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SUMMARY

A new methodology is proposed for the design of trajectory tracking controllers for autonomous vehicles.
The design technique builds on gain scheduling control theory. An application is made to the design of a
trajectory tracking controller for a prototype autonomous underwater vehicle (AUV). The effectiveness
and advantages of the new control laws derived are illustrated in simulation using a full set of non-linear
equations of motion of the vehicle. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, there has been a surge of interest in the development of guidance and control systems
for autonomous vehicles for accurate tracking of inertial reference trajectories. Practical
applications include the operation of air, ground, and ocean vehicles for commercial and
scientific purposes. See, for example, Reference [1] for a brief description of environmental and
geological surveying missions using autonomous underwater vehicles (AUVs). See also
References [2,3] for scientific missions that require the joint operation of air and underwater
vehicles as well as the co-ordination of surface and underwater marine craft.

Traditionally, trajectory tracking controllers have been designed using the following
methodology. First, an inner loop is designed to stabilize the vehicle dynamics. Then, using
time-scale separation criteria, an outer loop is designed that relies essentially on the vehicle’s
kinematic model and converts tracking errors into inner loop commands. In classical and missile
control literature this outer loop is usually referred to as a guidance loop, of which line of sight
(LOS) guidance strategy is a typical example. See References [4–7] and the references therein for
an introduction to the subject and for interesting applications to the control of air and
underwater vehicles. Following this classical approach, control systems are designed based on
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vehicle dynamics, whereas guidance laws are essentially based on kinematic relationships only.
During the design phase, a common rule of thumb is adopted whereby the control system is
designed with sufficiently large bandwidth to track the commands that are expected from the
guidance system (the so-called time-scale separation principle). However, since the two systems
are effectively coupled, stability and adequate performance of the combined systems are not
guaranteed. This potential problem is particularly serious in the case of underwater vehicles,
which lack the agility of fast aircraft and thus impose tight restrictions on the closed loop
bandwidths that can be achieved with any dynamic control law.

In practice, attempts to resolve this problem require the judicious choice of control bandwidth
and guidance law parameters (such as so-called ‘visibility distance’ in the LOS strategy), guided
by extensive computer simulations. Even when stability is obtained, however, the resulting
guidance and control strategy may lead to finite trajectory tracking errors, the magnitude of
which will depend on the type of trajectory to be tracked (radius of curvature, desired speed of
the vehicle, etc.). See for example Reference [8] for an in-depth analysis of the stability of a
combined guidance and control system for an AUV in the horizontal plane.

Motivated by the above considerations, this paper introduces a methodology for the design of
guidance and control systems for autonomous vehicles whereby the two systems are designed
simultaneously. This leads to a new class of trajectory tracking controllers that exhibit two
major advantages over classical ones:

(i) stability of the combined guidance and control system is guaranteed, and
(ii) zero steady state error is achieved about any trimming trajectory.

The new design method builds on the following results that will be discussed later: (i) the
trimming trajectories of autonomous vehicles correspond to helices parameterized by the
vehicle’s linear speed, yaw rate, and flight path angle (in the case of land or ocean surface
vehicles, the trimming parameters are simply linear speed and yaw rate), (ii) tracking of a
trimming trajectory by a vehicle is equivalent to driving a conveniently defined generalized
tracking error to zero, and (iii) the linearization of the generalized error dynamics about any
trimming trajectory is time invariant. Based on these results, the problem of integrated design of
guidance and control systems for accurate tracking of trajectories that consist of the piecewise
union of trimming trajectories can be cast in the framework of gain scheduled control theory. In
this context, the vehicle’s linear speed, yaw rate, and flight path angle play the role of scheduling
variables that interpolate the parameters of linear controllers designed for a finite number of
representative trimming trajectories.

There is a long history of gain scheduling in applications, namely in the areas of electro-
mechanical systems, chemical process control, autopilots and flight control as well as
automotive engine control. The reader will find [9] an excellent survey of the field, including
latest theoretical developments. However, in spite of gain scheduling techniques having
provided a fruitful set-up for the development and actual implementation of advanced control
structures, considerable theoretical work must be done before a solid basis for stability and
performance analysis will emerge. Current trends include casting gain scheduling control
problems in the framework of linear parameter varying systems (LPV), linear fractional
transformations (LFT), or even stability based switching theory, see Reference [9] and the
references therein.

The main thrust of this paper is to show how the problem of trajectory tracking can be
formulated as a gain scheduling control problem. Thus, it does not address explicitly the issues
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of global stability and performance. Instead, the paper guides the reader through the steps that
are commonly adopted in the design of a gain scheduled controller and shows clearly what
procedures are required in the case of rigid body trajectory tracking control. As such, it
illustrates the following classical steps in the development of a gain scheduled controller for a
given plant [9,10]:

Linearizing the plant about a finite number of representative equilibrium (also referred to as
operating) points and computing the respective linearizations. This step yields a parameterized
family of linearized plants.

Designing linear controller for the linearized plants at each operating point. This produces a
parameterized family of linear controllers that yield adequate stability and performance for the
corresponding linearized models.

Interpolating the linear controllers in the previous step to achieve adequate performance of the
linearized closed loop systems at all points where the plant is expected to operate. Interpolation
is performed according to measurable scheduling variables that parameterize the plants
equilibrium points.

Implementing the family of linear controllers such that the controller coefficients (gains) are
varied (scheduled) according to the current values of the scheduling variables.

The last step requires considerable caution. In fact, ad-hoc methodologies for controller
implementation will often lead to poor performance of even instability even at a local level. This
is due to the presence of so-called hidden coupling [9,10]. To obviate this problem, an extension
of so-called D-methodology [10] for the implementation of gain scheduled controllers is
introduced in this paper. The resulting gain scheduled control law exhibits two main properties:

Linearization property}The linearization of the non-linear gain scheduled feedback control
system about each trimming trajectory preserves the internal as well as the input–output
properties of the corresponding linear closed loop designs.
Auto trimming property}The non-linear controller implementation does not require that the
trimming values of all state variables and inputs be fed into the controller.

Surprisingly, the first property is often not satisfied by gain scheduled controllers proposed in
the literature [10] due to the presence of hidden coupling. This paper shows how a simple
implementation strategy overcomes this problem. The methodology is simple to apply and leads
to a non-linear controller, the structure of which is similar to that of the original linear ones.

The second property is in striking contrast with most linearization based techniques for
trajectory tracking proposed in the literature. In fact, the structure of the new non-linear
tracking controllers is such that the trimming values for the plant inputs (as well as for the states
variables that are not explicitly required to track kinematic reference inputs) are automatically
acquired during operation.

The latter property can be easily understood by referring to the controller implementation
methodology described in Reference [10] and extended in this paper for the case of trajectory
tracking controllers. The methodology is based on the key observation that, in a gain scheduling
setting, linear controllers are designed to operate on perturbations of the plant’s inputs and
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outputs about equilibrium points. Proper blending of the different controllers requires that they
have access to such perturbations locally. This is achieved by differentiating some of the
measured outputs before they are fed back to the gain scheduled controller. In order to preserve
the input–output behaviour of the feedback system, integral action is provided at the input to
the plant. The integrators hold the key to the success of the methodology, as they naturally
‘charge up’ to the input values required to trim the plant.

The paper starts by describing the general methodology adopted for the design of gain-
scheduled trajectory tracking controllers. The techniques proposed are then applied to the
design of a trajectory tracking controller for the prototype autonomous underwater vehicle
(AUV) of Figure 8. The effectiveness and advantages of the resulting integrated guidance/
control strategy are illustrated in simulation, using a full set of non-linear equations of motion
of the vehicle.

It should be emphasized that the technique presented in this paper addresses precise tracking
of trajectories defined in terms of space and time co-ordinates. This feature is important for
many time-critical AUV missions. For the case where time is not of importance and the only
requirement is that the vehicle follow a desired path, the reader is referred to Reference [11], as
well as the excellent thesis by Al-Hibbabi [12] and references therein.

The paper is organized as follows. Section 2 presents the general form of the equations of
motion of a rigid body and describes the computation of its trimming trajectories. Section 3
particularizes the results of Section 2 to the case of a prototype underwater vehicle and
introduces a simple parameterization of its trimming trajectories as well as the corresponding
relevant state and input variables. Section 4 introduces the definition of generalized tracking
error and derives its time-invariant linearization about trimming trajectories. Section 5
formulates and describes a solution to the problem of trajectory tracking by casting it in the
framework of gain scheduled control theory. Section 6 presents an alternative definition of
generalized tracking error that simplifies controller implementation. Section 7 describes how the
solution derived is applied to the design of a trajectory tracking controller for the Infante AUV,
while Section 8 evaluates its performance using a non-linear simulation of the vehicle. Finally,
Section 9 presents concluding remarks and Section 10 gives some useful notes on matrix
properties.

2. RIGID BODY TRIMMING TRAJECTORIES

This section provides important basic notation, introduces the general form of the equations
of motion of a rigid body subject to external forces and torques, and describes the computation
of its equilibrium sets as well as trimming trajectories. The contents of the section have been
strongly influenced by the work reported in Reference [13].

2.1. Rigid body dynamics

In what follows, it is assumed that the equations of motion of a rigid body can be written in
standard form as

d

dt
x ¼ F ðxÞ þ BðxÞHðx; uÞ ð1Þ
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where x 2 Rn and u 2 Rm are the state and input vectors, respectively and m is the number of
actuators. The vector field F ðxÞ :Rn ! Rn represents the state dynamics, whereas BðxÞ :Rn !
Rn%m and Hðx; uÞ :Rnþm ! Rm describe the effect of the rigid body actuators on the state. It is
assumed that BðxÞ has full rank. Notice that Equations (1) are restricted to be affine on the term
Hðx; uÞ that involves inputs. However, they do capture the most important phenomena involved
in the motion of a large class of air, ground, and marine vehicles.

Often, the equations of motion (1) arise from higher order (that is, greater than first order)
differential equations. In this case, the equations can be split into two different sets that are
usually referred to as ‘dynamics’ and ‘kinematics’. Dynamics refers to the relationship between
the highest order derivatives and the physical forces and torques applied to the rigid body.
Kinematics refers to the analytic relationships between the derivatives of various orders, and
these are independent of any exogenous input variables.

