
Calhoun: The NPS Institutional Archive

Faculty and Researcher Publications Faculty and Researcher Publications Collection

1996-03

The Rational Behavior Software Architecture

for Intelligent Ships : An Approach to Mission

and Motion Control

Byrnes, R.B.

Byrnes, R.B., Healey, A.J., McGhee, R.B., Nelson, M.L., and Kwak, S.H., "A Rational

Behavior Model Software Architecture for Intelligent Ships: An Approach to Motion

and Mission Control", Naval Engineers Journal, American Society of Naval Engineers,

March 1996, pp.43-55

http://hdl.handle.net/10945/52700

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Calhoun, Institutional Archive of the Naval Postgraduate School

https://core.ac.uk/display/81224462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ronald B. Byrnes, Anthony J. Healey,
Robert B. McGhee, Michael L. Nelson, Se-Hung Kwak,
and Donald R Brutzman

The Rational Behavior
Software Architecture for
Intelligent Ships

An Approach to Mission and Motion Control

ABSTRACT The solutions to the
power projection, transportation, and
operational needs of the Navy as it faces
the 21st century must account for
reduced manning levels. This leads natu-
rally to increased use of computers,
automation, and intelligent systems in the
concept and design of the next genera-
tion of ships. In addition to the
acknowledged hardware needs, the prob-
lem of autonomic and autonomous control
of shipboard systems and missions are
amenable to and will, in fact, require
software solutions. Despite current tech-
nolom, large, reliable software systems
are difficult to achieve because correct-
ness in requirements analysis, design,
implementation, testing, modification,
and maintenance of software are difficult.
Software is also difficult to quantize and
display; hence, the effort and costs
involved in its development are easily
underestimated. This paper describes an
approach to the problem of providing
structure, in the form of a software
architecture, to the software performing
autonomous control of missions and their
related tasks. In concert with the need
to reduce complexity, the architecture
must support simple, rapid reconfigura-
tion of code should vehicle capabilities or
mission requirements change. Building
upon recent efforts with control of
Autonomous Underwater Vehicles
(AUVs), we propose a tri-level control
system architecture called the Rational
Behavior Model (RBM) as an approach
to autonomous and autonomic control of
surface ship missions and systems.

S
Introduction

ince 1987, the Naval Postgraduate School has been involved in re-
search into advanced control concepts for robotics as applied to Au-
tonomous Underwater Vehicles (AUVs). Early on, it was perceived
that the future needs of the US Navy would require more use of

autonomous and autonomic systems, especially where increased reliance on on-
board computer-based decision making was required to meet requirements for
decreased response times and overall reduced manning. Whde we have been
concentrating on the uses of AUVs in a mine hunting mission scenario [33,36],
the general structure and capabilities of an intelligent mission level controller
for an AUV would have s d a r application and use for a future intelligent ship.

In either case, a particular concern is the requirement to join mission level
decision making with modular task (or behavior) level coordination and finally
low level vehicle subsystem control. These levels are well suited to an overall
software structure, called a software architecture, in which the control problem
is viewed from different levels of abstraction. Two notable earlier proposed
software architectures for vehicle control are described in [34,351.

The Rational Behavior Model (RBM) is based on three levels of abstraction,
called the Strategic, the Tactical, and the Execution levels, respectively. The
first of these, conceptually the “top” level, contains a rule-based strategy for
the accomplishment of the mission, contingent on variations in the internal, ex-
ternal, and operational environments. The intermediate tactical level consists
of objects, in an object-oriented software sense, which represent the natural
division of operations in the staff of a manned ship. Included herein are the nav-
igator, engineer, weapons officer, and sonar section, all under the management
of the Officer of the Deck (OOD). The lowest level of the model, the execution
level, provides the data and control required by the automated servo systems
of the vehicle that are responsible for the basic mobility of the vehicle and its
controllable Hull, Mechanical, and Electrical (HM&E) subsystems.

This paper presents a brief description of the Rational Behavior Model and
the constraints placed on its implementation followed by a discussion of an in-
stantiation for a specific vehicle with a particular mission. Finally, lessons
learned and plans for future research are presented. While our work has been
concerned with control of autonomous underwater vehicles, we strongly be-
lieve that RBM has direct applicability to the problems faced by the surface ship
community.

The Rational Behavior Model
The Rational Behavior Model is a tri-level architecture for the intelligent control
of autonomous and autonomic vehicles. For the purpose of this paper, we deline

NAVAL E N G I N E E R S J O U R N A L March 1996 43

The Rational Behavior Software Architecture /or Intelligent Ships

autonomic as “having an involuntary reflexive capability”
and autonomous as “responding and reacting indepen-
dently” [22]. RBM uses the principle of abstraction to
simplify the problem of mission control, and as such rep-
resents a specialization of the SSS architecture (symbolic,
subsumption, servo) [ll. In particular, in RBM, the top
level is entirely symbolic and has no global variables, the
bottom level is synchronous and entirely numerical, and
the middle level provides an asynchronous interface be-
tween the other two levels. This division reflects the ap-
proach to the control problem typically employed on
manned vehicles, such as surface ships. In these cases,
control is viewed from different levels of abstraction in
which the highest level (the commanding officer or Cap-
tain) designates and sequences goals through a delibera-
tive process, the lowest level (the crew) operates vehicle
actuators and sensors in response to commands, and the
middle level (the commander’s staff) decomposes tasks so
as to produce commands to the Execution level in support
of goal achievement.

We believe that implementation of the RBM architecture
is best accomplished with programming languages and op-
erating systems tailored to each level [XI. In particular,
imperative languages with multitasking operating systems
utlllzing timed interrupts are preferred for the bottom
level, rule-based languages are preferred for the top level,
and languages supporting object hierarchies and event-
driven multitasking are preferred for the middle level.
These choices naturally fit the backgrounds and education
of mission specialists at the top, computer scientists in
the middle, and control engineers at the bottom. This
facilitates the team development and modification of large
software systems and promotes the reuse of software
modules across vehicles and applications. Current com-
mercial off the shelf (COTS) programming languages, op-
erating systems, and computing hardware platforms are
adequate for effective realization of RBM systems. The
major characteristics of all three levels of RBM are sum-
marized in Table 1.

