruth[l ](B)
)

, (24)

whereCFtruth[l ](B) is given by:

CFtruth[l ](B)≡
∑si∈B I

{

W[l ](si) = 0
}

∑si∈B1
. (25)

Figure 9 shows the bias for the PI estimator (left panel) and the EB estimator (right panel), as

a function ofB. A plot showing the bias for the OB estimator looks almost identical to the one for

the EB estimator, and hence it is not shown. Based on Figure 9,we conclude that the EB estimator

is approximately unbiased, but that the PI estimator has considerable positive bias.

The PI estimator is based on thresholdingQ(·) independently for each 1 km×1 km pixel, where

recall thatQ(·)≤0.95 is classified as cloudy andQ(·)>0.95 is classified as clear. The thresholding

value of 0.95 biases the classification towards cloudy scenes, which results in overpredictions for

CF(·) and leads to the positive bias seen in Figure 9.

From Figure 9, we see that the bias of the PI estimator is larger for the model with four res-

olutions, when compared to the two models with three resolutions. Now, thresholdingQ(·) in-

dependently for all the 1 km×1 km pixels ignores the spatial structure. Further, when we have

four resolutions in the spatial model, the spatial dependence is stronger and the consequences of

ignoring it are greater. The result is more bias in the spatial model with four resolutions.
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—— Figure 9 here. ——

Next, we look at the “MSE” responses,MSEPI(B), MSEOB(B), andMSEEB(B), for B∈ {2×

2,4×4, . . .40×40}, centered on the center of the study domain. They are obtained empirically as

follows. When using estimatorA, the empirical MSE is:

M̂SEA(B)≡ 1
L

L

∑
l=1

(

CFA[l ](B)−CFtruth[l ](B)
)2

. (26)

Based on (26), we now consider the relative MSE (REM) of the OBestimator to the EB esti-

mator:

REMOB:EB(B)≡ M̂SEOB(B)/M̂SEEB(B); (27)

a plot showingREMOB:EB(B) as the spatial supportB increases is given in Figure 10. From the

plot, we see thatREMOB:EB(B) is generally close to 1 for the models with three spatial resolutions,

for any spatial supportB; in fact, up to the first decimal place,REMOB:EB(B) = 1 for these models.

For the model with four spatial resolutions we see that theREMOB:EB(B) is close to 1 for small

spatial supportsB and, asB increases,REMOB:EB(B) takes values around 0.9, indicating that EB

is slightly less efficient at larger supports. Recall that inpractice OB cannot be computed, but its

empirical version EB can be.

Since the OB and the EB estimators in the simulation are unbiased, we can relateREMOB:EB(B)

to the length of prediction intervals. WhenREMOB:EB(B) = 0.9, it means that the length of the

EB prediction interval is 1/
√

0.9= 1.05 times the length of the OB prediction intervals. We also

looked at histograms of prediction errors for the OB and the EB estimators, and we looked at

scatter plots of OB estimates on the x-axis and EB estimates on the y-axis. All our analyses from

the simulation study indicated that the EB estimate is a stable, near-optimal estimate ofCF(·).

—— Figure 10 here. ——

We move on to the REM of the EB estimator with respect to the PI estimator, which is:

REMEB:PI(B)≡ M̂SEEB(B)/M̂SEPI(B); (28)
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a plot showingREMEB:PI(B) as the spatial supportB increases is shown in Figure 11.

—— Figure 11 here.——

From Figure 11, we see that the EB estimator has much smaller MSE than the PI estimator,

with REMEB:PI(B) decreasing asB increases. That is, prediction errors for the PI estimator are

generally bigger than those for the corresponding EB estimator and, as the support size increases,

the performance of the PI estimator, relative to EB estimator, worsens. Comparing the effect of

the three levels of the resolution factor, one can see from Figure 11 that the performance of the EB

estimator relative to the PI estimator is best for the model with four spatial resolutions, and that

when we switch to a model with three spatial resolutions the performance deteriorates. Between

the two spatial models at three resolutions, we see thatREMEB:PI(B) is generally larger for the

spatial model based on the three finer resolutions.