Using the separation between ‘dynamics’ and ‘kinematics’ and defining

x :¼
xdyn

xkin

" #

; xdyn 2 Rk ;xkin 2 Rp ð2Þ

it follows that Equation (1) can be written as

d

dt

xdyn

xkin

" #

¼
F dynðxdyn;xkinÞ

F kinðxdyn;xkinÞ

" #

þ
BðxdynÞHðxdyn; uÞ

0

" #

ð3Þ

where the first k equations represent the rigid body dynamics and the last p equations represent
the kinematics. Notice the practical assumption that BðxÞ and Hðx; uÞ do not depend on xkin:

2.2. Equilibrium sets

The linearization method adopted in this work requires the computation of the equilibrium
points of dynamical systems described by ordinary differential equations of the form

d

dt
x ¼ f ðx; uÞ ð4Þ

where x 2 Rn is the state, u 2 Rm is the input, and f :Rnþm ! Rn: Given the dynamical system
(4),

E :¼ fðx; uÞ 2 Rnþm: f ðx; uÞ ¼ 0g

denotes it equilibrium set and

Es :¼ fx : 9u 2 Rm; ðx; uÞ 2 Eg

is the corresponding state equilibrium set.
Suppose the system of Equations (4) does not depend on u: Under fairly general conditions,

the corresponding set E is a manifold of dimension 04l4n: Typically, E consists of isolated
equilibrium points, in which case the manifold has dimension l ¼ 0: Suppose now that one
control input is added, that is, m ¼ 1: Then, for each value of the input u; there will be, in
general, a corresponding set of isolated equilibrium points. Furthermore, the family of
equilibrium points generated in this manner will be such that Es is a one-dimensional set.
Similarly, systems with m inputs will typically have sets Es of dimension m: Under very general
conditions on the vector field f the set Es is a smooth mathematical set called an ‘m-dimensional
manifold’.
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The computation of the equilibrium set or the state equilibrium set of a rigid body depends on
the structure of its kinematic and dynamic equations. See for example Reference [14] for an
introduction to this subject and [13] for the computation of the state equilibrium manifold for a
6 degree-of-freedom aircraft model. As will become clear later, in the problems tackled in this
paper the kinematic variables can be split into two sets, that is,

xkin ¼ ½xTkin;i;x
T
kin;o'

T ð5Þ

where xkin;i 2 Rq denotes the kinematic variables that appear explicitly in the top equations of (3)
and xkin;o 2 Rp(q are the remaining variables. Using this nomenclature, Equations (3) can be
rewritten as

d

dt

xdyn

xkin;i

xkin;o

2

664

3

775 ¼

F dynðxdyn; xkin;iÞ

F kin;iðxdyn;xkin;iÞ

F kin;oðxdyn;xkinÞ

2

664

3

775þ

BðxdynÞHðxdyn; uÞ

0

0

2

664

3

775 ð6Þ

where it is assumed that the kinematic equations for xkin;i do not depend on xkin;o: Henceforth,
the equilibrium set Er of a rigid body described by Equations (6) is defined as

Er :¼ ðxdyn;xkin;i; uÞ 2 Rkþqþm:
F dynðxdyn;xkin;iÞ

F kin;iðxdyn; xkin;iÞ

" #

þ
BðxdynÞHðxdyn; uÞ

0

" #(

¼
0

0

" #

)

)

ð7Þ

Notice how the kinematic equations for xkin;o do not play a role in the definition of the set Er:
Similarly, the state equilibrium set Er

s of a rigid body is defined as

Er
s :¼ fðxdyn; xkin;iÞ 2 Rkþq: 9u 2 Rm; ðxdyn;xkin;i; uÞ 2 Eg

The main focus of this section is on the computation of the equilibrium sets Er; that is, finding
solutions to the equations

F dynðxdyn;xkin;iÞ

F kin;iðxdyn; xkin;iÞ

" #

þ
BðxdynÞHðxdyn; uÞ

0

" #

¼
0

0

" #

ð8Þ

At this point it is important to emphasize that the above equation is affine in Hðxdyn; uÞ: This
allows eliminating the input variable u from the non-linear system of Equations (8) by pre-
multiplying the top equation by the k ( m by k orthogonal complement B?ðxdynÞ of BðxdynÞ that
satisfies the relationship [13]

B?ðxdynÞBðxdynÞ ¼ 0; B?ðxdynÞ 2 Rðk(mÞ%k

This yields the system of equations

B?ðxdynÞF dynðxdyn;xkin;iÞ ¼ 0

F kin;iðxdyn; xkin;iÞ ¼ 0
ð9Þ

which corresponds to k þ q( m equations in the k þ q unknowns xdyn and xkin;i: The operator
B?ðxdynÞ is not unique. Particular solutions derived using the fact that B?ðxdynÞ is full rank can
be found in References [13,14].
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In general, the set of solutions of (9) (that is, the state equilibrium set Er
s) has dimension m:

Suppose that the q kinematic equations can be used to eliminate q of the variables, leaving only
k unknowns, denoted xeq: In this case, one is left with a system of k ( m equations

B?ðxeqÞF dynðxeqÞ ¼ 0 ð10Þ

in the k variables xeq: A system of k ( m equations in k variables has an m-dimensional solution
set.

Additional constraints are thus necessary to obtain a unique solution. The constraints are
problem-dependent and require examining the structure of the kinematic equations for xkin;o; as
well as the possible types of so-called trimming trajectories for the rigid body in question. An
example will be presented later. A technique to compute the remaining q components of x as
well as the input vector u can be found in Reference [14].

2.3. Trimming trajectories

The concept of trimming trajectory of a rigid body is closely related to that of its equilibrium
set Er:

Definition 2.1 (Generalized trimming trajectory)
Given a rigid body %RR with dynamics (1) and equilibrium set Er; a generalized trimming
trajectory Ug

C of %RR is defined as

Ug
C :¼ fðxdynC ;xkinC ð)Þ; uCÞ : ðxdynC ;xkin;iC ; uCÞ 2 Erg ð11Þ

where xdynC 2 Rk ;xkinC ð)Þ :Rþ ! Rp; and uC 2 Rm: The vector ½xTdynC ;x
T
kin;iC ; u

T
C'

T 2 Rkþqþm is
called the trimming vector of Ug

C :

Notice in the definition that xkinC is allowed to be a function of time. For example, in the case
of an aircraft at trimmed level flight, the inertial position co-ordinates change with time.

The following definitions are also required.

Definition 2.2 (Trimming trajectory)
Given a rigid body %RR with dynamics (1), a trimming trajectory UC of %RR is defined as

UC :¼ fxkinC ð)Þ: 9U
g
C ;xkinC ð)Þ ¼ PkU

g
Cg ð12Þ

where Ug
C is a generalized trimming trajectory of %RR and PkU

g
C is the operator that extracts the

(kinematic) xkinC ð)Þ components from Ug
C : The vector ½xTdynC ; x

T
kin;iC ; u

T
C'

T 2 Rkþqþm is called the
trimming vector of UC :

It is important to point out that the trimming trajectories of a rigid body include its kinematic
variables only.

A trimming trajectory of a rigid body or vehicle moving in a flow field corresponds to the
situation where all the inputs are fixed and the dynamic variables xdyn are constant.
Furthermore, at trimming the kinematic variables xkin;i must also be constant. Thus, at
trimming

0 ¼ F dynðxdynC ; xkin;iC Þ þ BðxdynC ÞHðxdynC ; uCÞ ð13Þ
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Definition 2.3 (Set of trimming trajectories E)
Given a rigid body %RR with dynamics (1), the set of trimming trajectories E of %RR is defined as the
collection of all its trimming trajectories UC:

3. AUV DYNAMICAL MODEL AND TRIMMING TRAJECTORIES

This section presents the equations of motion of an autonomous underwater vehicle (AUV) (see
Figure 8) and casts them in the general form introduced in Section 2. The equilibrium (also
called trimming) trajectories of the vehicle are derived and parameterized. The corresponding
trimming vectors are computed.

3.1. Underwater vehicle dynamics

The equations of motion for underwater vehicles can be obtained from Newton–Euler and
hydrodynamic laws following the classical approach described in Reference [15]. With this set-
up, the equations are easily developed using a inertial co-ordinate frame fIg and a body fixed co-
ordinate frame fBg that moves with the AUV. Due to space limitation only the general form of
the equations is described here. See for example References [16,17] for complete details and
basic nomenclature. The following notation is required:

p ¼ ½x; y; z'T}position of the origin of fBg expressed in fIg;
v ¼ ½u; v;w'T}linear velocity of the origin of fBg relative to fIg; expressed in fBg;
k ¼ ½f; y;c'T}vector of Euler angles (roll, pitch, and yaw) that describes the orientation of
frame fBg with respect to fIg;
x ¼ ½p; q; t'T}body fixed angular velocity of fBg relative to fIg; expressed in fBg;
R ¼ I

BRðkÞ}rotation matrix from fBg to fIg; parameterized locally by k; R is orthonormal,
and R ¼ I for k ¼ 0;
Q ¼ QðkÞ}matrix that relates body fixed angular velocity x to Euler angles rates; Q satisfies
’kk ¼ Qx and equals the identity for k ¼ 0:
Let

xdyn *
v

x

" #

; xkin *
p

k

" #

ð14Þ

where xdyn 2 R6 and xkin 2 R6 denote the dynamic and kinematic variables that are used to
describe the complete motion of the vehicle. Further, let

LðkÞ *
R 0

0 Q

" #

Using the above notation, the vehicle dynamics and kinematics can be described by (see
Reference [13] for the case of aircraft and Reference [14] for underwater vehicles):

MRB
d

dt
xdyn þ CRBðxdynÞxdyn ¼ s

d

dt
xdyn;xdyn;k; d; n

! "
ð15Þ

d

dt
xkin ¼ LðkÞxdyn ð16Þ
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where s denotes the vector of external forces and moments, and MRB and CRB denote the rigid
body inertia matrix and the matrix of Coriolis and centrifugal terms, respectively. The vector s
can be further decomposed as

s
d

dt
xdyn;xdyn;k; d; n

! "
¼ srestðkÞ þ sadd

d

dt
xdyn;xdyn

! "
þ ssurf ðxdyn; dÞ

þ sviscðxdyn; dÞ þ tpropðxdyn; nÞ ð17Þ

where srest consists of the (restoring) forces and moments caused by the interplay between
gravity and buoyancy, and sadd is the added mass term. The term ssurf captures the forces and
moments generated by the deflecting surfaces, svisc consists of the hydrodynamic forces and
moments exerted on the vehicle’s body (including the skin friction terms), and sprop represents
the forces and moments generated by the main propellers. The input vector d ¼ ½dd; db; ds; dr'T

consists of the differential mode of the bow and stern plane deflections, common mode bow
plane deflection, common mode stern plane deflection and deflections of the rudders,
respectively. The symbol n denotes the speed of rotation of the main propellers.