STRATEGIC LEVEL
The commander of an autonomous/autonomic ship must
have an effective means of expressing the desired mission
to the vehicle, along with procedures for the replanning of
missions due to the unrecoverable degradation of one or
more subsystems. It is the Strategic level that addresses
this need by encapsulating the explicit, high-level logic
required to perform these activities. Indeed, it was in
response to the concern of users that an intelligent vehicle
behave rationally, that the name Rational Behavior Model
was chosen. The basis for the Strategic level design is the
top-down decomposition of the mission based on goal-
directed reasoning. This process involves the successive
refinement of a root goal into constituent subgoals, contin-
uing until simple, primitive goals are identified. When goals

TABLE 1

Characteristics of RBM (from 141)
~ _ _ _ _ ~ ~

Strategic Level
Symbolic computation only; contains mission doctrine/
specification
No storage of internal vehicle or external world state
variables
Rule-based implementation, incorporating rule set,
inference engine, and working memory (if required)
Non-interruptible, not event-driven

m Directs the Tactical level through asynchronous message

Messages may be either commands or queries requiring

Operates in discrete (Boolean) domain independently of

Building block: the goal
Abstraction mechanisms: goal decomposition (RBM-B)

passing

Y ES/NO responses

time

and rule partitioning (RBM-F); both based on goal-driven
reasoning

Tactical Level
Provides asynchronous interface between Strategic and

Behaviors (tasks) reside here and may execute

Behaviors are implemented as methods of objects
m Primitive goals activate one or more behaviors

External interface of the model consists of two parts: the
behavior activations from the Strategic level and the
command/telemetry paths to/from the Execution level

Execution levels

concurrently

Workd and Mission models maintained here
Responds to Strategic level with logical TRUEFALSE

D Setpoints, modes, active sensor commands, and non-
routine data requests are output to the Execution level
Not interruptible except for data transfers; hard deadlines
can not be guaranteed
Operates in discrete eventkontinuous time domains
Building block: objects with behaviors
Abstraction mechanisms: class and composition
hierarchies

Execution Level
D Numeric processing only

Responsible for software to hardware interface,

All synchronous (hard real-time) processes reside at this

Sensor data processed to specification of Tactical level
Servo!oops run continuously and concurrently,

Operates in continuous space/time domains
Building block: servo loops and signal processing

m Abstraction mechanisms: loop composition, sampling

underlying vehicle stability

level

synchronized by timed interrupts

algorithms

frequency, and data smoothing

are not amenable to further simphfication, direct imple-
mentation via messages to the Tactical level occurs. We
have used mostly goal decomposition in Prolog for the
Strategic level. However, we have also had success with
rule partitioning in the C-based forward chaining language
Clips [3,4,51.

44 March 1996 NAVAL ENGINEERS JOURNAL

The Rational Behavior Soffware Architecture for lnfelligent Ships

For the purpose of autonomous and autonomic vehicle
control, the Strategic level incorporates mission-level con-
trol logic. With respect to this level, the following restric-
tions are imposed

(1) The Strategic level is based on goal-driven (top
down) rather than data-driven (bottom up) reasoning.

(2) The Strategic level contains no state other than the
state of the reasoning process itself. World models, vehicle
states, and numerical mission parameters are maintained
by the Tactical level. The purpose for this is to support
determinism and hence predictable (rational) responses
from the vehicle.

(3) The Strategic level is implemented or specified in a
commercially available rule-based language.

(4) As in SSS, the Strategic level operates asynchron-
ously in discrete (boolean) space. However, we further
speclfy that it is non-interruptible. That is, the Strategic
level is explicitly not event driven. Rather, it obtains mfor-
mation from the Tactical level by polling during mission
execution and selects paths of reasoning based on this
information.

These restrictions are derived from our practical ex-
perience in the development of autonomous vehicle control
software [33]. As such, these conditions allow us to use
a commercially available Prolog interpreter (Quintus
Prolog [32]) to realize a backward chaining [6] version of
the Strategic level [3]. Because Prolog directly imple-
ments depth first search of a dynamic AND/OR goal tree
[6,7] and has a very clean syntax for the description of
such trees [8], this language is very appropriate for the
development of top level control software.

While RBM uses goal-driven reasoning at the Strategic
level, it does not follow that a backward chaining language
is required for this purpose. An attractive alternative is
to use Prolog as a specification language, which could be
either translated into some other language or compiled
into a corresponding h t e state machine [5,9,10]. We have
ourselves accomplished manual translation of Prolog into
Lisp for wallung machine control [lo]. We have also trans-
lated Prolog into CLIPS, a forward chaining language, as
an alternative means to implement the Strategic level for
our AUV [3,5].

TACTICAL LEVEL
The Tactical (middle) level acts as an interface between
the knowledge-based Strategic level and the hardware-
controlled subsystems of the Execution level. In object-
oriented terms, we have implemented the behaviors of the
Tactical level as methods of software objects. These meth-
ods may call other methods at the Tactical level or send
commands to the Execution level. The Tactical level is also
responsible for data collection during the mission and for
contingency planning should the need arise. Hence, detec-
tion of and automatic recovery from machinery faults not
affecting the overall mission are accomplished at this level.

The Tactical level also maintains the numerical aspects of
the mission model and internal and external world models.

The Tactical level of RBM manages the interface be-
tween the goals specified by the Strategic level and the
actions performed by the Execution level. To this end, the
following attributes characterize the Tactical level:

(1) As in the definition of SSS, the Tactical level operates
in a discrete event space and in continuous time. That is,
at this level, decisions are made in response to queries or
commands which can arrive from the Strategic level at any
time. On the other hand, the Tactical level receives mfor-
mation from the Execution level only on a timed interrupt
basis. Thus, it is not directly triggered by events occurring
at the Execution level, but nevertheless may at any time
detect an event based on stored data from the Execution
level.

(2) Outputs from the Tactical level to the Execution level
are of three types: discrete mode changes, non-routine
data requests, and continuous set points [l l l .

(3) To enhance modularity and maintainability, and to
provide precise accepted terminologx the Tactical level is
implemented as a software object hierarchy [9,12,13,141.
The methods [12] of these objects constitute the behav-
iors of this level. Child (dependent) objects are compo-
nents of their parent objects and can be accessed only by
parent methods. The single root object of the hierarchy is
responsible both for asynchronous communications with
the Strategic level and for transmission of orders to the
Execution level, thereby avoiding the issuance of confict-
ing vehicle control commands.
(4) Each input to the Execution level comes from just

one object at the Tactical level. This constraint ensures
that competition for vehicle resources is resolved at the
Tactical level.

(5) In order to facilitate portability and understandability
of code, we prefer that concurrency at the Tactical level,
when needed,.be supported by the programming language
rather than solely by the operating system. In light of
condition (3) above, we also believe that the programming
language selected for implementation of the Tactical level
should be at least object-based, and preferably object-ori-
ented [12,13].