To conclude the simulation study, we note that the new EB estimator ofCF(·) proposed in this

article, namelyCFEB(·) given by (21), has much better predictive properties than the straightfor-

ward PI estimator that is currently in use within the operational MODIS algorithm package. Since

the PI estimator does not use the spatial dependence in the data, its performance relative to the EB

estimator deteriorates as the spatial dependence gets stronger.

6.4 Analysis of MODIS Cloud Data at Coarser Resolutions : Cloud Fraction

at 5 km×5 km Resolution

In this section, we estimate cloud fraction at a 5 km×5 km spatial resolution from the 1 km×1 km

MODIS cloud mask. The noisy dataQO are shown in the left panel of Figure 8, and we wish to

upscale them to a coarser resolution. The 5 km×5 km spatial support is of interest to geophysicists

because the release of several Level-2 remote sensing products on 5 km×5 km pixels depends on

estimating cloud contamination of those pixels. For example, cloud-top pressure is computed on a

5 km×5 km pixel if the estimated cloud fraction for that pixel is≥ 0.16 (e.g., Pincus et al., 2012).

From the hierarchical spatial statistical model describedin Section 2, and the MCMC sam-

ples from the predictive distribution,[process|data,EM-estimated parameters], we can obtain the
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predictive distribution,[CF(B)|QO, θ̂θθEM], whereB⊂ D is a 5 km×5 km pixel. Recall that

CFEB(B) = E(CF(B)|QO, θ̂θθEM),

which is obtained from the MCMC samples from the predictive distribution. The MCMC samples

also enable us to quantify uncertainty associated with the predicted cloud fraction. In Figure 12,

we show the PI estimator, the EB estimator, and the pixelwisedifference between the PI and the

EB estimator; we also show the standard deviation and the pixelwise 2.5 and 97.5 percentiles of

the predictive distribution,[CF(B)|QO, θ̂θθEM]. Further, the pixelwise 2.5 and 97.5 percentiles are

the lower and upper endpoints of a pixelwise 95% prediction interval forCF(B).

—— Figure 12 here. ——

Consider the example given above, where the geophysical question of interest is whether or not

the cloud fraction for a 5 km×5 km pixel is≥ 0.16; if it is, cloud-top pressure is computed (Pincus

et al., 2012). We use the EB estimator to answer this based on the dataQO. Figure 13 shows the

5 km×5 km pixels whereCFEB(B) ≥ 0.16 (marked light gray) and those whereCFEB(B)< 0.16

(marked as blue “+”).

—— Figure 13 here. ——

7 Discussion and Conclusions

In this article, we give a hierarchical spatial statisticalmodeling approach for analyzing a very-large

remote sensing dataset (2.75 million pixel values) on clouds from NASA’s MODIS instrument.

However, use of the reduced-rank SRE model to capture the spatial variability of the latent clear-

sky-probability process allows for fast computations.

We have taken an empirical hierarchical modeling (EHM) approach, where the unknown model

parameters are estimated using an EM algorithm. Alternatively, one could take a Bayesian hierar-

chical modeling (BHM) approach, where a prior distributionis put on the parameters. Kang and
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Cressie (2011) developed the “Givens angle prior” forK, which could be adapted for analyzing

the MODIS cloud data using a BHM. While the prediction intervals computed using the EHM

approach tend to be liberal when compared to those using a BHMapproach, EHM is an order of

magnitude faster (e.g., Sengupta and Cressie, 2013b).

Within the hierarchical-statistical-modeling framework, we used the SRE model to define an

underlying Gaussian field. Other than computational speed-ups, these models do not rely on spec-

ifying a spatial-weights matrix, and no assumptions of homogeneity, stationarity, or isotropy are

needed. The hierarchical-statistical-modeling framework considered here enables us to make in-

ferences on cloud fractions at resolutions coarser than 1 km×1 km pixels. In some applications

where researchers want to study local weather phenomena, interest lies in predicting the clear-sky

probabilities (or equivalently, the probabilities of cloudiness) at resolutions finer than the 1 km×1

km pixels. Obtaining high-resolution information from relatively coarse-resolution data is called

downscaling.