It is now routine to rewrite Equations (15) and(16) in the standard state-space form of (3) as

P ¼

d

dt
xdyn ¼ F dynðxdyn; xkinÞ þ BðxdynÞHðxdyn; uÞ

d

dt
xkin ¼ LðkÞxdyn

8
>><

>>:
ð18Þ

by making

u ¼ ½dT; n'T ð19Þ

and

F kinðxdyn; xkinÞ ¼ LðkÞxdyn ð20Þ

Physical considerations dictate that F dyn depends on the kinematic variables f; y 2 k but not
on c and p: This means that the dynamics of the underwater vehicle are independent of its linear
position in space and its yaw angle. Furthermore, the matrix Q does not depend on the angle c:
To simplify the physical interpretation of the variables involved in the vehicle’s model (18) can
be written in expanded form as

P ¼

d

dt
v ¼ F vðv;xÞ þ F k

v ðPikÞ þ Bvðv;xÞHðv; uÞ

d

dt
x ¼ Fxðv;xÞ þ F k

xðPikÞ þ Bxðv;xÞHðv; uÞ

d

dt
p ¼ RðkÞv

d

dt
k ¼ QðPikÞx

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð21Þ

where the functions, F v; F k
v ; Bv; Fx; F k

x and Bx are obtained from F and B and Pik ¼ ½f; y'T:
Often, and with an obvious abuse of notation, F k

v ðPikÞ;F k
xðPikÞ; and QðPikÞ; will be simply

written as F k
v ðkÞ; F k

xðkÞ; and QðkÞ; respectively.
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The dependence of F dyn on f and y shows up in the force and torque terms that arise due to
the interplay between gravity and buoyancy forces, which can be further decomposed as

F k
v ðkÞ ¼ MvR(1g; F k

xðkÞ ¼ MxR(1g

where

g ¼ ½0; 0; g'T

is the gravity acceleration vector expressed in the inertial co-ordinate system and matrices Mv

and Mx are obtained from the vehicle’s physical parameters [14]. From the above discussion it
follows immediately that

xkin;i ¼ ½f; y'T ð22Þ

and

xkin;o ¼ ½c; pT'T ð23Þ

In this case the set of trimming trajectories of the AUV is easily seen to be of the form

E :¼

xkinC ð:Þ ¼
pCð:Þ

kCð:Þ

" #

:
d

dt
pCð:Þ ¼ RCðkCð:ÞÞvC ;

d

dt
kCð:Þ ¼ QCðPikCð:ÞÞxC ;

F vðvC;xCÞ þ F k
v ðPikCð:ÞÞ þ BvðvC ;xCÞHðvC ; uCÞ ¼ 0;

FxðvC ;xCÞ þ F k
xðPikCð:ÞÞ þ BxðvC ;xCÞHðvC ; uCÞ ¼ 0

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

ð24Þ

where vC; xC ; uC and PikC ¼ ½fC ; yC'
T denote trimming values of v;x; u and Pk; respectively.

Clearly, ½vTC ; x
T
C ; PikT; uTC'

T is the trimming vector of an element of E: In practice, the trimming
vector is restricted to be in some compact set.

As explained later, it is natural to attach to each trimming trajectory UC of a rigid body a
body fixed co-ordinate system fCg that describes the position and orientation of the body along
that trajectory. In this case, the variables introduced before have the following interpretation:

pC}position of the origin of fCg expressed in fIg;
vC}linear velocity of the origin of fCg relative to fIg expressed in fCg;
kC}Vector of Euler angles which describes the orientation of frame fCg in fIg;
xC}angular velocity of fCg relative to fIg expressed in fCg:
In preparation for the section that follows it is convenient to define
RC ¼ I

CRðkCðtÞÞ}rotation matrix from fCg to fIg;
QC ¼ QðkCðtÞÞ:

It is assumed that the reader is familiar with the definitions of angle of attack a ¼
arcsinðw=ðu2 þ w2Þ1=2Þ; sideslip angle b ¼ arcsinðv=ðu2 þ v2 þ w2Þ1=2Þ; and flight path angle g; as
well as the concept of flow frame (usually referred to as wind frame in aeronautics). See
Reference [6].
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3.2. Trimming trajectories parameterization

At trimming, the body referenced linear and angular velocities v and x and the roll and pitch
angles are constant, that is,

d

dt
xdyn ¼

d

dt
½vT;xT'T ¼ 0;

d

dt
xkin;i ¼

d

dt
½f; y'T ¼ 0 ð25Þ

Let vC ; xC ; fC; and yC denote the trimming values of v; x; f; and y respectively. In References
[13,14] it is shown that

d

dt

xC

yC

zC

2

664

3

775 ¼

Vtc cosðgCÞ cosð ’ccCt þ coÞ

Vtc cosðgCÞ sinð ’ccCt þ coÞ

(Vtc sinðgCÞ

2

664

3

775 ð26Þ

where ’ccC is yaw rate, cv denotes the angle between the vehicle heading and the vehicle velocity
vector, Vtc ¼ jjvC jj is linear body speed, and gC is the so-called ‘trimming flight path angle’.

Integrating the above equation shows that the only possible trimming trajectories UC 2 E of
the underwater vehicle correspond to helices described by

kCðtÞ ¼

fC

yC

’ccCt þ cv þ c0

2

664

3

775; pCðtÞ ¼

vtc
cC

cosðgCÞ sinð ’ccCt þ coÞ

vtc
cC

cosðgCÞ cosð ’ccCt þ coÞ

(Vtc sinðgCÞt

2

666664

3

777775
þ

x0

y0

z0

2

664

3

775 ð27Þ

where the vector ½x0; y0; z0'T and c0 denote the helix initial conditions (see Figure 1).
It can thus be concluded that the set E of trimming trajectories can be completely

parametrized by the vector

gC ¼ ½Vtc ; ’ccC ; gC' 2 R3 ð28Þ

Given a trimming trajectory GC parameterized by gC and an AUV dynamic model (21) one is
now faced with the problem of actually computing the state and control vectors that satisfy
these equations, that is, the trimming vector of GC : This step is problem dependent and builds on
the algorithm introduced in Section 2 for the computation of the rigid body equilibrium set. In
the case of the AUV under consideration, the constraints that follow are sufficient to completely
specify the trimming vector as a function of gC ; thus showing that the trimming vector is
parameterized by gC : See Reference [14] for further details.

3.2.1. Constraint on linear velocity
The parameter Vtc imposes the constraint

jjvC jj ¼ VTc

on the vehicle’s velocity vector v: It is straightforward to show that

vC ¼

uC

vC

wC

2

664

3

775 ¼

VTc cosðaCÞ cosðbCÞ

VTc sinðbCÞ

VTc sinðaCÞ cosðbCÞ

2

664

3

775
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where the angles of attack aC and sideslip bC are constant and remain free to accommodate
extra constraints.

3.2.2. Constraint on rate of climb
In Equation (26), the rate of climbing at trimming is simply

’zztC ¼ (VTc sinðgCÞ

which corresponds to the negative z-axis component of the vehicle velocity vector expressed in
the inertial frame fIg: One can now use a co-ordinate transformation from the flow axes to the
inertial co-ordinate system to obtain an extra constraint as follows. Start by writing

VTc cosðgCÞ cosð ’ccCt þ coÞ

VTc cosðgCÞ sinð ’ccCt þ coÞ

(VTc sinðgCÞ

2

664

3

775 ¼ RRT
F

VTc

0

0

2

664

3

775

where RF (which is a function of angles of attack and sideslip) is the rotation matrix from flow
to body axis. Notice the important fact that when written in the flow axis only the first
component of the total velocity vector is different from zero. This equation can be expanded and
arranged to give

sinðgCÞ ¼ cosðaCÞ cosðbCÞ sinðyCÞ

( ½sinðfCÞ sinðbCÞ þ cosðfCÞ sinðaCÞ cosðbCÞ' cosðyCÞ ð29Þ

which is the required constraint. If fC ¼ 0 and bC ¼ 0; this leads to the well known relationship

yC ¼ aC þ gC
that is, pitch angle is equal to the sum of flight path angle and angle of attack.

3.2.3. Constraint on angle of attack
Due to the existence of bow and stern control surfaces, the AUV is capable of performing steady
state manoeuvres in the vertical plane with an arbitrary angle of attack aC : Thus, an additional
constraint on aC must be found. The following three possible scenarios are possible:

Figure 1. Trimming trajectory.
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(i) set the angle of attack to a predefined value, say aC ¼ aC0 ;
(ii) find the angle of attack that minimizes the thrust required to drive the vehicle along the

desired trimming trajectory UC;
(iii) set the bow control surface to zero at trim, and find the angle of attack aC as a function

of the desired trimming trajectory UC :

Due to the difficulty in measuring the angle of attack, the first two options will be hard to use in
practice. The third, however, is easily enforced by introducing a ‘washout’ during the control
design phase to ensure zero bow control plane deflection at trimming, leading to the steady state
constraint

dbc ¼ 0

3.2.4. Constraint on roll angle
Due to physical vehicle characteristics (metacentric height versus torque generated by the
control surfaces) the roll angle will be kept always small and the vehicle will be trimmed at
fC ¼ 0:

It is important to remark that for some types of vehicles (e.g. fully actuated remotely operated
vehicles) there is considerably more freedom in selecting the desired vehicle attitude along
trimming trajectories. In this case, additional parameters can be included as scheduling variables
or additional constraints have to be imposed to compute the trimming vectors.

4. GENERALIZED ERROR DYNAMICS

The gain scheduling methodology proposed for integrated design of a guidance and control
system for the non-linear system P described by Equations (21) involves obtaining linear models
for P along trimming trajectories in the set E: These models will necessarily be time varying in
the co-ordinates used to write (21). It turns out, however, that appropriate error co-ordinate
systems exist where the linearization of the plant P along any trajectory UC 2 E is time invariant.
One of these co-ordinate systems is discussed next.