Having imposed all of the above conditions on the Tac-
tical level, it becomes difficult to find a suitable language.
In [lo] and [14], we used CLOS, the object-oriented facil-
ity of Common Lisp [15]. This means that, in this exam-
ple, our Tactical level allowed for no concurrency. It is our
belief that this succeeded because the vehicle under study
(the ASV walking machine) actually implemented supervi-
sory control [16], with a human operator in the loop,
thereby lirmting the use of RBM to leg coordination, a
relatively simple function compared to autonomous mis-
sion control. In [31, we implemented the Tactical level in
C, which has neither objects nor t a s h g constructs. This
made codmg rather difficult and, as of now, we have aban-

NAVAL ENGINEERS JOURNAL March 1996 45

The Rational Behavior SoHware Architecture lor lntelligenf Ships

doned C and have instead chosen Ada [17,18] and C + +
151 as the languages of choice. Ada is, of course, the
Department of Defense standard language for embedded
systems, and possesses both objects and tasking capabil-
ities. Furthermore, with the introduction of Ada 95 [37],
it includes the notion of class inheritance, making it a true
object-oriented language. Because Ada 95 was not yet
available to us, we obtained this latter feature through an
Ada extension called Classic-Ada [19].

EXECUTION LEVEL
The Execution (bottom) level is responsible for controlling
the machmev, sensors, and control surfaces. It du-ectly
controls the vehicle’s heachg and speed in response to
commands from the Tactical level. It also sends sensory
mformation back to the Tactical level and is the final chance
for vehicle safety, so commands that would otherwise en-
danger the vehicle are ovemdden here. For example, the
vehicle would execute reflexive evasive maneuvers rather
than run into an obstacle. Similarly, other autonomic ac-
tions, such as a “hch” prior to receiving an incoming
missile, are implemented here. Most of the algorithms
used at this level have their basis in modem control theory
and as such involve strictly numerical computation.

This level, called the “servo” level in 111, and the “ex-
ecution” level in [20], is c e r t d y the best understood of
the three levels of RBM. Indeed, despite the existence of
many important problems at this level such as rudder roll
stabilization [21], it is often taken more or less for granted
by researchers concentrating on the upper levels of con-
trol.

W e our research to date has been concerned princi-
pally with fully autonomous vehicles [24], it is important
to realize that a continuous spectrum of human involve-
ment in sparsely manned vehicle control is possible. That
is, human control can range from no on-line interaction
(complete autonomy), through supervisory control [161, to
direct control of a subsystem. Thus, we believe that at
least the following functions should be provided at the
Execution level for any autonomousiautonomic vehicle em-
ploying the RBM architecture:

(1) steering autopilot for heading control (heading mode)
or for yaw rate control (rate mode), including rudder roll
stabilization where effective.

(2) a speed control autopilot, includmg integrated pro-
pulsion control, to adjust the vehicle speed on command,
either in vehicle speed control mode or propeller rateipitch
control mode.

(3) integrated damage control systems.
(4) integrated machinery monitoring and control.
Of course, the achievement of this software function-

ality is dependent upon the existence of a local area net-
work connecting all major subsystems throughout the
ship.

In addition to insuring basic vehicle stability of the ve-
hicle, the Execution level of the vehicle control system

also includes the operation of sensing systems and suffi-
cient data processing to provide interpreted data to the
Tactical level for situation assessment. Thus, for example,
it is important to determine how much sonar data must be
made available within the framework of the vehicle auto-
pilot update rate so that a reflexive capability for obstacle
avoidance resides within this level [24].

Due to the numerical nature of the computations asso-
ciated with these systems, the Execution level of RBM is
written in an imperative programming language. We have
used C for our experiments, but C + + and Ada provide
viable alternatives. Of course, when using C or C + + , it
is necessary to relegate tasking to the operating system,
since neither language provides this feature.

WMe asynchronous multitasking constitutes an impor-
tant research area at the Tactical level, it appears to us
that processes at the Execution level need not be event
dnven, but rather can run on a fixed schedule triggered
by a timed interrupt from a real-time clock. Rate mono-
tonic scheduhg guarantees efficient use of processor ca-
pacity in such circumstances [281.

Implementation of the Model
The major portion of RBM is mission independent. In fact,
many software components developed for one system can
be shared among a wide variety of vehicles with minimal
modhzation [29]. However, in order to instantiate a com-
plete, correctly working RBM architecture, a specific mis-
sion and vehicle must exist. In th~s paper, the test mission
is the Florida mission, so-called because demonstrations
were originally scheduled to take place off the Florida coast
[30]. In addition, the Naval Postgraduate School (NPS)
“PHOENIX’ AUV is chosen as the target vehicle E331.
This section will discuss the specific implementation of
RI3M used for thls configuration. While we are not pro-
posing that a surface ship be fully autonomous with re-
spect to communications and control, much of the discus-
sion that follows is pertinent to the unmanned portions of
the autonomic ship concept.

All on-board computer hardware, languages, and op-
erating systems for the PHOENIX AUV were dictated by
practical considerations. Specifically, Ada and Prolog are
not available for the real-time operating system 099 ,
while DOS does not support the multitasking features we
desire in our Execution level software, presently written
in C. We believe that situations like this WIU arise fre-
quently in the development of RBM software for autono-
mous and autonomic vehicles, and that heterogenous com-
puters therefore represent an effective type of host. On
the other hand, there is no reason why a homogeneous
distributed system could not also be used, if available. In
fact, our development environment is homogeneous in that
it uses three Unix workstations, one for each level of
RBM, communicating over an ethernet local area network

46 March 1996 NAVAL ENGINEERS JOURNAL

The Rational Behavior Soffware Architecture for lnteltigenf Ships

[4]. The following discussion reflects a version of RBM
applicable to either scenario.

PHOENIX AUV STRATEGIC LEVEL
The Strategic level software of RBM is divided into two
sections: a mission-specific part called the Mission Spec-
ification and a mission-independent part called the PHOE-
NIX AW Doctrine. For this study, the Mission Specifi-
cation implements the Florida mission whde the Doctrine
contains rules specific to the operation of the PHOENIX
AW Figure 1 contains the implemented Strategic level
written in the Prolog programming language.

Each Prolog rule follows the general format of Figure 2
and represents an $-then relation. The rule is divided into
a head and a body. The head of a rule corresponds to the
then part of the rule and the body part is equivalent to the
if part. With respect to mission accomplishment, the
Prolog rule can be interpreted as a goal decomposed into
constituent subgoals. Therefore, if all subgoals are satis-
fied, then the corresponding goal at the left of “.-” is
satisfied. A characteristic of Prolog syntax is to relate
expressions separated by a comma through the logical
AND operator. If a logical OR relationship exists between
subgoals, the OR is expressed by writing multiple Prolog
rules with identical heads. In Figure 1, the two “initialize’’
rules represent such a relationship. In this way, the “ini-
tialize” goal can be achieved by either accomplishing the
subgoals in the first rule or satisfying the subgoals in the
second rule.