When interest lies in downscaling, one can proceed by defining theprocess modelsfor W(·)

andY(·) at the finest resolution at which we are interested in doing inference. Then, thedata model

will be specified at the (coarser) resolutions at which we have data, conditional onW(·) (process

1) andY(·) (process 2) at the finest resolution. We can write:

[process1, process2|data, parameters]

∝[data|process1, process2, parameters]× [process1|process2, parameters]

× [process2|parameters], (29)

where the data are at a coarser resolution than the processes. Hence, to carry out inference onW(·)

(i.e., process 1), we could simulate from the predictive distribution,

[process1, process2|data, parameters],
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and use the simulated values of process 1 to obtain the optimal predictor of the cloud process,

E(I(W(s) = 0)|data, parameters) = Pr(W(s) = 0|data, parameters),

wheres is a location at the finest resolution.

To our knowledge, this article represents the first attempt to develop a hierarchical spatial sta-

tistical model for clouds at such a fine resolution. The modeldeveloped here could be extended to

a spatio-temporal setting that might be used to improve a climate model’s subgrid-scale physical

parameterization. Another extension would be to develop a data-fusion methodology, such as was

done by Nguyen et al. (2012). For example, one might fuse water-vapor data from NASA’s AIRS

instrument with cloud data from MODIS; both are on the Terra satellite.
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Appendix

A MCMC Algorithm used in Section 5

The joint distribution,[QO,W,ηηη,ξξξ|βββ,K,σ2
ξ], can be written as:

[QO,W,ηηη,ξξξ|βββ,K,σ2
ξ]≡ [QO|W,ηηη,ξξξ,βββ]× [W|ηηη,ξξξ,βββ]× [ηηη|K]× [ξξξ|σ2

ξ]. (30)

Let “[A|B, ·]” denote the full conditional distribution of the unknownA given B and all other

unknowns (and the data). The Gibbs sampler uses the following steps to generate samples from

the predictive distribution,[W,ηηη,ξξξ|QO,βββ,K,σ2
ξ].

1. At t = 0, select starting valuesW[0], ηηη[0], andξξξ[0].

2. t=t+1; simulate successively from the full conditionals, [W[t+1]|ηηη[t],ξξξ[t], ·],

[ηηη[t+1]|W[t+1],ξξξ[t], ·], and[ξξξ[t+1]|W[t+1],ηηη[t+1], ·].

3. Repeat step 2 to generate as many samples as needed.

4. Discard an initial number of samples as “burn-in.”

The full conditional,[W[t+1]|ηηη[t],ξξξ[t], ·], is available in closed form, and it is straightforward to sim-

ulate from this distribution. The full conditionals,[ηηη[t+1]|W[t+1],ξξξ[t], ·] and[ξξξ[t+1]|W[t+1],ηηη[t+1], ·],

are not available in closed form, so we use a Metropolis step within the Gibbs sampler. A generic

version of this Metropolis algorithm is now presented.

Supposea is the random variable (or a block of random variables) that are being updated, and

a0 is the most recently sampled value. We follow the steps belowto obtain a new sample ofa:

1. Draw a trial valuea1 from a proposal density,g(a).

2. GenerateU1 uniformly on(0,1).

3. Compute the joint density ofa and all other unknowns, and obtainl(a0, rest) andl(a1, rest),

where “rest” denotes all the other unknowns fixed at their most recently sampled value.
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4. If U1 < min
{

l(a1,rest)g(a0)
l(a0,rest)g(a1)

}

, accept the newa1 and keep it for the most current iteration;

otherwise, the valuea0 is retained.

When sampling from[ηηη[t+1]|ξξξ[t], ·], we updatedηηη as a block. For the proposal, we used a mix-

ture distribution (see Tierney, 1994). Specifically, we used a mixture of a random-walk proposal

(see Robert and Casella, 2004, Section 7.5) and a tailored multivariate normal proposal (see Chib

and Greenberg, 1995, 1996). Letηηηmode denote the posterior mode of[ηηη|ξξξ, ·] andΣΣΣη denote the

inverse of the negative Hessian matrix, evaluated at the mode. The mode can be computed using a

Newton-Raphson method (see Robert and Casella, 2004, Section 1.4). The tailored proposal forηηη

was then taken as Gau(ηηηmode,c1,ηΣΣΣη), wherec1,η is a tuning parameter that is adjusted to control

the acceptance rate. The random walk proposal was taken to beGau(ηηη[t],c2,ηΣΣΣη), where againc2,η

is a tuning parameter. The mixing probability could also be tuned to achieve the desired acceptance

rate. We worked with a mixing probability of 0.5 and selectedc1,η = 1 andc2,η = 2.3. With these

values for the tuning parameters, we achieved an acceptancerate of 22.1% forηηη, which is close to

optimal (see Roberts et al., 1997).