Before proceeding, consider Figure 2 whereR represents the co-ordinate transformation from
body fixed co-ordinate system fBg to inertial frame fIg and fCg corresponds to the body axis
co-ordinate system at trimming. The matrices RE and RC represent the co-ordinate
transformations from fBg to fCg and from fCg to fIg; respectively. Using these definitions,
it is clear that

RE ¼ R(1
C R ð30Þ

Let pC ;kC 2 E be given. Define the non-linear transformation [7]

NLT ¼

vE ¼ v( vC

xE ¼ x( xC

pE ¼ R(1ðp( pCÞ

kE ¼ argðREÞ

8
>>>>><

>>>>>:

ð31Þ
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with

argðREÞ ¼

yE ¼ atan2 (r31;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r211 þ r221

q$ %

cE ¼ atan2ðr21=cosðyEÞ; r11=cosðyEÞÞ

fE ¼ atan2ðr32=cosðyEÞ; r33=cosðyEÞÞ

8
>>><

>>>:

where atan2(. , .) is the two argument arc tangent function, and rij represents the ijth
element of matrix RE [16]. Further let uE ¼ u( uC : The non-linear co-ordinate transformation
(31) can be interpreted as the generalized error vector between the vehicle state and the
trajectory in E:

It will now be shown that in the new error co-ordinate system the linearization of the rigid
body dynamics given by (21) along any arbitrary trajectory in E is time invariant. To obtain the
linearization of the rigid body dynamics in the new co-ordinate system, the time derivatives of
the new error variables defined in (31) must be computed first. It is obvious that

d

dt
vE ¼

d

dt
v(

d

dt
vC

and

d

dt
xE ¼

d

dt
x(

d

dt
xC

From the definition of pE;

pC ¼ p(RpE

and

d

dt
pC ¼

d

dt
p(RSðxÞpE (R d

dt
pE

where SðxÞ is the skew symmetric matrix defined by SðxÞ ¼ x% (see the appendix). Since
ðd=dtÞp ¼ Rv and ðd=dtÞpC ¼ RCvC it follows that

RCvC ¼ Rv(RSðxÞpE (R d

dt
pE ð32Þ

Figure 2. Relationship among co-ordinate systems.
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Pre-multiplying both sides of Equation (32) by R(1 and using R(1
E ¼ R(1RC Equation (32)

yields

d

dt
pE ¼ v(R(1

E vC ( SðxÞpE

The time derivative of kE is computed using the well-known relationship (see Reference [16]
for further details)

d

dt
kE ¼ QE½x(R(1

E xC'

where QE ¼ QðkEÞ:
Since for any trimming trajectory UC 2 E the vectors vC and xC are constant, the above

equations can be written as

d

dt
vE ¼

d

dt
v

d

dt
xE¼

d

dt
x

d

dt
pE ¼ v(R(1

E vC ( SðxÞpE

d

dt
kE ¼ QE½x(R(1

E xC'

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð33Þ

Finally, using Equation (21) one obtains

PE ¼

d

dt
vE ¼ F vðv;xÞ þ F k

v ðkÞ þ Bvðv;xÞHðv; uÞ

d

dt
xE¼ Fxðv;xÞ þ F k

xðkÞ þ Bxðv;xÞHðv; uÞ

d

dt
pE ¼ v(R(1

E vC ( SðxÞpE

d

dt
kE ¼ QE½x(R(1

E xC'

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð34Þ

which corresponds to the non-linear plant depicted in Figure 3. The main result of this section is
stated next.

Theorem 4.1
Let UC 2 E be an arbitrary trimming trajectory of a rigid body !RR; and let gC be the
corresponding parametrizing vector. Consider the generalized error dynamics PE in (34) that
result from applying the non-linear transformation (31) to the rigid body equations (21). Then,
the linearization of PE about the zero solution (or equivalently, the linearization of the rigid
body dynamics about UC ; expressed in the new co-ordinates of (31)) is time invariant, with
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realization

PLðgCÞ ¼

d

dt
dvE ¼ Av

vdvE þ Ax
v dxE þ Ak

vdkE þ Bvdu

d

dt
dxE ¼ Av

xdvE þ Ax
xdxE þ Ak

xdkE þ Bxdu

d

dt
dpE ¼ dvE ( SðxCÞdpE ( SðvCÞdkE

d

dt
dkE ¼ dxE ( SðxCÞdkE

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð35Þ

where

Av
v *

@
@v
½F vð:Þ þ Bvð:ÞHð:Þ'; Ax

v *
@
@x

½F vð:Þ þ Bvð:ÞHð:Þ';

Bv *
@
@u
½Bvð:ÞHð:Þ';

Av
x *

@
@v
½Fxð:Þ þ Bxð:ÞHð:Þ'; Ax

x *
@
@x

½Fxð:Þ þ Bxð:ÞHð:Þ';

Bx *
@
@u
½Bxð:ÞHð:Þ'

ð36Þ

with

Ak
v *

@
@k

F k
v ð:Þ ¼ MvSðR(1

C gÞ; Ak
x *

@
@k

F k
xð:Þ ¼ MxSðR(1

C gÞ

and all partial derivatives are computed at trimming values.

For simplicity the system output equation is not written explicitly in realization (35) since its
form is problem dependent and will be clear from the context.

Remark
Trim invariance of the error dynamics is a result of resolving the tracking errors in a co-ordinate
system attached to the body. As such, similar results can be obtained for any rigid body tracking
trimming trajectories.

Figure 3. Non-linear plant representation.
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Proof
To prove Theorem 4.1 Equations (34) can be linearized to derive the linearization
PLðgCÞ of PE about the zero solution (with a certain abuse of notation, we will often refer to
PLðgCÞ as the linearization of the rigid body Equations (21) about UC).

Start with the dynamic equations. From the definition of vE and xE it follows that

dvE ¼ dv

dxE ¼ dx
ð37Þ

and therefore

d

dt
dvE ¼

d

dt
dvl

d

dt
dxE ¼

d

dt
dx

ð38Þ

Computing the linearization of (34) and applying Equations (38) and Identity 10.1 from the
appendix, gives the time invariant equations

d

dt
dvE ¼ Av

vdvE þ Ax
v dxE þ Ak

vdkE þ Bvdu

d

dt
dxE ¼ Av

xdvE þ Ax
xdxE þ Ak

xdkE þ Bxdu
ð39Þ

Consider now the kinematic equations. Recall that if w is a vector of R3; then the following
relationships hold (see the appendix):

d

dk
ðRwÞ ¼ (RSðwÞQ(1ðkÞ and

d

dk
ðR(1wÞ ¼ SðR(1wÞQ(1ðkÞ ð40Þ

To compute the linearization of ðd=dtÞpE; observe that kE ¼ 0 and RE ¼ I along trimming
trajectories UC 2 E: Using the above relationship it is easy to obtain

@
@kE

ðR(1
E vCÞ

&&&&
kE¼0

¼ SðREvCÞQ(1
E jkE¼0 ¼ SðvCÞ

and therefore

d

dt
dpE ¼ dv( SðvCÞdkE ( SðxCÞdpE ð41Þ

To compute the linearization of ðd=dtÞkE; observe first that

d

dt
kE ¼ QExE þQEðI (R(1

E ÞxC

Let y ¼ ðI (R(1
E ÞxC : Then,

d

dt
dkE ¼ QEjkE¼0dxE þ

@
@kE

ðQEÞy
&&&&
kE¼0

dkE (QE
@

@kE
ðR(1

E xCÞ
&&&&
kE¼0

dkE

Since along a trimming trajectory the vector y equals 0; using the right-hand side identity of (40)
one obtains

d

dt
dkE ¼ dxE ( SðxCÞdkE
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Thus, the linearized model admits the time invariant realization (35) thereby completing the
proof of Theorem 4.1. &

Equation (35) can be used to define a family of linear plants PL associated with the set E: Let
UC 2 E and define

dxdynE ¼
dvE

dxE

" #

; dxkinE ¼
dpE

dkE

" #

Then

PLðgCÞ :¼

d

dt
dxdynE ¼ Ad

dðgCÞdxdynE þ Ad
k ðgCÞdxkinE þ BðgCÞdu

d

dt
dxkinE ¼ dxdynE þ Ak

kðgCÞdxkinE

8
>><

>>:

where

Ad
d ¼

Av
v Ax

v

Av
x Ax

x

" #

; Ad
k ¼

0 Ak
v

0 Ak
x

" #

; Ak
k ¼

(SðxCÞ (SðvCÞ

0 (SðxCÞ

" #

; B ¼
Bv

Bx

" #

Formally,

PL :¼ fPLðgCÞ; gC ¼ ½Vtc ; ’ccC ; gC'
Tg

The utility of the family of linear plants PL as well as the perturbed kinematic error dxkinE will
become evident in the next section.

5. TRAJECTORY TRACKING CONTROLLER IMPLEMENTATION PROBLEM

In the previous section it was shown that linearization of the rigid body dynamics about any
trimming trajectory in E results in a time invariant plant PLðgCÞ: Therefore, associated with the
set E there is a family of linear plants PL which can be used to synthesize a gain scheduled
tracking controller C designed to operate about all the trajectories UC 2 E: Following common
practice, this involves designing a family of linear controllers for a finite number of linear plants
PLðgCÞ in PL; and then interpolating between these controllers to achieve adequate performance
for all the linearized plants in PL: During real time operation, the controller parameters are
updated as functions of the time-varying gain scheduling variable g: This is illustrated in the
feedback system represented in Figure 4, where P is the rigid body model dynamic model to be
controlled. The controller CðgÞ; that operates on the measured variables y to produce the control
input u, is scheduled on the parameter g ¼ ½Vt; ’cc; g'T measured in real time. In the figure,

UR ¼ ½pTR ; k
T
R '

T

is the input vector to be tracked by the corresponding variables in xkin: Notice that this captures
the general case where desired values are specified for both the vehicle’s position and attitude.