An important characteristic of the Strategic level of
RJ3M is that an explicit sequence of goal achievement de-
fines mission success or failure. Prolog always attempts
to satisfy a subgoal by matching it to a fact (essentially a
rule without a body) or a rule head in textual order; i. e.,
from top-to-bottom (for OR-related rules) and left-to-right
(for AND-related subgoals). When a subgoal-rule head
match is found, the search process proceeds to the first
subgoal in the matched rule and another match is at-
tempted. The algorithm guiding that search, called the
inference engine, marks each goal to provide a reference
should the current mference chain fail. If a match cannot
be made given the existing circumstances, an attempt is
made to resatisfy the most recent successful subgoal
through a control mechanism called backtracking [311. If
no subgoal can be satisfied, the correspondmg rule is
skipped and an alternative rule is selected, if available.
Rule and subgoal placement are therefore critical if the
proper response from the AUV is to be achieved.

In the Prolog code of Figure 1, a subset of the full
features of Prolog is utilized to suit the restriction that
the Strategic level contain no storage of internal vehicle or
external world state variables. Thus, Prolog clauses are
used as rules without the application of the unification
feature of Prolog. As a result, the Prolog rule heads do
not contain variables. This greatly simplifies the modifi-

cation of code resulting from mission reconfiguration and
prevents the introduction of undesired side effects which
characterize software systems employing global data
structures.

Prolog provides the built-in control primitive “repeat”
which, when used in concert with backtracking, allows for
the creation of loops. When first encountered, the repeat
predicate succeeds and the loop is entered. Repeat sub-
sequently succeeds when encountered through backtrack-
ing. This provides for multiple attempts to satisfy those
subgoals lying to the right of the repeat. Another control
primitive required to insure the strict, iterative execution
of the loop is the cut, denoted by I ‘ ! ’ ’ , which acts to block
backtracking. In the context of RBM, the cut is used to
eliminate unnecessary search paths and to force a specific
sequence of subgoal testing [31].

The program in Figure 1 is initiated when the query “?-
execute-auv-mission.” is issued to the Prolog inference
engine. Scanning the heads of each rule starting from the
top of the rule set, the rule “execute auv mission :- ini-
tialize, repeat, mission.” is encountered. Prolog will first
attempt to satisfy the subgoal “initialize”. After marking
this subgoal, the rule set is again scanned from the top in
an attempt to find a matching rule head. A match is made
with the first “initialize” rule. The first subgoal of this
rule, “vehicle - ready -for - launch-p(ANSl),” is then en-
countered. This subgoal is a primitive goal in that it cannot
be decomposed any further. When the Strategic level
reaches such a primitive goal, it generates either a predi-
cate query or a command to the Tactical level. A predicate
query expects a TRUE/FALSE response from the Tactical
level, and the returned value influences the subsequent
reasoning path of the inference engine. A command, on
the other hand, is a directive that initiates an action in the
Tactical level. The primitive goal “vehicle ready -for -
launch” is a predicate query, because its argument ANSl
is bound to TRUE or FALSE by the Tactical level. This
value is then determined at the Strategic level through the
test “ANSI = = I”. If the value of ANSl is 1 (representing
TRUE), then “ANSI = = 1” succeeds. The next subgoal,
“select-first-waypoint(ANS2)” is then reached. This
primitive subgoal is an example of a command, and as
such, directs the Tactical level to select the first waypoint
from the list of waypoints maintained at the Tactical level.

If, on the other hand, the value of ANSl is 0 (repre-
senting FALSE), “ANS1 = = 1” fails. In this case, the
Prolog inference engine initiates backtracking and tries to
re-satisfy the subgoal “vehicle-ready-for-launch-
p(ANS1)”. However, this attempt fails because there is no
other way to satisfy the “vehicle-ready-for-launch-
p(ANS1)” subgoal. Consequently, the first “initialize” rule
fads, and the second “initiahze” rule is invoked, resulting
in mission termination.

This process continues in similar fashion for the re-
maining rules in an attempt to satisfy the original query

NAVAL E N G I N E E R S J O U R N A L March 1996 47

The Rational Behavior Sonware Architecture for Intelligent Ships

MISSION SPECIFICATION FOR SEARCH AND RESCUE--------- */ * -_______

initialize :- vehicle-ready-for_lanchg(ANS l),ANS 1 = 1, SeleCt-~t-WaypOint(ANS2).
initialize :- alert-user(ANS), fail.

mission :- in-transitg(ANS1). ANSl == 1, transit, !, transit-doneg(ANS2). ANS2 = 1, fail.
mission :- in-searchq(ANSl), ANSl= 1 , search, !, search_doneg(ANS2), ANS2 = 1, fail.
mission :- in-task-p(ANS1). ANSl == 1, task, !, task_done_p(ANS2),ANS2 = 1, fail.
mission :- in-return-p(ANSl), ANSl == 1, return, !, retum_done-p(ANS2), ANS2 = 1, wait-for-recovery(ANS3).

transit :- waypoint-control.
transit : - surface(ANS 1) , wait-for-recovery(ANS2).

search :- do-searchqattern(ANS), A N S = 1.
search :- surface(ANS I), wait-for-recovery(ANS2).

task :- homing(ANSl), ANSl == 1, dropqackage(ANS2), ANS2 == 1, get~ps_fix(ANS3), ANS3 == 1,

task :- surface(ANS l), wait-for-recovery(ANS2).
get_next_waypoint(ANS4), ANS4 = 1.

return :- waypoint-control.
return :- surface(ANS 1). wait-for-recovery(ANS2).

execute-auv-mission :- initialize, repeat, mission.

waypoint-control : - not(critical-systemqb), get-waypoint-status, plan, send-setpoints-and-modes(ANS).

get-waypoint-status :- gps-check, reach-waypoint-p(ANS 1). A N S 1 = 1, get-next-waypoint(ANS2).
get-waypoint-status.

gps-check :- gps-needed-p(ANSl), ANS 1 = 1, get_gps-fix(ANSl).
gps-check.

plan :- reduced-capacity-system-prob, global-replan.
plan :- near-uncharted-obstacle, local-replan.
Plan.

near-uncharted-obstacle :- unknown-obstacle-p(ANSI), ANS 1 = l,log-new-obstacle(ANS2).

local-replan :- loiter(ANS l), start_local_replanner(ANS2).

global-replan :- loiter(ANS l), start~lobd-replanner(ANS2).

critical-system-prob :- power_gone-p(ANS), ANS == 1.
critical-systemgrob :- computer-system-inopq(ANS), A N S = 1.
critical-system-prob :- propulsion-systemq(ANS), ANS = 1.
critical-system-prob :- steering-system-hop-p(ANS), ANS = 1.

reduced-capacity-system-prob :- diving-systemq(ANS), A N S == 1.
reduced-capacity-system-prob :- bouyancy-systemg(ANS), ANS = 1.
reduced-capacity-system-prob :- thruster-system-p(ANS), A N S = 1.
reduced-capacity-system-prob :- leak-testg(ANS), A N S == 1.