When sampling from[ξξξ[t+1]|ηηη[t+1], ·], we updatedξξξ elementwise. Here we worked with the

tailored proposal. We computed the mode of[ξξξ|ηηη, ·], which we denote asξξξmode, and the inverse

of the negative Hessian matrix evaluated at the mode, which we denote asΣΣΣξ. For updating the

i-th element ofξξξ, we used the proposal: Gau
(

(ξξξmode)i ,cξ
(

ΣΣΣξ
)

i,i

)

, where(ξξξmode)i denotes thei-th

element ofξξξmode, and
(

ΣΣΣξ
)

i,i
denotes the(i, i)-th element of the matrixΣΣΣξ. We fixedcξ = 8 and

achieved an acceptance rate between 40.53% and 46.13% for the different elements ofξξξ.
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Figures

Figure 1: Image of a granule obtained by the MODIS instrumenton board NASA’s Terra satellite
(June 29, 2006, 12:45 UTC). The inset shows the location of the granule on a world map. (Source:
modis-atmos.gsfc.nasa.gov)
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Figure 2: Initial Q-values (left panel) and final Q-values (right panel) corresponding to the granule
shown in Figure 1.
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Figure 3: Geographical location of the data granule on June 29, 2006, 12:45 UTC
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Figure 4: A bisquare function defined onℜ2, illustrated as a 3-D plot (left panel) and as an image
plot (right panel).
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Figure 5: Centers of the basis function; ’o’, ’+’, and ’x’ areuse to distinguish the three scales of
resolution.

36



Figure 6: Maps showing predictions of the components of variation: the trend,X(·)⊤β̂ββEM (top-left
panel), the mean of the predictive distribution of the random-effects component,E[S(·)⊤ηηη|Q, θ̂θθEM]
(top-right panel), and the mean of the predictive distribution of the component due to fine-scale
variation,E[ξ(·)|Q, θ̂θθEM] (bottom-left panel). The mean of the predictive distribution of the hidden
process,E[Y(·)|QO, θ̂θθEM] (bottom-right panel), is equal to the sum of the previous three compo-
nents.
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Figure 7: Maps showing the predictive mean (top-left panel), the pixelwise predictive standard-
deviation (top-right panel), the pixelwise 2.5 percentile(bottom-left panel) and the pixelwise 97.5
percentile (bottom-right panel) for the predictive distribution of the clear-sky-probability process.
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Figure 8: Data for the sub-granule that we use to illustrate change-of-support (left panel). Spatial
region of interest,D, and centers of basis function at the four scales of resolution considered in the
simulation study (right panel).
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Figure 9: Plots showing the estimation bias. The left panel shows bias for the plug-in (PI) estimator,
and the right panel shows bias for the empirical Bayes (EB) estimator. The different plot symbols
(and colors) correspond to the three levels of the resolution factor.
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Figure 10: Plot showing the relative MSE of the OB estimator relative to the EB estimator. The
different plot symbols (and colors) correspond to the threelevels of the resolution factor.
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Figure 11: Plot showing the relative MSE of the EB estimator relative to the PI estimator. The
different plot symbols (and colors) correspond to the threelevels of the resolution factor.
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Figure 12: Maps showing the PI estimator (top-left panel), the EB estimator (top-right panel), the
pixelwise difference (PI-EB) between the two estimators (middle-left panel), the standard deviation
from the (empirical) predictive distribution (middle-right panel), the pixelwise 2.5 percentile from
the (empirical) predictive distribution (bottom-left panel), and the pixelwise 97.5 percentile from
the (empirical) predictive distribution (bottom-right panel).
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Figure 13: Plot showing the 5 km×5 km pixels whereCFOB(·)≥ 0.16 (marked light gray) and the
pixels whereCFOB(·)< 0.16 (marked as blue “+”).
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