In what follows, the study will be restricted to the idealized case where the description of each
controller for each plant in PL is available [18]. Therefore, it is assumed that the first design step
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produces the set

CL :¼ fCLðgCÞ;gC ¼ ½Vtc ; ’ccC ; gC'
Tg

where CL is a controller designed to operate about gC:

5.1. The output feedback case

Figure 5 depicts the general structure of a linear tracking controller for a plant CLðgCÞ: The
dynamic block KðgCÞ has realization

KðgCÞ ¼
Ac1 ðgCÞ Bc1ðgCÞ Bc2 ðgCÞ Bc3ðgCÞ

Cc1ðgCÞ Dc1 ðgCÞ Dc2ðgCÞ Dc3 ðgCÞ

" #

corresponding to the linear controller implementation

CLðgCÞ ¼

d

dt
dxc1 ¼ Ac1ðgCÞdxc1 þ Bc1ðgCÞCddxdynE þ Bc2 ðgCÞðdxkinE ( fÞ

þ Bc3ðgCÞdxc2
d

dt
dxc2 ¼ S1ðdxkinE ( fÞ þ S2du

du ¼ Cc1 ðgCÞdxc1 þ Dc1ðgCÞCddxdynE þ Dc2ðgCÞðdxkinE ( fÞ

þDc3ðgCÞdxc2

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð42Þ

where ½dxTc1 ; dx
T
c2 '

T 2 Rncþm is the controller state, du 2 Rm is the input to the plant, and matrix Cd

selects the components of xdynE that are accessible for measurement. The fictitious input f is
introduced to assess tracking performance of the linearized closed loop system. Matrices S1 2
Rm%p and S2 2 Rm%m select q and m( q components of vectors dxkinE and du; respectively, that
must be driven to zero along trimming trajectories. For example, in the case of an AUV it may

Figure 4. Feedback interconnection of non-linear plant P and controller CðgÞ:
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be required to drive the tracking error of certain kinematic variables as well as the bow plane
deflection to zero while leaving the other kinematic variables and inputs unconstrained. As is
common in control system design, this is done by including integrators that are driven by the
constrained variables. The total number of integrators equals the number of inputs to the plant.
Thus,

S1 ¼
X1

0

" #

; X1 2 Rq%p; X1 full row rank

and

S2 ¼
0

X2

" #

; X2 2 Rðm(qÞ%m; X2 full row rank

It is assumed that the parameters of the controller are C1 functions of gC:
The structure of the controller CL is represented in Figure 5 and has the following important

feature. Suppose the closed loop system consisting of Equations (35) and (42) is asymptotically
stable. Then the controller CLðgCÞ will ensure zero steady-state error to a step input for the
variables in S1ðdxkinE ( fÞ as well as zero steady-state actuation for the actuators in S2du: This is
achieved by integrating S1ðdxkinE ( fÞ þ S2du: This structure is typical of tracking controllers,
since they are designed to drive errors between step changes in reference commands and the
corresponding plant outputs to zero at steady state. Notice that the block KðgCÞ (see Figure 5)
may itself contain additional integrators.

In the framework of gain scheduled control the family of linear controllers CL must be
implemented on the non-linear plant P defined in Section 4. This issue is usually referred to as
the controller implementation problem. See Reference [10] where this problem was addressed
for a specific class of non-linear plants and tracking controllers. Motivated by the analysis
presented in Reference [10] let UC 2 E be a trimming trajectory and gC the corresponding
trimming parameter. Further let

T ðPLðgCÞ; CLðgCÞÞ : f ! dxkinE
be the closed loop linear operator that results from connecting CLðgCÞ to PLðgCÞ; and denote by
T ðPLðgCÞ; CLðgCÞÞðsÞ the corresponding matrix transfer function. Let

T ðP; CÞðgCÞ : UR ! xkin

Figure 5. Linear controller CLðgCÞ:
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be the non-linear closed loop system that consists of C and P; and let

*TT lðP; CÞðgCÞ

denote the operator that results from its linearization about UC 2 E:
For performance assessment, it is important to find out how the resulting control system

reacts in response to small perturbations in the commands UR about the nominal trajectory UC :
Define the operator

T lðP; CÞðgCÞ ¼ L(1ðkCÞ *TT lðP; CÞðgCÞLðkCÞ

where the time varying transformation LðkCÞ is given by

LðkCÞ ¼
RC 0

0 QC

" #

It will be shown that T lðP; CÞðgCÞ is time invariant and can be viewed as the ‘trajectory
compensated’ linearization of the non-linear closed loop system about UC : Denote by
T lðP; CÞðgCÞðsÞ the corresponding matrix transfer function. With this notation, the rigid body
trajectory tracking controller implementation problem addressed in this paper can be stated as
follows:

5.1.1. Trajectory tracking controller implementation problem
Find a gain scheduled controller CðgÞ such that for each UC 2 E

(i) the feedback systems T lðP; CÞðgCÞ and T ðPLðgCÞ; CLðgCÞÞ have the same closed loop
eigenvalues;

(ii) the closed loop transfer functions T lððP; CÞðgCÞÞðsÞ and T ðPLðgCÞ; CLðgCÞÞðsÞ are equal.

Notice the basic requisites set forth in the trajectory tracking controller implementation
problem that both internal (eigenvalue placement) and external (input output behaviour)
properties be preserved.

A complete solution to the trajectory tracking controller implementation problem is provided
below. Given the set CL of linear controllers for the set PL of linearized plant models, consider
the following structure as an implementation proposal for the gain scheduled controller CðgÞ (see
Figure 6)

CðgÞ :¼

*xxkinE ¼ ½R(1½p( pR'
T; argð *RREÞT'T

d

dt
xc1 ¼ Ac1ðgÞxc1 þ Bc1ðgÞCd

d

dt
xdyn þ Bc2 ðgÞ

d

dt
*xxkinE

þ Bc3ðgÞ½S2uþ S1 *xxkinE '

d

dt
xc2 ¼ Cc1ðgÞxc1 þ Dc1 ðgÞCd

d

dt
xdyn þ Dc2 ðgÞ

d

dt
*xxkinE

þDcs ðgÞ½S2uþ S1 *xxkinE '

u ¼ xc2

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð43Þ
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where matrix *RRE ¼ RðkRÞTR represents the co-ordinate transformation from fBg to command
frame, parameterized locally by vector kR: Notice in Figures 5 and 6 that the structure of the
gain scheduled controller is easily obtained from that of the linear controllers.

Consider the following assumptions:

A1. dimðxc2 Þ ¼ dimðuÞ ¼ dimðS1 *xxkinE þ S2uÞ
A2. The matrix

sI ( Ac1 ðgÞ Bc3 ðgÞ

(Cc1 ðgÞ Dc3ðgÞ

" #

has full rank at s ¼ 0 for each UC 2 E:
A3. The matrix pair ðAc1 ;Cc1 Þ is observable.

Assumption A1 implies that the number of integrators is equal to the number of control inputs.
This is necessary if the controller is to provide independent control of the signals S1 *xxkinE þ S2u
using the control inputs u: Assumption A2 implies that the realization ðAc1 ;Bc3 ;Cc1 ;Dc3Þ has no
transmission zeroes at the origin. Finally, assumption A3 guarantees that the state xc1 is zero
along trajectories in E:

The main result of this section is stated next.

Theorem 5.1
Given CL; suppose assumptions A1, A2, and A3 hold. Then the gain scheduled controller C given
by Equations (43) solves the trajectory tracking controller implementation problem.

It follows from the theorem that the eigenvalues of the linearization along each trajectory in E
are preserved. Furthermore, the input–output behaviour of the linearized operators is preserved
in a well-defined sense. The reader is referred to Reference [10] for a complete discussion on
approximations to continuous and discrete time controller implementation methodology that
avoid using pure differentiation and that can be directly applied to the closed loop trajectory
tracking controller implementation, if needed.

Figure 6. Non-linear controller CðgÞ:
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Proof
In the proof the controller matrices Dc1 and Dc2 will be set to zero. This does not change the
results but simplifies the algebra considerably. In addition, in some of the expressions the
explicit dependence of the controller parameters on gC will be dropped.

Let gC be given, and consider the feedback interconnection of the linearized plant PLðgCÞ and
the corresponding linear controller CLðgCÞ: The state matrix F ðgCÞ of the feedback system can be
written as

F ðgCÞ :¼

Ad
d Ad

k BCc1 BDc3

I6%6 Ak
k 0 0

Bc1Cd Bc2 Ac1 Bc3

0 S1 S2Cc1 S2Dc3

2

666664

3

777775
ð44Þ

where for notational simplicity the explicit dependence of the matrices Að:Þ;Bð:Þ; and Cð:Þ on gC
was omitted.

The feedback interconnection of the plant P and the controller CðgÞ shown in Figure 6 is now
linearized about the equilibrium ‘condition’ corresponding to the trimming trajectory
determined by gC : Notice that at equilibrium UR ¼ UC and xdyn ¼ xdynC ¼ 0: However, xkinE
may be different from zero since not all angular kinematic variables are required to achieve
perfect tracking.

First, the states xc10 and xc20 and the output uC of the controller corresponding to this
equilibrium condition are determined. Consider the set of algebraic equations

0 ¼Ac1ðgCÞxc1 þ Bc1 ðgCÞCd
d

dt
xdyn þ Bc2 ðgCÞ

d

dt
*xxkinE

þ Bc3ðgCÞ½S2uC þ S1 *xxkinE ' ð45Þ

0 ¼ Cc1 ðgCÞxc1 þ Dc3ðgCÞ½S2uC þ S1 *xxkinE ' ð46Þ

u ¼ xc2 ð47Þ

Since xdyn and *xxkinE are constant along trimming trajectories it follows that ðd=dtÞxdyn ¼ 0 and
ðd=dtÞ *xxkinE ¼ ðd=dtÞxkinE ¼ 0: Therefore, Equations (45) and (46) can be written in matrix form
as

Ac1ðgCÞ Bc3ðgCÞ

Cc1 ðgCÞ Dc3ðgCÞ

" #
xc10

S2uC þ S1 *xxkinE

" #

¼ 0

Assumptions A1–A2 imply that the matrix

Ac1ðgCÞ Bc3ðgCÞ

Cc1 ðgCÞ Dc3 ðgCÞ

" #

ð48Þ
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is square and invertible for each gC : It then follows from the assumptions and Equation (47) that

S2uC þ S1 *xxkinE ¼ 0

xc10 ¼ 0

xc20 ¼ uC

It is now necessary to compute the state matrix for the linearized feedback interconnection of
P and CðgÞ: Consider Figure 6. Notice that the non-linear controller can be equivalently viewed
as a dynamic system %CCðgÞ with inputs Cdxdyn and xkinE ¼ *xxkinE and output u; where the second
equality comes from the fact that UR ¼ UC : A simple reasoning shows that the above mentioned
linearization is obtained by combining the linearization %CCLðgÞ of %CCðgÞ (about the equilibrium
point defined by xc10 ¼ 0; xc20 ¼ uC ; ðd=dtÞ *xxkinE ¼ 0; ðd=dtÞxdynC ¼ 0 and S1 *xxkinE þ S2uC ¼ 0Þ
with the linearized system PL in (35).