F I G U R E 1. The Florida Mission in Prolog

4a March 1996 NAVAL ENGINEERS JOURNAL

The Rational Behavior Software Architecture lor intelligent Ships

if

head\ goal i :- subgoall, subgoa12, ...) subgoal,.

F I G U R E 2. A Prolog Rule

This particular rule set is collectively referred to as the
Florida mission and consists of four distinct phases called
“transit”, “search”, “task”, and “return”. Each phase has
two rules associated with it. The first rule specifies the
sequence of goals which occur in normal circumstances.
A second rule is included for each phase to act as a soft-
ware fail-safe or “exception” should a condition arise re-
sulting in the failure of the current phase. For this mission,
each fail-safe consists of the two commands “sur-
face(ANS1)” and “wait-for-recovery(ANS2)”. Post-mis-
sion analysis of telemetry and status data, continuously
recorded by the Tactical level, would presumably yield in-
formation about the cause of the failure. Again, the nom-
inal rule is placed textually before the fail-safe rule so as
to insure that the nominal rule is attempted first.

PHOENIX AUV TACTICAL LEVEL
The Tactical level is composed of software objects that
communicate via message passing. A sigrdicant provision
is that some (or all) of the objects may be active at a given
time; that is, several objects may embody separate, dis-
t i c t threads of control. On a single processor, logical
concurrency of these objects is realzed through the “in-
terleaving‘’ of each task’s execution under the guidance of
a time-sharing or priority-based algorithm. If multiple pro-
cessors are available to support true parallel execution,
objects may run simultaneously In either case, the actions
of each are coordinated through the sending of messages
to one another. Concurrency may be provided in several
ways, including control constructs provided by a concur-
rent programming language. This allows for the explicit
identification of potential parallelism within the program.
This was one of the reasons that we chose Ada for h s
implementation. Although we have not yet used this fea-
ture, it is expected that future extensions will call for
concurrent processing.

The Tactical level developed for the PHOENIX AUV is
shown in Figure 3. Each block in the diagram represents
a distinct entity and corresponds to a software object.
Most of the objects rearranged into a (composition) hier-
archy, as indicated by the solid lines linkng them together.

The AUV Officer of the Deck (OOD) resides at the top of
the hierarchy and assumes overall control of the operation.
In addition, the OOD provides the single interface between
the Strategic and Tactical levels. Primitive goals from the
top level are passed to the OOD who in turn activates
behaviors within the Tactical level designed to satisfy
those goals. Returning to the analogy of the manned crew,
the Captain of the submarine (the Strategic level) issues
commands to, or asks for, status reports from the OOD
(the root object in the Tactical level). The OOD then issues
the appropriate orders to satisfy the goal or query pre-
sented by the Captain.

All the behaviors that are capable of being performed
by the vehicle are embodied with the various objects of
the Tactical level. The OOD must coordinate the actions
of each object to ensure that each task is accomplished as
expected. The behaviors, for their part, are reflected in
the methods contained within the applicable objectts).
When a behavior involves the interaction of multiple ob-
jects, communications are provided through the passing
of messages. As depicted in the figure, &ect communi-
cations between members of the hierarchy is restricted to
parent-child links. While this comes at the expense of
efficiency, the benefits include the avoidance of uncon-
strained communication paths and a greater degree of
modularity These characteristics support RBMs empha-
sis on providing a framework to the user that aids in the
understanding and maintenance of the software at this
level.

Communication with the Execution level is also re-
stricted. Commands, in the form of packets containing
numerical set points, non-routine data requests, and dis-
crete mode changes, are issued only from the command
sender object. Similarly, telemetry data from the Execu-
tion level is received solely by the sensory receiver object.
By constraining these interfaces, command conflicts and
data inconsistency are avoided.

Several objects in the Tactical level are not explicitly
connected to the object hierarchy These represent data
stores (databases) intended to be accessed by any re-
questing object. The state of the mission, the environ-

NAVAL ENGINEERS JOURNAL March 1996 49

The Rational Behavior Software Architecture lor Intelligent Ships

Strategic Level
-
f Primitive Gml Acnvations and Responses

Tactical Level

Scnror i
Telemetry :

Packets ; indicates object hierarchy (part of relationship)
indicates data flow ___.._._...__..___-_-.

Tactical Level - Execution Level
Subryrtemr
Controller

F I G U R E 3. Tactical Level Object Hierarchy for the NPS AUV Florida Mission (from 141)

Experimentation mental model, current sensor readings, and mission his-
tory a re maintained and encapsulated within the
corresponding object. Requests for information and data
updates are handled as they arrive. Note that these ob-
jects do not directly participate in task accomplishment.
Details of all objects in the Tactical level are given in
[4,271.

PHOENIX AUV EXECUTION LEVEL
RBM makes no contribution to this level. Most of the
control concepts implemented here, such as sliding mode
control, are well documented [23]. The current Execution
level controls either the PHOENM itself or a highly accu-
rate real-time graphic simulator [36]. The language of
choice for this level, based on its run-time efficiency, is C.
Specifics of this and the PHOENIX AUV Integrated Sim-
ulator are discussed in the next section. Naturallx the
application of RBM to surface ships would require that
the complete implementation of appropriate execution level
software be in place.

The instantiation of RBM just described has been imple-
mented in the laboratory on the PHOENIX AUV Inte-
grated Simulator, a network consisting of an actual AUV
computer system, a three-dimensional graphical simda-
tion workstation, and appropriate support equipment [261.
The simulation experiments center around the search and
rescue (Florida) mission, with the Strategic and Tactical
levels of RBM hosted by the AUV computer and the Ex-
ecution level residing on a Silicon Graphics Iris worksta-
tion. The findings of these experiments are summarized
in the following paragraphs.

SOFTWARE DEVELOPMENT ENVIRONMENT
While the development of RBM is simplified by its use of
abstraction and separation of problem-solving responsibil-
ities into three distinct levels, testing of the complete
model is complicated by the expense of field testing and
frequent nonavailability of the target vehicle due to hard-
ware modification or rebuild. Integrated simulation pro-

50 March 1996 NAVAL ENGINEERS JOURNAL

The Rafional Behavior Software Architecture for lntelligenf Ships

vides a means of testing and evaluating vehicle control
software despite these constraints. Readers interested in
the concepts involved in this approach to AUV software
development and testing are referred to [26].