To compute the linearization of *CCðgÞ define vectors

%ff ðgÞ ¼ Ac1xc1 þ Bc1Cd
d

dt
xdynE þ Bc2

d

dt
*xxkinE þ Bc3 ½S2uþ S1 *xxkinE '

%ggðgÞ ¼ Ac1xc1 þ Dc3 ½S2uþ S1 *xxkinE '

where the dependence of matrices Að:Þ;Bð:Þ;Cð:Þ; and Dð:Þ; on the equilibrium trajectory was
omitted. Then

d

dt
dxc1 ¼

@
@u

%ff ðgÞ
&&&&
g¼gC

duþ
@

@xdynE
%ff ðgÞ

&&&&
g¼gC

dxdynE þ
@

@ *xxkinE
%ff ðgÞ

&&&&
g¼gC

d *xxkinE

þ
@

@xc1
%ff ðgÞ

&&&&
g¼gC

dxc1

d

dt
dxc2 ¼

@
@u

%ggðgÞ
&&&&
g¼gC

duþ
@

@xdynE
%ggðgÞ

&&&&
g¼gC

dxdynE þ
@

@ *xxkinE
%ggðgÞ

&&&&
g¼gC

dxkinE

þ
@

@xc1
%ggðgÞ

&&&&
g¼gC

dxc1

du ¼ dxc2

where ð:Þjg¼gC means that expression inside brackets is evaluated along the equilibrium trajectory
determined by gC : Note that since xc10 ¼ 0;

@
@xdynE

½Ac1 ðgÞxc1 '
&&&&
g¼gC

¼ 0 ð49Þ

Similar results can be obtained for ð@=@xkinE Þ½Ac1ðgCÞxc1 'jg¼gC ; ð@=@uÞ½Bc1 ðgCÞðd=dtÞxdynE 'jg¼gC ;
etc. Therefore, the linearization of the controller has the form

d

dt
dxc1 ¼Ac1 ðgCÞdxc1 þ Bc1ðgCÞCd

d

dt
dxdyn þ Bc2 ðgCÞ

d

dt
d *xxkinE

þ Bc3ðgCÞ½S2duþ S1d *xxkinE '
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d

dt
dxc2 ¼Cc1 ðgCÞdxc1 þ Dc3 ðgCÞ½S2duþ S1d *xxkinE '

du ¼ dxc2 ð50Þ

It is easy to verify that the state matrix MðgCÞ of T lðP; CÞðgCÞ is

MðgCÞ :¼

Ad
d Ad

k 0 B

I6%6 Ak
k 0 0

Bc1CdAd
d þ Bc2 Bc1CdAd

k þ Bc2A
k
k þ Bc3S1 Ac1 Bc1CdBþ Bc3S2

0 Dc3S1 Cc1 Dc3S2

2

666664

3

777775
ð51Þ

where again the explicit dependence of the elements of matrix MðgCÞ on the operating point has
been omitted. To complete the proof of the first part of the theorem, it must be shown that there
exists a non-singular matrix P such that F ¼ PMP(1: Earlier in the proof, it was shown that the
matrix

Ac1 Bc3

Cc1 Dc3

" #

ð52Þ

is invertible. Let

X Y

Z W

" #

:¼
Ac1 Bc3

Cc1 Dc3

" #(1

ð53Þ

and set

P ðgCÞ :¼

I6%6 0 0 0

0 I6%6 0 0

(XBc1Cd (XBc2 X Y

(ZBc1Cd (ZBc2 Z W

2

666664

3

777775

Routine algebra shows that

P(1ðgCÞ :¼

I6%6 0 0 0

0 I6%6 0 0

Bc1Cd Bc2 Ac1 Bc3

0 0 Cc1 Dc3

2

666664

3

777775

and that

P ðgCÞMðgCÞ ¼

Ad
d Ad

k 0 B

I6%6 Ak
k 0 0

0 0 I6%6 0

0 S1 0 S2

2

666664

3

777775
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which leads to the conclusion that F ðgCÞ ¼ P ðgCÞMðgCÞP(1ðgCÞ: Thus, F ðgCÞ and MðgCÞ have
the same eigenvalues. Note that this result is independent of matrices S1 and S2:

In order to show that
TlððP; CÞðgCÞÞðsÞ ¼ T ðPLðgCÞ; CLðgCÞÞðsÞ

it is first proved that the transfer function of the linear controller (42) with input dxkinE ( f and
output du equals the transfer function of the nonlinear controller linearization (50) from d *xxkinE
to du: The first is given by

UðsÞ ¼Cc1 ðsI ( Ac1Þ
(1

'
Bc1CdXdynðsÞ þ Bc2ðXkinE ðsÞ ( ZðsÞÞ

þ Bc3
I
s
½S1ðXkinE ðsÞ ( ZðsÞÞ þ S2UðsÞ'

(

þ Dc3
I
s
½S1ðXkinE ðsÞ ( ZðsÞÞ þ S2UðsÞ'

while the latter can be written as

UðsÞ ¼
1

s
Cc1 ðsI ( Ac1Þ

(1½sBc1CdXdynðsÞ þ sBc2
*XXkinE ðsÞ

þ Bc3 ½S1 *XXkinE ðsÞ þ S2UðsÞ''

þ Dc3
I
s
½S1ð *XXkinE ðsÞ þ S2UðsÞ'

where UðsÞ;XkinE ðsÞ; *XXkinE ðsÞ; ZðsÞ; and XdynðsÞ denote the Laplace transforms of du; dxkinE ;
d *xxkinE ; f and dxdynE ; respectively. Simple computations show that the above transfer functions
are equal.

Linearizing *xxkinE ¼ ½*ppTE ; *kk
T

E '
T about equilibrium trajectories UC 2 E gives

d*ppE ¼
@
@k

R(1½p( pR'
&&&& k¼kC

p¼pC
pR¼pC

dkþ
@
@p

R(1½p( pR'
&&&& k¼kC

p¼pC
pR¼pC

dp

þ
@

@pC
R(1½p( pR'

&&&& k¼kC
p¼pC
pR¼pC

d*pp

which can be written as

d*ppE ¼ R(1
C ½dp( d*pp' ð54Þ

Furthermore,

d *kkE ¼
@
@k

argð *RREÞ
&&&&

k¼kC
kR¼kC

dkþ
@

@ *kk
argð *RREÞ

&&&&
k¼kC
kR¼kC

d *kk

which, after some algebraic manipulations can be expressed as

d *kkE ¼ Q(1
C ½dk( d *kk' ð55Þ

Now, using Equations (54) and (55), the linearization of *xxkinE about the equilibrium
trajectories can be written as

d *xxkinE ¼ LðkCÞ(1ðdxkin ( d *UUÞ ð56Þ
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Setting d *UU ¼ LðkCÞf; and using the fact that dxkinE ¼ LðkCÞ(1dxkin the theorem follows
immediately from the definition of the operator

T 1ðP; CÞðgCÞ ¼ L(1ðkCÞ *TT lðP; CÞðgCÞLðkCÞ &

It is worth emphasizing the following important properties of the controller C:

1. The result in Theorem 5.1 holds for all trimming trajectories UC 2 E:
2. The structure of the controller CðgÞ is easily obtained from that of the linear controllers

CLðgCÞ:
3. All closed loop transfer functions of the local linearization are preserved. Therefore, at the

level of local linear analysis the controller does not introduce any additional noise
amplification despite the presence of a differentiation operator.

4. At equilibrium, xc20 ¼ uC and xc10 ¼ 0: Therefore, controller initialization is simple and the
plant input trimming value is naturally provided by the integrator block with state xc2 :

5. The integrators xc2 are directly at the input of the plant thus making the implementation of
anti-windup schemes straightforward [19]. This becomes necessary in applications where
the input u is hard limited due to actuator saturations, for example, in the case of
underwater vehicles and airplanes where the actuator saturation is present either in
thruster actuation or control surface deflections.

6. Given a vehicle trimming strategy, the inputs to the controller xkinC can be computed
directly from the vector gC and the initial conditions of the trajectory to be tracked.

7. The trim values xdynC and uC are not required in the controller implementation.
8. Along the trajectories UC 2 E the controller guarantees that the error vector S1 *xxkinE is zero.

This is in sharp contrast to standard LOS guidance schemes.
9. For most applications only the time derivative of the vehicle angular velocity x must be

computed directly. The other derivatives are, in general, available from on-board sensors.
In fact, instead of computing the time derivative of xkinE the relationship

d

dt
xkinE ¼

d

dt
R(1½p( pR'

d

dt
argð *RREÞ

2

664

3

775 ¼
(SðxÞR(1½p( pR' þR(1½ddt p(

d

dt
pR'

QE½x(R(1
E ½x( xR''

2

64

3

75

can be used, where xR is the reference angular velocity and ðd=dtÞp is the inertial velocity of
the vehicle. In most cases, the latter is available from on-board Doppler effect sensors (e.g.
Doppler radar and Doppler sonar for aircraft and underwater vehicles, respectively).
Similarly, the time derivative of the body velocity ðd=dtÞv can be obtained from

d

dt
v ¼ a(R(1g( SðxÞv

where a is the vector of specific accelerations measured by on-board accelerometers and
v ¼ R(1ðd=dtÞp:

5.2. The state feedback case

This section presents a solution to the trajectory tracking problem for the case where KðgCÞ is
obtained for the augmented plant using a state feedback synthesis technique. As in the previous
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case, assume that the design step produces the set of linear controllers

CL :¼

d

dt
dxc ¼ S1ðdxkinE ( fÞ þ S2du

du ¼ K1ðgCÞdxdyn þ K2ðgCÞðdxkinE ( fÞ þ K3ðgCÞdxc

8
><

>:
ð57Þ

with the structure displayed in Figure 5 where Cd ¼ I and KiðgCÞ; i ¼ 1; 2; 3 are
matrices of appropriate dimensions. In the equations dxc 2 Rm is the controller state
and du 2 Rm represents the input to the plant. The fictitious input f is introduced to
assess the tracking performance of the linearized closed loop system. Notice again the
presence of a bank of integrators aimed at driving tracking errors to zero at steady state.
As in the output feedback case, assume that the parameters of the controller are C1 functions
of gC :

Given the set CL of linear controllers designed for the set PL of linearized plant models,
consider the following structure as an implementation scheme proposed for the gain scheduled
controller CðgÞ (see Figure 6 and set matrix Cd ¼ I):

CðgÞ :¼

*xxkinE ¼ ½R(1½p( pR'
T; argð *RREÞT'T

d

dt
xc ¼ K1ðgCÞ

d

dt
xdyn þ K2ðgCÞ

d

dt
*xxkinE þ K3ðgCÞ½S2uþ S1 *xxkinE '

u ¼ xc

8
>>>><

>>>>:

ð58Þ

Once more notice that in Figures 5 and 6 the structure of the gain scheduled controller is easily
obtained from that of the linear controllers. The following theorem presents the solution to the
trajectory tracking implementation problem for the state feedback case. The proof is omitted.

Theorem 5.2
Given CL; assume that dimðxcÞ ¼ dimðuÞ ¼ dimðS1 *xxkinE þ S2uÞ and that matrix K3ðgCÞ is
invertible. Then the gain scheduled controller CðgÞ given by Equations (58) solves the trajectory
tracking controller implementation problem, i.e. for each UC 2 E the following properties hold:

(i) The feedback systems T lðP; CÞðgCÞ and T ðPLðgCÞ; CLðgCÞÞ have the same closed loop
eigenvalues.

(ii) The closed loop matrix transfer functions T lðP; CÞðgCÞðsÞ and T ðPLðgCÞ; CLðgCÞÞðsÞ are
equal.

6. AN ALTERNATIVE CO-ORDINATE TRANSFORMATION

The non-linear transformation NLT in (31) played a key role in the development of the gain
scheduled controller CðgÞ: However, controller implementation is computationally intensive due
to the need to determine argðREÞ in real time. This section shows how in the case under study a
much simpler transformation can be used that still yields useful results. The new transformation
is obtained by redefining kE as kE ¼ Q(1½k( kC'; where Q(1 ¼ Q(1ðkÞ is a constant matrix
about each trimming trajectory UC 2 E and Q satisfies ðd=dtÞk ¼ Qx: In this case, the non-linear
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transformation (31) degenerates into

vE ¼ v( vC

xE ¼ x( xC

pE ¼ R(1½p( pC'

kE ¼ Q(1½k( kC'

ð59Þ

Following Section 4 it must now be shown that the linearization of plant P in the error state
space defined by Equation (59), computed along trimming trajectories UC 2 E; is time invariant.

In order to do this, the derivatives of pE and kE about trimming trajectories UC must first be
computed. A result similar to that in Section 4 is obtained for pE; that is,

d

dt
pE ¼ v(R(1

E vC ( SðxÞpE ð60Þ

Computing the time derivative of kE ¼ Q(1½k( kC' gives

d

dt
kE ¼ Q(1 d

dt
k(

d

dt
kC

' (
þ

d

dt
Q(1½k( kC'

Using the fact that ðd=dtÞk ¼ Qx and ðd=dtÞkC ¼ QCxC ; one obtains

d

dt
kE ¼ Q(1Qx(Q(1QCxC þ

d

dt
Q(1½k( kC'

which can be simplified to give

d

dt
kE ¼ x(Q(1QCxC þ

d

dt
Q(1QkE ð61Þ

Now, using Equations (59) and (60) and the fact that for trajectories UC 2 E the vectors vC
and xC are constant, the non-linear error model becomes

PE ¼

d

dt
vE ¼ F vðv;xÞ þ F k

v ðkÞ þ Bvðv;xÞHðv; uÞ

d

dt
xE ¼ Fxðv;xÞ þ F k

xðkÞ þ Bxðv;xÞHðv; uÞ

d

dt
pE ¼ v(R(1

E vC ( SðxÞpE

d

dt
kE ¼ x(Q(1QCxC þ

d

dt
Q(1QkE

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð62Þ

The linearization of this model about trimming trajectories gives a result similar to the one
presented in Section 4; see the next theorem.

Theorem 6.1
Let UC 2 E be an arbitrary trimming trajectory of a rigid body %RR; and let gC be the
corresponding parametrizing vector. Consider the generalized error dynamics PE in (62) that
result from applying the non-linear transformation (59) to the rigid body equations (21). Then,
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the linearization of PE about the zero solution is time invariant, with realization

PLðgCÞ ¼

d

dt
dvE ¼ Av

vdvE þ Ax
v dxE þ Ak

vdkE þ Bvdu

d

dt
dxE ¼ Av

xdvE þ Ax
xdxE þ Ak

xdkE þ Bxdu

d

dt
dpE ¼ dvE ( SðxCÞdpE ( SðvCÞdkE

d

dt
dkE ¼ dxE ( SðxCÞdkE

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Proof
To prove Theorem 6.1 one needs to linearize equations (62) about the trajectories UC 2 E: The
linearization of the first two equations of (62) gives

d

dt
dvE ¼ Av

vdvE þ Ax
v dxE þ Ak

vdkE þ Bvdu

d

dt
dxE ¼ Av

xdvE þ Ax
xdxE þ Ak

xdkE þ Bxdu
ð63Þ

as in Theorem 4.1. For the linearization of ðd=dtÞpE one obtains

d

dt
dpE ¼ dv(

@
@k

½R(1ðRCvCÞ'
@k
@kE

&&&&
g¼gC

dkE (
@
@x

½SðxÞpE'
&&&&
g¼gC

dx

(
@
@pE

½SðxÞpE'
&&&&
g¼gC

dpE ð64Þ

Evaluating the above equation along the trajectories in E and using Identity 10.1 from the
appendix, results in

d

dt
dpE ¼ dvE ( SðvCÞQ(1 @k

@kE

&&&&
g¼gC

dkE ( SðxCÞdpE ð65Þ

Linearizing Equation (62) and using the result that along the trajectories UC 2 E; ðd=dtÞQ(1 ¼
0; gives

d

dt
dkE ¼ dxE (

@
@k

ðQ(1QCxCÞ
@k
@kE

&&&&
g¼gC

dkE ð66Þ

From the definition of kE it follows that

@k
@kE

¼ Q ð67Þ

After some algebraic manipulations it is possible to show that along the equilibrium trajectories

@
@k

ðQ(1QCxCÞQ ¼ SðxCÞ ð68Þ
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which recovers the general case results for dpE and dkE

d

dt
dpE ¼ dvE ( SðxCÞdpE ( SðvCÞdkE

d

dt
dkE ¼ dxE ( SðxCÞdkE

ð69Þ

and completes the proof of the theorem. &

It is straightforward to show that the results for the rigid body trajectory tracking controller
implementation problem presented in Section 5 can be extended to this case.

In a great number of applications, the only variables that must be accurately tracked are
linear positions pR; the remaining kinematic variables being left free to accommodate extra
trimming constraints. In such cases,

S1 ¼
I3%3 0

0 0

" #

and the simplified implementation scheme presented in Figure 7 can be applied [14]. The most
important simplification amounts to replacing the time derivative of *kkE ¼ Q(1½k( kR' by

s ¼ x(Q(1 d

dt
kR

! "

where

d

dt
kR ¼ ½0; 0; ’ccR'

T

Notice in this case that the only external commands that must be supplied to the control system
are the linear position pR and the yaw rate ’ccR: This fact can hardly be overemphasized, since the
new controller implementation entirely avoids feedforwarding any extra trimming variables.
The non-linear controller implementation is given by

CðgÞ :¼

*ppE ¼ R(1½p( pR'

d

dt
xc1 ¼ Ac1 ðgÞxc1 þ Bc1 ðgÞCd

d

dt
xdyn þ Bc2ðgÞ½

d

dt
*ppTE ; s

T'T

þBc3 ðgÞ½S2uþ ½*ppTE ; 0
T'T'

d

dt
xc2 ¼ Cc1 ðgÞxc1 þ Dc1ðgÞCd

d

dt
xdyn þ Dc2ðgÞ½

d

dt
*ppTE ; s

T'T

þDc3 ðgÞ½S2uþ ½*ppTE ; 0
T'T'

u ¼ xc2

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð70Þ

It can be shown that the results of Section 5 can be trivially particularized to this set-up.
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7. EXAMPLE: AUV GUIDANCE/CONTROL SYSTEM DESIGN

This section illustrates the application of the methodology described before to the design of a
gain scheduled trajectory tracking controller for the Infante AUV depicted in Figure 8. In what
follows, a summary is given of the work required at each of the design steps that lead to the
development of a controller for the vehicle that is scheduled on yaw rate ’cc and flight path angle
g; that is, on the gain scheduling variable g ¼ ½Vt; ’cc; g'T: The desired total velocity is kept
constant. For the sake of brevity, the linear design methodology is illustrated for the case of a
single operating condition.

7.1. Linear controller design

At each trimming condition the linear feedback controllers were required to meet the following
design specifications:

Zero steady state error. Achieve zero steady state values for all error variables in response to
the fictitious input commands d*pp and d *ff in f:

Bandwidth requirements. The input–output command response bandwidth for all command
channels should be on the order of 5 rad=s:

Closed loop damping. The closed loop eigenvalues should have a damping ratio of at least 0.7.

It was also required that the steady-state deflection of the bow planes be db ¼ 0 rad:
The methodology selected for linear control system design was H1 state feedback. This

method rests on a firm theoretical basis and leads naturally to an interpretation of control
design specifications in the frequency domain. Furthermore, it provides clear guidelines for the
design of controllers so as to achieve robust performance in the presence of plant uncertainty.

The first step in the controller-design procedure is the development of a synthesis model that
can serve as an interface between the designer and the H1 controller synthesis algorithm.
Consider the feedback system shown in Figure 9, where PLðgCÞ is obtained from the linearized
model of the AUV and KðgCÞ is the controller to be designed. The correspondence between the
standard H1 controller design notation of Figure 9 and that introduced in Section 4 for
incremental variables will be clear from the context. The block J ðgCÞ within the dashed line is
the synthesis model, which is derived from the linearized model of the plant by appending the

Figure 7. Simplified non-linear controller implementation.
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depicted weights. In practice, the weights serve as tuning ‘knobs’ which the designer can adjust
to meet the desired performance specifications.

The signal w corresponds to the fictitious input vector f of Figure 5 and includes the input
commands that must be tracked. The signal u corresponds to the control inputs to the system.
The signal x1 contains the kinematic variables and includes the components of the state vector
that must track the input commands. Finally, x2 consists of the remaining dynamic state
variables. The blocks S1 and S2 select the kinematic tracking errors and the actuator signals

Figure 8. The Infante AUV.