Figure 4 portrays the configuration of the components
of the Integrated Simulator used in the experiments to be
discussed in this paper [25]. At the heart of the network
is a Gespac card cage containing two microprocessor
boards. The Gespac 80386, running DOS, hosts the Stra-
tegic and Tactical level of the PHOENIX AUV Rational
Behavior Model. The Gespac 68030, running the 0s-9
operating system, hosts the Execution level. The two pro-
cessors are linked by a parallel and a serial connection,
each designed to route data in a single dxection; i.e.,
commands are passed from the Tactical to the Execution
level over the parallel link, and telemetry data is sent in
the reverse direction over a serial path. This telemetry
data is received by the Execution level from the graphical
workstation of the integrated simulator representing the
vehicle and its operating environment (world model). The
simulated vehicle’s Execution level in turn receives mes-
sages from the Tactical level containing numerical set
points, operational mode changes, and non-routine data
requests. The 68030 and graphical workstation are linked
to each other by an Ethernet connection.

Direct connections can be made between the Gespac
68030 and physical hardware components, as denoted by
the solid arrow. In this way, sensors, actuators, and other
vehicular subsystems can be tested in the lab prior to their
installation. Finally, an additional senal port is available on
the 68030 board which, when connected to an external
monitor, allows for the creation, debugging, and modiiica-
tion of Execution level software. Furthermore, this port
may be used to connect, via modem, a terminal collocated
with the actual AUX This allows for easy transfer and
downloading of Execution level software and experimental
data between the lab and test site.

The Gespac 80386 also provides a great deal of flexi-
bility to the RBM software developer. An external EGA
monitor is available for developing and testing the Strategic
and Tactical level software. A dedicated modem is also
available to allow for software development from remote
sites removed from the lab. For experiments involving re-
ceipt and analysis of GPS data, a serial port with GPS
receiver is available. The potential for parallelism at the
Tactical level may be explored with an available transputer
board.

In sum, the Integrated Simulator greatly facilitates the
design, development, and integration of the many hard-
ware and software components of the PHOENIX AUX
Each interface can potentially represent a source of bugs;
however, these problems can often be detected and fixed
in the lab, thus avoiding the expense and frustration of
field test failure.

THE SEARCH AND RESCUE MISSION
The search and rescue (Florida) mission provides an ideal
test case for observing the global behavior of an autono-
mous vehicle and the capabilities of its control software
architecture. Following an initialization sequence, the mis-
sion is composed of four phases: transit from the launch
site to the search area by achieving a series of predeter-
mined waypoints; performance of the search algorithm;
execution of an appropriate task subsequent to locating
the target; and returning or transiting to a final location.
In the experiment, this scenario was implemented using a
figure-8 path. The first half of the path constituted the
transit phase. When the mid-point of the figure-8 was
reached, the search and task phases were entered in
succession. Neither the search nor the task phase was
implemented in detail since the purpose of this exercise
was to test the logical and behavioral aspects of the control
architecture, and not specific algorithms or methods. The
final phase of the mission, the return phase, required the
attainment of waypoints malung up the second half of the
figure-8 path. Upon reaching the final goal, the AUV was
then directed to secure its subsystems, surface, and await
recovery.

The first test was designed to provide a basis for com-
parison and as such included no anomalies. The second
test was identical to the first except that a failure in the
vehicle’s power subsystem was introduced midway
through the transit phase. The third and fourth tests rep-
licated the first two tests but utilized a forward chaining
Strategic level implemented in CLIPS instead of the
Prolog-based backward c l m m g version [3,4,51.

RESULTS
Three classes of data were obtained for each test. First,
visual observations of the graphical simulation were used
to investigate the global behavior of the AUV mamfested
by the executing RBM. Second, time stamps were taken
whenever a waypoint was attained. Third, a trace was
taken which recorded the sequence of primitive goals
achieved directed by the Strategic level of RBM. Figure
5 shows the PHOENIX AUV simulation in progress. White
spheres represent waypoints and the dark sphere repre-
sents the final goal point (recovery site).

Visual observation of the simulation proved valuable in
two important ways. The logic used by the Strategic level
could be validated by comparing the resulting behavior of
the vehicle with the requirements specified by the mission
specialist. If the vehicle failed unexpectedly or performed
an undesired action, faulty logic in the Strategic level or
an erroneous method in a Tactical level object was indi-
cated. Additionallx even though the vehicle performed as
expected, an operational parameter beyond the control of
RBM could have contributed to a failure state. For ex-

NAVAL ENGINEERS JOURNAL March 1996 51

The Rational Behavior Software Architecture lor lnfelligent Ships

I ' I I GESPAC A - dcoproccsKll

4mBhrrdQrw cd:
80386

DRDOS 6 1 - a 3 5 ' ~ o w g =

Tactical
commands

to Execution

/T l&

VT220 in lab
PCBridge poolside

I I GESPAC ,-I
68030
0s-9

f Partial I
' Telemetry; '. ,

- - T r - -

Underwater Virtual World

F I G U R E 4. NPS AUV Integrated Simulator Configuration (from [25])

52 March 1996 NAVAL ENGINEERS JOURNAL

The Rational Behavior Software Architecture for Intelligent Ships

F I G U R E 5. The NPS AUV Simulation

ample, if the vehicle speed is set at a value beyond some
threshold, the AUV can be made to collide with a known
object. These examples highhght the advantages of sim-
ulation testing prior to system integration.

A more precise check of Strategic level logic can be
made with the execution traces. Each primitive goal, when
successfully completed, is written to a file. Because the
goals are listed sequentially, a chain of reasoning used by
the Strategic level can be reconstructed.

The time stamped data was used to compare the rela-
tive execution speeds of the backward and forward chain-
ing implementations of the Strategic level. These data,
which are included in [4], were statistically identical, lead-
ing to the conclusion that both versions of the Strategic

level performed sufficiently to satisfy the 2 Hz update rate
required by the Execution level. This implies that the
complexity of the Strategic level may increase up to the
point at which the time taken by the Strategic level to
reason about the next goal exceeds the minimum accept-
able update rate between the Tactical and Execution
levels.

Conclusions and Future Research
From the results of this research, we have drawn several
corxlusions. Prolog, with its backtracking facility and tex-
tual ordering, is ideal for the specification of missions ame-
nable to goal driven decomposition. Ada has proved to be

NAVAL ENGINEERS JOURNAL March 1996 53

The Rafional Behavior Soltware Archifecfure for lnlelligenf Ships

useful for the implementation of the Tactical level, because
taslung and data encapsulation is provided by the language.
C + + is being investigated for its object-oriented con-
structs, in combination with the real-time operating sys-
tem VxWorks [381.