Figure 9. Synthesis model.
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respectively, that must be driven to zero at steady state (along trimming trajectories). This
justifies why the outputs of S1 and S2 drive a bank of integrators.

In the figure, W1;W2;W3; and W4 are non-dynamic weights that are used for controller tuning.
Their outputs constitute the vector z that is reduced in the design process. The signal

y ¼ xTdyn;x
T
kinE

;
pTE
s
;
f
s
;
db
s

' (T

consists of all the states of plant PLðgCÞ; together with the outputs of the appended integrators.
The integrator gains in W4 were adjusted to get the desired command response bandwidths and
actuator decay ratio.

Given a design model, suppose that the feedback system is well posed and let T zw denote the
closed loop transfer matrix from w to z: Given g positive, the H1 synthesis problem consists of
finding, among all the controllers that yield a stable closed loop system, a sub-optimal controller
KðgCÞ that makes the maximum energy amplification of the closed loop operator T zw; denoted
jjT zwjj1; less than g: In this setting, g plays the role of a design parameter. This problem was
converted to an optimization problem and solved using the linear matrix inequalities technique
presented in Reference [20].

A set of 6 linear controllers were computed for Vsc ¼ 2 m=s; gC 2 f0:0; 19:5g deg; and ’ccC 2
f(4:6; 0:0; 4:6g deg=s; with matrices Wð:Þ and Sð:Þ of the form

W1 ¼ 0:01I6%6 W2 ¼

10(2I4%4 0 0

0 15 0

0 0 20

2

664

3

775

W3 ¼

2 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 5 0

0 0 0 0 0:02

2

666666664

3

777777775

W4 ¼ 10I5%5

S1 ¼

I3%3 03%1 03%2

01%3 1 01%2

01%3 0 01%2

2

664

3

775 S2 ¼
04%1 04%1 04%3

0 1 01%3

" #
I
s
¼

1

s
0 0 0 0

0
1

s
0 0 0

0 0
1

s
0 0

0 0 0
1

s
0

0 0 0 0
1

s

2

66666666666666664

3

77777777777777775
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for all controllers. For the case where gC ¼ 0:0 deg and ’ccC ¼ 0:0 deg=s this design led to the set
of closed loop eigenvalues

(0:08

(0:29+ 0:29j

(0:30+ 0:25j

(0:32+ 0:21j

(0:33+ 0:33j

(0:65+ 0:03j

(1:11+ 0:22j

(1:36+ 0:42j

(22:69

(24:73

that meet the closed loop system performance requirements. Figure 10 shows the Bode diagrams
for the closed loop transfer functions from the fictitious linear position command inputs d*pp and
d *ff to dp and df: The diagram shows that the performance requirements are met by the resultant
closed loop system.

7.2. Non-linear controller implementation

A set of 6 controllers was computed for the combination of values of Vs; ’cc; and g presented
above and their parameters interpolated according to the scheduling vector g in the given
bounded domain.

The resulting non-linear gain scheduled controller was implemented using the trajectory
tracking controller implementation methodology described in Section 5.

The gain scheduled controller implementation is depicted in Figure 6, where KðgÞ is easily
obtained from the interpolation of the linear controllers derived in Section 7. In the case under
study, the non-linear implementation strategy implies that the only external commands to the
trajectory tracking controller are pC and kC ; where the entries of kC are simply 0, 0, and

R
’ccC :

The first entry captures the fact that the value of roll throughout the trajectory should be kept at
zero. The second entry is not relevant because the value of pitch at trimming is not imposed
explicitly and therefore pitch error is not selected by matrix. Finally, notice that pC and

R
’ccC are

directly available from the reference trajectory generator.

Figure 10. Frequency response for channels d*pp and d *ff:
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It is important to stress that the controller implementation method presented above requires
differentiation of some of the variables. In practice, the differentiation operator may simply be
replaced by a causal system with transfer function

s
tsþ 1

or by a simple finite difference operator for discrete-time implementation [10].

8. INTEGRATED GUIDANCE AND CONTROL SIMULATION

The performance of the integrated guidance and control system was evaluated in simulation
with a non-linear model of the vehicle along a reference trajectory composed of the 7 segments
of trimming trajectories presented in Table I. The reference for linear position in the x–y plane is
an S-shaped trajectory consisting of three straight lines 80 m long each and two semi-
circumferences with radii of 48 m: The reference trajectory in the vertical plane transitions
smoothly from a lower to a higher plateau with a slope of (10 deg: Notice that the vertical co-
ordinate is positive down. In order to simplify the interpretation of the simulation results, the
trajectory was generated with constant velocity Vtc ¼ 2:0 m=s:

The desired and observed trajectories as well as the corresponding linear position errors are
depicted in Figures 11–13. The controller activity and the vehicle model state variables are
condensed in Figures 14–16 and 17–19, respectively. At the beginning of the manoeuvre, the
actuation variables are essentially constant during the first 40 s:Upon entering the circular path,
the rudder deflects to create a torque that will impart the desired rotational speed to the vehicle.
Once the desired speed is reached, the rudder deflects slightly in the opposite direction to
stabilize the rotation. This manoeuvre is characteristic of vehicles that are unstable in yaw.

At the middle of the first turn, the vehicle shows a pronounced rotation in pitch and converges
rapidly to a pitch angle of 19:5 deg in order to track the desired flight path angle. This rotation is
achieved by deflecting the common bow surfaces db and the common stern surfaces ds in
opposite directions, so as to generate a pure torque. When the vehicle reaches the desired
orientation, db and ds decrease. However, their values do not tend to zero, since they must
counteract the restoring torque due to the combined effects of buoyancy and gravity.

When the vehicle reaches the end of the first turn, there is a strong deflection dr of the rudder
to drive the velocity of rotation to zero. Similar comments apply to the remaining part of the
trajectory.

Table I. Trimming values for the simulated trajectory

Time (s) Vtc (m/s) cC (deg/s) gC (deg)

0–40 2.0 0.0 0.0
40–60 2.0 4.6 0.0
60–80 2.0 4.6 19.5
80–120 2.0 0.0 19.5
120–140 2.0 (4.6 19.5
140–160 2.0 (4.6 0.0
160–200 2.0 0.0 0.0
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It is important to remark that thrust activity rises during manoeuvres that require large
deflection of the control surfaces. This is required to counteract the increase in drag, which tends
to slow down the vehicle.

9. CONCLUDING REMARKS

The paper presented a new methodology for the design of trajectory tracking controllers for
autonomous vehicles. The new design method builds on three key results: (i) the trimming

Figure 11. Reference and observed trajectory}horizontal plane.

Figure 12. Reference and observed trajectory}three-dimensional view.
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Figure 13. Linear position errors along the trajectory.

Figure 14. AUV state variables: linear velocities.

Figure 15. AUV state variables: angular velocities.
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trajectories of autonomous vehicles are helices parameterized by the vehicles linear speed, yaw
rate, and flight path angle (trimming vector); (ii) tracking of a trimming trajectory by the vehicle
is equivalent to driving a generalized tracking error to zero, and (iii) the linearization of the
generalized error dynamics about any trimming trajectory is time-invariant. Based on these
results, the problem of trajectory tracking system design was cast and solved in the framework
of gain scheduling control theory.

A key feature of the controllers developed is their ability to automatically generate the
trimming values for the plant inputs and for all state variables that are not required to track
kinematic reference inputs. The new methodology is simple to apply and leads to a non-linear
controller with a structure similar to that of the original linear designs. The paper described the
application of the methodology developed to the design of a trajectory tracking controller for a

Figure 16. AUV state variables: angles of roll pitch and yaw.

Figure 17. Control activity: rudder ðdrÞ; stern surfaces ðdsÞ:
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prototype autonomous underwater vehicle (AUV). The effectiveness of the new control laws
was assessed in simulation. The results obtained show that the methodology derived holds
considerable promise for practical applications. Future work will address the problem of vehicle
trajectory tracking in the presence of external disturbances (currents and waves).
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Figure 18. Control activity: differential ðddÞ; bow surfaces ðdbÞ:

Figure 19. Control activity: thrust.
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APPENDIX

This section presents some matrix and vector properties that are used in this paper. See
Section 3.1 for the definition of vectors k and x and matrices R and Q: Given u ¼ ½ux; uy ; uz'T

and v 2 R3;SðuÞ denotes the skew-symmetric matrix defined by

SðuÞ :¼

0 (uz uy

uz 0 (ux

(uy ux 0

2

664

3

775 ðA1Þ

such that the cross product vector u% v equals SðuÞv: In condensed form, SðuÞ ¼ ux: Recall that
[21]

SðuÞv ¼ (SðvÞu ðA2Þ

for any vectors u and v of compatible dimensions and that

d

dt
RðkÞ ¼ RðkÞSðxÞ ðA3Þ

Identity 10.1
Let u be a vector in R3: Then,

d

dk
ðRuÞ ¼ (RSðuÞQ(1 ðA4Þ

and

d

dk
ðR(1uÞ ¼ SðR(1uÞQ(1 ðA5Þ

Proof
To derive the first equality compute

d

dt
ðRuÞ ¼

d

dt
ðRÞuþR d

dt
u

¼RSðxÞuþR d

dt
u

¼ (RSðuÞxþR d

dt
u ðA6Þ

Alternatively, using the chain rule

d

dt
ðRuÞ ¼

d

dk
ðRuÞ

d

dt
kþR d

dt
u

¼
d

dk
ðRuÞQxþR d

dt
u ðA7Þ

Equation (A4) follows by comparing Equations (A6) and (A7). To obtain Equation (A5),
consider

d

dt
ðR(1RÞ ¼

d

dt
ðR(1ÞRþR(1 d

dt
ðRÞ ¼ 0 ðA8Þ
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where the equality R(1R ¼ I ; 8k was used. Thus,

d

dt
ðR(1Þ ¼ (R(1 d

dt
ðRÞR(1

¼ ( SðxÞR(1

As in the derivative of (A6), compute

d

dt
ðR(1uÞ ¼ ( SðxÞR(1uþR(1 d

dt
u

¼SðR(1uÞxþR(1 d

dt
u ðA9Þ

Now, use the chain rule to obtain

d

dt
ðR(1uÞ ¼

d

dk
ðR(1uÞ

d

dt
kþR(1 d

dt
u

¼
d

dk
ðR(1uÞQxþR(1 d

dt
u ðA10Þ

The second result follows readily from Equations (A9) and (A10).
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