Future testing of RBM is scheduled to be done on the
PHOENIX AUV and will involve extensions of the mission
replanning logic at the Strategic level and automatic fault
recovery at the Tactical level. This research wiU have di-
rect applicability to all intelligent vehicles, autonomous,
autonomic, or otherwise.

ACKNOWLEDGMENT
This research was supported in part by the National Sci-
ence Foundation under Grant No. BCS-9306252.

REFERENCES

+

Connell, J. H., “SSS: A Hybrid Architecture Applied to
Robot Navigation,” Proceedmgs of IEEE International Con-
ference on Robotics and Automation, Nice, France, May

Kwak, S. H., “A Computer Simulation Study of a Free Gait
Motion Coordination Algorithm for Rough-Terrain Loco-
motion by a Hexapod Wakmg Machine,” Ph.D. Disserta-
tion, The Ohio State University, Columbus, Ohio, 1986.
Bymes, R. et al., “An Experimental Comparison of Hier-
archical and Subsumption Software Architectures for Con-
trol of an Autonomous Underwater Vehicle,” Proceedings of
1992 IEEE Symposium on Autonomous Underwater Vehicle
Technology, Washington, D.C., June 2-3, 1992, pp. 135-

1992, pp. 2719-2724.

- ._
141.
Byrnes, R. B., “the Rational Behavior Model: A Multi-
Paradigm, Tri-Level Software Architecture for the Control
of Autonomous Vehicles,” Ph. D. Dissertation, Naval Post-
graduate School, Monterey, CA 93943, March 1993.
Stroustrup, Bjame, The C + + Programming Language,
2d ed., Addison-Wesley, 1991.
Jackson, Introduction to Expert Systems, 2d Edition, Addi-
son-Wesley, 1990.
Sanderson, A. C., Homem de Mello, L. S., and Zhang, H.,
“Assembly Sequence Planning,” AZ Magazine, Spring,

Rowe, N. C., Artificial Intelligence Through Prolog, Pren-
tice Hall. 1988.

1990, pp. 62-80.

Miller, D. L. and Lennox, R. “An Object-Oriented Environ-
ment for Robot System Architectures,” IEEE Control Sys-
tems Magazine, Vol. 11, No. 2, February, 1991, pp. 14-73.
Kwak, S. H. and McGhee, R. B., “Rule-Based Motion
Coordination for a Hexapod Walking Machine,” Advanced
Robotics, Vol. 4, No.3, November, 1990, pp. 263-282.
Keene, Object-Oriented Programming in Common Lisp,
Addison-Wesley, 1989.
YoergeG D. Neumann, J. and Slotine, J., “Supervisory Con-
trol System for the JASON ROY’ IEEE Journal ofoceanic
Engmeering, Vol. 11, No. 3, 1986, pp. 392-400.
Berzins, V. and Luqi, Software Engineering with Abstrac-
tions, Addson-Wesley, 1991.
Gehani, N., Ada-Concurrent Programming, Prentice Hall,
1984.
Classic-Ada User’s Manual, Software Productivity Solu-
tions, Inc., Indiatlantic, FL, 1989.
Wang, et al., “A Petri-Net Coordination Model of Intelligent
Mobile Robots,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 21, No. 4, July/August 1992, pp. 777-789.
Powell, D. “Rudder Roll Stabilization-A Critical Review,”
Proceedings of the Ninth Ship Control Systems Sympo-
sium, Bethesda, MD, Sept. 10-14, 1990.
Webster‘s New Collegiate Dictionary.
Healex A. J. and Lienard, D., “Multivariable Sliding Mode
Control for Autonomous Diving and Steering of Unmanned
Underwater Vehicles,” IEEE Journal qf Oceanic Engineer-
ing, Vol. 18, No. 3, July 1993, pp. 327-339.
Healey, A. J., et al., “Research on Autonomous Underwater
Vehicles at the Naval Postgraduate School,” Naval Research
Reviews, Vol. XLIY No. 1, 1992, pp. 43-51.
Brutzman, D. F!, “Underwater Virtual World for an Auton-
omous Underwater Vehicle,” Ph. D. Dissertation, Naval
Postgraduate School, Monterey, CA 93943, Sept. 1994.

[26] Brutzman, D. P, “Integrated Simulation For Rapid Devel-
opment of Autonomous Underwater Vehicles,” Proceedmgs
of 1992 IEEE Symposium on Autonomous Underwater Ve-
hicle Technology, Washington, D.C., June 2-3, 1992, pp. 3-
10.

[27] Nelson, M. L., et al., “Putting Object-Oriented Technology
to work in Autonomous Vehicles,” Proceedmgs of 11th Inter-
national Conference on Technology of Object-Oriented Lan-
guages and Systems (TOOLS ’931, August 2-6, 1993, Santa
Barbara, CA.

[28] Sha, L. and Goodenough, J. B., “Real-Time Scheduling
Theory and Ada,” Computer, Vol. 23, No. 4, April 1990, _ _ r‘l L-0 pp. 3.YDL.

mented Tri-Level Multilingual Software Architecture for
Control of Autonomous Underwater Vehicles,” Proceedings
of the 8th International Symposium on Unmanned Unteth-
ered Submersible Technology Durham, NH, Sept. 27-29,

Simon, D., et al., “ComPuter-Aided Design of a (kneric [29] Bymes, R. B., et al., “Rational Behavior Model: An Imple-
Robot Controller Handhg Reactivity and Real-Time Control
Issues,” IEEE Transactions on Control Systems Technology,
Vol. 1, No. 4, Dec. 1993, pp. 213-229.

[lo] Kwak, S. H. and McGhee, R. B., “Rule-Based Motion
Coordination for the Adaptive Suspension Vehicle in Ter-
naq-Tme Terrain,” Technical &Port NPSCS-91-006t Na- 1993, pp. 160-178.

[30] Steer, B., D u n , S., and Smith, S., ‘‘Advancing and As-
Val Postgraduate School, Monterey, CA, 93943, December
1990.

[l l] Healey, A. J., et al., “TacticaYExecution Level Coordination
For Hover Control of the NPS AUV I1 Using Onboard Sonar

ornous Underwater Vehicle Technology (AUV ’94), Cam-
bridge, MA, July 19-20, 1994.

[12] Booch, G., Object Oriented Design, BenjaminiCummings,
1991.

sessing Autonomy in Underwater Vehicle Technology
Through Inter-Institutional Competitions and/or Coopera-
tive Demonstrations,” Department of Ocean Engineering,
Florida Atlantic University, Boca Raton, Florida, May 1992.

2d Edition, Springer-Verlag, 1984.

1991.

Servoing!” Proceedings Of the IEEE SwPosium On Auton- [31] Clocksin, W, E and C. S. Meksh, Programming in prolog,

[32] Quintus Prolog Manual, Release 3.1, Quintus Corporation,

54 March 1996 NAVAL ENGINEERS JOURNAL

Jhe R ationat Behavior Soltware Architecture for tntellipent Ships

[33] Healey, A. J., et al., “Evaluation of the NPS PHOENIX
Autonomous Underwater Vehicle Hybrid Control System,”
Proceedings of the 1995 American Control Conference, Se-
attle, WA, June 21-23, 1995, pp. 2954-2963; also in Pro-
ceedings of the Use of Autonomous Vehicles in Mine Coun-
termeasures Symposium, Monterey, CA, April 4-7, 1995,
pp. 9-32 through 9-41.

[34] Albus, J. S., McCain, H. G., and Lumia, R., NASAiNBS
Standard Reference Model for Telerobot Control System Ar-
chitecture (NASREM), N E T Technical Note 1235, 1989.

[35] Miller, D. E, Slack, M. G., and Elsaesser, C., “An Imple-
mented Intelligent Agent Architecture for Autonomous Sub-
mersibles,” Proceedings of the American Society of Naval
Engineers Intelligent Ship Symposium, Philadelphia, PA,
June 1-2, 1994, TAB 12.

[36] McGhee, R. B., e t al., “An Experimental Study of an Im-
plemented GPSLNS System for Shallow-Water AUV Navi-
gation (SANS),” Proceedings of the 9th International Sym-
posium on Unmanned Untethered Submersible Technology,
Durham, NH, September 25-27, 1995.

[37) Ada 95 Reference Manual, ISO/IEC/ANSI 8652: 1995.
[38] VxWorks Promotional Guide, Wind River Systems, Inc.,

1010 Atlantic Avenue, Alameda, CA.

Ronald B. Byrnes is a U S . Army Lieutenant Colonel
commissimd into the Signal Corps in 1979. He has served in a
variety of positions associated with tactical and operational
communications at company, brigade, and corps level. L.C.
Byrnes became a member of the Army Acquisition Corps in 1993
and is currently a computer scientist with the Software Technol-
OD Branch of the Army Research Lab. His current work
includes continuation of his doctoral research into high-level
control of autonomous vehicles; contributions to the Army’s elec-
tronic records management and data standardization eflorts;
and automated support for flight plan verification. L. C. Byrnes
received a B . S. degree in Mathematics from Midwestern State
University in 1979, an M.S.E.E. degree from the Naval Post-
graduate School in 1989, and a Ph.D. in Cmputer Science
from the Naval Postgraduate School in 1993.
Anthony 1. Healey graduatedfrom London and Sheffield
Universities with B.Sc. (En& and Ph.D. degrees in Mechanical
Engineering in 1961 and 1966, respectively. He emigrated to the
United States in 1966 and has taught at the Pennsylvania State
University, Mhssachusetts Institute of Technology, and the
University of Exas at Austin, becoming Full Professor of
Mechanical Engineering in 1974. In 1981, he joined Brown and
Root, Inc., as manager of the Pipeline and Subsea Technology
Research Group. In 1986, he accepted the position as Professor
and Chairman of Mechanical Enginem‘ng at the Naval Post-
graduate School. His areas of specialty include mechanical
system dynamics, vibration, and control systems, and he is
currently the leader of an interdisct$linary project in mission
planning, navigation, and control for Autonomous Underwater
Rhicles at NPS.

Robert B. McGhee received a B.S. degree in Engineering
Physics from the University of Michigan in 1952, and M. S. and
Ph. D. degrees in Electrical Engineering from the University of
Southern Califmnia in 1957 and 1963, respectively. From 1952
until 1955, he served on active duty as a guided missile mainte-
nance officer with the U S . Amy Ordnance Corps. From 1955
until 1963, he was a member ofthe technical staff with Hughes
Aircraft Company, Culver City, Ca., where he worked on guided
missile simulation and control problems. In 1963, he joined the
Electrical Engineering Department at the University of Southern
California as an Assistant Professox and was prmoted to Asso-
ciate Professor in 196% In 1968, he was appointed Professor of
Electrical Engineering and Director of the Digital Systems Labo-
ratmy at the Ohio State University. In 1986, he joined the
Comjmter Science Department at the Naval Postgraduate School,
where he served as chairman from 1988 until 1992. Since 1992,
he has held a joint appointment as Professor in the Comjmter
Science and Electrical Engineering Departments at the Naval
Postgraduate School. Dr McGhee is a Fellow of the Institute of
Electrical and Electronic Engineers (IEEE).
Dr. Michael L. Nelson is current& on the faculty of the
Computer Science Department of the Pan American University,
Edinburg, Texas. He retired from the Air Force in 1995, where
his last position was as chief of the ProjectlConfigurataon
Management Branch, l n f m t i o n System Support Activity,
headquarters, U.S. Commander in Chief; Pact@. He received
his M.S. degree in Computer Science in 1984 from the Flmida
Institute of Technology and his Ph.D. in Computer Science in
1988 from the University of Central Florida. Dr Nelson was
previously on the faculty of the Computer Science Department at
the Naval Postgraduate School. His primaqv research interest is
object-oriented design techniques applied to real-time and robotic
systems.
Se-Hung Kwak is currently the principal software engineer
with Loral‘s Advance Distributed Simulation program with
expertise in intelligent and autonomous agent control. He
received his Ph.D. in Electrical Engineering at the Ohio State
University in 1986, following a tour of duty as an A m y Air
Defense artillery officer in the Republic ofKorea. Dr Kwak was
previously on the faculty of the Computer Science Department at
the Naval Postgraduate School. He is a member of IEEE.
Donald R Brutzman is a retired U S . N a y officer cuwmtly
on the faculty of the Operations Research Department of the
Naval Postgraduate School. While on active duty, he served three
submarine tours. Brutzman received a B.S. E . E . degree from
the U.S. Naval Academy in 1978 and M.S. and Ph.D. degrees
in Computer Science from the Naval Postgraduate School in
1992 and 1994, respectiuely. His research interests include 30
real time computer graphics, virtual worlds, scienttjk visualiza-
tion, underwater robotics, distributed simulation, machine
learning, and high-pevfomzance network applications. He i s a
member of IEEE, ACM and the American Association for Arti-
ficial Intelligence.

NAVAL ENGINEERS JOURNAL March 1996 55

